]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/direct-io.c
fsnotify: Protect bail out path of fsnotify_add_mark_locked() properly
[mirror_ubuntu-bionic-kernel.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40
41 /*
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
44 */
45 #define DIO_PAGES 64
46
47 /*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
57 */
58
59 /* dio_state only used in the submission path */
60
61 struct dio_submit {
62 struct bio *bio; /* bio under assembly */
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
76 int reap_counter; /* rate limit reaping */
77 sector_t final_block_in_request;/* doesn't change */
78 int boundary; /* prev block is at a boundary */
79 get_block_t *get_block; /* block mapping function */
80 dio_submit_t *submit_io; /* IO submition function */
81
82 loff_t logical_offset_in_bio; /* current first logical block in bio */
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
96 loff_t cur_page_fs_offset; /* Offset in file */
97
98 struct iov_iter *iter;
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
105 size_t from, to;
106 };
107
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 int flags; /* doesn't change */
111 int op;
112 int op_flags;
113 blk_qc_t bio_cookie;
114 struct gendisk *bio_disk;
115 struct inode *inode;
116 loff_t i_size; /* i_size when submitted */
117 dio_iodone_t *end_io; /* IO completion function */
118
119 void *private; /* copy from map_bh.b_private */
120
121 /* BIO completion state */
122 spinlock_t bio_lock; /* protects BIO fields below */
123 int page_errors; /* errno from get_user_pages() */
124 int is_async; /* is IO async ? */
125 bool defer_completion; /* defer AIO completion to workqueue? */
126 bool should_dirty; /* if pages should be dirtied */
127 int io_error; /* IO error in completion path */
128 unsigned long refcount; /* direct_io_worker() and bios */
129 struct bio *bio_list; /* singly linked via bi_private */
130 struct task_struct *waiter; /* waiting task (NULL if none) */
131
132 /* AIO related stuff */
133 struct kiocb *iocb; /* kiocb */
134 ssize_t result; /* IO result */
135
136 /*
137 * pages[] (and any fields placed after it) are not zeroed out at
138 * allocation time. Don't add new fields after pages[] unless you
139 * wish that they not be zeroed.
140 */
141 union {
142 struct page *pages[DIO_PAGES]; /* page buffer */
143 struct work_struct complete_work;/* deferred AIO completion */
144 };
145 } ____cacheline_aligned_in_smp;
146
147 static struct kmem_cache *dio_cache __read_mostly;
148
149 /*
150 * How many pages are in the queue?
151 */
152 static inline unsigned dio_pages_present(struct dio_submit *sdio)
153 {
154 return sdio->tail - sdio->head;
155 }
156
157 /*
158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
159 */
160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
161 {
162 ssize_t ret;
163
164 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
165 &sdio->from);
166
167 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
168 struct page *page = ZERO_PAGE(0);
169 /*
170 * A memory fault, but the filesystem has some outstanding
171 * mapped blocks. We need to use those blocks up to avoid
172 * leaking stale data in the file.
173 */
174 if (dio->page_errors == 0)
175 dio->page_errors = ret;
176 get_page(page);
177 dio->pages[0] = page;
178 sdio->head = 0;
179 sdio->tail = 1;
180 sdio->from = 0;
181 sdio->to = PAGE_SIZE;
182 return 0;
183 }
184
185 if (ret >= 0) {
186 iov_iter_advance(sdio->iter, ret);
187 ret += sdio->from;
188 sdio->head = 0;
189 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
190 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
191 return 0;
192 }
193 return ret;
194 }
195
196 /*
197 * Get another userspace page. Returns an ERR_PTR on error. Pages are
198 * buffered inside the dio so that we can call get_user_pages() against a
199 * decent number of pages, less frequently. To provide nicer use of the
200 * L1 cache.
201 */
202 static inline struct page *dio_get_page(struct dio *dio,
203 struct dio_submit *sdio)
204 {
205 if (dio_pages_present(sdio) == 0) {
206 int ret;
207
208 ret = dio_refill_pages(dio, sdio);
209 if (ret)
210 return ERR_PTR(ret);
211 BUG_ON(dio_pages_present(sdio) == 0);
212 }
213 return dio->pages[sdio->head];
214 }
215
216 /**
217 * dio_complete() - called when all DIO BIO I/O has been completed
218 * @offset: the byte offset in the file of the completed operation
219 *
220 * This drops i_dio_count, lets interested parties know that a DIO operation
221 * has completed, and calculates the resulting return code for the operation.
222 *
223 * It lets the filesystem know if it registered an interest earlier via
224 * get_block. Pass the private field of the map buffer_head so that
225 * filesystems can use it to hold additional state between get_block calls and
226 * dio_complete.
227 */
228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
229 {
230 loff_t offset = dio->iocb->ki_pos;
231 ssize_t transferred = 0;
232 int err;
233
234 /*
235 * AIO submission can race with bio completion to get here while
236 * expecting to have the last io completed by bio completion.
237 * In that case -EIOCBQUEUED is in fact not an error we want
238 * to preserve through this call.
