]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/dcache.c
Merge branch 'pm-pci'
[mirror_ubuntu-bionic-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 unsigned int hash)
117 {
118 hash += (unsigned long) parent / L1_CACHE_BYTES;
119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121
122
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 .age_limit = 45,
126 };
127
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132
133 /*
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
137 *
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
141 *
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
144 */
145 static long get_nr_dentry(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 static long get_nr_dentry_unused(void)
155 {
156 int i;
157 long sum = 0;
158 for_each_possible_cpu(i)
159 sum += per_cpu(nr_dentry_unused, i);
160 return sum < 0 ? 0 : sum;
161 }
162
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 size_t *lenp, loff_t *ppos)
165 {
166 dentry_stat.nr_dentry = get_nr_dentry();
167 dentry_stat.nr_unused = get_nr_dentry_unused();
168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171
172 /*
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
175 */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177
178 #include <asm/word-at-a-time.h>
179 /*
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
184 *
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
187 */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 unsigned long a,b,mask;
191
192 for (;;) {
193 a = *(unsigned long *)cs;
194 b = load_unaligned_zeropad(ct);
195 if (tcount < sizeof(unsigned long))
196 break;
197 if (unlikely(a != b))
198 return 1;
199 cs += sizeof(unsigned long);
200 ct += sizeof(unsigned long);
201 tcount -= sizeof(unsigned long);
202 if (!tcount)
203 return 0;
204 }
205 mask = bytemask_from_count(tcount);
206 return unlikely(!!((a ^ b) & mask));
207 }
208
209 #else
210
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 do {
214 if (*cs != *ct)
215 return 1;
216 cs++;
217 ct++;
218 tcount--;
219 } while (tcount);
220 return 0;
221 }
222
223 #endif
224
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 /*
228 * Be careful about RCU walk racing with rename:
229 * use 'lockless_dereference' to fetch the name pointer.
230 *
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
238 *
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
242 */
243 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244
245 return dentry_string_cmp(cs, ct, tcount);
246 }
247
248 struct external_name {
249 union {
250 atomic_t count;
251 struct rcu_head head;
252 } u;
253 unsigned char name[];
254 };
255
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260
261 static void __d_free(struct rcu_head *head)
262 {
263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264
265 kmem_cache_free(dentry_cache, dentry);
266 }
267
268 static void __d_free_external(struct rcu_head *head)
269 {
270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 kfree(external_name(dentry));
272 kmem_cache_free(dentry_cache, dentry);
273 }
274
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 return dentry->d_name.name != dentry->d_iname;
278 }
279
280 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
281 {
282 spin_lock(&dentry->d_lock);
283 if (unlikely(dname_external(dentry))) {
284 struct external_name *p = external_name(dentry);
285 atomic_inc(&p->u.count);
286 spin_unlock(&dentry->d_lock);
287 name->name = p->name;
288 } else {
289 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
290 spin_unlock(&dentry->d_lock);
291 name->name = name->inline_name;
292 }
293 }
294 EXPORT_SYMBOL(take_dentry_name_snapshot);
295
296 void release_dentry_name_snapshot(struct name_snapshot *name)
297 {
298 if (unlikely(name->name != name->inline_name)) {
299 struct external_name *p;
300 p = container_of(name->name, struct external_name, name[0]);
301 if (unlikely(atomic_dec_and_test(&p->u.count)))
302 kfree_rcu(p, u.head);
303 }
304 }
305 EXPORT_SYMBOL(release_dentry_name_snapshot);
306
307 static inline void __d_set_inode_and_type(struct dentry *dentry,
308 struct inode *inode,
309 unsigned type_flags)
310 {
311 unsigned flags;
312
313 dentry->d_inode = inode;
314 flags = READ_ONCE(dentry->d_flags);
315 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
316 flags |= type_flags;
317 WRITE_ONCE(dentry->d_flags, flags);
318 }
319
320 static inline void __d_clear_type_and_inode(struct dentry *dentry)
321 {
322 unsigned flags = READ_ONCE(dentry->d_flags);
323
324 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
325 WRITE_ONCE(dentry->d_flags, flags);
326 dentry->d_inode = NULL;
327 }
328
329 static void dentry_free(struct dentry *dentry)
330 {
331 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
332 if (unlikely(dname_external(dentry))) {
333 struct external_name *p = external_name(dentry);
334 if (likely(atomic_dec_and_test(&p->u.count))) {
335 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
336 return;
337 }
338 }
339 /* if dentry was never visible to RCU, immediate free is OK */
340 if (!(dentry->d_flags & DCACHE_RCUACCESS))
341 __d_free(&dentry->d_u.d_rcu);
342 else
343 call_rcu(&dentry->d_u.d_rcu, __d_free);
344 }
345
346 /*
347 * Release the dentry's inode, using the filesystem
348 * d_iput() operation if defined.
349 */
350 static void dentry_unlink_inode(struct dentry * dentry)
351 __releases(dentry->d_lock)
352 __releases(dentry->d_inode->i_lock)
353 {
354 struct inode *inode = dentry->d_inode;
355 bool hashed = !d_unhashed(dentry);
356
357 if (hashed)
358 raw_write_seqcount_begin(&dentry->d_seq);
359 __d_clear_type_and_inode(dentry);
360 hlist_del_init(&dentry->d_u.d_alias);
361 if (hashed)
362 raw_write_seqcount_end(&dentry->d_seq);
363 spin_unlock(&dentry->d_lock);
364 spin_unlock(&inode->i_lock);
365 if (!inode->i_nlink)
366 fsnotify_inoderemove(inode);
367 if (dentry->d_op && dentry->d_op->d_iput)
368 dentry->d_op->d_iput(dentry, inode);
369 else
370 iput(inode);
371 }
372
373 /*
374 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
375 * is in use - which includes both the "real" per-superblock
376 * LRU list _and_ the DCACHE_SHRINK_LIST use.
377 *
378 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
379 * on the shrink list (ie not on the superblock LRU list).
380 *
381 * The per-cpu "nr_dentry_unused" counters are updated with
382 * the DCACHE_LRU_LIST bit.
383 *
384 * These helper functions make sure we always follow the
385 * rules. d_lock must be held by the caller.
386 */
387 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
388 static void d_lru_add(struct dentry *dentry)
389 {
390 D_FLAG_VERIFY(dentry, 0);
391 dentry->d_flags |= DCACHE_LRU_LIST;
392 this_cpu_inc(nr_dentry_unused);
393 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
394 }
395
396 static void d_lru_del(struct dentry *dentry)
397 {
398 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
399 dentry->d_flags &= ~DCACHE_LRU_LIST;
400 this_cpu_dec(nr_dentry_unused);
401 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
402 }
403
404 static void d_shrink_del(struct dentry *dentry)
405 {
406 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
407 list_del_init(&dentry->d_lru);
408 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 this_cpu_dec(nr_dentry_unused);
410 }
411
412 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
413 {
414 D_FLAG_VERIFY(dentry, 0);
415 list_add(&dentry->d_lru, list);
416 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
417 this_cpu_inc(nr_dentry_unused);
418 }
419
420 /*
421 * These can only be called under the global LRU lock, ie during the
422 * callback for freeing the LRU list. "isolate" removes it from the
423 * LRU lists entirely, while shrink_move moves it to the indicated
424 * private list.
425 */
426 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
427 {
428 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 dentry->d_flags &= ~DCACHE_LRU_LIST;
430 this_cpu_dec(nr_dentry_unused);
431 list_lru_isolate(lru, &dentry->d_lru);
432 }
433
434 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
435 struct list_head *list)
436 {
437 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438 dentry->d_flags |= DCACHE_SHRINK_LIST;
439 list_lru_isolate_move(lru, &dentry->d_lru, list);
440 }
441
442 /*
443 * dentry_lru_(add|del)_list) must be called with d_lock held.
444 */
445 static void dentry_lru_add(struct dentry *dentry)
446 {
447 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
448 d_lru_add(dentry);
449 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
450 dentry->d_flags |= DCACHE_REFERENCED;
451 }
452
453 /**
454 * d_drop - drop a dentry
455 * @dentry: dentry to drop
456 *
457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458 * be found through a VFS lookup any more. Note that this is different from
459 * deleting the dentry - d_delete will try to mark the dentry negative if
460 * possible, giving a successful _negative_ lookup, while d_drop will
461 * just make the cache lookup fail.
462 *
463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464 * reason (NFS timeouts or autofs deletes).
465 *
466 * __d_drop requires dentry->d_lock.
467 */
468 void __d_drop(struct dentry *dentry)
469 {
470 if (!d_unhashed(dentry)) {
471 struct hlist_bl_head *b;
472 /*
473 * Hashed dentries are normally on the dentry hashtable,
474 * with the exception of those newly allocated by
475 * d_obtain_alias, which are always IS_ROOT:
476 */
477 if (unlikely(IS_ROOT(dentry)))
478 b = &dentry->d_sb->s_anon;
479 else
480 b = d_hash(dentry->d_name.hash);
481
482 hlist_bl_lock(b);
483 __hlist_bl_del(&dentry->d_hash);
484 dentry->d_hash.pprev = NULL;
485 hlist_bl_unlock(b);
486 /* After this call, in-progress rcu-walk path lookup will fail. */
487 write_seqcount_invalidate(&dentry->d_seq);
488 }
489 }
490 EXPORT_SYMBOL(__d_drop);
491
492 void d_drop(struct dentry *dentry)
493 {
494 spin_lock(&dentry->d_lock);
495 __d_drop(dentry);
496 spin_unlock(&dentry->d_lock);
497 }
498 EXPORT_SYMBOL(d_drop);
499
500 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
501 {
502 struct dentry *next;
503 /*
504 * Inform d_walk() and shrink_dentry_list() that we are no longer
505 * attached to the dentry tree
506 */
507 dentry->d_flags |= DCACHE_DENTRY_KILLED;
508 if (unlikely(list_empty(&dentry->d_child)))
509 return;
510 __list_del_entry(&dentry->d_child);
511 /*
512 * Cursors can move around the list of children. While we'd been
513 * a normal list member, it didn't matter - ->d_child.next would've
514 * been updated. However, from now on it won't be and for the
515 * things like d_walk() it might end up with a nasty surprise.
516 * Normally d_walk() doesn't care about cursors moving around -
517 * ->d_lock on parent prevents that and since a cursor has no children
518 * of its own, we get through it without ever unlocking the parent.
519 * There is one exception, though - if we ascend from a child that
520 * gets killed as soon as we unlock it, the next sibling is found
521 * using the value left in its ->d_child.next. And if _that_
522 * pointed to a cursor, and cursor got moved (e.g. by lseek())
523 * before d_walk() regains parent->d_lock, we'll end up skipping
524 * everything the cursor had been moved past.
525 *
526 * Solution: make sure that the pointer left behind in ->d_child.next
527 * points to something that won't be moving around. I.e. skip the
528 * cursors.
529 */
530 while (dentry->d_child.next != &parent->d_subdirs) {
531 next = list_entry(dentry->d_child.next, struct dentry, d_child);
532 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
533 break;
534 dentry->d_child.next = next->d_child.next;
535 }
536 }
537
538 static void __dentry_kill(struct dentry *dentry)
539 {
540 struct dentry *parent = NULL;
541 bool can_free = true;
542 if (!IS_ROOT(dentry))
543 parent = dentry->d_parent;
544
545 /*
546 * The dentry is now unrecoverably dead to the world.
547 */
548 lockref_mark_dead(&dentry->d_lockref);
549
550 /*
551 * inform the fs via d_prune that this dentry is about to be
552 * unhashed and destroyed.
553 */
554 if (dentry->d_flags & DCACHE_OP_PRUNE)
555 dentry->d_op->d_prune(dentry);
556
557 if (dentry->d_flags & DCACHE_LRU_LIST) {
558 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
559 d_lru_del(dentry);
560 }
561 /* if it was on the hash then remove it */
562 __d_drop(dentry);
563 dentry_unlist(dentry, parent);
564 if (parent)
565 spin_unlock(&parent->d_lock);
566 if (dentry->d_inode)
567 dentry_unlink_inode(dentry);
568 else
569 spin_unlock(&dentry->d_lock);
570 this_cpu_dec(nr_dentry);
571 if (dentry->d_op && dentry->d_op->d_release)
572 dentry->d_op->d_release(dentry);
573
574 spin_lock(&dentry->d_lock);
575 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
576 dentry->d_flags |= DCACHE_MAY_FREE;
577 can_free = false;
578 }
579 spin_unlock(&dentry->d_lock);
580 if (likely(can_free))
581 dentry_free(dentry);
582 }
583
584 /*
585 * Finish off a dentry we've decided to kill.
586 * dentry->d_lock must be held, returns with it unlocked.
587 * If ref is non-zero, then decrement the refcount too.
588 * Returns dentry requiring refcount drop, or NULL if we're done.
589 */
590 static struct dentry *dentry_kill(struct dentry *dentry)
591 __releases(dentry->d_lock)
592 {
593 struct inode *inode = dentry->d_inode;
594 struct dentry *parent = NULL;
595
596 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
597 goto failed;
598
599 if (!IS_ROOT(dentry)) {
600 parent = dentry->d_parent;
601 if (unlikely(!spin_trylock(&parent->d_lock))) {
602 if (inode)
603 spin_unlock(&inode->i_lock);
604 goto failed;
605 }
606 }
607
608 __dentry_kill(dentry);
609 return parent;
610
611 failed:
612 spin_unlock(&dentry->d_lock);
613 return dentry; /* try again with same dentry */
614 }
615
616 static inline struct dentry *lock_parent(struct dentry *dentry)
617 {
618 struct dentry *parent = dentry->d_parent;
619 if (IS_ROOT(dentry))
620 return NULL;
621 if (unlikely(dentry->d_lockref.count < 0))
622 return NULL;
623 if (likely(spin_trylock(&parent->d_lock)))
624 return parent;
625 rcu_read_lock();
626 spin_unlock(&dentry->d_lock);
627 again:
628 parent = ACCESS_ONCE(dentry->d_parent);
629 spin_lock(&parent->d_lock);
630 /*
631 * We can't blindly lock dentry until we are sure
632 * that we won't violate the locking order.
