]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/direct-io.c
kvm: x86, powerpc: do not allow clearing largepages debugfs entry
[mirror_ubuntu-bionic-kernel.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40
41 /*
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
44 */
45 #define DIO_PAGES 64
46
47 /*
48 * Flags for dio_complete()
49 */
50 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
51 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
52
53 /*
54 * This code generally works in units of "dio_blocks". A dio_block is
55 * somewhere between the hard sector size and the filesystem block size. it
56 * is determined on a per-invocation basis. When talking to the filesystem
57 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
58 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
59 * to bio_block quantities by shifting left by blkfactor.
60 *
61 * If blkfactor is zero then the user's request was aligned to the filesystem's
62 * blocksize.
63 */
64
65 /* dio_state only used in the submission path */
66
67 struct dio_submit {
68 struct bio *bio; /* bio under assembly */
69 unsigned blkbits; /* doesn't change */
70 unsigned blkfactor; /* When we're using an alignment which
71 is finer than the filesystem's soft
72 blocksize, this specifies how much
73 finer. blkfactor=2 means 1/4-block
74 alignment. Does not change */
75 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
76 been performed at the start of a
77 write */
78 int pages_in_io; /* approximate total IO pages */
79 sector_t block_in_file; /* Current offset into the underlying
80 file in dio_block units. */
81 unsigned blocks_available; /* At block_in_file. changes */
82 int reap_counter; /* rate limit reaping */
83 sector_t final_block_in_request;/* doesn't change */
84 int boundary; /* prev block is at a boundary */
85 get_block_t *get_block; /* block mapping function */
86 dio_submit_t *submit_io; /* IO submition function */
87
88 loff_t logical_offset_in_bio; /* current first logical block in bio */
89 sector_t final_block_in_bio; /* current final block in bio + 1 */
90 sector_t next_block_for_io; /* next block to be put under IO,
91 in dio_blocks units */
92
93 /*
94 * Deferred addition of a page to the dio. These variables are
95 * private to dio_send_cur_page(), submit_page_section() and
96 * dio_bio_add_page().
97 */
98 struct page *cur_page; /* The page */
99 unsigned cur_page_offset; /* Offset into it, in bytes */
100 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
101 sector_t cur_page_block; /* Where it starts */
102 loff_t cur_page_fs_offset; /* Offset in file */
103
104 struct iov_iter *iter;
105 /*
106 * Page queue. These variables belong to dio_refill_pages() and
107 * dio_get_page().
108 */
109 unsigned head; /* next page to process */
110 unsigned tail; /* last valid page + 1 */
111 size_t from, to;
112 };
113
114 /* dio_state communicated between submission path and end_io */
115 struct dio {
116 int flags; /* doesn't change */
117 int op;
118 int op_flags;
119 blk_qc_t bio_cookie;
120 struct gendisk *bio_disk;
121 struct inode *inode;
122 loff_t i_size; /* i_size when submitted */
123 dio_iodone_t *end_io; /* IO completion function */
124
125 void *private; /* copy from map_bh.b_private */
126
127 /* BIO completion state */
128 spinlock_t bio_lock; /* protects BIO fields below */
129 int page_errors; /* errno from get_user_pages() */
130 int is_async; /* is IO async ? */
131 bool defer_completion; /* defer AIO completion to workqueue? */
132 bool should_dirty; /* if pages should be dirtied */
133 int io_error; /* IO error in completion path */
134 unsigned long refcount; /* direct_io_worker() and bios */
135 struct bio *bio_list; /* singly linked via bi_private */
136 struct task_struct *waiter; /* waiting task (NULL if none) */
137
138 /* AIO related stuff */
139 struct kiocb *iocb; /* kiocb */
140 ssize_t result; /* IO result */
141
142 /*
143 * pages[] (and any fields placed after it) are not zeroed out at
144 * allocation time. Don't add new fields after pages[] unless you
145 * wish that they not be zeroed.
146 */
147 union {
148 struct page *pages[DIO_PAGES]; /* page buffer */
149 struct work_struct complete_work;/* deferred AIO completion */
150 };
151 } ____cacheline_aligned_in_smp;
152
153 static struct kmem_cache *dio_cache __read_mostly;
154
155 /*
156 * How many pages are in the queue?
157 */
158 static inline unsigned dio_pages_present(struct dio_submit *sdio)
159 {
160 return sdio->tail - sdio->head;
161 }
162
163 /*
164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
165 */
166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
167 {
168 ssize_t ret;
169
170 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
171 &sdio->from);
172
173 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
174 struct page *page = ZERO_PAGE(0);
175 /*
176 * A memory fault, but the filesystem has some outstanding
177 * mapped blocks. We need to use those blocks up to avoid
178 * leaking stale data in the file.
179 */
180 if (dio->page_errors == 0)
181 dio->page_errors = ret;
182 get_page(page);
183 dio->pages[0] = page;
184 sdio->head = 0;
185 sdio->tail = 1;
186 sdio->from = 0;
187 sdio->to = PAGE_SIZE;
188 return 0;
189 }
190
191 if (ret >= 0) {
192 iov_iter_advance(sdio->iter, ret);
193 ret += sdio->from;
194 sdio->head = 0;
195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 return 0;
198 }
199 return ret;
200 }
201
202 /*
203 * Get another userspace page. Returns an ERR_PTR on error. Pages are
204 * buffered inside the dio so that we can call get_user_pages() against a
205 * decent number of pages, less frequently. To provide nicer use of the
206 * L1 cache.