239 */
240 if (ret == -EIOCBQUEUED)
241 ret = 0;
242
243 if (dio->result) {
244 transferred = dio->result;
245
246 /* Check for short read case */
247 if ((dio->op == REQ_OP_READ) &&
248 ((offset + transferred) > dio->i_size))
249 transferred = dio->i_size - offset;
250 /* ignore EFAULT if some IO has been done */
251 if (unlikely(ret == -EFAULT) && transferred)
252 ret = 0;
253 }
254
255 if (ret == 0)
256 ret = dio->page_errors;
257 if (ret == 0)
258 ret = dio->io_error;
259 if (ret == 0)
260 ret = transferred;
261
262 /*
263 * Try again to invalidate clean pages which might have been cached by
264 * non-direct readahead, or faulted in by get_user_pages() if the source
265 * of the write was an mmap'ed region of the file we're writing. Either
266 * one is a pretty crazy thing to do, so we don't support it 100%. If
267 * this invalidation fails, tough, the write still worked...
268 */
269 if (ret > 0 && dio->op == REQ_OP_WRITE &&
270 dio->inode->i_mapping->nrpages) {
271 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
272 offset >> PAGE_SHIFT,
273 (offset + ret - 1) >> PAGE_SHIFT);
274 WARN_ON_ONCE(err);
275 }
276
277 if (dio->end_io) {
278
279 // XXX: ki_pos??
280 err = dio->end_io(dio->iocb, offset, ret, dio->private);
281 if (err)
282 ret = err;
283 }
284
285 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
286 inode_dio_end(dio->inode);
287
288 if (is_async) {
289 /*
290 * generic_write_sync expects ki_pos to have been updated
291 * already, but the submission path only does this for
292 * synchronous I/O.
293 */
294 dio->iocb->ki_pos += transferred;
295
296 if (dio->op == REQ_OP_WRITE)
297 ret = generic_write_sync(dio->iocb, transferred);
298 dio->iocb->ki_complete(dio->iocb, ret, 0);
299 }
300
301 kmem_cache_free(dio_cache, dio);
302 return ret;
303 }
304
305 static void dio_aio_complete_work(struct work_struct *work)
306 {
307 struct dio *dio = container_of(work, struct dio, complete_work);
308
309 dio_complete(dio, 0, true);
310 }
311
312 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
313
314 /*
315 * Asynchronous IO callback.
316 */
317 static void dio_bio_end_aio(struct bio *bio)
318 {
319 struct dio *dio = bio->bi_private;
320 unsigned long remaining;
321 unsigned long flags;
322 bool defer_completion = false;
323
324 /* cleanup the bio */
325 dio_bio_complete(dio, bio);
326
327 spin_lock_irqsave(&dio->bio_lock, flags);
328 remaining = --dio->refcount;
329 if (remaining == 1 && dio->waiter)
330 wake_up_process(dio->waiter);
331 spin_unlock_irqrestore(&dio->bio_lock, flags);
332
333 if (remaining == 0) {
334 /*
335 * Defer completion when defer_completion is set or
336 * when the inode has pages mapped and this is AIO write.
337 * We need to invalidate those pages because there is a
338 * chance they contain stale data in the case buffered IO
339 * went in between AIO submission and completion into the
340 * same region.
341 */
342 if (dio->result)
343 defer_completion = dio->defer_completion ||
344 (dio->op == REQ_OP_WRITE &&
345 dio->inode->i_mapping->nrpages);
346 if (defer_completion) {
347 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
348 queue_work(dio->inode->i_sb->s_dio_done_wq,
349 &dio->complete_work);
350 } else {
351 dio_complete(dio, 0, true);
352 }
353 }
354 }
355
356 /*
357 * The BIO completion handler simply queues the BIO up for the process-context
358 * handler.
359 *
360 * During I/O bi_private points at the dio. After I/O, bi_private is used to
361 * implement a singly-linked list of completed BIOs, at dio->bio_list.
362 */
363 static void dio_bio_end_io(struct bio *bio)
364 {
365 struct dio *dio = bio->bi_private;
366 unsigned long flags;
367
368 spin_lock_irqsave(&dio->bio_lock, flags);
369 bio->bi_private = dio->bio_list;
370 dio->bio_list = bio;
371 if (--dio->refcount == 1 && dio->waiter)
372 wake_up_process(dio->waiter);
373 spin_unlock_irqrestore(&dio->bio_lock, flags);
374 }
375
376 /**
377 * dio_end_io - handle the end io action for the given bio
378 * @bio: The direct io bio thats being completed
379 *
380 * This is meant to be called by any filesystem that uses their own dio_submit_t
381 * so that the DIO specific endio actions are dealt with after the filesystem
382 * has done it's completion work.
383 */
384 void dio_end_io(struct bio *bio)
385 {
386 struct dio *dio = bio->bi_private;
387
388 if (dio->is_async)
389 dio_bio_end_aio(bio);
390 else
391 dio_bio_end_io(bio);
392 }
393 EXPORT_SYMBOL_GPL(dio_end_io);
394
395 static inline void
396 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
397 struct block_device *bdev,
398 sector_t first_sector, int nr_vecs)
399 {
400 struct bio *bio;
401
402 /*
403 * bio_alloc() is guaranteed to return a bio when called with
404 * __GFP_RECLAIM and we request a valid number of vectors.