633 * Any changes of dentry->d_parent must have
634 * been done with parent->d_lock held, so
635 * spin_lock() above is enough of a barrier
636 * for checking if it's still our child.
637 */
638 if (unlikely(parent != dentry->d_parent)) {
639 spin_unlock(&parent->d_lock);
640 goto again;
641 }
642 rcu_read_unlock();
643 if (parent != dentry)
644 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
645 else
646 parent = NULL;
647 return parent;
648 }
649
650 /*
651 * Try to do a lockless dput(), and return whether that was successful.
652 *
653 * If unsuccessful, we return false, having already taken the dentry lock.
654 *
655 * The caller needs to hold the RCU read lock, so that the dentry is
656 * guaranteed to stay around even if the refcount goes down to zero!
657 */
658 static inline bool fast_dput(struct dentry *dentry)
659 {
660 int ret;
661 unsigned int d_flags;
662
663 /*
664 * If we have a d_op->d_delete() operation, we sould not
665 * let the dentry count go to zero, so use "put_or_lock".
666 */
667 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
668 return lockref_put_or_lock(&dentry->d_lockref);
669
670 /*
671 * .. otherwise, we can try to just decrement the
672 * lockref optimistically.
673 */
674 ret = lockref_put_return(&dentry->d_lockref);
675
676 /*
677 * If the lockref_put_return() failed due to the lock being held
678 * by somebody else, the fast path has failed. We will need to
679 * get the lock, and then check the count again.
680 */
681 if (unlikely(ret < 0)) {
682 spin_lock(&dentry->d_lock);
683 if (dentry->d_lockref.count > 1) {
684 dentry->d_lockref.count--;
685 spin_unlock(&dentry->d_lock);
686 return 1;
687 }
688 return 0;
689 }
690
691 /*
692 * If we weren't the last ref, we're done.
693 */
694 if (ret)
695 return 1;
696
697 /*
698 * Careful, careful. The reference count went down
699 * to zero, but we don't hold the dentry lock, so
700 * somebody else could get it again, and do another
701 * dput(), and we need to not race with that.
702 *
703 * However, there is a very special and common case
704 * where we don't care, because there is nothing to
705 * do: the dentry is still hashed, it does not have
706 * a 'delete' op, and it's referenced and already on
707 * the LRU list.
708 *
709 * NOTE! Since we aren't locked, these values are
710 * not "stable". However, it is sufficient that at
711 * some point after we dropped the reference the
712 * dentry was hashed and the flags had the proper
713 * value. Other dentry users may have re-gotten
714 * a reference to the dentry and change that, but
715 * our work is done - we can leave the dentry
716 * around with a zero refcount.
717 */
718 smp_rmb();
719 d_flags = ACCESS_ONCE(dentry->d_flags);
720 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
721
722 /* Nothing to do? Dropping the reference was all we needed? */
723 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
724 return 1;
725
726 /*
727 * Not the fast normal case? Get the lock. We've already decremented
728 * the refcount, but we'll need to re-check the situation after
729 * getting the lock.
730 */
731 spin_lock(&dentry->d_lock);
732
733 /*
734 * Did somebody else grab a reference to it in the meantime, and
735 * we're no longer the last user after all? Alternatively, somebody
736 * else could have killed it and marked it dead. Either way, we
737 * don't need to do anything else.
738 */
739 if (dentry->d_lockref.count) {
740 spin_unlock(&dentry->d_lock);
741 return 1;
742 }
743
744 /*
745 * Re-get the reference we optimistically dropped. We hold the
746 * lock, and we just tested that it was zero, so we can just
747 * set it to 1.
748 */
749 dentry->d_lockref.count = 1;
750 return 0;
751 }
752
753
754 /*
755 * This is dput
756 *
757 * This is complicated by the fact that we do not want to put
758 * dentries that are no longer on any hash chain on the unused
759 * list: we'd much rather just get rid of them immediately.
760 *
761 * However, that implies that we have to traverse the dentry
762 * tree upwards to the parents which might _also_ now be
763 * scheduled for deletion (it may have been only waiting for
764 * its last child to go away).
765 *
766 * This tail recursion is done by hand as we don't want to depend
767 * on the compiler to always get this right (gcc generally doesn't).
768 * Real recursion would eat up our stack space.
769 */
770
771 /*
772 * dput - release a dentry
773 * @dentry: dentry to release
774 *
775 * Release a dentry. This will drop the usage count and if appropriate
776 * call the dentry unlink method as well as removing it from the queues and
777 * releasing its resources. If the parent dentries were scheduled for release
778 * they too may now get deleted.
779 */
780 void dput(struct dentry *dentry)
781 {
782 if (unlikely(!dentry))
783 return;
784
785 repeat:
786 might_sleep();
787
788 rcu_read_lock();
789 if (likely(fast_dput(dentry))) {
790 rcu_read_unlock();
791 return;
792 }
793
794 /* Slow case: now with the dentry lock held */
795 rcu_read_unlock();
796
797 WARN_ON(d_in_lookup(dentry));
798
799 /* Unreachable? Get rid of it */
800 if (unlikely(d_unhashed(dentry)))
801 goto kill_it;
802
803 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
804 goto kill_it;
805
806 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
807 if (dentry->d_op->d_delete(dentry))
808 goto kill_it;
809 }
810
811 dentry_lru_add(dentry);
812
813 dentry->d_lockref.count--;
814 spin_unlock(&dentry->d_lock);
815 return;
816
817 kill_it:
818 dentry = dentry_kill(dentry);
819 if (dentry) {
820 cond_resched();
821 goto repeat;
822 }
823 }
824 EXPORT_SYMBOL(dput);
825
826
827 /* This must be called with d_lock held */
828 static inline void __dget_dlock(struct dentry *dentry)
829 {
830 dentry->d_lockref.count++;
831 }
832
833 static inline void __dget(struct dentry *dentry)
834 {
835 lockref_get(&dentry->d_lockref);
836 }
837
838 struct dentry *dget_parent(struct dentry *dentry)
839 {
840 int gotref;
841 struct dentry *ret;
842
843 /*
844 * Do optimistic parent lookup without any
845 * locking.
846 */
847 rcu_read_lock();
848 ret = ACCESS_ONCE(dentry->d_parent);
849 gotref = lockref_get_not_zero(&ret->d_lockref);
850 rcu_read_unlock();
851 if (likely(gotref)) {
852 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
853 return ret;
854 dput(ret);
855 }
856
857 repeat:
858 /*
859 * Don't need rcu_dereference because we re-check it was correct under
860 * the lock.
861 */
862 rcu_read_lock();
863 ret = dentry->d_parent;
864 spin_lock(&ret->d_lock);
865 if (unlikely(ret != dentry->d_parent)) {
866 spin_unlock(&ret->d_lock);
867 rcu_read_unlock();
868 goto repeat;
869 }
870 rcu_read_unlock();
871 BUG_ON(!ret->d_lockref.count);
872 ret->d_lockref.count++;
873 spin_unlock(&ret->d_lock);
874 return ret;
875 }
876 EXPORT_SYMBOL(dget_parent);
877
878 /**
879 * d_find_alias - grab a hashed alias of inode
880 * @inode: inode in question
881 *
882 * If inode has a hashed alias, or is a directory and has any alias,
883 * acquire the reference to alias and return it. Otherwise return NULL.
884 * Notice that if inode is a directory there can be only one alias and
885 * it can be unhashed only if it has no children, or if it is the root
886 * of a filesystem, or if the directory was renamed and d_revalidate
887 * was the first vfs operation to notice.
888 *
889 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
890 * any other hashed alias over that one.
891 */
892 static struct dentry *__d_find_alias(struct inode *inode)
893 {
894 struct dentry *alias, *discon_alias;
895
896 again:
897 discon_alias = NULL;
898 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
899 spin_lock(&alias->d_lock);
900 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
901 if (IS_ROOT(alias) &&
902 (alias->d_flags & DCACHE_DISCONNECTED)) {
903 discon_alias = alias;
904 } else {
905 __dget_dlock(alias);
906 spin_unlock(&alias->d_lock);
907 return alias;
908 }
909 }
910 spin_unlock(&alias->d_lock);
911 }
912 if (discon_alias) {
913 alias = discon_alias;
914 spin_lock(&alias->d_lock);
915 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
916 __dget_dlock(alias);
917 spin_unlock(&alias->d_lock);
918 return alias;
919 }
920 spin_unlock(&alias->d_lock);
921 goto again;
922 }
923 return NULL;
924 }
925
926 struct dentry *d_find_alias(struct inode *inode)
927 {
928 struct dentry *de = NULL;
929
930 if (!hlist_empty(&inode->i_dentry)) {
931 spin_lock(&inode->i_lock);
932 de = __d_find_alias(inode);
933 spin_unlock(&inode->i_lock);
934 }
935 return de;
936 }
937 EXPORT_SYMBOL(d_find_alias);
938
939 /*
940 * Try to kill dentries associated with this inode.
941 * WARNING: you must own a reference to inode.
942 */
943 void d_prune_aliases(struct inode *inode)
944 {
945 struct dentry *dentry;
946 restart:
947 spin_lock(&inode->i_lock);
948 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
949 spin_lock(&dentry->d_lock);
950 if (!dentry->d_lockref.count) {
951 struct dentry *parent = lock_parent(dentry);
952 if (likely(!dentry->d_lockref.count)) {
953 __dentry_kill(dentry);
954 dput(parent);
955 goto restart;
956 }
957 if (parent)
958 spin_unlock(&parent->d_lock);
959 }
960 spin_unlock(&dentry->d_lock);
961 }
962 spin_unlock(&inode->i_lock);
963 }
964 EXPORT_SYMBOL(d_prune_aliases);
965
966 static void shrink_dentry_list(struct list_head *list)
967 {
968 struct dentry *dentry, *parent;
969
970 while (!list_empty(list)) {
971 struct inode *inode;
972 dentry = list_entry(list->prev, struct dentry, d_lru);
973 spin_lock(&dentry->d_lock);
974 parent = lock_parent(dentry);
975
976 /*
977 * The dispose list is isolated and dentries are not accounted
978 * to the LRU here, so we can simply remove it from the list
979 * here regardless of whether it is referenced or not.
980 */
981 d_shrink_del(dentry);
982
983 /*
984 * We found an inuse dentry which was not removed from
985 * the LRU because of laziness during lookup. Do not free it.
986 */
987 if (dentry->d_lockref.count > 0) {
988 spin_unlock(&dentry->d_lock);
989 if (parent)
990 spin_unlock(&parent->d_lock);
991 continue;
992 }
993
994
995 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
996 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
997 spin_unlock(&dentry->d_lock);
998 if (parent)
999 spin_unlock(&parent->d_lock);
1000 if (can_free)
1001 dentry_free(dentry);
1002 continue;
1003 }
1004
1005 inode = dentry->d_inode;
1006 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1007 d_shrink_add(dentry, list);
1008 spin_unlock(&dentry->d_lock);
1009 if (parent)
1010 spin_unlock(&parent->d_lock);
1011 continue;
1012 }
1013
1014 __dentry_kill(dentry);
1015
1016 /*
1017 * We need to prune ancestors too. This is necessary to prevent
1018 * quadratic behavior of shrink_dcache_parent(), but is also
1019 * expected to be beneficial in reducing dentry cache
1020 * fragmentation.
1021 */
1022 dentry = parent;
1023 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1024 parent = lock_parent(dentry);
1025 if (dentry->d_lockref.count != 1) {
1026 dentry->d_lockref.count--;
1027 spin_unlock(&dentry->d_lock);
1028 if (parent)
1029 spin_unlock(&parent->d_lock);
1030 break;
1031 }
1032 inode = dentry->d_inode; /* can't be NULL */
1033 if (unlikely(!spin_trylock(&inode->i_lock))) {
1034 spin_unlock(&dentry->d_lock);
1035 if (parent)
1036 spin_unlock(&parent->d_lock);
1037 cpu_relax();
1038 continue;
1039 }
1040 __dentry_kill(dentry);
1041 dentry = parent;
1042 }
1043 }
1044 }
1045
1046 static enum lru_status dentry_lru_isolate(struct list_head *item,
1047 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1048 {
1049 struct list_head *freeable = arg;
1050 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1051
1052
1053 /*
1054 * we are inverting the lru lock/dentry->d_lock here,
1055 * so use a trylock. If we fail to get the lock, just skip
1056 * it
1057 */
1058 if (!spin_trylock(&dentry->d_lock))
1059 return LRU_SKIP;
1060
1061 /*
1062 * Referenced dentries are still in use. If they have active
1063 * counts, just remove them from the LRU. Otherwise give them
1064 * another pass through the LRU.