207 */
208 static inline struct page *dio_get_page(struct dio *dio,
209 struct dio_submit *sdio)
210 {
211 if (dio_pages_present(sdio) == 0) {
212 int ret;
213
214 ret = dio_refill_pages(dio, sdio);
215 if (ret)
216 return ERR_PTR(ret);
217 BUG_ON(dio_pages_present(sdio) == 0);
218 }
219 return dio->pages[sdio->head];
220 }
221
222 /*
223 * Warn about a page cache invalidation failure during a direct io write.
224 */
225 void dio_warn_stale_pagecache(struct file *filp)
226 {
227 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
228 char pathname[128];
229 struct inode *inode = file_inode(filp);
230 char *path;
231
232 errseq_set(&inode->i_mapping->wb_err, -EIO);
233 if (__ratelimit(&_rs)) {
234 path = file_path(filp, pathname, sizeof(pathname));
235 if (IS_ERR(path))
236 path = "(unknown)";
237 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
238 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
239 current->comm);
240 }
241 }
242
243 /**
244 * dio_complete() - called when all DIO BIO I/O has been completed
245 * @offset: the byte offset in the file of the completed operation
246 *
247 * This drops i_dio_count, lets interested parties know that a DIO operation
248 * has completed, and calculates the resulting return code for the operation.
249 *
250 * It lets the filesystem know if it registered an interest earlier via
251 * get_block. Pass the private field of the map buffer_head so that
252 * filesystems can use it to hold additional state between get_block calls and
253 * dio_complete.
254 */
255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
256 {
257 loff_t offset = dio->iocb->ki_pos;
258 ssize_t transferred = 0;
259 int err;
260
261 /*
262 * AIO submission can race with bio completion to get here while
263 * expecting to have the last io completed by bio completion.
264 * In that case -EIOCBQUEUED is in fact not an error we want
265 * to preserve through this call.
266 */
267 if (ret == -EIOCBQUEUED)
268 ret = 0;
269
270 if (dio->result) {
271 transferred = dio->result;
272
273 /* Check for short read case */
274 if ((dio->op == REQ_OP_READ) &&
275 ((offset + transferred) > dio->i_size))
276 transferred = dio->i_size - offset;
277 /* ignore EFAULT if some IO has been done */
278 if (unlikely(ret == -EFAULT) && transferred)
279 ret = 0;
280 }
281
282 if (ret == 0)
283 ret = dio->page_errors;
284 if (ret == 0)
285 ret = dio->io_error;
286 if (ret == 0)
287 ret = transferred;
288
289 if (dio->end_io) {
290 // XXX: ki_pos??
291 err = dio->end_io(dio->iocb, offset, ret, dio->private);
292 if (err)
293 ret = err;
294 }
295
296 /*
297 * Try again to invalidate clean pages which might have been cached by
298 * non-direct readahead, or faulted in by get_user_pages() if the source
299 * of the write was an mmap'ed region of the file we're writing. Either
300 * one is a pretty crazy thing to do, so we don't support it 100%. If
301 * this invalidation fails, tough, the write still worked...
302 *
303 * And this page cache invalidation has to be after dio->end_io(), as
304 * some filesystems convert unwritten extents to real allocations in
305 * end_io() when necessary, otherwise a racing buffer read would cache
306 * zeros from unwritten extents.
307 */
308 if (flags & DIO_COMPLETE_INVALIDATE &&
309 ret > 0 && dio->op == REQ_OP_WRITE &&
310 dio->inode->i_mapping->nrpages) {
311 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
312 offset >> PAGE_SHIFT,
313 (offset + ret - 1) >> PAGE_SHIFT);
314 if (err)
315 dio_warn_stale_pagecache(dio->iocb->ki_filp);
316 }
317
318 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
319 inode_dio_end(dio->inode);
320
321 if (flags & DIO_COMPLETE_ASYNC) {
322 /*
323 * generic_write_sync expects ki_pos to have been updated
324 * already, but the submission path only does this for
325 * synchronous I/O.
326 */
327 dio->iocb->ki_pos += transferred;
328
329 if (ret > 0 && dio->op == REQ_OP_WRITE)
330 ret = generic_write_sync(dio->iocb, ret);
331 dio->iocb->ki_complete(dio->iocb, ret, 0);
332 }
333
334 kmem_cache_free(dio_cache, dio);
335 return ret;
336 }
337
338 static void dio_aio_complete_work(struct work_struct *work)
339 {
340 struct dio *dio = container_of(work, struct dio, complete_work);
341
342 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
343 }
344
345 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
346
347 /*
348 * Asynchronous IO callback.
349 */
350 static void dio_bio_end_aio(struct bio *bio)
351 {
352 struct dio *dio = bio->bi_private;
353 unsigned long remaining;
354 unsigned long flags;
355 bool defer_completion = false;
356
357 /* cleanup the bio */
358 dio_bio_complete(dio, bio);
359
360 spin_lock_irqsave(&dio->bio_lock, flags);
361 remaining = --dio->refcount;
362 if (remaining == 1 && dio->waiter)
363 wake_up_process(dio->waiter);
364 spin_unlock_irqrestore(&dio->bio_lock, flags);
365
366 if (remaining == 0) {
367 /*
368 * Defer completion when defer_completion is set or
369 * when the inode has pages mapped and this is AIO write.
370 * We need to invalidate those pages because there is a
371 * chance they contain stale data in the case buffered IO
372 * went in between AIO submission and completion into the
373 * same region.
374 */
375 if (dio->result)
376 defer_completion = dio->defer_completion ||
377 (dio->op == REQ_OP_WRITE &&
378 dio->inode->i_mapping->nrpages);
379 if (defer_completion) {
380 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
381 queue_work(dio->inode->i_sb->s_dio_done_wq,
382 &dio->complete_work);
383 } else {
384 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
385 }
386 }
387 }
388
389 /*
390 * The BIO completion handler simply queues the BIO up for the process-context
391 * handler.