405 */
406 bio = bio_alloc(GFP_KERNEL, nr_vecs);
407
408 bio_set_dev(bio, bdev);
409 bio->bi_iter.bi_sector = first_sector;
410 bio_set_op_attrs(bio, dio->op, dio->op_flags);
411 if (dio->is_async)
412 bio->bi_end_io = dio_bio_end_aio;
413 else
414 bio->bi_end_io = dio_bio_end_io;
415
416 bio->bi_write_hint = dio->iocb->ki_hint;
417
418 sdio->bio = bio;
419 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
420 }
421
422 /*
423 * In the AIO read case we speculatively dirty the pages before starting IO.
424 * During IO completion, any of these pages which happen to have been written
425 * back will be redirtied by bio_check_pages_dirty().
426 *
427 * bios hold a dio reference between submit_bio and ->end_io.
428 */
429 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
430 {
431 struct bio *bio = sdio->bio;
432 unsigned long flags;
433
434 bio->bi_private = dio;
435
436 spin_lock_irqsave(&dio->bio_lock, flags);
437 dio->refcount++;
438 spin_unlock_irqrestore(&dio->bio_lock, flags);
439
440 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
441 bio_set_pages_dirty(bio);
442
443 dio->bio_disk = bio->bi_disk;
444
445 if (sdio->submit_io) {
446 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
447 dio->bio_cookie = BLK_QC_T_NONE;
448 } else
449 dio->bio_cookie = submit_bio(bio);
450
451 sdio->bio = NULL;
452 sdio->boundary = 0;
453 sdio->logical_offset_in_bio = 0;
454 }
455
456 /*
457 * Release any resources in case of a failure
458 */
459 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
460 {
461 while (sdio->head < sdio->tail)
462 put_page(dio->pages[sdio->head++]);
463 }
464
465 /*
466 * Wait for the next BIO to complete. Remove it and return it. NULL is
467 * returned once all BIOs have been completed. This must only be called once
468 * all bios have been issued so that dio->refcount can only decrease. This
469 * requires that that the caller hold a reference on the dio.
470 */
471 static struct bio *dio_await_one(struct dio *dio)
472 {
473 unsigned long flags;
474 struct bio *bio = NULL;
475
476 spin_lock_irqsave(&dio->bio_lock, flags);
477
478 /*
479 * Wait as long as the list is empty and there are bios in flight. bio
480 * completion drops the count, maybe adds to the list, and wakes while
481 * holding the bio_lock so we don't need set_current_state()'s barrier
482 * and can call it after testing our condition.
483 */
484 while (dio->refcount > 1 && dio->bio_list == NULL) {
485 __set_current_state(TASK_UNINTERRUPTIBLE);
486 dio->waiter = current;
487 spin_unlock_irqrestore(&dio->bio_lock, flags);
488 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
489 !blk_mq_poll(dio->bio_disk->queue, dio->bio_cookie))
490 io_schedule();
491 /* wake up sets us TASK_RUNNING */
492 spin_lock_irqsave(&dio->bio_lock, flags);
493 dio->waiter = NULL;
494 }
495 if (dio->bio_list) {
496 bio = dio->bio_list;
497 dio->bio_list = bio->bi_private;
498 }
499 spin_unlock_irqrestore(&dio->bio_lock, flags);
500 return bio;
501 }
502
503 /*
504 * Process one completed BIO. No locks are held.
505 */
506 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
507 {
508 struct bio_vec *bvec;
509 unsigned i;
510 blk_status_t err = bio->bi_status;
511
512 if (err) {
513 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
514 dio->io_error = -EAGAIN;
515 else
516 dio->io_error = -EIO;
517 }
518
519 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
520 bio_check_pages_dirty(bio); /* transfers ownership */
521 } else {
522 bio_for_each_segment_all(bvec, bio, i) {
523 struct page *page = bvec->bv_page;
524
525 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
526 dio->should_dirty)
527 set_page_dirty_lock(page);
528 put_page(page);
529 }
530 bio_put(bio);
531 }
532 return err;
533 }
534
535 /*
536 * Wait on and process all in-flight BIOs. This must only be called once
537 * all bios have been issued so that the refcount can only decrease.
538 * This just waits for all bios to make it through dio_bio_complete. IO
539 * errors are propagated through dio->io_error and should be propagated via
540 * dio_complete().
541 */
542 static void dio_await_completion(struct dio *dio)
543 {
544 struct bio *bio;
545 do {
546 bio = dio_await_one(dio);
547 if (bio)
548 dio_bio_complete(dio, bio);
549 } while (bio);
550 }
551
552 /*
553 * A really large O_DIRECT read or write can generate a lot of BIOs. So
554 * to keep the memory consumption sane we periodically reap any completed BIOs
555 * during the BIO generation phase.
556 *
557 * This also helps to limit the peak amount of pinned userspace memory.
558 */
559 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
560 {
561 int ret = 0;
562
563 if (sdio->reap_counter++ >= 64) {
564 while (dio->bio_list) {
565 unsigned long flags;
566 struct bio *bio;
567 int ret2;
568
569 spin_lock_irqsave(&dio->bio_lock, flags);
570 bio = dio->bio_list;
571 dio->bio_list = bio->bi_private;
572 spin_unlock_irqrestore(&dio->bio_lock, flags);
573 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
574 if (ret == 0)
575 ret = ret2;
576 }
577 sdio->reap_counter = 0;
578 }
579 return ret;
580 }
581
582 /*
583 * Create workqueue for deferred direct IO completions. We allocate the
584 * workqueue when it's first needed. This avoids creating workqueue for
585 * filesystems that don't need it and also allows us to create the workqueue
586 * late enough so the we can include s_id in the name of the workqueue.