1065 */
1066 if (dentry->d_lockref.count) {
1067 d_lru_isolate(lru, dentry);
1068 spin_unlock(&dentry->d_lock);
1069 return LRU_REMOVED;
1070 }
1071
1072 if (dentry->d_flags & DCACHE_REFERENCED) {
1073 dentry->d_flags &= ~DCACHE_REFERENCED;
1074 spin_unlock(&dentry->d_lock);
1075
1076 /*
1077 * The list move itself will be made by the common LRU code. At
1078 * this point, we've dropped the dentry->d_lock but keep the
1079 * lru lock. This is safe to do, since every list movement is
1080 * protected by the lru lock even if both locks are held.
1081 *
1082 * This is guaranteed by the fact that all LRU management
1083 * functions are intermediated by the LRU API calls like
1084 * list_lru_add and list_lru_del. List movement in this file
1085 * only ever occur through this functions or through callbacks
1086 * like this one, that are called from the LRU API.
1087 *
1088 * The only exceptions to this are functions like
1089 * shrink_dentry_list, and code that first checks for the
1090 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1091 * operating only with stack provided lists after they are
1092 * properly isolated from the main list. It is thus, always a
1093 * local access.
1094 */
1095 return LRU_ROTATE;
1096 }
1097
1098 d_lru_shrink_move(lru, dentry, freeable);
1099 spin_unlock(&dentry->d_lock);
1100
1101 return LRU_REMOVED;
1102 }
1103
1104 /**
1105 * prune_dcache_sb - shrink the dcache
1106 * @sb: superblock
1107 * @sc: shrink control, passed to list_lru_shrink_walk()
1108 *
1109 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1110 * is done when we need more memory and called from the superblock shrinker
1111 * function.
1112 *
1113 * This function may fail to free any resources if all the dentries are in
1114 * use.
1115 */
1116 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1117 {
1118 LIST_HEAD(dispose);
1119 long freed;
1120
1121 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1122 dentry_lru_isolate, &dispose);
1123 shrink_dentry_list(&dispose);
1124 return freed;
1125 }
1126
1127 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1128 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1129 {
1130 struct list_head *freeable = arg;
1131 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1132
1133 /*
1134 * we are inverting the lru lock/dentry->d_lock here,
1135 * so use a trylock. If we fail to get the lock, just skip
1136 * it
1137 */
1138 if (!spin_trylock(&dentry->d_lock))
1139 return LRU_SKIP;
1140
1141 d_lru_shrink_move(lru, dentry, freeable);
1142 spin_unlock(&dentry->d_lock);
1143
1144 return LRU_REMOVED;
1145 }
1146
1147
1148 /**
1149 * shrink_dcache_sb - shrink dcache for a superblock
1150 * @sb: superblock
1151 *
1152 * Shrink the dcache for the specified super block. This is used to free
1153 * the dcache before unmounting a file system.
1154 */
1155 void shrink_dcache_sb(struct super_block *sb)
1156 {
1157 long freed;
1158
1159 do {
1160 LIST_HEAD(dispose);
1161
1162 freed = list_lru_walk(&sb->s_dentry_lru,
1163 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1164
1165 this_cpu_sub(nr_dentry_unused, freed);
1166 shrink_dentry_list(&dispose);
1167 } while (freed > 0);
1168 }
1169 EXPORT_SYMBOL(shrink_dcache_sb);
1170
1171 /**
1172 * enum d_walk_ret - action to talke during tree walk
1173 * @D_WALK_CONTINUE: contrinue walk
1174 * @D_WALK_QUIT: quit walk
1175 * @D_WALK_NORETRY: quit when retry is needed
1176 * @D_WALK_SKIP: skip this dentry and its children
1177 */
1178 enum d_walk_ret {
1179 D_WALK_CONTINUE,
1180 D_WALK_QUIT,
1181 D_WALK_NORETRY,
1182 D_WALK_SKIP,
1183 };
1184
1185 /**
1186 * d_walk - walk the dentry tree
1187 * @parent: start of walk
1188 * @data: data passed to @enter() and @finish()
1189 * @enter: callback when first entering the dentry
1190 * @finish: callback when successfully finished the walk
1191 *
1192 * The @enter() and @finish() callbacks are called with d_lock held.
1193 */
1194 static void d_walk(struct dentry *parent, void *data,
1195 enum d_walk_ret (*enter)(void *, struct dentry *),
1196 void (*finish)(void *))
1197 {
1198 struct dentry *this_parent;
1199 struct list_head *next;
1200 unsigned seq = 0;
1201 enum d_walk_ret ret;
1202 bool retry = true;
1203
1204 again:
1205 read_seqbegin_or_lock(&rename_lock, &seq);
1206 this_parent = parent;
1207 spin_lock(&this_parent->d_lock);
1208
1209 ret = enter(data, this_parent);
1210 switch (ret) {
1211 case D_WALK_CONTINUE:
1212 break;
1213 case D_WALK_QUIT:
1214 case D_WALK_SKIP:
1215 goto out_unlock;
1216 case D_WALK_NORETRY:
1217 retry = false;
1218 break;
1219 }
1220 repeat:
1221 next = this_parent->d_subdirs.next;
1222 resume:
1223 while (next != &this_parent->d_subdirs) {
1224 struct list_head *tmp = next;
1225 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1226 next = tmp->next;
1227
1228 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1229 continue;
1230
1231 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1232
1233 ret = enter(data, dentry);
1234 switch (ret) {
1235 case D_WALK_CONTINUE:
1236 break;
1237 case D_WALK_QUIT:
1238 spin_unlock(&dentry->d_lock);
1239 goto out_unlock;
1240 case D_WALK_NORETRY:
1241 retry = false;
1242 break;
1243 case D_WALK_SKIP:
1244 spin_unlock(&dentry->d_lock);
1245 continue;
1246 }
1247
1248 if (!list_empty(&dentry->d_subdirs)) {
1249 spin_unlock(&this_parent->d_lock);
1250 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1251 this_parent = dentry;
1252 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1253 goto repeat;
1254 }
1255 spin_unlock(&dentry->d_lock);
1256 }
1257 /*
1258 * All done at this level ... ascend and resume the search.
1259 */
1260 rcu_read_lock();
1261 ascend:
1262 if (this_parent != parent) {
1263 struct dentry *child = this_parent;
1264 this_parent = child->d_parent;
1265
1266 spin_unlock(&child->d_lock);
1267 spin_lock(&this_parent->d_lock);
1268
1269 /* might go back up the wrong parent if we have had a rename. */
1270 if (need_seqretry(&rename_lock, seq))
1271 goto rename_retry;
1272 /* go into the first sibling still alive */
1273 do {
1274 next = child->d_child.next;
1275 if (next == &this_parent->d_subdirs)
1276 goto ascend;
1277 child = list_entry(next, struct dentry, d_child);
1278 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1279 rcu_read_unlock();
1280 goto resume;
1281 }
1282 if (need_seqretry(&rename_lock, seq))
1283 goto rename_retry;
1284 rcu_read_unlock();
1285 if (finish)
1286 finish(data);
1287
1288 out_unlock:
1289 spin_unlock(&this_parent->d_lock);
1290 done_seqretry(&rename_lock, seq);
1291 return;
1292
1293 rename_retry:
1294 spin_unlock(&this_parent->d_lock);
1295 rcu_read_unlock();
1296 BUG_ON(seq & 1);
1297 if (!retry)
1298 return;
1299 seq = 1;
1300 goto again;
1301 }
1302
1303 struct check_mount {
1304 struct vfsmount *mnt;
1305 unsigned int mounted;
1306 };
1307
1308 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1309 {
1310 struct check_mount *info = data;
1311 struct path path = { .mnt = info->mnt, .dentry = dentry };
1312
1313 if (likely(!d_mountpoint(dentry)))
1314 return D_WALK_CONTINUE;
1315 if (__path_is_mountpoint(&path)) {
1316 info->mounted = 1;
1317 return D_WALK_QUIT;
1318 }
1319 return D_WALK_CONTINUE;
1320 }
1321
1322 /**
1323 * path_has_submounts - check for mounts over a dentry in the
1324 * current namespace.
1325 * @parent: path to check.
1326 *
1327 * Return true if the parent or its subdirectories contain
1328 * a mount point in the current namespace.
1329 */
1330 int path_has_submounts(const struct path *parent)
1331 {
1332 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1333
1334 read_seqlock_excl(&mount_lock);
1335 d_walk(parent->dentry, &data, path_check_mount, NULL);
1336 read_sequnlock_excl(&mount_lock);
1337
1338 return data.mounted;
1339 }
1340 EXPORT_SYMBOL(path_has_submounts);
1341
1342 /*
1343 * Called by mount code to set a mountpoint and check if the mountpoint is
1344 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1345 * subtree can become unreachable).
1346 *
1347 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1348 * this reason take rename_lock and d_lock on dentry and ancestors.
1349 */
1350 int d_set_mounted(struct dentry *dentry)
1351 {
1352 struct dentry *p;
1353 int ret = -ENOENT;
1354 write_seqlock(&rename_lock);
1355 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1356 /* Need exclusion wrt. d_invalidate() */
1357 spin_lock(&p->d_lock);
1358 if (unlikely(d_unhashed(p))) {
1359 spin_unlock(&p->d_lock);
1360 goto out;
1361 }
1362 spin_unlock(&p->d_lock);
1363 }
1364 spin_lock(&dentry->d_lock);
1365 if (!d_unlinked(dentry)) {
1366 ret = -EBUSY;
1367 if (!d_mountpoint(dentry)) {
1368 dentry->d_flags |= DCACHE_MOUNTED;
1369 ret = 0;
1370 }
1371 }
1372 spin_unlock(&dentry->d_lock);
1373 out:
1374 write_sequnlock(&rename_lock);
1375 return ret;
1376 }
1377
1378 /*
1379 * Search the dentry child list of the specified parent,
1380 * and move any unused dentries to the end of the unused
1381 * list for prune_dcache(). We descend to the next level
1382 * whenever the d_subdirs list is non-empty and continue
1383 * searching.
1384 *
1385 * It returns zero iff there are no unused children,
1386 * otherwise it returns the number of children moved to
1387 * the end of the unused list. This may not be the total
1388 * number of unused children, because select_parent can
1389 * drop the lock and return early due to latency
1390 * constraints.
1391 */
1392
1393 struct select_data {
1394 struct dentry *start;
1395 struct list_head dispose;
1396 int found;
1397 };
1398
1399 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1400 {
1401 struct select_data *data = _data;
1402 enum d_walk_ret ret = D_WALK_CONTINUE;
1403
1404 if (data->start == dentry)
1405 goto out;
1406
1407 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1408 data->found++;
1409 } else {
1410 if (dentry->d_flags & DCACHE_LRU_LIST)
1411 d_lru_del(dentry);
1412 if (!dentry->d_lockref.count) {
1413 d_shrink_add(dentry, &data->dispose);
1414 data->found++;
1415 }
1416 }
1417 /*
1418 * We can return to the caller if we have found some (this
1419 * ensures forward progress). We'll be coming back to find
1420 * the rest.
1421 */
1422 if (!list_empty(&data->dispose))
1423 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1424 out:
1425 return ret;
1426 }
1427
1428 /**
1429 * shrink_dcache_parent - prune dcache
1430 * @parent: parent of entries to prune
1431 *
1432 * Prune the dcache to remove unused children of the parent dentry.
1433 */
1434 void shrink_dcache_parent(struct dentry *parent)
1435 {
1436 for (;;) {
1437 struct select_data data;
1438
1439 INIT_LIST_HEAD(&data.dispose);
1440 data.start = parent;
1441 data.found = 0;
1442
1443 d_walk(parent, &data, select_collect, NULL);
1444 if (!data.found)
1445 break;
1446
1447 shrink_dentry_list(&data.dispose);
1448 cond_resched();
1449 }
1450 }
1451 EXPORT_SYMBOL(shrink_dcache_parent);
1452
1453 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1454 {
1455 /* it has busy descendents; complain about those instead */
1456 if (!list_empty(&dentry->d_subdirs))
1457 return D_WALK_CONTINUE;
1458
1459 /* root with refcount 1 is fine */
1460 if (dentry == _data && dentry->d_lockref.count == 1)
1461 return D_WALK_CONTINUE;
1462
1463 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1464 " still in use (%d) [unmount of %s %s]\n",
1465 dentry,
1466 dentry->d_inode ?
1467 dentry->d_inode->i_ino : 0UL,
1468 dentry,
1469 dentry->d_lockref.count,
1470 dentry->d_sb->s_type->name,
1471 dentry->d_sb->s_id);
1472 WARN_ON(1);
1473 return D_WALK_CONTINUE;
1474 }
1475
1476 static void do_one_tree(struct dentry *dentry)
1477 {
1478 shrink_dcache_parent(dentry);
1479 d_walk(dentry, dentry, umount_check, NULL);
1480 d_drop(dentry);
1481 dput(dentry);
1482 }
1483
1484 /*
1485 * destroy the dentries attached to a superblock on unmounting
1486 */
1487 void shrink_dcache_for_umount(struct super_block *sb)
1488 {
1489 struct dentry *dentry;
1490
1491 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1492
1493 dentry = sb->s_root;
1494 sb->s_root = NULL;
1495 do_one_tree(dentry);
1496
1497 while (!hlist_bl_empty(&sb->s_anon)) {
1498 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1499 do_one_tree(dentry);
1500 }
1501 }
1502
1503 struct detach_data {
1504 struct select_data select;
1505 struct dentry *mountpoint;
1506 };
1507 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1508 {
1509 struct detach_data *data = _data;
1510
1511 if (d_mountpoint(dentry)) {
1512 __dget_dlock(dentry);
1513 data->mountpoint = dentry;
1514 return D_WALK_QUIT;
1515 }
1516
1517 return select_collect(&data->select, dentry);
1518 }
1519
1520 static void check_and_drop(void *_data)
1521 {
1522 struct detach_data *data = _data;
1523
1524 if (!data->mountpoint && list_empty(&data->select.dispose))
1525 __d_drop(data->select.start);
1526 }
1527
1528 /**
1529 * d_invalidate - detach submounts, prune dcache, and drop
1530 * @dentry: dentry to invalidate (aka detach, prune and drop)
1531 *
1532 * no dcache lock.