392 *
393 * During I/O bi_private points at the dio. After I/O, bi_private is used to
394 * implement a singly-linked list of completed BIOs, at dio->bio_list.
395 */
396 static void dio_bio_end_io(struct bio *bio)
397 {
398 struct dio *dio = bio->bi_private;
399 unsigned long flags;
400
401 spin_lock_irqsave(&dio->bio_lock, flags);
402 bio->bi_private = dio->bio_list;
403 dio->bio_list = bio;
404 if (--dio->refcount == 1 && dio->waiter)
405 wake_up_process(dio->waiter);
406 spin_unlock_irqrestore(&dio->bio_lock, flags);
407 }
408
409 /**
410 * dio_end_io - handle the end io action for the given bio
411 * @bio: The direct io bio thats being completed
412 *
413 * This is meant to be called by any filesystem that uses their own dio_submit_t
414 * so that the DIO specific endio actions are dealt with after the filesystem
415 * has done it's completion work.
416 */
417 void dio_end_io(struct bio *bio)
418 {
419 struct dio *dio = bio->bi_private;
420
421 if (dio->is_async)
422 dio_bio_end_aio(bio);
423 else
424 dio_bio_end_io(bio);
425 }
426 EXPORT_SYMBOL_GPL(dio_end_io);
427
428 static inline void
429 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
430 struct block_device *bdev,
431 sector_t first_sector, int nr_vecs)
432 {
433 struct bio *bio;
434
435 /*
436 * bio_alloc() is guaranteed to return a bio when called with
437 * __GFP_RECLAIM and we request a valid number of vectors.
438 */
439 bio = bio_alloc(GFP_KERNEL, nr_vecs);
440
441 bio_set_dev(bio, bdev);
442 bio->bi_iter.bi_sector = first_sector;
443 bio_set_op_attrs(bio, dio->op, dio->op_flags);
444 if (dio->is_async)
445 bio->bi_end_io = dio_bio_end_aio;
446 else
447 bio->bi_end_io = dio_bio_end_io;
448
449 bio->bi_write_hint = dio->iocb->ki_hint;
450
451 sdio->bio = bio;
452 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
453 }
454
455 /*
456 * In the AIO read case we speculatively dirty the pages before starting IO.
457 * During IO completion, any of these pages which happen to have been written
458 * back will be redirtied by bio_check_pages_dirty().
459 *
460 * bios hold a dio reference between submit_bio and ->end_io.
461 */
462 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
463 {
464 struct bio *bio = sdio->bio;
465 unsigned long flags;
466
467 bio->bi_private = dio;
468
469 spin_lock_irqsave(&dio->bio_lock, flags);
470 dio->refcount++;
471 spin_unlock_irqrestore(&dio->bio_lock, flags);
472
473 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
474 bio_set_pages_dirty(bio);
475
476 dio->bio_disk = bio->bi_disk;
477
478 if (sdio->submit_io) {
479 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
480 dio->bio_cookie = BLK_QC_T_NONE;
481 } else
482 dio->bio_cookie = submit_bio(bio);
483
484 sdio->bio = NULL;
485 sdio->boundary = 0;
486 sdio->logical_offset_in_bio = 0;
487 }
488
489 /*
490 * Release any resources in case of a failure
491 */
492 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
493 {
494 while (sdio->head < sdio->tail)
495 put_page(dio->pages[sdio->head++]);
496 }
497
498 /*
499 * Wait for the next BIO to complete. Remove it and return it. NULL is
500 * returned once all BIOs have been completed. This must only be called once
501 * all bios have been issued so that dio->refcount can only decrease. This
502 * requires that that the caller hold a reference on the dio.
503 */
504 static struct bio *dio_await_one(struct dio *dio)
505 {
506 unsigned long flags;
507 struct bio *bio = NULL;
508
509 spin_lock_irqsave(&dio->bio_lock, flags);
510
511 /*
512 * Wait as long as the list is empty and there are bios in flight. bio
513 * completion drops the count, maybe adds to the list, and wakes while
514 * holding the bio_lock so we don't need set_current_state()'s barrier
515 * and can call it after testing our condition.
516 */
517 while (dio->refcount > 1 && dio->bio_list == NULL) {
518 __set_current_state(TASK_UNINTERRUPTIBLE);
519 dio->waiter = current;
520 spin_unlock_irqrestore(&dio->bio_lock, flags);
521 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
522 !blk_poll(dio->bio_disk->queue, dio->bio_cookie))
523 io_schedule();
524 /* wake up sets us TASK_RUNNING */
525 spin_lock_irqsave(&dio->bio_lock, flags);
526 dio->waiter = NULL;
527 }
528 if (dio->bio_list) {
529 bio = dio->bio_list;
530 dio->bio_list = bio->bi_private;
531 }
532 spin_unlock_irqrestore(&dio->bio_lock, flags);
533 return bio;
534 }
535
536 /*
537 * Process one completed BIO. No locks are held.
538 */
539 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
540 {
541 struct bio_vec *bvec;
542 unsigned i;
543 blk_status_t err = bio->bi_status;
544
545 if (err) {
546 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
547 dio->io_error = -EAGAIN;
548 else
549 dio->io_error = -EIO;
550 }
551
552 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
553 bio_check_pages_dirty(bio); /* transfers ownership */
554 } else {
555 bio_for_each_segment_all(bvec, bio, i) {
556 struct page *page = bvec->bv_page;
557
558 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
559 dio->should_dirty)
560 set_page_dirty_lock(page);
561 put_page(page);
562 }
563 bio_put(bio);
564 }
565 return err;
566 }
567
568 /*
569 * Wait on and process all in-flight BIOs. This must only be called once
570 * all bios have been issued so that the refcount can only decrease.