587 */
588 int sb_init_dio_done_wq(struct super_block *sb)
589 {
590 struct workqueue_struct *old;
591 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
592 WQ_MEM_RECLAIM, 0,
593 sb->s_id);
594 if (!wq)
595 return -ENOMEM;
596 /*
597 * This has to be atomic as more DIOs can race to create the workqueue
598 */
599 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
600 /* Someone created workqueue before us? Free ours... */
601 if (old)
602 destroy_workqueue(wq);
603 return 0;
604 }
605
606 static int dio_set_defer_completion(struct dio *dio)
607 {
608 struct super_block *sb = dio->inode->i_sb;
609
610 if (dio->defer_completion)
611 return 0;
612 dio->defer_completion = true;
613 if (!sb->s_dio_done_wq)
614 return sb_init_dio_done_wq(sb);
615 return 0;
616 }
617
618 /*
619 * Call into the fs to map some more disk blocks. We record the current number
620 * of available blocks at sdio->blocks_available. These are in units of the
621 * fs blocksize, i_blocksize(inode).
622 *
623 * The fs is allowed to map lots of blocks at once. If it wants to do that,
624 * it uses the passed inode-relative block number as the file offset, as usual.
625 *
626 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
627 * has remaining to do. The fs should not map more than this number of blocks.
628 *
629 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
630 * indicate how much contiguous disk space has been made available at
631 * bh->b_blocknr.
632 *
633 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
634 * This isn't very efficient...
635 *
636 * In the case of filesystem holes: the fs may return an arbitrarily-large
637 * hole by returning an appropriate value in b_size and by clearing
638 * buffer_mapped(). However the direct-io code will only process holes one
639 * block at a time - it will repeatedly call get_block() as it walks the hole.
640 */
641 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
642 struct buffer_head *map_bh)
643 {
644 int ret;
645 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
646 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
647 unsigned long fs_count; /* Number of filesystem-sized blocks */
648 int create;
649 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
650
651 /*
652 * If there was a memory error and we've overwritten all the
653 * mapped blocks then we can now return that memory error
654 */
655 ret = dio->page_errors;
656 if (ret == 0) {
657 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
658 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
659 fs_endblk = (sdio->final_block_in_request - 1) >>
660 sdio->blkfactor;
661 fs_count = fs_endblk - fs_startblk + 1;
662
663 map_bh->b_state = 0;
664 map_bh->b_size = fs_count << i_blkbits;
665
666 /*
667 * For writes that could fill holes inside i_size on a
668 * DIO_SKIP_HOLES filesystem we forbid block creations: only
669 * overwrites are permitted. We will return early to the caller
670 * once we see an unmapped buffer head returned, and the caller
671 * will fall back to buffered I/O.
672 *
673 * Otherwise the decision is left to the get_blocks method,
674 * which may decide to handle it or also return an unmapped
675 * buffer head.
676 */
677 create = dio->op == REQ_OP_WRITE;
678 if (dio->flags & DIO_SKIP_HOLES) {
679 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
680 i_blkbits))
681 create = 0;
682 }
683
684 ret = (*sdio->get_block)(dio->inode, fs_startblk,
685 map_bh, create);
686
687 /* Store for completion */
688 dio->private = map_bh->b_private;
689
690 if (ret == 0 && buffer_defer_completion(map_bh))
691 ret = dio_set_defer_completion(dio);
692 }
693 return ret;
694 }
695
696 /*
697 * There is no bio. Make one now.
698 */
699 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
700 sector_t start_sector, struct buffer_head *map_bh)
701 {
702 sector_t sector;
703 int ret, nr_pages;
704
705 ret = dio_bio_reap(dio, sdio);
706 if (ret)
707 goto out;
708 sector = start_sector << (sdio->blkbits - 9);
709 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
710 BUG_ON(nr_pages <= 0);
711 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
712 sdio->boundary = 0;
713 out:
714 return ret;
715 }
716
717 /*
718 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
719 * that was successful then update final_block_in_bio and take a ref against
720 * the just-added page.
721 *
722 * Return zero on success. Non-zero means the caller needs to start a new BIO.
723 */
724 static inline int dio_bio_add_page(struct dio_submit *sdio)
725 {
726 int ret;
727
728 ret = bio_add_page(sdio->bio, sdio->cur_page,
729 sdio->cur_page_len, sdio->cur_page_offset);
730 if (ret == sdio->cur_page_len) {
731 /*
732 * Decrement count only, if we are done with this page
733 */
734 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
735 sdio->pages_in_io--;
736 get_page(sdio->cur_page);
737 sdio->final_block_in_bio = sdio->cur_page_block +
738 (sdio->cur_page_len >> sdio->blkbits);
739 ret = 0;
740 } else {
741 ret = 1;
742 }
743 return ret;
744 }
745
746 /*
747 * Put cur_page under IO. The section of cur_page which is described by
748 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
749 * starts on-disk at cur_page_block.
750 *
751 * We take a ref against the page here (on behalf of its presence in the bio).
752 *
753 * The caller of this function is responsible for removing cur_page from the
754 * dio, and for dropping the refcount which came from that presence.