1533 *
1534 * The final d_drop is done as an atomic operation relative to
1535 * rename_lock ensuring there are no races with d_set_mounted. This
1536 * ensures there are no unhashed dentries on the path to a mountpoint.
1537 */
1538 void d_invalidate(struct dentry *dentry)
1539 {
1540 /*
1541 * If it's already been dropped, return OK.
1542 */
1543 spin_lock(&dentry->d_lock);
1544 if (d_unhashed(dentry)) {
1545 spin_unlock(&dentry->d_lock);
1546 return;
1547 }
1548 spin_unlock(&dentry->d_lock);
1549
1550 /* Negative dentries can be dropped without further checks */
1551 if (!dentry->d_inode) {
1552 d_drop(dentry);
1553 return;
1554 }
1555
1556 for (;;) {
1557 struct detach_data data;
1558
1559 data.mountpoint = NULL;
1560 INIT_LIST_HEAD(&data.select.dispose);
1561 data.select.start = dentry;
1562 data.select.found = 0;
1563
1564 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1565
1566 if (!list_empty(&data.select.dispose))
1567 shrink_dentry_list(&data.select.dispose);
1568 else if (!data.mountpoint)
1569 return;
1570
1571 if (data.mountpoint) {
1572 detach_mounts(data.mountpoint);
1573 dput(data.mountpoint);
1574 }
1575 cond_resched();
1576 }
1577 }
1578 EXPORT_SYMBOL(d_invalidate);
1579
1580 /**
1581 * __d_alloc - allocate a dcache entry
1582 * @sb: filesystem it will belong to
1583 * @name: qstr of the name
1584 *
1585 * Allocates a dentry. It returns %NULL if there is insufficient memory
1586 * available. On a success the dentry is returned. The name passed in is
1587 * copied and the copy passed in may be reused after this call.
1588 */
1589
1590 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1591 {
1592 struct dentry *dentry;
1593 char *dname;
1594 int err;
1595
1596 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1597 if (!dentry)
1598 return NULL;
1599
1600 /*
1601 * We guarantee that the inline name is always NUL-terminated.
1602 * This way the memcpy() done by the name switching in rename
1603 * will still always have a NUL at the end, even if we might
1604 * be overwriting an internal NUL character
1605 */
1606 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1607 if (unlikely(!name)) {
1608 static const struct qstr anon = QSTR_INIT("/", 1);
1609 name = &anon;
1610 dname = dentry->d_iname;
1611 } else if (name->len > DNAME_INLINE_LEN-1) {
1612 size_t size = offsetof(struct external_name, name[1]);
1613 struct external_name *p = kmalloc(size + name->len,
1614 GFP_KERNEL_ACCOUNT);
1615 if (!p) {
1616 kmem_cache_free(dentry_cache, dentry);
1617 return NULL;
1618 }
1619 atomic_set(&p->u.count, 1);
1620 dname = p->name;
1621 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1622 kasan_unpoison_shadow(dname,
1623 round_up(name->len + 1, sizeof(unsigned long)));
1624 } else {
1625 dname = dentry->d_iname;
1626 }
1627
1628 dentry->d_name.len = name->len;
1629 dentry->d_name.hash = name->hash;
1630 memcpy(dname, name->name, name->len);
1631 dname[name->len] = 0;
1632
1633 /* Make sure we always see the terminating NUL character */
1634 smp_wmb();
1635 dentry->d_name.name = dname;
1636
1637 dentry->d_lockref.count = 1;
1638 dentry->d_flags = 0;
1639 spin_lock_init(&dentry->d_lock);
1640 seqcount_init(&dentry->d_seq);
1641 dentry->d_inode = NULL;
1642 dentry->d_parent = dentry;
1643 dentry->d_sb = sb;
1644 dentry->d_op = NULL;
1645 dentry->d_fsdata = NULL;
1646 INIT_HLIST_BL_NODE(&dentry->d_hash);
1647 INIT_LIST_HEAD(&dentry->d_lru);
1648 INIT_LIST_HEAD(&dentry->d_subdirs);
1649 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1650 INIT_LIST_HEAD(&dentry->d_child);
1651 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1652
1653 if (dentry->d_op && dentry->d_op->d_init) {
1654 err = dentry->d_op->d_init(dentry);
1655 if (err) {
1656 if (dname_external(dentry))
1657 kfree(external_name(dentry));
1658 kmem_cache_free(dentry_cache, dentry);
1659 return NULL;
1660 }
1661 }
1662
1663 this_cpu_inc(nr_dentry);
1664
1665 return dentry;
1666 }
1667
1668 /**
1669 * d_alloc - allocate a dcache entry
1670 * @parent: parent of entry to allocate
1671 * @name: qstr of the name
1672 *
1673 * Allocates a dentry. It returns %NULL if there is insufficient memory
1674 * available. On a success the dentry is returned. The name passed in is
1675 * copied and the copy passed in may be reused after this call.
1676 */
1677 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1678 {
1679 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1680 if (!dentry)
1681 return NULL;
1682 dentry->d_flags |= DCACHE_RCUACCESS;
1683 spin_lock(&parent->d_lock);
1684 /*
1685 * don't need child lock because it is not subject
1686 * to concurrency here
1687 */
1688 __dget_dlock(parent);
1689 dentry->d_parent = parent;
1690 list_add(&dentry->d_child, &parent->d_subdirs);
1691 spin_unlock(&parent->d_lock);
1692
1693 return dentry;
1694 }
1695 EXPORT_SYMBOL(d_alloc);
1696
1697 struct dentry *d_alloc_cursor(struct dentry * parent)
1698 {
1699 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1700 if (dentry) {
1701 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1702 dentry->d_parent = dget(parent);
1703 }
1704 return dentry;
1705 }
1706
1707 /**
1708 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1709 * @sb: the superblock
1710 * @name: qstr of the name
1711 *
1712 * For a filesystem that just pins its dentries in memory and never
1713 * performs lookups at all, return an unhashed IS_ROOT dentry.
1714 */
1715 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1716 {
1717 return __d_alloc(sb, name);
1718 }
1719 EXPORT_SYMBOL(d_alloc_pseudo);
1720
1721 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1722 {
1723 struct qstr q;
1724
1725 q.name = name;
1726 q.hash_len = hashlen_string(parent, name);
1727 return d_alloc(parent, &q);
1728 }
1729 EXPORT_SYMBOL(d_alloc_name);
1730
1731 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1732 {
1733 WARN_ON_ONCE(dentry->d_op);
1734 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1735 DCACHE_OP_COMPARE |
1736 DCACHE_OP_REVALIDATE |
1737 DCACHE_OP_WEAK_REVALIDATE |
1738 DCACHE_OP_DELETE |
1739 DCACHE_OP_REAL));
1740 dentry->d_op = op;
1741 if (!op)
1742 return;
1743 if (op->d_hash)
1744 dentry->d_flags |= DCACHE_OP_HASH;
1745 if (op->d_compare)
1746 dentry->d_flags |= DCACHE_OP_COMPARE;
1747 if (op->d_revalidate)
1748 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1749 if (op->d_weak_revalidate)
1750 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1751 if (op->d_delete)
1752 dentry->d_flags |= DCACHE_OP_DELETE;
1753 if (op->d_prune)
1754 dentry->d_flags |= DCACHE_OP_PRUNE;
1755 if (op->d_real)
1756 dentry->d_flags |= DCACHE_OP_REAL;
1757
1758 }
1759 EXPORT_SYMBOL(d_set_d_op);
1760
1761
1762 /*
1763 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1764 * @dentry - The dentry to mark
1765 *
1766 * Mark a dentry as falling through to the lower layer (as set with
1767 * d_pin_lower()). This flag may be recorded on the medium.
1768 */
1769 void d_set_fallthru(struct dentry *dentry)
1770 {
1771 spin_lock(&dentry->d_lock);
1772 dentry->d_flags |= DCACHE_FALLTHRU;
1773 spin_unlock(&dentry->d_lock);
1774 }
1775 EXPORT_SYMBOL(d_set_fallthru);
1776
1777 static unsigned d_flags_for_inode(struct inode *inode)
1778 {
1779 unsigned add_flags = DCACHE_REGULAR_TYPE;
1780
1781 if (!inode)
1782 return DCACHE_MISS_TYPE;
1783
1784 if (S_ISDIR(inode->i_mode)) {
1785 add_flags = DCACHE_DIRECTORY_TYPE;
1786 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1787 if (unlikely(!inode->i_op->lookup))
1788 add_flags = DCACHE_AUTODIR_TYPE;
1789 else
1790 inode->i_opflags |= IOP_LOOKUP;
1791 }
1792 goto type_determined;
1793 }
1794
1795 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1796 if (unlikely(inode->i_op->get_link)) {
1797 add_flags = DCACHE_SYMLINK_TYPE;
1798 goto type_determined;
1799 }
1800 inode->i_opflags |= IOP_NOFOLLOW;
1801 }
1802
1803 if (unlikely(!S_ISREG(inode->i_mode)))
1804 add_flags = DCACHE_SPECIAL_TYPE;
1805
1806 type_determined:
1807 if (unlikely(IS_AUTOMOUNT(inode)))
1808 add_flags |= DCACHE_NEED_AUTOMOUNT;
1809 return add_flags;
1810 }
1811
1812 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1813 {
1814 unsigned add_flags = d_flags_for_inode(inode);
1815 WARN_ON(d_in_lookup(dentry));
1816
1817 spin_lock(&dentry->d_lock);
1818 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1819 raw_write_seqcount_begin(&dentry->d_seq);
1820 __d_set_inode_and_type(dentry, inode, add_flags);
1821 raw_write_seqcount_end(&dentry->d_seq);
1822 fsnotify_update_flags(dentry);
1823 spin_unlock(&dentry->d_lock);
1824 }
1825
1826 /**
1827 * d_instantiate - fill in inode information for a dentry
1828 * @entry: dentry to complete
1829 * @inode: inode to attach to this dentry
1830 *
1831 * Fill in inode information in the entry.
1832 *
1833 * This turns negative dentries into productive full members
1834 * of society.
1835 *
1836 * NOTE! This assumes that the inode count has been incremented
1837 * (or otherwise set) by the caller to indicate that it is now
1838 * in use by the dcache.
1839 */
1840
1841 void d_instantiate(struct dentry *entry, struct inode * inode)
1842 {
1843 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1844 if (inode) {
1845 security_d_instantiate(entry, inode);
1846 spin_lock(&inode->i_lock);
1847 __d_instantiate(entry, inode);
1848 spin_unlock(&inode->i_lock);
1849 }
1850 }
1851 EXPORT_SYMBOL(d_instantiate);
1852
1853 /**
1854 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1855 * @entry: dentry to complete
1856 * @inode: inode to attach to this dentry
1857 *
1858 * Fill in inode information in the entry. If a directory alias is found, then
1859 * return an error (and drop inode). Together with d_materialise_unique() this
1860 * guarantees that a directory inode may never have more than one alias.
1861 */
1862 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1863 {
1864 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1865
1866 security_d_instantiate(entry, inode);
1867 spin_lock(&inode->i_lock);
1868 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1869 spin_unlock(&inode->i_lock);
1870 iput(inode);
1871 return -EBUSY;
1872 }
1873 __d_instantiate(entry, inode);
1874 spin_unlock(&inode->i_lock);
1875
1876 return 0;
1877 }
1878 EXPORT_SYMBOL(d_instantiate_no_diralias);
1879
1880 struct dentry *d_make_root(struct inode *root_inode)
1881 {
1882 struct dentry *res = NULL;
1883
1884 if (root_inode) {
1885 res = __d_alloc(root_inode->i_sb, NULL);
1886 if (res)
1887 d_instantiate(res, root_inode);
1888 else
1889 iput(root_inode);
1890 }
1891 return res;
1892 }
1893 EXPORT_SYMBOL(d_make_root);
1894
1895 static struct dentry * __d_find_any_alias(struct inode *inode)
1896 {
1897 struct dentry *alias;
1898
1899 if (hlist_empty(&inode->i_dentry))
1900 return NULL;
1901 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1902 __dget(alias);
1903 return alias;
1904 }
1905
1906 /**
1907 * d_find_any_alias - find any alias for a given inode
1908 * @inode: inode to find an alias for
1909 *
1910 * If any aliases exist for the given inode, take and return a
1911 * reference for one of them. If no aliases exist, return %NULL.