571 * This just waits for all bios to make it through dio_bio_complete. IO
572 * errors are propagated through dio->io_error and should be propagated via
573 * dio_complete().
574 */
575 static void dio_await_completion(struct dio *dio)
576 {
577 struct bio *bio;
578 do {
579 bio = dio_await_one(dio);
580 if (bio)
581 dio_bio_complete(dio, bio);
582 } while (bio);
583 }
584
585 /*
586 * A really large O_DIRECT read or write can generate a lot of BIOs. So
587 * to keep the memory consumption sane we periodically reap any completed BIOs
588 * during the BIO generation phase.
589 *
590 * This also helps to limit the peak amount of pinned userspace memory.
591 */
592 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
593 {
594 int ret = 0;
595
596 if (sdio->reap_counter++ >= 64) {
597 while (dio->bio_list) {
598 unsigned long flags;
599 struct bio *bio;
600 int ret2;
601
602 spin_lock_irqsave(&dio->bio_lock, flags);
603 bio = dio->bio_list;
604 dio->bio_list = bio->bi_private;
605 spin_unlock_irqrestore(&dio->bio_lock, flags);
606 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
607 if (ret == 0)
608 ret = ret2;
609 }
610 sdio->reap_counter = 0;
611 }
612 return ret;
613 }
614
615 /*
616 * Create workqueue for deferred direct IO completions. We allocate the
617 * workqueue when it's first needed. This avoids creating workqueue for
618 * filesystems that don't need it and also allows us to create the workqueue
619 * late enough so the we can include s_id in the name of the workqueue.
620 */
621 int sb_init_dio_done_wq(struct super_block *sb)
622 {
623 struct workqueue_struct *old;
624 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
625 WQ_MEM_RECLAIM, 0,
626 sb->s_id);
627 if (!wq)
628 return -ENOMEM;
629 /*
630 * This has to be atomic as more DIOs can race to create the workqueue
631 */
632 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
633 /* Someone created workqueue before us? Free ours... */
634 if (old)
635 destroy_workqueue(wq);
636 return 0;
637 }
638
639 static int dio_set_defer_completion(struct dio *dio)
640 {
641 struct super_block *sb = dio->inode->i_sb;
642
643 if (dio->defer_completion)
644 return 0;
645 dio->defer_completion = true;
646 if (!sb->s_dio_done_wq)
647 return sb_init_dio_done_wq(sb);
648 return 0;
649 }
650
651 /*
652 * Call into the fs to map some more disk blocks. We record the current number
653 * of available blocks at sdio->blocks_available. These are in units of the
654 * fs blocksize, i_blocksize(inode).
655 *
656 * The fs is allowed to map lots of blocks at once. If it wants to do that,
657 * it uses the passed inode-relative block number as the file offset, as usual.
658 *
659 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
660 * has remaining to do. The fs should not map more than this number of blocks.
661 *
662 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
663 * indicate how much contiguous disk space has been made available at
664 * bh->b_blocknr.
665 *
666 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
667 * This isn't very efficient...
668 *
669 * In the case of filesystem holes: the fs may return an arbitrarily-large
670 * hole by returning an appropriate value in b_size and by clearing
671 * buffer_mapped(). However the direct-io code will only process holes one
672 * block at a time - it will repeatedly call get_block() as it walks the hole.
673 */
674 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
675 struct buffer_head *map_bh)
676 {
677 int ret;
678 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
679 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
680 unsigned long fs_count; /* Number of filesystem-sized blocks */
681 int create;
682 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
683 loff_t i_size;
684
685 /*
686 * If there was a memory error and we've overwritten all the
687 * mapped blocks then we can now return that memory error
688 */
689 ret = dio->page_errors;
690 if (ret == 0) {
691 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
692 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
693 fs_endblk = (sdio->final_block_in_request - 1) >>
694 sdio->blkfactor;
695 fs_count = fs_endblk - fs_startblk + 1;
696
697 map_bh->b_state = 0;
698 map_bh->b_size = fs_count << i_blkbits;
699
700 /*
701 * For writes that could fill holes inside i_size on a
702 * DIO_SKIP_HOLES filesystem we forbid block creations: only
703 * overwrites are permitted. We will return early to the caller
704 * once we see an unmapped buffer head returned, and the caller
705 * will fall back to buffered I/O.
706 *
707 * Otherwise the decision is left to the get_blocks method,
708 * which may decide to handle it or also return an unmapped
709 * buffer head.
710 */
711 create = dio->op == REQ_OP_WRITE;
712 if (dio->flags & DIO_SKIP_HOLES) {
713 i_size = i_size_read(dio->inode);
714 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
715 create = 0;
716 }
717
718 ret = (*sdio->get_block)(dio->inode, fs_startblk,
719 map_bh, create);
720
721 /* Store for completion */
722 dio->private = map_bh->b_private;
723
724 if (ret == 0 && buffer_defer_completion(map_bh))
725 ret = dio_set_defer_completion(dio);
726 }
727 return ret;
728 }
729
730 /*
731 * There is no bio. Make one now.
732 */
733 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
734 sector_t start_sector, struct buffer_head *map_bh)
735 {
736 sector_t sector;
737 int ret, nr_pages;
738
739 ret = dio_bio_reap(dio, sdio);
740 if (ret)
741 goto out;
742 sector = start_sector << (sdio->blkbits - 9);
743 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
744 BUG_ON(nr_pages <= 0);
745 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
746 sdio->boundary = 0;
747 out:
748 return ret;
749 }
750
751 /*
752 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
753 * that was successful then update final_block_in_bio and take a ref against
754 * the just-added page.