755 */
756 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
757 struct buffer_head *map_bh)
758 {
759 int ret = 0;
760
761 if (sdio->bio) {
762 loff_t cur_offset = sdio->cur_page_fs_offset;
763 loff_t bio_next_offset = sdio->logical_offset_in_bio +
764 sdio->bio->bi_iter.bi_size;
765
766 /*
767 * See whether this new request is contiguous with the old.
768 *
769 * Btrfs cannot handle having logically non-contiguous requests
770 * submitted. For example if you have
771 *
772 * Logical: [0-4095][HOLE][8192-12287]
773 * Physical: [0-4095] [4096-8191]
774 *
775 * We cannot submit those pages together as one BIO. So if our
776 * current logical offset in the file does not equal what would
777 * be the next logical offset in the bio, submit the bio we
778 * have.
779 */
780 if (sdio->final_block_in_bio != sdio->cur_page_block ||
781 cur_offset != bio_next_offset)
782 dio_bio_submit(dio, sdio);
783 }
784
785 if (sdio->bio == NULL) {
786 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
787 if (ret)
788 goto out;
789 }
790
791 if (dio_bio_add_page(sdio) != 0) {
792 dio_bio_submit(dio, sdio);
793 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
794 if (ret == 0) {
795 ret = dio_bio_add_page(sdio);
796 BUG_ON(ret != 0);
797 }
798 }
799 out:
800 return ret;
801 }
802
803 /*
804 * An autonomous function to put a chunk of a page under deferred IO.
805 *
806 * The caller doesn't actually know (or care) whether this piece of page is in
807 * a BIO, or is under IO or whatever. We just take care of all possible
808 * situations here. The separation between the logic of do_direct_IO() and
809 * that of submit_page_section() is important for clarity. Please don't break.
810 *
811 * The chunk of page starts on-disk at blocknr.
812 *
813 * We perform deferred IO, by recording the last-submitted page inside our
814 * private part of the dio structure. If possible, we just expand the IO
815 * across that page here.
816 *
817 * If that doesn't work out then we put the old page into the bio and add this
818 * page to the dio instead.
819 */
820 static inline int
821 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
822 unsigned offset, unsigned len, sector_t blocknr,
823 struct buffer_head *map_bh)
824 {
825 int ret = 0;
826
827 if (dio->op == REQ_OP_WRITE) {
828 /*
829 * Read accounting is performed in submit_bio()
830 */
831 task_io_account_write(len);
832 }
833
834 /*
835 * Can we just grow the current page's presence in the dio?
836 */
837 if (sdio->cur_page == page &&
838 sdio->cur_page_offset + sdio->cur_page_len == offset &&
839 sdio->cur_page_block +
840 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
841 sdio->cur_page_len += len;
842 goto out;
843 }
844
845 /*
846 * If there's a deferred page already there then send it.
847 */
848 if (sdio->cur_page) {
849 ret = dio_send_cur_page(dio, sdio, map_bh);
850 put_page(sdio->cur_page);
851 sdio->cur_page = NULL;
852 if (ret)
853 return ret;
854 }
855
856 get_page(page); /* It is in dio */
857 sdio->cur_page = page;
858 sdio->cur_page_offset = offset;
859 sdio->cur_page_len = len;
860 sdio->cur_page_block = blocknr;
861 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
862 out:
863 /*
864 * If sdio->boundary then we want to schedule the IO now to
865 * avoid metadata seeks.
866 */
867 if (sdio->boundary) {
868 ret = dio_send_cur_page(dio, sdio, map_bh);
869 if (sdio->bio)
870 dio_bio_submit(dio, sdio);
871 put_page(sdio->cur_page);
872 sdio->cur_page = NULL;
873 }
874 return ret;
875 }
876
877 /*
878 * If we are not writing the entire block and get_block() allocated
879 * the block for us, we need to fill-in the unused portion of the
880 * block with zeros. This happens only if user-buffer, fileoffset or
881 * io length is not filesystem block-size multiple.
882 *
883 * `end' is zero if we're doing the start of the IO, 1 at the end of the
884 * IO.
885 */
886 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
887 int end, struct buffer_head *map_bh)
888 {
889 unsigned dio_blocks_per_fs_block;
890 unsigned this_chunk_blocks; /* In dio_blocks */
891 unsigned this_chunk_bytes;
892 struct page *page;
893
894 sdio->start_zero_done = 1;
895 if (!sdio->blkfactor || !buffer_new(map_bh))
896 return;
897
898 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
899 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
900
901 if (!this_chunk_blocks)
902 return;
903
904 /*
905 * We need to zero out part of an fs block. It is either at the
906 * beginning or the end of the fs block.
907 */
908 if (end)
909 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
910
911 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
912
913 page = ZERO_PAGE(0);
914 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
915 sdio->next_block_for_io, map_bh))
916 return;
917
918 sdio->next_block_for_io += this_chunk_blocks;
919 }
920
921 /*
922 * Walk the user pages, and the file, mapping blocks to disk and generating
923 * a sequence of (page,offset,len,block) mappings. These mappings are injected
924 * into submit_page_section(), which takes care of the next stage of submission
925 *
926 * Direct IO against a blockdev is different from a file. Because we can
927 * happily perform page-sized but 512-byte aligned IOs. It is important that
928 * blockdev IO be able to have fine alignment and large sizes.