1912 */
1913 struct dentry *d_find_any_alias(struct inode *inode)
1914 {
1915 struct dentry *de;
1916
1917 spin_lock(&inode->i_lock);
1918 de = __d_find_any_alias(inode);
1919 spin_unlock(&inode->i_lock);
1920 return de;
1921 }
1922 EXPORT_SYMBOL(d_find_any_alias);
1923
1924 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1925 {
1926 struct dentry *tmp;
1927 struct dentry *res;
1928 unsigned add_flags;
1929
1930 if (!inode)
1931 return ERR_PTR(-ESTALE);
1932 if (IS_ERR(inode))
1933 return ERR_CAST(inode);
1934
1935 res = d_find_any_alias(inode);
1936 if (res)
1937 goto out_iput;
1938
1939 tmp = __d_alloc(inode->i_sb, NULL);
1940 if (!tmp) {
1941 res = ERR_PTR(-ENOMEM);
1942 goto out_iput;
1943 }
1944
1945 security_d_instantiate(tmp, inode);
1946 spin_lock(&inode->i_lock);
1947 res = __d_find_any_alias(inode);
1948 if (res) {
1949 spin_unlock(&inode->i_lock);
1950 dput(tmp);
1951 goto out_iput;
1952 }
1953
1954 /* attach a disconnected dentry */
1955 add_flags = d_flags_for_inode(inode);
1956
1957 if (disconnected)
1958 add_flags |= DCACHE_DISCONNECTED;
1959
1960 spin_lock(&tmp->d_lock);
1961 __d_set_inode_and_type(tmp, inode, add_flags);
1962 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1963 hlist_bl_lock(&tmp->d_sb->s_anon);
1964 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1965 hlist_bl_unlock(&tmp->d_sb->s_anon);
1966 spin_unlock(&tmp->d_lock);
1967 spin_unlock(&inode->i_lock);
1968
1969 return tmp;
1970
1971 out_iput:
1972 iput(inode);
1973 return res;
1974 }
1975
1976 /**
1977 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1978 * @inode: inode to allocate the dentry for
1979 *
1980 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1981 * similar open by handle operations. The returned dentry may be anonymous,
1982 * or may have a full name (if the inode was already in the cache).
1983 *
1984 * When called on a directory inode, we must ensure that the inode only ever
1985 * has one dentry. If a dentry is found, that is returned instead of
1986 * allocating a new one.
1987 *
1988 * On successful return, the reference to the inode has been transferred
1989 * to the dentry. In case of an error the reference on the inode is released.
1990 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1991 * be passed in and the error will be propagated to the return value,
1992 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1993 */
1994 struct dentry *d_obtain_alias(struct inode *inode)
1995 {
1996 return __d_obtain_alias(inode, 1);
1997 }
1998 EXPORT_SYMBOL(d_obtain_alias);
1999
2000 /**
2001 * d_obtain_root - find or allocate a dentry for a given inode
2002 * @inode: inode to allocate the dentry for
2003 *
2004 * Obtain an IS_ROOT dentry for the root of a filesystem.
2005 *
2006 * We must ensure that directory inodes only ever have one dentry. If a
2007 * dentry is found, that is returned instead of allocating a new one.
2008 *
2009 * On successful return, the reference to the inode has been transferred
2010 * to the dentry. In case of an error the reference on the inode is
2011 * released. A %NULL or IS_ERR inode may be passed in and will be the
2012 * error will be propagate to the return value, with a %NULL @inode
2013 * replaced by ERR_PTR(-ESTALE).
2014 */
2015 struct dentry *d_obtain_root(struct inode *inode)
2016 {
2017 return __d_obtain_alias(inode, 0);
2018 }
2019 EXPORT_SYMBOL(d_obtain_root);
2020
2021 /**
2022 * d_add_ci - lookup or allocate new dentry with case-exact name
2023 * @inode: the inode case-insensitive lookup has found
2024 * @dentry: the negative dentry that was passed to the parent's lookup func
2025 * @name: the case-exact name to be associated with the returned dentry
2026 *
2027 * This is to avoid filling the dcache with case-insensitive names to the
2028 * same inode, only the actual correct case is stored in the dcache for
2029 * case-insensitive filesystems.
2030 *
2031 * For a case-insensitive lookup match and if the the case-exact dentry
2032 * already exists in in the dcache, use it and return it.
2033 *
2034 * If no entry exists with the exact case name, allocate new dentry with
2035 * the exact case, and return the spliced entry.
2036 */
2037 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2038 struct qstr *name)
2039 {
2040 struct dentry *found, *res;
2041
2042 /*
2043 * First check if a dentry matching the name already exists,
2044 * if not go ahead and create it now.
2045 */
2046 found = d_hash_and_lookup(dentry->d_parent, name);
2047 if (found) {
2048 iput(inode);
2049 return found;
2050 }
2051 if (d_in_lookup(dentry)) {
2052 found = d_alloc_parallel(dentry->d_parent, name,
2053 dentry->d_wait);
2054 if (IS_ERR(found) || !d_in_lookup(found)) {
2055 iput(inode);
2056 return found;
2057 }
2058 } else {
2059 found = d_alloc(dentry->d_parent, name);
2060 if (!found) {
2061 iput(inode);
2062 return ERR_PTR(-ENOMEM);
2063 }
2064 }
2065 res = d_splice_alias(inode, found);
2066 if (res) {
2067 dput(found);
2068 return res;
2069 }
2070 return found;
2071 }
2072 EXPORT_SYMBOL(d_add_ci);
2073
2074
2075 static inline bool d_same_name(const struct dentry *dentry,
2076 const struct dentry *parent,
2077 const struct qstr *name)
2078 {
2079 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2080 if (dentry->d_name.len != name->len)
2081 return false;
2082 return dentry_cmp(dentry, name->name, name->len) == 0;
2083 }
2084 return parent->d_op->d_compare(dentry,
2085 dentry->d_name.len, dentry->d_name.name,
2086 name) == 0;
2087 }
2088
2089 /**
2090 * __d_lookup_rcu - search for a dentry (racy, store-free)
2091 * @parent: parent dentry
2092 * @name: qstr of name we wish to find
2093 * @seqp: returns d_seq value at the point where the dentry was found
2094 * Returns: dentry, or NULL
2095 *
2096 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2097 * resolution (store-free path walking) design described in
2098 * Documentation/filesystems/path-lookup.txt.
2099 *
2100 * This is not to be used outside core vfs.
2101 *
2102 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2103 * held, and rcu_read_lock held. The returned dentry must not be stored into
2104 * without taking d_lock and checking d_seq sequence count against @seq
2105 * returned here.
2106 *
2107 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2108 * function.
2109 *
2110 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2111 * the returned dentry, so long as its parent's seqlock is checked after the
2112 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2113 * is formed, giving integrity down the path walk.
2114 *
2115 * NOTE! The caller *has* to check the resulting dentry against the sequence
2116 * number we've returned before using any of the resulting dentry state!
2117 */
2118 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2119 const struct qstr *name,
2120 unsigned *seqp)
2121 {
2122 u64 hashlen = name->hash_len;
2123 const unsigned char *str = name->name;
2124 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2125 struct hlist_bl_node *node;
2126 struct dentry *dentry;
2127
2128 /*
2129 * Note: There is significant duplication with __d_lookup_rcu which is
2130 * required to prevent single threaded performance regressions
2131 * especially on architectures where smp_rmb (in seqcounts) are costly.
2132 * Keep the two functions in sync.
2133 */
2134
2135 /*
2136 * The hash list is protected using RCU.
2137 *
2138 * Carefully use d_seq when comparing a candidate dentry, to avoid
2139 * races with d_move().
2140 *
2141 * It is possible that concurrent renames can mess up our list
2142 * walk here and result in missing our dentry, resulting in the
2143 * false-negative result. d_lookup() protects against concurrent
2144 * renames using rename_lock seqlock.
2145 *
2146 * See Documentation/filesystems/path-lookup.txt for more details.
2147 */
2148 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2149 unsigned seq;
2150
2151 seqretry:
2152 /*
2153 * The dentry sequence count protects us from concurrent
2154 * renames, and thus protects parent and name fields.
2155 *
2156 * The caller must perform a seqcount check in order
2157 * to do anything useful with the returned dentry.
2158 *
2159 * NOTE! We do a "raw" seqcount_begin here. That means that
2160 * we don't wait for the sequence count to stabilize if it
2161 * is in the middle of a sequence change. If we do the slow
2162 * dentry compare, we will do seqretries until it is stable,
2163 * and if we end up with a successful lookup, we actually
2164 * want to exit RCU lookup anyway.
2165 *
2166 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2167 * we are still guaranteed NUL-termination of ->d_name.name.
2168 */
2169 seq = raw_seqcount_begin(&dentry->d_seq);
2170 if (dentry->d_parent != parent)
2171 continue;
2172 if (d_unhashed(dentry))
2173 continue;
2174
2175 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2176 int tlen;
2177 const char *tname;
2178 if (dentry->d_name.hash != hashlen_hash(hashlen))
2179 continue;
2180 tlen = dentry->d_name.len;
2181 tname = dentry->d_name.name;
2182 /* we want a consistent (name,len) pair */
2183 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2184 cpu_relax();
2185 goto seqretry;
2186 }
2187 if (parent->d_op->d_compare(dentry,
2188 tlen, tname, name) != 0)
2189 continue;
2190 } else {
2191 if (dentry->d_name.hash_len != hashlen)
2192 continue;
2193 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2194 continue;
2195 }
2196 *seqp = seq;
2197 return dentry;
2198 }
2199 return NULL;
2200 }
2201
2202 /**
2203 * d_lookup - search for a dentry
2204 * @parent: parent dentry
2205 * @name: qstr of name we wish to find
2206 * Returns: dentry, or NULL
2207 *
2208 * d_lookup searches the children of the parent dentry for the name in
2209 * question. If the dentry is found its reference count is incremented and the
2210 * dentry is returned. The caller must use dput to free the entry when it has
2211 * finished using it. %NULL is returned if the dentry does not exist.
2212 */
2213 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2214 {
2215 struct dentry *dentry;
2216 unsigned seq;
2217
2218 do {
2219 seq = read_seqbegin(&rename_lock);
2220 dentry = __d_lookup(parent, name);
2221 if (dentry)
2222 break;
2223 } while (read_seqretry(&rename_lock, seq));
2224 return dentry;
2225 }
2226 EXPORT_SYMBOL(d_lookup);
2227
2228 /**
2229 * __d_lookup - search for a dentry (racy)
2230 * @parent: parent dentry
2231 * @name: qstr of name we wish to find
2232 * Returns: dentry, or NULL
2233 *
2234 * __d_lookup is like d_lookup, however it may (rarely) return a
2235 * false-negative result due to unrelated rename activity.
2236 *
2237 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2238 * however it must be used carefully, eg. with a following d_lookup in
2239 * the case of failure.
2240 *
2241 * __d_lookup callers must be commented.
2242 */
2243 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2244 {
2245 unsigned int hash = name->hash;
2246 struct hlist_bl_head *b = d_hash(hash);
2247 struct hlist_bl_node *node;
2248 struct dentry *found = NULL;
2249 struct dentry *dentry;
2250
2251 /*
2252 * Note: There is significant duplication with __d_lookup_rcu which is
2253 * required to prevent single threaded performance regressions
2254 * especially on architectures where smp_rmb (in seqcounts) are costly.
2255 * Keep the two functions in sync.
2256 */
2257
2258 /*
2259 * The hash list is protected using RCU.
2260 *
2261 * Take d_lock when comparing a candidate dentry, to avoid races
2262 * with d_move().
2263 *
2264 * It is possible that concurrent renames can mess up our list
2265 * walk here and result in missing our dentry, resulting in the
2266 * false-negative result. d_lookup() protects against concurrent
2267 * renames using rename_lock seqlock.
2268 *
2269 * See Documentation/filesystems/path-lookup.txt for more details.
2270 */
2271 rcu_read_lock();
2272
2273 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2274
2275 if (dentry->d_name.hash != hash)
2276 continue;
2277
2278 spin_lock(&dentry->d_lock);
2279 if (dentry->d_parent != parent)
2280 goto next;
2281 if (d_unhashed(dentry))
2282 goto next;
2283
2284 if (!d_same_name(dentry, parent, name))
2285 goto next;
2286
2287 dentry->d_lockref.count++;
2288 found = dentry;
2289 spin_unlock(&dentry->d_lock);
2290 break;
2291 next:
2292 spin_unlock(&dentry->d_lock);
2293 }
2294 rcu_read_unlock();
2295
2296 return found;
2297 }
2298
2299 /**
2300 * d_hash_and_lookup - hash the qstr then search for a dentry
2301 * @dir: Directory to search in
2302 * @name: qstr of name we wish to find
2303 *
2304 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2305 */
2306 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2307 {
2308 /*
2309 * Check for a fs-specific hash function. Note that we must
2310 * calculate the standard hash first, as the d_op->d_hash()
2311 * routine may choose to leave the hash value unchanged.
2312 */
2313 name->hash = full_name_hash(dir, name->name, name->len);
2314 if (dir->d_flags & DCACHE_OP_HASH) {
2315 int err = dir->d_op->d_hash(dir, name);
2316 if (unlikely(err < 0))
2317 return ERR_PTR(err);
2318 }
2319 return d_lookup(dir, name);
2320 }
2321 EXPORT_SYMBOL(d_hash_and_lookup);
2322
2323 /*
2324 * When a file is deleted, we have two options:
2325 * - turn this dentry into a negative dentry
2326 * - unhash this dentry and free it.
2327 *
2328 * Usually, we want to just turn this into
2329 * a negative dentry, but if anybody else is
2330 * currently using the dentry or the inode
2331 * we can't do that and we fall back on removing
2332 * it from the hash queues and waiting for
2333 * it to be deleted later when it has no users
2334 */
2335
2336 /**
2337 * d_delete - delete a dentry
2338 * @dentry: The dentry to delete
2339 *
2340 * Turn the dentry into a negative dentry if possible, otherwise
2341 * remove it from the hash queues so it can be deleted later
2342 */
2343
2344 void d_delete(struct dentry * dentry)
2345 {
2346 struct inode *inode;
2347 int isdir = 0;
2348 /*
2349 * Are we the only user?
