]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/direct-io.c
direct-io: fix a wrong comment
[mirror_ubuntu-hirsute-kernel.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39
40 /*
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure in the slab cache
43 */
44 #define DIO_PAGES 64
45
46 /*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 */
57
58 /* dio_state only used in the submission path */
59
60 struct dio_submit {
61 struct bio *bio; /* bio under assembly */
62 unsigned blkbits; /* doesn't change */
63 unsigned blkfactor; /* When we're using an alignment which
64 is finer than the filesystem's soft
65 blocksize, this specifies how much
66 finer. blkfactor=2 means 1/4-block
67 alignment. Does not change */
68 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
69 been performed at the start of a
70 write */
71 int pages_in_io; /* approximate total IO pages */
72 size_t size; /* total request size (doesn't change)*/
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
76 sector_t final_block_in_request;/* doesn't change */
77 unsigned first_block_in_page; /* doesn't change, Used only once */
78 int boundary; /* prev block is at a boundary */
79 int reap_counter; /* rate limit reaping */
80 get_block_t *get_block; /* block mapping function */
81 dio_submit_t *submit_io; /* IO submition function */
82
83 loff_t logical_offset_in_bio; /* current first logical block in bio */
84 sector_t final_block_in_bio; /* current final block in bio + 1 */
85 sector_t next_block_for_io; /* next block to be put under IO,
86 in dio_blocks units */
87
88 /*
89 * Deferred addition of a page to the dio. These variables are
90 * private to dio_send_cur_page(), submit_page_section() and
91 * dio_bio_add_page().
92 */
93 struct page *cur_page; /* The page */
94 unsigned cur_page_offset; /* Offset into it, in bytes */
95 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
96 sector_t cur_page_block; /* Where it starts */
97 loff_t cur_page_fs_offset; /* Offset in file */
98
99 /*
100 * Page fetching state. These variables belong to dio_refill_pages().
101 */
102 int curr_page; /* changes */
103 int total_pages; /* doesn't change */
104 unsigned long curr_user_address;/* changes */
105
106 /*
107 * Page queue. These variables belong to dio_refill_pages() and
108 * dio_get_page().
109 */
110 unsigned head; /* next page to process */
111 unsigned tail; /* last valid page + 1 */
112 };
113
114 /* dio_state communicated between submission path and end_io */
115 struct dio {
116 int flags; /* doesn't change */
117 struct inode *inode;
118 int rw;
119 loff_t i_size; /* i_size when submitted */
120 dio_iodone_t *end_io; /* IO completion function */
121 struct buffer_head map_bh; /* last get_block() result */
122
123
124 /* BIO completion state */
125 spinlock_t bio_lock; /* protects BIO fields below */
126 unsigned long refcount; /* direct_io_worker() and bios */
127 struct bio *bio_list; /* singly linked via bi_private */
128 struct task_struct *waiter; /* waiting task (NULL if none) */
129
130 /* AIO related stuff */
131 struct kiocb *iocb; /* kiocb */
132 int is_async; /* is IO async ? */
133 int io_error; /* IO error in completion path */
134 ssize_t result; /* IO result */
135
136 int page_errors; /* errno from get_user_pages() */
137
138 /*
139 * pages[] (and any fields placed after it) are not zeroed out at
140 * allocation time. Don't add new fields after pages[] unless you
141 * wish that they not be zeroed.
142 */
143 struct page *pages[DIO_PAGES]; /* page buffer */
144 };
145
146 static void __inode_dio_wait(struct inode *inode)
147 {
148 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
149 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
150
151 do {
152 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
153 if (atomic_read(&inode->i_dio_count))
154 schedule();
155 } while (atomic_read(&inode->i_dio_count));
156 finish_wait(wq, &q.wait);
157 }
158
159 /**
160 * inode_dio_wait - wait for outstanding DIO requests to finish
161 * @inode: inode to wait for
162 *
163 * Waits for all pending direct I/O requests to finish so that we can
164 * proceed with a truncate or equivalent operation.
165 *
166 * Must be called under a lock that serializes taking new references
167 * to i_dio_count, usually by inode->i_mutex.
168 */
169 void inode_dio_wait(struct inode *inode)
170 {
171 if (atomic_read(&inode->i_dio_count))
172 __inode_dio_wait(inode);
173 }
174 EXPORT_SYMBOL_GPL(inode_dio_wait);
175
176 /*
177 * inode_dio_done - signal finish of a direct I/O requests
178 * @inode: inode the direct I/O happens on
179 *
180 * This is called once we've finished processing a direct I/O request,
181 * and is used to wake up callers waiting for direct I/O to be quiesced.