755 *
756 * Return zero on success. Non-zero means the caller needs to start a new BIO.
757 */
758 static inline int dio_bio_add_page(struct dio_submit *sdio)
759 {
760 int ret;
761
762 ret = bio_add_page(sdio->bio, sdio->cur_page,
763 sdio->cur_page_len, sdio->cur_page_offset);
764 if (ret == sdio->cur_page_len) {
765 /*
766 * Decrement count only, if we are done with this page
767 */
768 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
769 sdio->pages_in_io--;
770 get_page(sdio->cur_page);
771 sdio->final_block_in_bio = sdio->cur_page_block +
772 (sdio->cur_page_len >> sdio->blkbits);
773 ret = 0;
774 } else {
775 ret = 1;
776 }
777 return ret;
778 }
779
780 /*
781 * Put cur_page under IO. The section of cur_page which is described by
782 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
783 * starts on-disk at cur_page_block.
784 *
785 * We take a ref against the page here (on behalf of its presence in the bio).
786 *
787 * The caller of this function is responsible for removing cur_page from the
788 * dio, and for dropping the refcount which came from that presence.
789 */
790 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
791 struct buffer_head *map_bh)
792 {
793 int ret = 0;
794
795 if (sdio->bio) {
796 loff_t cur_offset = sdio->cur_page_fs_offset;
797 loff_t bio_next_offset = sdio->logical_offset_in_bio +
798 sdio->bio->bi_iter.bi_size;
799
800 /*
801 * See whether this new request is contiguous with the old.
802 *
803 * Btrfs cannot handle having logically non-contiguous requests
804 * submitted. For example if you have
805 *
806 * Logical: [0-4095][HOLE][8192-12287]
807 * Physical: [0-4095] [4096-8191]
808 *
809 * We cannot submit those pages together as one BIO. So if our
810 * current logical offset in the file does not equal what would
811 * be the next logical offset in the bio, submit the bio we
812 * have.
813 */
814 if (sdio->final_block_in_bio != sdio->cur_page_block ||
815 cur_offset != bio_next_offset)
816 dio_bio_submit(dio, sdio);
817 }
818
819 if (sdio->bio == NULL) {
820 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
821 if (ret)
822 goto out;
823 }
824
825 if (dio_bio_add_page(sdio) != 0) {
826 dio_bio_submit(dio, sdio);
827 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
828 if (ret == 0) {
829 ret = dio_bio_add_page(sdio);
830 BUG_ON(ret != 0);
831 }
832 }
833 out:
834 return ret;
835 }
836
837 /*
838 * An autonomous function to put a chunk of a page under deferred IO.
839 *
840 * The caller doesn't actually know (or care) whether this piece of page is in
841 * a BIO, or is under IO or whatever. We just take care of all possible
842 * situations here. The separation between the logic of do_direct_IO() and
843 * that of submit_page_section() is important for clarity. Please don't break.
844 *
845 * The chunk of page starts on-disk at blocknr.
846 *
847 * We perform deferred IO, by recording the last-submitted page inside our
848 * private part of the dio structure. If possible, we just expand the IO
849 * across that page here.
850 *
851 * If that doesn't work out then we put the old page into the bio and add this
852 * page to the dio instead.
853 */
854 static inline int
855 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
856 unsigned offset, unsigned len, sector_t blocknr,
857 struct buffer_head *map_bh)
858 {
859 int ret = 0;
860
861 if (dio->op == REQ_OP_WRITE) {
862 /*
863 * Read accounting is performed in submit_bio()
864 */
865 task_io_account_write(len);
866 }
867
868 /*
869 * Can we just grow the current page's presence in the dio?
870 */
871 if (sdio->cur_page == page &&
872 sdio->cur_page_offset + sdio->cur_page_len == offset &&
873 sdio->cur_page_block +
874 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
875 sdio->cur_page_len += len;
876 goto out;
877 }
878
879 /*
880 * If there's a deferred page already there then send it.
881 */
882 if (sdio->cur_page) {
883 ret = dio_send_cur_page(dio, sdio, map_bh);
884 put_page(sdio->cur_page);
885 sdio->cur_page = NULL;
886 if (ret)
887 return ret;
888 }
889
890 get_page(page); /* It is in dio */
891 sdio->cur_page = page;
892 sdio->cur_page_offset = offset;
893 sdio->cur_page_len = len;
894 sdio->cur_page_block = blocknr;
895 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
896 out:
897 /*
898 * If sdio->boundary then we want to schedule the IO now to
899 * avoid metadata seeks.
900 */
901 if (sdio->boundary) {
902 ret = dio_send_cur_page(dio, sdio, map_bh);
903 if (sdio->bio)
904 dio_bio_submit(dio, sdio);
905 put_page(sdio->cur_page);
906 sdio->cur_page = NULL;
907 }
908 return ret;
909 }
910
911 /*
912 * If we are not writing the entire block and get_block() allocated
913 * the block for us, we need to fill-in the unused portion of the
914 * block with zeros. This happens only if user-buffer, fileoffset or
915 * io length is not filesystem block-size multiple.
916 *
917 * `end' is zero if we're doing the start of the IO, 1 at the end of the
918 * IO.