2350 */
2351 again:
2352 spin_lock(&dentry->d_lock);
2353 inode = dentry->d_inode;
2354 isdir = S_ISDIR(inode->i_mode);
2355 if (dentry->d_lockref.count == 1) {
2356 if (!spin_trylock(&inode->i_lock)) {
2357 spin_unlock(&dentry->d_lock);
2358 cpu_relax();
2359 goto again;
2360 }
2361 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2362 dentry_unlink_inode(dentry);
2363 fsnotify_nameremove(dentry, isdir);
2364 return;
2365 }
2366
2367 if (!d_unhashed(dentry))
2368 __d_drop(dentry);
2369
2370 spin_unlock(&dentry->d_lock);
2371
2372 fsnotify_nameremove(dentry, isdir);
2373 }
2374 EXPORT_SYMBOL(d_delete);
2375
2376 static void __d_rehash(struct dentry *entry)
2377 {
2378 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2379 BUG_ON(!d_unhashed(entry));
2380 hlist_bl_lock(b);
2381 hlist_bl_add_head_rcu(&entry->d_hash, b);
2382 hlist_bl_unlock(b);
2383 }
2384
2385 /**
2386 * d_rehash - add an entry back to the hash
2387 * @entry: dentry to add to the hash
2388 *
2389 * Adds a dentry to the hash according to its name.
2390 */
2391
2392 void d_rehash(struct dentry * entry)
2393 {
2394 spin_lock(&entry->d_lock);
2395 __d_rehash(entry);
2396 spin_unlock(&entry->d_lock);
2397 }
2398 EXPORT_SYMBOL(d_rehash);
2399
2400 static inline unsigned start_dir_add(struct inode *dir)
2401 {
2402
2403 for (;;) {
2404 unsigned n = dir->i_dir_seq;
2405 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2406 return n;
2407 cpu_relax();
2408 }
2409 }
2410
2411 static inline void end_dir_add(struct inode *dir, unsigned n)
2412 {
2413 smp_store_release(&dir->i_dir_seq, n + 2);
2414 }
2415
2416 static void d_wait_lookup(struct dentry *dentry)
2417 {
2418 if (d_in_lookup(dentry)) {
2419 DECLARE_WAITQUEUE(wait, current);
2420 add_wait_queue(dentry->d_wait, &wait);
2421 do {
2422 set_current_state(TASK_UNINTERRUPTIBLE);
2423 spin_unlock(&dentry->d_lock);
2424 schedule();
2425 spin_lock(&dentry->d_lock);
2426 } while (d_in_lookup(dentry));
2427 }
2428 }
2429
2430 struct dentry *d_alloc_parallel(struct dentry *parent,
2431 const struct qstr *name,
2432 wait_queue_head_t *wq)
2433 {
2434 unsigned int hash = name->hash;
2435 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2436 struct hlist_bl_node *node;
2437 struct dentry *new = d_alloc(parent, name);
2438 struct dentry *dentry;
2439 unsigned seq, r_seq, d_seq;
2440
2441 if (unlikely(!new))
2442 return ERR_PTR(-ENOMEM);
2443
2444 retry:
2445 rcu_read_lock();
2446 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2447 r_seq = read_seqbegin(&rename_lock);
2448 dentry = __d_lookup_rcu(parent, name, &d_seq);
2449 if (unlikely(dentry)) {
2450 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2451 rcu_read_unlock();
2452 goto retry;
2453 }
2454 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2455 rcu_read_unlock();
2456 dput(dentry);
2457 goto retry;
2458 }
2459 rcu_read_unlock();
2460 dput(new);
2461 return dentry;
2462 }
2463 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2464 rcu_read_unlock();
2465 goto retry;
2466 }
2467 hlist_bl_lock(b);
2468 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2469 hlist_bl_unlock(b);
2470 rcu_read_unlock();
2471 goto retry;
2472 }
2473 /*
2474 * No changes for the parent since the beginning of d_lookup().
2475 * Since all removals from the chain happen with hlist_bl_lock(),
2476 * any potential in-lookup matches are going to stay here until
2477 * we unlock the chain. All fields are stable in everything
2478 * we encounter.
2479 */
2480 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2481 if (dentry->d_name.hash != hash)
2482 continue;
2483 if (dentry->d_parent != parent)
2484 continue;
2485 if (!d_same_name(dentry, parent, name))
2486 continue;
2487 hlist_bl_unlock(b);
2488 /* now we can try to grab a reference */
2489 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2490 rcu_read_unlock();
2491 goto retry;
2492 }
2493
2494 rcu_read_unlock();
2495 /*
2496 * somebody is likely to be still doing lookup for it;
2497 * wait for them to finish
2498 */
2499 spin_lock(&dentry->d_lock);
2500 d_wait_lookup(dentry);
2501 /*
2502 * it's not in-lookup anymore; in principle we should repeat
2503 * everything from dcache lookup, but it's likely to be what
2504 * d_lookup() would've found anyway. If it is, just return it;
2505 * otherwise we really have to repeat the whole thing.
2506 */
2507 if (unlikely(dentry->d_name.hash != hash))
2508 goto mismatch;
2509 if (unlikely(dentry->d_parent != parent))
2510 goto mismatch;
2511 if (unlikely(d_unhashed(dentry)))
2512 goto mismatch;
2513 if (unlikely(!d_same_name(dentry, parent, name)))
2514 goto mismatch;
2515 /* OK, it *is* a hashed match; return it */
2516 spin_unlock(&dentry->d_lock);
2517 dput(new);
2518 return dentry;
2519 }
2520 rcu_read_unlock();
2521 /* we can't take ->d_lock here; it's OK, though. */
2522 new->d_flags |= DCACHE_PAR_LOOKUP;
2523 new->d_wait = wq;
2524 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2525 hlist_bl_unlock(b);
2526 return new;
2527 mismatch:
2528 spin_unlock(&dentry->d_lock);
2529 dput(dentry);
2530 goto retry;
2531 }
2532 EXPORT_SYMBOL(d_alloc_parallel);
2533
2534 void __d_lookup_done(struct dentry *dentry)
2535 {
2536 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2537 dentry->d_name.hash);
2538 hlist_bl_lock(b);
2539 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2540 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2541 wake_up_all(dentry->d_wait);
2542 dentry->d_wait = NULL;
2543 hlist_bl_unlock(b);
2544 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2545 INIT_LIST_HEAD(&dentry->d_lru);
2546 }
2547 EXPORT_SYMBOL(__d_lookup_done);
2548
2549 /* inode->i_lock held if inode is non-NULL */
2550
2551 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2552 {
2553 struct inode *dir = NULL;
2554 unsigned n;
2555 spin_lock(&dentry->d_lock);
2556 if (unlikely(d_in_lookup(dentry))) {
2557 dir = dentry->d_parent->d_inode;
2558 n = start_dir_add(dir);
2559 __d_lookup_done(dentry);
2560 }
2561 if (inode) {
2562 unsigned add_flags = d_flags_for_inode(inode);
2563 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2564 raw_write_seqcount_begin(&dentry->d_seq);
2565 __d_set_inode_and_type(dentry, inode, add_flags);
2566 raw_write_seqcount_end(&dentry->d_seq);
2567 fsnotify_update_flags(dentry);
2568 }
2569 __d_rehash(dentry);
2570 if (dir)
2571 end_dir_add(dir, n);
2572 spin_unlock(&dentry->d_lock);
2573 if (inode)
2574 spin_unlock(&inode->i_lock);
2575 }
2576
2577 /**
2578 * d_add - add dentry to hash queues
2579 * @entry: dentry to add
2580 * @inode: The inode to attach to this dentry
2581 *
2582 * This adds the entry to the hash queues and initializes @inode.
2583 * The entry was actually filled in earlier during d_alloc().
2584 */
2585
2586 void d_add(struct dentry *entry, struct inode *inode)
2587 {
2588 if (inode) {
2589 security_d_instantiate(entry, inode);
2590 spin_lock(&inode->i_lock);
2591 }
2592 __d_add(entry, inode);
2593 }
2594 EXPORT_SYMBOL(d_add);
2595
2596 /**
2597 * d_exact_alias - find and hash an exact unhashed alias
2598 * @entry: dentry to add
2599 * @inode: The inode to go with this dentry
2600 *
2601 * If an unhashed dentry with the same name/parent and desired
2602 * inode already exists, hash and return it. Otherwise, return
2603 * NULL.
2604 *
2605 * Parent directory should be locked.
2606 */
2607 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2608 {
2609 struct dentry *alias;
2610 unsigned int hash = entry->d_name.hash;
2611
2612 spin_lock(&inode->i_lock);
2613 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2614 /*
2615 * Don't need alias->d_lock here, because aliases with
2616 * d_parent == entry->d_parent are not subject to name or
2617 * parent changes, because the parent inode i_mutex is held.
2618 */
2619 if (alias->d_name.hash != hash)
2620 continue;
2621 if (alias->d_parent != entry->d_parent)
2622 continue;
2623 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2624 continue;
2625 spin_lock(&alias->d_lock);
2626 if (!d_unhashed(alias)) {
2627 spin_unlock(&alias->d_lock);
2628 alias = NULL;
2629 } else {
2630 __dget_dlock(alias);
2631 __d_rehash(alias);
2632 spin_unlock(&alias->d_lock);
2633 }
2634 spin_unlock(&inode->i_lock);
2635 return alias;
2636 }
2637 spin_unlock(&inode->i_lock);
2638 return NULL;
2639 }
2640 EXPORT_SYMBOL(d_exact_alias);
2641
2642 /**
2643 * dentry_update_name_case - update case insensitive dentry with a new name
2644 * @dentry: dentry to be updated
2645 * @name: new name
2646 *
2647 * Update a case insensitive dentry with new case of name.
2648 *
2649 * dentry must have been returned by d_lookup with name @name. Old and new
2650 * name lengths must match (ie. no d_compare which allows mismatched name
2651 * lengths).
2652 *
2653 * Parent inode i_mutex must be held over d_lookup and into this call (to
2654 * keep renames and concurrent inserts, and readdir(2) away).
2655 */
2656 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2657 {
2658 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2659 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2660
2661 spin_lock(&dentry->d_lock);
2662 write_seqcount_begin(&dentry->d_seq);
2663 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2664 write_seqcount_end(&dentry->d_seq);
2665 spin_unlock(&dentry->d_lock);
2666 }
2667 EXPORT_SYMBOL(dentry_update_name_case);
2668
2669 static void swap_names(struct dentry *dentry, struct dentry *target)
2670 {
2671 if (unlikely(dname_external(target))) {
2672 if (unlikely(dname_external(dentry))) {
2673 /*
2674 * Both external: swap the pointers
2675 */
2676 swap(target->d_name.name, dentry->d_name.name);
2677 } else {
2678 /*
2679 * dentry:internal, target:external. Steal target's
2680 * storage and make target internal.
2681 */
2682 memcpy(target->d_iname, dentry->d_name.name,
2683 dentry->d_name.len + 1);
2684 dentry->d_name.name = target->d_name.name;
2685 target->d_name.name = target->d_iname;
2686 }
2687 } else {
2688 if (unlikely(dname_external(dentry))) {
2689 /*
2690 * dentry:external, target:internal. Give dentry's
2691 * storage to target and make dentry internal
2692 */
2693 memcpy(dentry->d_iname, target->d_name.name,
2694 target->d_name.len + 1);
2695 target->d_name.name = dentry->d_name.name;
2696 dentry->d_name.name = dentry->d_iname;
2697 } else {
2698 /*
2699 * Both are internal.
2700 */
2701 unsigned int i;
2702 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2703 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2704 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2705 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2706 swap(((long *) &dentry->d_iname)[i],
2707 ((long *) &target->d_iname)[i]);
2708 }
2709 }
2710 }
2711 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2712 }
2713
2714 static void copy_name(struct dentry *dentry, struct dentry *target)
2715 {
2716 struct external_name *old_name = NULL;
2717 if (unlikely(dname_external(dentry)))
2718 old_name = external_name(dentry);
2719 if (unlikely(dname_external(target))) {
2720 atomic_inc(&external_name(target)->u.count);
2721 dentry->d_name = target->d_name;
2722 } else {
2723 memcpy(dentry->d_iname, target->d_name.name,
2724 target->d_name.len + 1);
2725 dentry->d_name.name = dentry->d_iname;
2726 dentry->d_name.hash_len = target->d_name.hash_len;
2727 }
2728 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2729 kfree_rcu(old_name, u.head);
2730 }
2731
2732 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2733 {
2734 /*
2735 * XXXX: do we really need to take target->d_lock?
2736 */
2737 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2738 spin_lock(&target->d_parent->d_lock);
2739 else {
2740 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2741 spin_lock(&dentry->d_parent->d_lock);
2742 spin_lock_nested(&target->d_parent->d_lock,
2743 DENTRY_D_LOCK_NESTED);
2744 } else {
2745 spin_lock(&target->d_parent->d_lock);
2746 spin_lock_nested(&dentry->d_parent->d_lock,
2747 DENTRY_D_LOCK_NESTED);
2748 }
2749 }
2750 if (target < dentry) {
2751 spin_lock_nested(&target->d_lock, 2);
2752 spin_lock_nested(&dentry->d_lock, 3);
2753 } else {
2754 spin_lock_nested(&dentry->d_lock, 2);
2755 spin_lock_nested(&target->d_lock, 3);
2756 }
2757 }
2758
2759 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2760 {
2761 if (target->d_parent != dentry->d_parent)
2762 spin_unlock(&dentry->d_parent->d_lock);
2763 if (target->d_parent != target)
2764 spin_unlock(&target->d_parent->d_lock);
2765 spin_unlock(&target->d_lock);
2766 spin_unlock(&dentry->d_lock);
2767 }
2768
2769 /*
2770 * When switching names, the actual string doesn't strictly have to
2771 * be preserved in the target - because we're dropping the target
2772 * anyway. As such, we can just do a simple memcpy() to copy over
2773 * the new name before we switch, unless we are going to rehash
2774 * it. Note that if we *do* unhash the target, we are not allowed
2775 * to rehash it without giving it a new name/hash key - whether
2776 * we swap or overwrite the names here, resulting name won't match
2777 * the reality in filesystem; it's only there for d_path() purposes.