929 *
930 * So what we do is to permit the ->get_block function to populate bh.b_size
931 * with the size of IO which is permitted at this offset and this i_blkbits.
932 *
933 * For best results, the blockdev should be set up with 512-byte i_blkbits and
934 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
935 * fine alignment but still allows this function to work in PAGE_SIZE units.
936 */
937 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
938 struct buffer_head *map_bh)
939 {
940 const unsigned blkbits = sdio->blkbits;
941 const unsigned i_blkbits = blkbits + sdio->blkfactor;
942 int ret = 0;
943
944 while (sdio->block_in_file < sdio->final_block_in_request) {
945 struct page *page;
946 size_t from, to;
947
948 page = dio_get_page(dio, sdio);
949 if (IS_ERR(page)) {
950 ret = PTR_ERR(page);
951 goto out;
952 }
953 from = sdio->head ? 0 : sdio->from;
954 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
955 sdio->head++;
956
957 while (from < to) {
958 unsigned this_chunk_bytes; /* # of bytes mapped */
959 unsigned this_chunk_blocks; /* # of blocks */
960 unsigned u;
961
962 if (sdio->blocks_available == 0) {
963 /*
964 * Need to go and map some more disk
965 */
966 unsigned long blkmask;
967 unsigned long dio_remainder;
968
969 ret = get_more_blocks(dio, sdio, map_bh);
970 if (ret) {
971 put_page(page);
972 goto out;
973 }
974 if (!buffer_mapped(map_bh))
975 goto do_holes;
976
977 sdio->blocks_available =
978 map_bh->b_size >> blkbits;
979 sdio->next_block_for_io =
980 map_bh->b_blocknr << sdio->blkfactor;
981 if (buffer_new(map_bh)) {
982 clean_bdev_aliases(
983 map_bh->b_bdev,
984 map_bh->b_blocknr,
985 map_bh->b_size >> i_blkbits);
986 }
987
988 if (!sdio->blkfactor)
989 goto do_holes;
990
991 blkmask = (1 << sdio->blkfactor) - 1;
992 dio_remainder = (sdio->block_in_file & blkmask);
993
994 /*
995 * If we are at the start of IO and that IO
996 * starts partway into a fs-block,
997 * dio_remainder will be non-zero. If the IO
998 * is a read then we can simply advance the IO
999 * cursor to the first block which is to be
1000 * read. But if the IO is a write and the
1001 * block was newly allocated we cannot do that;
1002 * the start of the fs block must be zeroed out
1003 * on-disk
1004 */
1005 if (!buffer_new(map_bh))
1006 sdio->next_block_for_io += dio_remainder;
1007 sdio->blocks_available -= dio_remainder;
1008 }
1009 do_holes:
1010 /* Handle holes */
1011 if (!buffer_mapped(map_bh)) {
1012 loff_t i_size_aligned;
1013
1014 /* AKPM: eargh, -ENOTBLK is a hack */
1015 if (dio->op == REQ_OP_WRITE) {
1016 put_page(page);
1017 return -ENOTBLK;
1018 }
1019
1020 /*
1021 * Be sure to account for a partial block as the
1022 * last block in the file
1023 */
1024 i_size_aligned = ALIGN(i_size_read(dio->inode),
1025 1 << blkbits);
1026 if (sdio->block_in_file >=
1027 i_size_aligned >> blkbits) {
1028 /* We hit eof */
1029 put_page(page);
1030 goto out;
1031 }
1032 zero_user(page, from, 1 << blkbits);
1033 sdio->block_in_file++;
1034 from += 1 << blkbits;
1035 dio->result += 1 << blkbits;
1036 goto next_block;
1037 }
1038
1039 /*
1040 * If we're performing IO which has an alignment which
1041 * is finer than the underlying fs, go check to see if
1042 * we must zero out the start of this block.
1043 */
1044 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1045 dio_zero_block(dio, sdio, 0, map_bh);
1046
1047 /*
1048 * Work out, in this_chunk_blocks, how much disk we
1049 * can add to this page
1050 */
1051 this_chunk_blocks = sdio->blocks_available;
1052 u = (to - from) >> blkbits;
1053 if (this_chunk_blocks > u)
1054 this_chunk_blocks = u;
1055 u = sdio->final_block_in_request - sdio->block_in_file;
1056 if (this_chunk_blocks > u)
1057 this_chunk_blocks = u;
1058 this_chunk_bytes = this_chunk_blocks << blkbits;
1059 BUG_ON(this_chunk_bytes == 0);
1060
1061 if (this_chunk_blocks == sdio->blocks_available)
1062 sdio->boundary = buffer_boundary(map_bh);
1063 ret = submit_page_section(dio, sdio, page,
1064 from,
1065 this_chunk_bytes,
1066 sdio->next_block_for_io,
1067 map_bh);
1068 if (ret) {
1069 put_page(page);
1070 goto out;
1071 }
1072 sdio->next_block_for_io += this_chunk_blocks;
1073
1074 sdio->block_in_file += this_chunk_blocks;
1075 from += this_chunk_bytes;
1076 dio->result += this_chunk_bytes;
1077 sdio->blocks_available -= this_chunk_blocks;
1078 next_block:
1079 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1080 if (sdio->block_in_file == sdio->final_block_in_request)
1081 break;
1082 }
1083
1084 /* Drop the ref which was taken in get_user_pages() */
1085 put_page(page);
1086 }
1087 out:
1088 return ret;
1089 }
1090
1091 static inline int drop_refcount(struct dio *dio)
1092 {
1093 int ret2;
1094 unsigned long flags;
1095
1096 /*
1097 * Sync will always be dropping the final ref and completing the
1098 * operation. AIO can if it was a broken operation described above or
1099 * in fact if all the bios race to complete before we get here. In
1100 * that case dio_complete() translates the EIOCBQUEUED into the proper
1101 * return code that the caller will hand to ->complete().