919 */
920 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
921 int end, struct buffer_head *map_bh)
922 {
923 unsigned dio_blocks_per_fs_block;
924 unsigned this_chunk_blocks; /* In dio_blocks */
925 unsigned this_chunk_bytes;
926 struct page *page;
927
928 sdio->start_zero_done = 1;
929 if (!sdio->blkfactor || !buffer_new(map_bh))
930 return;
931
932 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
933 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
934
935 if (!this_chunk_blocks)
936 return;
937
938 /*
939 * We need to zero out part of an fs block. It is either at the
940 * beginning or the end of the fs block.
941 */
942 if (end)
943 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
944
945 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
946
947 page = ZERO_PAGE(0);
948 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
949 sdio->next_block_for_io, map_bh))
950 return;
951
952 sdio->next_block_for_io += this_chunk_blocks;
953 }
954
955 /*
956 * Walk the user pages, and the file, mapping blocks to disk and generating
957 * a sequence of (page,offset,len,block) mappings. These mappings are injected
958 * into submit_page_section(), which takes care of the next stage of submission
959 *
960 * Direct IO against a blockdev is different from a file. Because we can
961 * happily perform page-sized but 512-byte aligned IOs. It is important that
962 * blockdev IO be able to have fine alignment and large sizes.
963 *
964 * So what we do is to permit the ->get_block function to populate bh.b_size
965 * with the size of IO which is permitted at this offset and this i_blkbits.
966 *
967 * For best results, the blockdev should be set up with 512-byte i_blkbits and
968 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
969 * fine alignment but still allows this function to work in PAGE_SIZE units.
970 */
971 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
972 struct buffer_head *map_bh)
973 {
974 const unsigned blkbits = sdio->blkbits;
975 const unsigned i_blkbits = blkbits + sdio->blkfactor;
976 int ret = 0;
977
978 while (sdio->block_in_file < sdio->final_block_in_request) {
979 struct page *page;
980 size_t from, to;
981
982 page = dio_get_page(dio, sdio);
983 if (IS_ERR(page)) {
984 ret = PTR_ERR(page);
985 goto out;
986 }
987 from = sdio->head ? 0 : sdio->from;
988 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
989 sdio->head++;
990
991 while (from < to) {
992 unsigned this_chunk_bytes; /* # of bytes mapped */
993 unsigned this_chunk_blocks; /* # of blocks */
994 unsigned u;
995
996 if (sdio->blocks_available == 0) {
997 /*
998 * Need to go and map some more disk
999 */
1000 unsigned long blkmask;
1001 unsigned long dio_remainder;
1002
1003 ret = get_more_blocks(dio, sdio, map_bh);
1004 if (ret) {
1005 put_page(page);
1006 goto out;
1007 }
1008 if (!buffer_mapped(map_bh))
1009 goto do_holes;
1010
1011 sdio->blocks_available =
1012 map_bh->b_size >> blkbits;
1013 sdio->next_block_for_io =
1014 map_bh->b_blocknr << sdio->blkfactor;
1015 if (buffer_new(map_bh)) {
1016 clean_bdev_aliases(
1017 map_bh->b_bdev,
1018 map_bh->b_blocknr,
1019 map_bh->b_size >> i_blkbits);
1020 }
1021
1022 if (!sdio->blkfactor)
1023 goto do_holes;
1024
1025 blkmask = (1 << sdio->blkfactor) - 1;
1026 dio_remainder = (sdio->block_in_file & blkmask);
1027
1028 /*
1029 * If we are at the start of IO and that IO
1030 * starts partway into a fs-block,
1031 * dio_remainder will be non-zero. If the IO
1032 * is a read then we can simply advance the IO
1033 * cursor to the first block which is to be
1034 * read. But if the IO is a write and the
1035 * block was newly allocated we cannot do that;
1036 * the start of the fs block must be zeroed out
1037 * on-disk
1038 */
1039 if (!buffer_new(map_bh))
1040 sdio->next_block_for_io += dio_remainder;
1041 sdio->blocks_available -= dio_remainder;
1042 }
1043 do_holes:
1044 /* Handle holes */
1045 if (!buffer_mapped(map_bh)) {
1046 loff_t i_size_aligned;
1047
1048 /* AKPM: eargh, -ENOTBLK is a hack */
1049 if (dio->op == REQ_OP_WRITE) {
1050 put_page(page);
1051 return -ENOTBLK;
1052 }
1053
1054 /*
1055 * Be sure to account for a partial block as the
1056 * last block in the file
1057 */
1058 i_size_aligned = ALIGN(i_size_read(dio->inode),
1059 1 << blkbits);
1060 if (sdio->block_in_file >=
1061 i_size_aligned >> blkbits) {
1062 /* We hit eof */
1063 put_page(page);
1064 goto out;
1065 }
1066 zero_user(page, from, 1 << blkbits);
1067 sdio->block_in_file++;
1068 from += 1 << blkbits;
1069 dio->result += 1 << blkbits;
1070 goto next_block;
1071 }
1072
1073 /*
1074 * If we're performing IO which has an alignment which
1075 * is finer than the underlying fs, go check to see if
1076 * we must zero out the start of this block.