2778 * Note that all of this is happening under rename_lock, so the
2779 * any hash lookup seeing it in the middle of manipulations will
2780 * be discarded anyway. So we do not care what happens to the hash
2781 * key in that case.
2782 */
2783 /*
2784 * __d_move - move a dentry
2785 * @dentry: entry to move
2786 * @target: new dentry
2787 * @exchange: exchange the two dentries
2788 *
2789 * Update the dcache to reflect the move of a file name. Negative
2790 * dcache entries should not be moved in this way. Caller must hold
2791 * rename_lock, the i_mutex of the source and target directories,
2792 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2793 */
2794 static void __d_move(struct dentry *dentry, struct dentry *target,
2795 bool exchange)
2796 {
2797 struct inode *dir = NULL;
2798 unsigned n;
2799 if (!dentry->d_inode)
2800 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2801
2802 BUG_ON(d_ancestor(dentry, target));
2803 BUG_ON(d_ancestor(target, dentry));
2804
2805 dentry_lock_for_move(dentry, target);
2806 if (unlikely(d_in_lookup(target))) {
2807 dir = target->d_parent->d_inode;
2808 n = start_dir_add(dir);
2809 __d_lookup_done(target);
2810 }
2811
2812 write_seqcount_begin(&dentry->d_seq);
2813 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2814
2815 /* unhash both */
2816 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2817 __d_drop(dentry);
2818 __d_drop(target);
2819
2820 /* Switch the names.. */
2821 if (exchange)
2822 swap_names(dentry, target);
2823 else
2824 copy_name(dentry, target);
2825
2826 /* rehash in new place(s) */
2827 __d_rehash(dentry);
2828 if (exchange)
2829 __d_rehash(target);
2830
2831 /* ... and switch them in the tree */
2832 if (IS_ROOT(dentry)) {
2833 /* splicing a tree */
2834 dentry->d_flags |= DCACHE_RCUACCESS;
2835 dentry->d_parent = target->d_parent;
2836 target->d_parent = target;
2837 list_del_init(&target->d_child);
2838 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2839 } else {
2840 /* swapping two dentries */
2841 swap(dentry->d_parent, target->d_parent);
2842 list_move(&target->d_child, &target->d_parent->d_subdirs);
2843 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2844 if (exchange)
2845 fsnotify_update_flags(target);
2846 fsnotify_update_flags(dentry);
2847 }
2848
2849 write_seqcount_end(&target->d_seq);
2850 write_seqcount_end(&dentry->d_seq);
2851
2852 if (dir)
2853 end_dir_add(dir, n);
2854 dentry_unlock_for_move(dentry, target);
2855 }
2856
2857 /*
2858 * d_move - move a dentry
2859 * @dentry: entry to move
2860 * @target: new dentry
2861 *
2862 * Update the dcache to reflect the move of a file name. Negative
2863 * dcache entries should not be moved in this way. See the locking
2864 * requirements for __d_move.
2865 */
2866 void d_move(struct dentry *dentry, struct dentry *target)
2867 {
2868 write_seqlock(&rename_lock);
2869 __d_move(dentry, target, false);
2870 write_sequnlock(&rename_lock);
2871 }
2872 EXPORT_SYMBOL(d_move);
2873
2874 /*
2875 * d_exchange - exchange two dentries
2876 * @dentry1: first dentry
2877 * @dentry2: second dentry
2878 */
2879 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2880 {
2881 write_seqlock(&rename_lock);
2882
2883 WARN_ON(!dentry1->d_inode);
2884 WARN_ON(!dentry2->d_inode);
2885 WARN_ON(IS_ROOT(dentry1));
2886 WARN_ON(IS_ROOT(dentry2));
2887
2888 __d_move(dentry1, dentry2, true);
2889
2890 write_sequnlock(&rename_lock);
2891 }
2892
2893 /**
2894 * d_ancestor - search for an ancestor
2895 * @p1: ancestor dentry
2896 * @p2: child dentry
2897 *
2898 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2899 * an ancestor of p2, else NULL.
2900 */
2901 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2902 {
2903 struct dentry *p;
2904
2905 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2906 if (p->d_parent == p1)
2907 return p;
2908 }
2909 return NULL;
2910 }
2911
2912 /*
2913 * This helper attempts to cope with remotely renamed directories
2914 *
2915 * It assumes that the caller is already holding
2916 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2917 *
2918 * Note: If ever the locking in lock_rename() changes, then please
2919 * remember to update this too...
2920 */
2921 static int __d_unalias(struct inode *inode,
2922 struct dentry *dentry, struct dentry *alias)
2923 {
2924 struct mutex *m1 = NULL;
2925 struct rw_semaphore *m2 = NULL;
2926 int ret = -ESTALE;
2927
2928 /* If alias and dentry share a parent, then no extra locks required */
2929 if (alias->d_parent == dentry->d_parent)
2930 goto out_unalias;
2931
2932 /* See lock_rename() */
2933 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2934 goto out_err;
2935 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2936 if (!inode_trylock_shared(alias->d_parent->d_inode))
2937 goto out_err;
2938 m2 = &alias->d_parent->d_inode->i_rwsem;
2939 out_unalias:
2940 __d_move(alias, dentry, false);
2941 ret = 0;
2942 out_err:
2943 if (m2)
2944 up_read(m2);
2945 if (m1)
2946 mutex_unlock(m1);
2947 return ret;
2948 }
2949
2950 /**
2951 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2952 * @inode: the inode which may have a disconnected dentry
2953 * @dentry: a negative dentry which we want to point to the inode.
2954 *
2955 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2956 * place of the given dentry and return it, else simply d_add the inode
2957 * to the dentry and return NULL.
2958 *
2959 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2960 * we should error out: directories can't have multiple aliases.
2961 *
2962 * This is needed in the lookup routine of any filesystem that is exportable
2963 * (via knfsd) so that we can build dcache paths to directories effectively.
2964 *
2965 * If a dentry was found and moved, then it is returned. Otherwise NULL
2966 * is returned. This matches the expected return value of ->lookup.
2967 *
2968 * Cluster filesystems may call this function with a negative, hashed dentry.
2969 * In that case, we know that the inode will be a regular file, and also this
2970 * will only occur during atomic_open. So we need to check for the dentry
2971 * being already hashed only in the final case.
2972 */
2973 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2974 {
2975 if (IS_ERR(inode))
2976 return ERR_CAST(inode);
2977
2978 BUG_ON(!d_unhashed(dentry));
2979
2980 if (!inode)
2981 goto out;
2982
2983 security_d_instantiate(dentry, inode);
2984 spin_lock(&inode->i_lock);
2985 if (S_ISDIR(inode->i_mode)) {
2986 struct dentry *new = __d_find_any_alias(inode);
2987 if (unlikely(new)) {
2988 /* The reference to new ensures it remains an alias */
2989 spin_unlock(&inode->i_lock);
2990 write_seqlock(&rename_lock);
2991 if (unlikely(d_ancestor(new, dentry))) {
2992 write_sequnlock(&rename_lock);
2993 dput(new);
2994 new = ERR_PTR(-ELOOP);
2995 pr_warn_ratelimited(
2996 "VFS: Lookup of '%s' in %s %s"
2997 " would have caused loop\n",
2998 dentry->d_name.name,
2999 inode->i_sb->s_type->name,
3000 inode->i_sb->s_id);
3001 } else if (!IS_ROOT(new)) {
3002 int err = __d_unalias(inode, dentry, new);
3003 write_sequnlock(&rename_lock);
3004 if (err) {
3005 dput(new);
3006 new = ERR_PTR(err);
3007 }
3008 } else {
3009 __d_move(new, dentry, false);
3010 write_sequnlock(&rename_lock);
3011 }
3012 iput(inode);
3013 return new;
3014 }
3015 }
3016 out:
3017 __d_add(dentry, inode);
3018 return NULL;
3019 }
3020 EXPORT_SYMBOL(d_splice_alias);
3021
3022 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3023 {
3024 *buflen -= namelen;
3025 if (*buflen < 0)
3026 return -ENAMETOOLONG;
3027 *buffer -= namelen;
3028 memcpy(*buffer, str, namelen);
3029 return 0;
3030 }
3031
3032 /**
3033 * prepend_name - prepend a pathname in front of current buffer pointer
3034 * @buffer: buffer pointer
3035 * @buflen: allocated length of the buffer
3036 * @name: name string and length qstr structure
3037 *
3038 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3039 * make sure that either the old or the new name pointer and length are
3040 * fetched. However, there may be mismatch between length and pointer.
3041 * The length cannot be trusted, we need to copy it byte-by-byte until
3042 * the length is reached or a null byte is found. It also prepends "/" at
3043 * the beginning of the name. The sequence number check at the caller will
3044 * retry it again when a d_move() does happen. So any garbage in the buffer
3045 * due to mismatched pointer and length will be discarded.
3046 *
3047 * Data dependency barrier is needed to make sure that we see that terminating
3048 * NUL. Alpha strikes again, film at 11...
3049 */
3050 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3051 {
3052 const char *dname = ACCESS_ONCE(name->name);
3053 u32 dlen = ACCESS_ONCE(name->len);
3054 char *p;
3055
3056 smp_read_barrier_depends();
3057
3058 *buflen -= dlen + 1;
3059 if (*buflen < 0)
3060 return -ENAMETOOLONG;
3061 p = *buffer -= dlen + 1;
3062 *p++ = '/';
3063 while (dlen--) {
3064 char c = *dname++;
3065 if (!c)
3066 break;
3067 *p++ = c;
3068 }
3069 return 0;
3070 }
3071
3072 /**
3073 * prepend_path - Prepend path string to a buffer
3074 * @path: the dentry/vfsmount to report
3075 * @root: root vfsmnt/dentry
3076 * @buffer: pointer to the end of the buffer
3077 * @buflen: pointer to buffer length
3078 *
3079 * The function will first try to write out the pathname without taking any
3080 * lock other than the RCU read lock to make sure that dentries won't go away.
3081 * It only checks the sequence number of the global rename_lock as any change
3082 * in the dentry's d_seq will be preceded by changes in the rename_lock
3083 * sequence number. If the sequence number had been changed, it will restart
3084 * the whole pathname back-tracing sequence again by taking the rename_lock.
3085 * In this case, there is no need to take the RCU read lock as the recursive
3086 * parent pointer references will keep the dentry chain alive as long as no
3087 * rename operation is performed.
3088 */
3089 static int prepend_path(const struct path *path,
3090 const struct path *root,
3091 char **buffer, int *buflen)
3092 {
3093 struct dentry *dentry;
3094 struct vfsmount *vfsmnt;
3095 struct mount *mnt;
3096 int error = 0;
3097 unsigned seq, m_seq = 0;
3098 char *bptr;
3099 int blen;
3100
3101 rcu_read_lock();
3102 restart_mnt:
3103 read_seqbegin_or_lock(&mount_lock, &m_seq);
3104 seq = 0;
3105 rcu_read_lock();
3106 restart:
3107 bptr = *buffer;
3108 blen = *buflen;
3109 error = 0;
3110 dentry = path->dentry;
3111 vfsmnt = path->mnt;
3112 mnt = real_mount(vfsmnt);
3113 read_seqbegin_or_lock(&rename_lock, &seq);
3114 while (dentry != root->dentry || vfsmnt != root->mnt) {
3115 struct dentry * parent;
3116
3117 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3118 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3119 /* Escaped? */
3120 if (dentry != vfsmnt->mnt_root) {
3121 bptr = *buffer;
3122 blen = *buflen;
3123 error = 3;
3124 break;
3125 }
3126 /* Global root? */
3127 if (mnt != parent) {
3128 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3129 mnt = parent;
3130 vfsmnt = &mnt->mnt;
3131 continue;
3132 }
3133 if (!error)
3134 error = is_mounted(vfsmnt) ? 1 : 2;
3135 break;
3136 }
3137 parent = dentry->d_parent;
3138 prefetch(parent);
3139 error = prepend_name(&bptr, &blen, &dentry->d_name);
3140 if (error)
3141 break;
3142
3143 dentry = parent;
3144 }
3145 if (!(seq & 1))
3146 rcu_read_unlock();
3147 if (need_seqretry(&rename_lock, seq)) {
3148 seq = 1;
3149 goto restart;
3150 }
3151 done_seqretry(&rename_lock, seq);
3152
3153 if (!(m_seq & 1))
3154 rcu_read_unlock();
3155 if (need_seqretry(&mount_lock, m_seq)) {
3156 m_seq = 1;
3157 goto restart_mnt;
3158 }
3159 done_seqretry(&mount_lock, m_seq);
3160
3161 if (error >= 0 && bptr == *buffer) {
3162 if (--blen < 0)
3163 error = -ENAMETOOLONG;
3164 else
3165 *--bptr = '/';
3166 }
3167 *buffer = bptr;
3168 *buflen = blen;
3169 return error;
3170 }
3171
3172 /**
3173 * __d_path - return the path of a dentry
3174 * @path: the dentry/vfsmount to report
3175 * @root: root vfsmnt/dentry
3176 * @buf: buffer to return value in
3177 * @buflen: buffer length
3178 *
3179 * Convert a dentry into an ASCII path name.