1102 *
1103 * This is managed by the bio_lock instead of being an atomic_t so that
1104 * completion paths can drop their ref and use the remaining count to
1105 * decide to wake the submission path atomically.
1106 */
1107 spin_lock_irqsave(&dio->bio_lock, flags);
1108 ret2 = --dio->refcount;
1109 spin_unlock_irqrestore(&dio->bio_lock, flags);
1110 return ret2;
1111 }
1112
1113 /*
1114 * This is a library function for use by filesystem drivers.
1115 *
1116 * The locking rules are governed by the flags parameter:
1117 * - if the flags value contains DIO_LOCKING we use a fancy locking
1118 * scheme for dumb filesystems.
1119 * For writes this function is called under i_mutex and returns with
1120 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1121 * taken and dropped again before returning.
1122 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1123 * internal locking but rather rely on the filesystem to synchronize
1124 * direct I/O reads/writes versus each other and truncate.
1125 *
1126 * To help with locking against truncate we incremented the i_dio_count
1127 * counter before starting direct I/O, and decrement it once we are done.
1128 * Truncate can wait for it to reach zero to provide exclusion. It is
1129 * expected that filesystem provide exclusion between new direct I/O
1130 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1131 * but other filesystems need to take care of this on their own.
1132 *
1133 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1134 * is always inlined. Otherwise gcc is unable to split the structure into
1135 * individual fields and will generate much worse code. This is important
1136 * for the whole file.
1137 */
1138 static inline ssize_t
1139 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1140 struct block_device *bdev, struct iov_iter *iter,
1141 get_block_t get_block, dio_iodone_t end_io,
1142 dio_submit_t submit_io, int flags)
1143 {
1144 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1145 unsigned blkbits = i_blkbits;
1146 unsigned blocksize_mask = (1 << blkbits) - 1;
1147 ssize_t retval = -EINVAL;
1148 size_t count = iov_iter_count(iter);
1149 loff_t offset = iocb->ki_pos;
1150 loff_t end = offset + count;
1151 struct dio *dio;
1152 struct dio_submit sdio = { 0, };
1153 struct buffer_head map_bh = { 0, };
1154 struct blk_plug plug;
1155 unsigned long align = offset | iov_iter_alignment(iter);
1156
1157 /*
1158 * Avoid references to bdev if not absolutely needed to give
1159 * the early prefetch in the caller enough time.
1160 */
1161
1162 if (align & blocksize_mask) {
1163 if (bdev)
1164 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1165 blocksize_mask = (1 << blkbits) - 1;
1166 if (align & blocksize_mask)
1167 goto out;
1168 }
1169
1170 /* watch out for a 0 len io from a tricksy fs */
1171 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1172 return 0;
1173
1174 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1175 retval = -ENOMEM;
1176 if (!dio)
1177 goto out;
1178 /*
1179 * Believe it or not, zeroing out the page array caused a .5%
1180 * performance regression in a database benchmark. So, we take
1181 * care to only zero out what's needed.
1182 */
1183 memset(dio, 0, offsetof(struct dio, pages));
1184
1185 dio->flags = flags;
1186 if (dio->flags & DIO_LOCKING) {
1187 if (iov_iter_rw(iter) == READ) {
1188 struct address_space *mapping =
1189 iocb->ki_filp->f_mapping;
1190
1191 /* will be released by direct_io_worker */
1192 inode_lock(inode);
1193
1194 retval = filemap_write_and_wait_range(mapping, offset,
1195 end - 1);
1196 if (retval) {
1197 inode_unlock(inode);
1198 kmem_cache_free(dio_cache, dio);
1199 goto out;
1200 }
1201 }
1202 }
1203
1204 /* Once we sampled i_size check for reads beyond EOF */
1205 dio->i_size = i_size_read(inode);
1206 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1207 if (dio->flags & DIO_LOCKING)
1208 inode_unlock(inode);
1209 kmem_cache_free(dio_cache, dio);
1210 retval = 0;
1211 goto out;
1212 }
1213
1214 /*
1215 * For file extending writes updating i_size before data writeouts
1216 * complete can expose uninitialized blocks in dumb filesystems.
1217 * In that case we need to wait for I/O completion even if asked
1218 * for an asynchronous write.
1219 */
1220 if (is_sync_kiocb(iocb))
1221 dio->is_async = false;
1222 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1223 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1224 dio->is_async = false;
1225 else
1226 dio->is_async = true;
1227
1228 dio->inode = inode;
1229 if (iov_iter_rw(iter) == WRITE) {
1230 dio->op = REQ_OP_WRITE;
1231 dio->op_flags = REQ_SYNC | REQ_IDLE;
1232 if (iocb->ki_flags & IOCB_NOWAIT)
1233 dio->op_flags |= REQ_NOWAIT;
1234 } else {
1235 dio->op = REQ_OP_READ;
1236 }
1237
1238 /*
1239 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1240 * so that we can call ->fsync.