1077 */
1078 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1079 dio_zero_block(dio, sdio, 0, map_bh);
1080
1081 /*
1082 * Work out, in this_chunk_blocks, how much disk we
1083 * can add to this page
1084 */
1085 this_chunk_blocks = sdio->blocks_available;
1086 u = (to - from) >> blkbits;
1087 if (this_chunk_blocks > u)
1088 this_chunk_blocks = u;
1089 u = sdio->final_block_in_request - sdio->block_in_file;
1090 if (this_chunk_blocks > u)
1091 this_chunk_blocks = u;
1092 this_chunk_bytes = this_chunk_blocks << blkbits;
1093 BUG_ON(this_chunk_bytes == 0);
1094
1095 if (this_chunk_blocks == sdio->blocks_available)
1096 sdio->boundary = buffer_boundary(map_bh);
1097 ret = submit_page_section(dio, sdio, page,
1098 from,
1099 this_chunk_bytes,
1100 sdio->next_block_for_io,
1101 map_bh);
1102 if (ret) {
1103 put_page(page);
1104 goto out;
1105 }
1106 sdio->next_block_for_io += this_chunk_blocks;
1107
1108 sdio->block_in_file += this_chunk_blocks;
1109 from += this_chunk_bytes;
1110 dio->result += this_chunk_bytes;
1111 sdio->blocks_available -= this_chunk_blocks;
1112 next_block:
1113 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1114 if (sdio->block_in_file == sdio->final_block_in_request)
1115 break;
1116 }
1117
1118 /* Drop the ref which was taken in get_user_pages() */
1119 put_page(page);
1120 }
1121 out:
1122 return ret;
1123 }
1124
1125 static inline int drop_refcount(struct dio *dio)
1126 {
1127 int ret2;
1128 unsigned long flags;
1129
1130 /*
1131 * Sync will always be dropping the final ref and completing the
1132 * operation. AIO can if it was a broken operation described above or
1133 * in fact if all the bios race to complete before we get here. In
1134 * that case dio_complete() translates the EIOCBQUEUED into the proper
1135 * return code that the caller will hand to ->complete().
1136 *
1137 * This is managed by the bio_lock instead of being an atomic_t so that
1138 * completion paths can drop their ref and use the remaining count to
1139 * decide to wake the submission path atomically.
1140 */
1141 spin_lock_irqsave(&dio->bio_lock, flags);
1142 ret2 = --dio->refcount;
1143 spin_unlock_irqrestore(&dio->bio_lock, flags);
1144 return ret2;
1145 }
1146
1147 /*
1148 * This is a library function for use by filesystem drivers.
1149 *
1150 * The locking rules are governed by the flags parameter:
1151 * - if the flags value contains DIO_LOCKING we use a fancy locking
1152 * scheme for dumb filesystems.
1153 * For writes this function is called under i_mutex and returns with
1154 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1155 * taken and dropped again before returning.
1156 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1157 * internal locking but rather rely on the filesystem to synchronize
1158 * direct I/O reads/writes versus each other and truncate.
1159 *
1160 * To help with locking against truncate we incremented the i_dio_count
1161 * counter before starting direct I/O, and decrement it once we are done.
1162 * Truncate can wait for it to reach zero to provide exclusion. It is
1163 * expected that filesystem provide exclusion between new direct I/O
1164 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1165 * but other filesystems need to take care of this on their own.
1166 *
1167 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1168 * is always inlined. Otherwise gcc is unable to split the structure into
1169 * individual fields and will generate much worse code. This is important
1170 * for the whole file.
1171 */
1172 static inline ssize_t
1173 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1174 struct block_device *bdev, struct iov_iter *iter,
1175 get_block_t get_block, dio_iodone_t end_io,
1176 dio_submit_t submit_io, int flags)
1177 {
1178 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1179 unsigned blkbits = i_blkbits;
1180 unsigned blocksize_mask = (1 << blkbits) - 1;
1181 ssize_t retval = -EINVAL;
1182 size_t count = iov_iter_count(iter);
1183 loff_t offset = iocb->ki_pos;
1184 loff_t end = offset + count;
1185 struct dio *dio;
1186 struct dio_submit sdio = { 0, };
1187 struct buffer_head map_bh = { 0, };
1188 struct blk_plug plug;
1189 unsigned long align = offset | iov_iter_alignment(iter);
1190
1191 /*
1192 * Avoid references to bdev if not absolutely needed to give
1193 * the early prefetch in the caller enough time.
1194 */
1195
1196 if (align & blocksize_mask) {
1197 if (bdev)
1198 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1199 blocksize_mask = (1 << blkbits) - 1;
1200 if (align & blocksize_mask)
1201 goto out;
1202 }
1203
1204 /* watch out for a 0 len io from a tricksy fs */
1205 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1206 return 0;
1207
1208 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1209 retval = -ENOMEM;
1210 if (!dio)
1211 goto out;
1212 /*
1213 * Believe it or not, zeroing out the page array caused a .5%
1214 * performance regression in a database benchmark. So, we take
1215 * care to only zero out what's needed.
1216 */
1217 memset(dio, 0, offsetof(struct dio, pages));
1218
1219 dio->flags = flags;
1220 if (dio->flags & DIO_LOCKING) {
1221 if (iov_iter_rw(iter) == READ) {
1222 struct address_space *mapping =
1223 iocb->ki_filp->f_mapping;
1224
1225 /* will be released by direct_io_worker */
1226 inode_lock(inode);
1227
1228 retval = filemap_write_and_wait_range(mapping, offset,
1229 end - 1);
1230 if (retval) {
1231 inode_unlock(inode);
1232 kmem_cache_free(dio_cache, dio);
1233 goto out;
1234 }
1235 }
1236 }
1237
1238 /* Once we sampled i_size check for reads beyond EOF */
1239 dio->i_size = i_size_read(inode);
1240 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1241 if (dio->flags & DIO_LOCKING)
1242 inode_unlock(inode);
1243 kmem_cache_free(dio_cache, dio);
1244 retval = 0;
1245 goto out;
1246 }
1247
1248 /*
1249 * For file extending writes updating i_size before data writeouts
1250 * complete can expose uninitialized blocks in dumb filesystems.
1251 * In that case we need to wait for I/O completion even if asked
1252 * for an asynchronous write.