3180 *
3181 * Returns a pointer into the buffer or an error code if the
3182 * path was too long.
3183 *
3184 * "buflen" should be positive.
3185 *
3186 * If the path is not reachable from the supplied root, return %NULL.
3187 */
3188 char *__d_path(const struct path *path,
3189 const struct path *root,
3190 char *buf, int buflen)
3191 {
3192 char *res = buf + buflen;
3193 int error;
3194
3195 prepend(&res, &buflen, "\0", 1);
3196 error = prepend_path(path, root, &res, &buflen);
3197
3198 if (error < 0)
3199 return ERR_PTR(error);
3200 if (error > 0)
3201 return NULL;
3202 return res;
3203 }
3204
3205 char *d_absolute_path(const struct path *path,
3206 char *buf, int buflen)
3207 {
3208 struct path root = {};
3209 char *res = buf + buflen;
3210 int error;
3211
3212 prepend(&res, &buflen, "\0", 1);
3213 error = prepend_path(path, &root, &res, &buflen);
3214
3215 if (error > 1)
3216 error = -EINVAL;
3217 if (error < 0)
3218 return ERR_PTR(error);
3219 return res;
3220 }
3221
3222 /*
3223 * same as __d_path but appends "(deleted)" for unlinked files.
3224 */
3225 static int path_with_deleted(const struct path *path,
3226 const struct path *root,
3227 char **buf, int *buflen)
3228 {
3229 prepend(buf, buflen, "\0", 1);
3230 if (d_unlinked(path->dentry)) {
3231 int error = prepend(buf, buflen, " (deleted)", 10);
3232 if (error)
3233 return error;
3234 }
3235
3236 return prepend_path(path, root, buf, buflen);
3237 }
3238
3239 static int prepend_unreachable(char **buffer, int *buflen)
3240 {
3241 return prepend(buffer, buflen, "(unreachable)", 13);
3242 }
3243
3244 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3245 {
3246 unsigned seq;
3247
3248 do {
3249 seq = read_seqcount_begin(&fs->seq);
3250 *root = fs->root;
3251 } while (read_seqcount_retry(&fs->seq, seq));
3252 }
3253
3254 /**
3255 * d_path - return the path of a dentry
3256 * @path: path to report
3257 * @buf: buffer to return value in
3258 * @buflen: buffer length
3259 *
3260 * Convert a dentry into an ASCII path name. If the entry has been deleted
3261 * the string " (deleted)" is appended. Note that this is ambiguous.
3262 *
3263 * Returns a pointer into the buffer or an error code if the path was
3264 * too long. Note: Callers should use the returned pointer, not the passed
3265 * in buffer, to use the name! The implementation often starts at an offset
3266 * into the buffer, and may leave 0 bytes at the start.
3267 *
3268 * "buflen" should be positive.
3269 */
3270 char *d_path(const struct path *path, char *buf, int buflen)
3271 {
3272 char *res = buf + buflen;
3273 struct path root;
3274 int error;
3275
3276 /*
3277 * We have various synthetic filesystems that never get mounted. On
3278 * these filesystems dentries are never used for lookup purposes, and
3279 * thus don't need to be hashed. They also don't need a name until a
3280 * user wants to identify the object in /proc/pid/fd/. The little hack
3281 * below allows us to generate a name for these objects on demand:
3282 *
3283 * Some pseudo inodes are mountable. When they are mounted
3284 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3285 * and instead have d_path return the mounted path.
3286 */
3287 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3288 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3289 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3290
3291 rcu_read_lock();
3292 get_fs_root_rcu(current->fs, &root);
3293 error = path_with_deleted(path, &root, &res, &buflen);
3294 rcu_read_unlock();
3295
3296 if (error < 0)
3297 res = ERR_PTR(error);
3298 return res;
3299 }
3300 EXPORT_SYMBOL(d_path);
3301
3302 /*
3303 * Helper function for dentry_operations.d_dname() members
3304 */
3305 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3306 const char *fmt, ...)
3307 {
3308 va_list args;
3309 char temp[64];
3310 int sz;
3311
3312 va_start(args, fmt);
3313 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3314 va_end(args);
3315
3316 if (sz > sizeof(temp) || sz > buflen)
3317 return ERR_PTR(-ENAMETOOLONG);
3318
3319 buffer += buflen - sz;
3320 return memcpy(buffer, temp, sz);
3321 }
3322
3323 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3324 {
3325 char *end = buffer + buflen;
3326 /* these dentries are never renamed, so d_lock is not needed */
3327 if (prepend(&end, &buflen, " (deleted)", 11) ||
3328 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3329 prepend(&end, &buflen, "/", 1))
3330 end = ERR_PTR(-ENAMETOOLONG);
3331 return end;
3332 }
3333 EXPORT_SYMBOL(simple_dname);
3334
3335 /*
3336 * Write full pathname from the root of the filesystem into the buffer.
3337 */
3338 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3339 {
3340 struct dentry *dentry;
3341 char *end, *retval;
3342 int len, seq = 0;
3343 int error = 0;
3344
3345 if (buflen < 2)
3346 goto Elong;
3347
3348 rcu_read_lock();
3349 restart:
3350 dentry = d;
3351 end = buf + buflen;
3352 len = buflen;
3353 prepend(&end, &len, "\0", 1);
3354 /* Get '/' right */
3355 retval = end-1;
3356 *retval = '/';
3357 read_seqbegin_or_lock(&rename_lock, &seq);
3358 while (!IS_ROOT(dentry)) {
3359 struct dentry *parent = dentry->d_parent;
3360
3361 prefetch(parent);
3362 error = prepend_name(&end, &len, &dentry->d_name);
3363 if (error)
3364 break;
3365
3366 retval = end;
3367 dentry = parent;
3368 }
3369 if (!(seq & 1))
3370 rcu_read_unlock();
3371 if (need_seqretry(&rename_lock, seq)) {
3372 seq = 1;
3373 goto restart;
3374 }
3375 done_seqretry(&rename_lock, seq);
3376 if (error)
3377 goto Elong;
3378 return retval;
3379 Elong:
3380 return ERR_PTR(-ENAMETOOLONG);
3381 }
3382
3383 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3384 {
3385 return __dentry_path(dentry, buf, buflen);
3386 }
3387 EXPORT_SYMBOL(dentry_path_raw);
3388
3389 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3390 {
3391 char *p = NULL;
3392 char *retval;
3393
3394 if (d_unlinked(dentry)) {
3395 p = buf + buflen;
3396 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3397 goto Elong;
3398 buflen++;
3399 }
3400 retval = __dentry_path(dentry, buf, buflen);
3401 if (!IS_ERR(retval) && p)
3402 *p = '/'; /* restore '/' overriden with '\0' */
3403 return retval;
3404 Elong:
3405 return ERR_PTR(-ENAMETOOLONG);
3406 }
3407
3408 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3409 struct path *pwd)
3410 {
3411 unsigned seq;
3412
3413 do {
3414 seq = read_seqcount_begin(&fs->seq);
3415 *root = fs->root;
3416 *pwd = fs->pwd;
3417 } while (read_seqcount_retry(&fs->seq, seq));
3418 }
3419
3420 /*
3421 * NOTE! The user-level library version returns a
3422 * character pointer. The kernel system call just
3423 * returns the length of the buffer filled (which
3424 * includes the ending '\0' character), or a negative
3425 * error value. So libc would do something like
3426 *
3427 * char *getcwd(char * buf, size_t size)
3428 * {
3429 * int retval;
3430 *
3431 * retval = sys_getcwd(buf, size);
3432 * if (retval >= 0)
3433 * return buf;
3434 * errno = -retval;
3435 * return NULL;
3436 * }
3437 */
3438 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3439 {
3440 int error;
3441 struct path pwd, root;
3442 char *page = __getname();
3443
3444 if (!page)
3445 return -ENOMEM;
3446
3447 rcu_read_lock();
3448 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3449
3450 error = -ENOENT;
3451 if (!d_unlinked(pwd.dentry)) {
3452 unsigned long len;
3453 char *cwd = page + PATH_MAX;
3454 int buflen = PATH_MAX;
3455
3456 prepend(&cwd, &buflen, "\0", 1);
3457 error = prepend_path(&pwd, &root, &cwd, &buflen);
3458 rcu_read_unlock();
3459
3460 if (error < 0)
3461 goto out;
3462
3463 /* Unreachable from current root */
3464 if (error > 0) {
3465 error = prepend_unreachable(&cwd, &buflen);
3466 if (error)
3467 goto out;
3468 }
3469
3470 error = -ERANGE;
3471 len = PATH_MAX + page - cwd;
3472 if (len <= size) {
3473 error = len;
3474 if (copy_to_user(buf, cwd, len))
3475 error = -EFAULT;
3476 }
3477 } else {
3478 rcu_read_unlock();
3479 }
3480
3481 out:
3482 __putname(page);
3483 return error;
3484 }
3485
3486 /*
3487 * Test whether new_dentry is a subdirectory of old_dentry.
3488 *
3489 * Trivially implemented using the dcache structure
3490 */
3491
3492 /**
3493 * is_subdir - is new dentry a subdirectory of old_dentry
3494 * @new_dentry: new dentry
3495 * @old_dentry: old dentry
3496 *
3497 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3498 * Returns false otherwise.
3499 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3500 */
3501
3502 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3503 {
3504 bool result;
3505 unsigned seq;
3506
3507 if (new_dentry == old_dentry)
3508 return true;
3509
3510 do {
3511 /* for restarting inner loop in case of seq retry */
3512 seq = read_seqbegin(&rename_lock);
3513 /*
3514 * Need rcu_readlock to protect against the d_parent trashing
3515 * due to d_move
3516 */
3517 rcu_read_lock();
3518 if (d_ancestor(old_dentry, new_dentry))
3519 result = true;
3520 else
3521 result = false;
3522 rcu_read_unlock();
3523 } while (read_seqretry(&rename_lock, seq));
3524
3525 return result;
3526 }
3527
3528 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3529 {
3530 struct dentry *root = data;
3531 if (dentry != root) {
3532 if (d_unhashed(dentry) || !dentry->d_inode)
3533 return D_WALK_SKIP;
3534
3535 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3536 dentry->d_flags |= DCACHE_GENOCIDE;
3537 dentry->d_lockref.count--;
3538 }
3539 }
3540 return D_WALK_CONTINUE;
3541 }
3542
3543 void d_genocide(struct dentry *parent)
3544 {
3545 d_walk(parent, parent, d_genocide_kill, NULL);
3546 }
3547
3548 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3549 {
3550 inode_dec_link_count(inode);
3551 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3552 !hlist_unhashed(&dentry->d_u.d_alias) ||
3553 !d_unlinked(dentry));
3554 spin_lock(&dentry->d_parent->d_lock);
3555 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3556 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3557 (unsigned long long)inode->i_ino);
3558 spin_unlock(&dentry->d_lock);
3559 spin_unlock(&dentry->d_parent->d_lock);
3560 d_instantiate(dentry, inode);
3561 }
3562 EXPORT_SYMBOL(d_tmpfile);
3563
3564 static __initdata unsigned long dhash_entries;
3565 static int __init set_dhash_entries(char *str)
3566 {
3567 if (!str)
3568 return 0;
3569 dhash_entries = simple_strtoul(str, &str, 0);
3570 return 1;
3571 }
3572 __setup("dhash_entries=", set_dhash_entries);
3573
3574 static void __init dcache_init_early(void)
3575 {
3576 /* If hashes are distributed across NUMA nodes, defer
3577 * hash allocation until vmalloc space is available.
3578 */
3579 if (hashdist)
3580 return;
3581
3582 dentry_hashtable =
3583 alloc_large_system_hash("Dentry cache",
3584 sizeof(struct hlist_bl_head),
3585 dhash_entries,
3586 13,
3587 HASH_EARLY | HASH_ZERO,
3588 &d_hash_shift,
3589 &d_hash_mask,
3590 0,
3591 0);
3592 }
3593
3594 static void __init dcache_init(void)
3595 {
3596 /*
3597 * A constructor could be added for stable state like the lists,
3598 * but it is probably not worth it because of the cache nature
3599 * of the dcache.
3600 */
3601 dentry_cache = KMEM_CACHE(dentry,
3602 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3603
3604 /* Hash may have been set up in dcache_init_early */
3605 if (!hashdist)
3606 return;
3607
3608 dentry_hashtable =
3609 alloc_large_system_hash("Dentry cache",
3610 sizeof(struct hlist_bl_head),
3611 dhash_entries,
3612 13,
3613 HASH_ZERO,
3614 &d_hash_shift,
3615 &d_hash_mask,
3616 0,
3617 0);
3618 }
3619
3620 /* SLAB cache for __getname() consumers */
3621 struct kmem_cache *names_cachep __read_mostly;
3622 EXPORT_SYMBOL(names_cachep);
3623
3624 EXPORT_SYMBOL(d_genocide);
3625
3626 void __init vfs_caches_init_early(void)
3627 {
3628 int i;
3629
3630 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3631 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3632
3633 dcache_init_early();
3634 inode_init_early();
3635 }
3636
3637 void __init vfs_caches_init(void)
3638 {
3639 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3640 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3641
3642 dcache_init();
3643 inode_init();
3644 files_init();
3645 files_maxfiles_init();
3646 mnt_init();
3647 bdev_cache_init();
3648 chrdev_init();
3649 }