1241 */
1242 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1243 retval = 0;
1244 if ((iocb->ki_filp->f_flags & O_DSYNC) ||
1245 IS_SYNC(iocb->ki_filp->f_mapping->host))
1246 retval = dio_set_defer_completion(dio);
1247 else if (!dio->inode->i_sb->s_dio_done_wq) {
1248 /*
1249 * In case of AIO write racing with buffered read we
1250 * need to defer completion. We can't decide this now,
1251 * however the workqueue needs to be initialized here.
1252 */
1253 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1254 }
1255 if (retval) {
1256 /*
1257 * We grab i_mutex only for reads so we don't have
1258 * to release it here
1259 */
1260 kmem_cache_free(dio_cache, dio);
1261 goto out;
1262 }
1263 }
1264
1265 /*
1266 * Will be decremented at I/O completion time.
1267 */
1268 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1269 inode_dio_begin(inode);
1270
1271 retval = 0;
1272 sdio.blkbits = blkbits;
1273 sdio.blkfactor = i_blkbits - blkbits;
1274 sdio.block_in_file = offset >> blkbits;
1275
1276 sdio.get_block = get_block;
1277 dio->end_io = end_io;
1278 sdio.submit_io = submit_io;
1279 sdio.final_block_in_bio = -1;
1280 sdio.next_block_for_io = -1;
1281
1282 dio->iocb = iocb;
1283
1284 spin_lock_init(&dio->bio_lock);
1285 dio->refcount = 1;
1286
1287 dio->should_dirty = (iter->type == ITER_IOVEC);
1288 sdio.iter = iter;
1289 sdio.final_block_in_request =
1290 (offset + iov_iter_count(iter)) >> blkbits;
1291
1292 /*
1293 * In case of non-aligned buffers, we may need 2 more
1294 * pages since we need to zero out first and last block.
1295 */
1296 if (unlikely(sdio.blkfactor))
1297 sdio.pages_in_io = 2;
1298
1299 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1300
1301 blk_start_plug(&plug);
1302
1303 retval = do_direct_IO(dio, &sdio, &map_bh);
1304 if (retval)
1305 dio_cleanup(dio, &sdio);
1306
1307 if (retval == -ENOTBLK) {
1308 /*
1309 * The remaining part of the request will be
1310 * be handled by buffered I/O when we return
1311 */
1312 retval = 0;
1313 }
1314 /*
1315 * There may be some unwritten disk at the end of a part-written
1316 * fs-block-sized block. Go zero that now.
1317 */
1318 dio_zero_block(dio, &sdio, 1, &map_bh);
1319
1320 if (sdio.cur_page) {
1321 ssize_t ret2;
1322
1323 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1324 if (retval == 0)
1325 retval = ret2;
1326 put_page(sdio.cur_page);
1327 sdio.cur_page = NULL;
1328 }
1329 if (sdio.bio)
1330 dio_bio_submit(dio, &sdio);
1331
1332 blk_finish_plug(&plug);
1333
1334 /*
1335 * It is possible that, we return short IO due to end of file.
1336 * In that case, we need to release all the pages we got hold on.
1337 */
1338 dio_cleanup(dio, &sdio);
1339
1340 /*
1341 * All block lookups have been performed. For READ requests
1342 * we can let i_mutex go now that its achieved its purpose
1343 * of protecting us from looking up uninitialized blocks.
1344 */
1345 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1346 inode_unlock(dio->inode);
1347
1348 /*
1349 * The only time we want to leave bios in flight is when a successful
1350 * partial aio read or full aio write have been setup. In that case
1351 * bio completion will call aio_complete. The only time it's safe to
1352 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1353 * This had *better* be the only place that raises -EIOCBQUEUED.
1354 */
1355 BUG_ON(retval == -EIOCBQUEUED);
1356 if (dio->is_async && retval == 0 && dio->result &&
1357 (iov_iter_rw(iter) == READ || dio->result == count))
1358 retval = -EIOCBQUEUED;
1359 else
1360 dio_await_completion(dio);
1361
1362 if (drop_refcount(dio) == 0) {
1363 retval = dio_complete(dio, retval, false);
1364 } else
1365 BUG_ON(retval != -EIOCBQUEUED);
1366
1367 out:
1368 return retval;
1369 }
1370
1371 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1372 struct block_device *bdev, struct iov_iter *iter,
1373 get_block_t get_block,
1374 dio_iodone_t end_io, dio_submit_t submit_io,
1375 int flags)
1376 {
1377 /*
1378 * The block device state is needed in the end to finally
1379 * submit everything. Since it's likely to be cache cold
1380 * prefetch it here as first thing to hide some of the
1381 * latency.
1382 *
1383 * Attempt to prefetch the pieces we likely need later.
1384 */
1385 prefetch(&bdev->bd_disk->part_tbl);
1386 prefetch(bdev->bd_queue);
1387 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1388
1389 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1390 end_io, submit_io, flags);
1391 }
1392
1393 EXPORT_SYMBOL(__blockdev_direct_IO);
1394
1395 static __init int dio_init(void)
1396 {
1397 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1398 return 0;
1399 }
1400 module_init(dio_init)