1253 */
1254 if (is_sync_kiocb(iocb))
1255 dio->is_async = false;
1256 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1257 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1258 dio->is_async = false;
1259 else
1260 dio->is_async = true;
1261
1262 dio->inode = inode;
1263 if (iov_iter_rw(iter) == WRITE) {
1264 dio->op = REQ_OP_WRITE;
1265 dio->op_flags = REQ_SYNC | REQ_IDLE;
1266 if (iocb->ki_flags & IOCB_NOWAIT)
1267 dio->op_flags |= REQ_NOWAIT;
1268 } else {
1269 dio->op = REQ_OP_READ;
1270 }
1271
1272 /*
1273 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1274 * so that we can call ->fsync.
1275 */
1276 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1277 retval = 0;
1278 if (iocb->ki_flags & IOCB_DSYNC)
1279 retval = dio_set_defer_completion(dio);
1280 else if (!dio->inode->i_sb->s_dio_done_wq) {
1281 /*
1282 * In case of AIO write racing with buffered read we
1283 * need to defer completion. We can't decide this now,
1284 * however the workqueue needs to be initialized here.
1285 */
1286 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1287 }
1288 if (retval) {
1289 /*
1290 * We grab i_mutex only for reads so we don't have
1291 * to release it here
1292 */
1293 kmem_cache_free(dio_cache, dio);
1294 goto out;
1295 }
1296 }
1297
1298 /*
1299 * Will be decremented at I/O completion time.
1300 */
1301 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1302 inode_dio_begin(inode);
1303
1304 retval = 0;
1305 sdio.blkbits = blkbits;
1306 sdio.blkfactor = i_blkbits - blkbits;
1307 sdio.block_in_file = offset >> blkbits;
1308
1309 sdio.get_block = get_block;
1310 dio->end_io = end_io;
1311 sdio.submit_io = submit_io;
1312 sdio.final_block_in_bio = -1;
1313 sdio.next_block_for_io = -1;
1314
1315 dio->iocb = iocb;
1316
1317 spin_lock_init(&dio->bio_lock);
1318 dio->refcount = 1;
1319
1320 dio->should_dirty = (iter->type == ITER_IOVEC);
1321 sdio.iter = iter;
1322 sdio.final_block_in_request =
1323 (offset + iov_iter_count(iter)) >> blkbits;
1324
1325 /*
1326 * In case of non-aligned buffers, we may need 2 more
1327 * pages since we need to zero out first and last block.
1328 */
1329 if (unlikely(sdio.blkfactor))
1330 sdio.pages_in_io = 2;
1331
1332 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1333
1334 blk_start_plug(&plug);
1335
1336 retval = do_direct_IO(dio, &sdio, &map_bh);
1337 if (retval)
1338 dio_cleanup(dio, &sdio);
1339
1340 if (retval == -ENOTBLK) {
1341 /*
1342 * The remaining part of the request will be
1343 * be handled by buffered I/O when we return
1344 */
1345 retval = 0;
1346 }
1347 /*
1348 * There may be some unwritten disk at the end of a part-written
1349 * fs-block-sized block. Go zero that now.
1350 */
1351 dio_zero_block(dio, &sdio, 1, &map_bh);
1352
1353 if (sdio.cur_page) {
1354 ssize_t ret2;
1355
1356 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1357 if (retval == 0)
1358 retval = ret2;
1359 put_page(sdio.cur_page);
1360 sdio.cur_page = NULL;
1361 }
1362 if (sdio.bio)
1363 dio_bio_submit(dio, &sdio);
1364
1365 blk_finish_plug(&plug);
1366
1367 /*
1368 * It is possible that, we return short IO due to end of file.
1369 * In that case, we need to release all the pages we got hold on.
1370 */
1371 dio_cleanup(dio, &sdio);
1372
1373 /*
1374 * All block lookups have been performed. For READ requests
1375 * we can let i_mutex go now that its achieved its purpose
1376 * of protecting us from looking up uninitialized blocks.
1377 */
1378 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1379 inode_unlock(dio->inode);
1380
1381 /*
1382 * The only time we want to leave bios in flight is when a successful
1383 * partial aio read or full aio write have been setup. In that case
1384 * bio completion will call aio_complete. The only time it's safe to
1385 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1386 * This had *better* be the only place that raises -EIOCBQUEUED.
1387 */
1388 BUG_ON(retval == -EIOCBQUEUED);
1389 if (dio->is_async && retval == 0 && dio->result &&
1390 (iov_iter_rw(iter) == READ || dio->result == count))
1391 retval = -EIOCBQUEUED;
1392 else
1393 dio_await_completion(dio);
1394
1395 if (drop_refcount(dio) == 0) {
1396 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1397 } else
1398 BUG_ON(retval != -EIOCBQUEUED);
1399
1400 out:
1401 return retval;
1402 }
1403
1404 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1405 struct block_device *bdev, struct iov_iter *iter,
1406 get_block_t get_block,
1407 dio_iodone_t end_io, dio_submit_t submit_io,
1408 int flags)
1409 {
1410 /*
1411 * The block device state is needed in the end to finally
1412 * submit everything. Since it's likely to be cache cold
1413 * prefetch it here as first thing to hide some of the
1414 * latency.
1415 *
1416 * Attempt to prefetch the pieces we likely need later.
1417 */
1418 prefetch(&bdev->bd_disk->part_tbl);
1419 prefetch(bdev->bd_queue);
1420 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1421
1422 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1423 end_io, submit_io, flags);
1424 }
1425
1426 EXPORT_SYMBOL(__blockdev_direct_IO);
1427
1428 static __init int dio_init(void)
1429 {
1430 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1431 return 0;
1432 }
1433 module_init(dio_init)