182 */
183 void inode_dio_done(struct inode *inode)
184 {
185 if (atomic_dec_and_test(&inode->i_dio_count))
186 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
187 }
188 EXPORT_SYMBOL_GPL(inode_dio_done);
189
190 /*
191 * How many pages are in the queue?
192 */
193 static inline unsigned dio_pages_present(struct dio_submit *sdio)
194 {
195 return sdio->tail - sdio->head;
196 }
197
198 /*
199 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
200 */
201 static int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
202 {
203 int ret;
204 int nr_pages;
205
206 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
207 ret = get_user_pages_fast(
208 sdio->curr_user_address, /* Where from? */
209 nr_pages, /* How many pages? */
210 dio->rw == READ, /* Write to memory? */
211 &dio->pages[0]); /* Put results here */
212
213 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
214 struct page *page = ZERO_PAGE(0);
215 /*
216 * A memory fault, but the filesystem has some outstanding
217 * mapped blocks. We need to use those blocks up to avoid
218 * leaking stale data in the file.
219 */
220 if (dio->page_errors == 0)
221 dio->page_errors = ret;
222 page_cache_get(page);
223 dio->pages[0] = page;
224 sdio->head = 0;
225 sdio->tail = 1;
226 ret = 0;
227 goto out;
228 }
229
230 if (ret >= 0) {
231 sdio->curr_user_address += ret * PAGE_SIZE;
232 sdio->curr_page += ret;
233 sdio->head = 0;
234 sdio->tail = ret;
235 ret = 0;
236 }
237 out:
238 return ret;
239 }
240
241 /*
242 * Get another userspace page. Returns an ERR_PTR on error. Pages are
243 * buffered inside the dio so that we can call get_user_pages() against a
244 * decent number of pages, less frequently. To provide nicer use of the
245 * L1 cache.
246 */
247 static struct page *dio_get_page(struct dio *dio, struct dio_submit *sdio)
248 {
249 if (dio_pages_present(sdio) == 0) {
250 int ret;
251
252 ret = dio_refill_pages(dio, sdio);
253 if (ret)
254 return ERR_PTR(ret);
255 BUG_ON(dio_pages_present(sdio) == 0);
256 }
257 return dio->pages[sdio->head++];
258 }
259
260 /**
261 * dio_complete() - called when all DIO BIO I/O has been completed
262 * @offset: the byte offset in the file of the completed operation
263 *
264 * This releases locks as dictated by the locking type, lets interested parties
265 * know that a DIO operation has completed, and calculates the resulting return
266 * code for the operation.
267 *
268 * It lets the filesystem know if it registered an interest earlier via
269 * get_block. Pass the private field of the map buffer_head so that
270 * filesystems can use it to hold additional state between get_block calls and
271 * dio_complete.
272 */
273 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
274 {
275 ssize_t transferred = 0;
276
277 /*
278 * AIO submission can race with bio completion to get here while
279 * expecting to have the last io completed by bio completion.
280 * In that case -EIOCBQUEUED is in fact not an error we want
281 * to preserve through this call.
282 */
283 if (ret == -EIOCBQUEUED)
284 ret = 0;
285
286 if (dio->result) {
287 transferred = dio->result;
288
289 /* Check for short read case */
290 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
291 transferred = dio->i_size - offset;
292 }
293
294 if (ret == 0)
295 ret = dio->page_errors;
296 if (ret == 0)
297 ret = dio->io_error;
298 if (ret == 0)
299 ret = transferred;
300
301 if (dio->end_io && dio->result) {
302 dio->end_io(dio->iocb, offset, transferred,
303 dio->map_bh.b_private, ret, is_async);
304 } else {
305 if (is_async)
306 aio_complete(dio->iocb, ret, 0);
307 inode_dio_done(dio->inode);
308 }
309
310 return ret;
311 }
312
313 static int dio_bio_complete(struct dio *dio, struct bio *bio);
314 /*
315 * Asynchronous IO callback.
316 */
317 static void dio_bio_end_aio(struct bio *bio, int error)
318 {
319 struct dio *dio = bio->bi_private;
320 unsigned long remaining;
321 unsigned long flags;
322
323 /* cleanup the bio */
324 dio_bio_complete(dio, bio);
325
326 spin_lock_irqsave(&dio->bio_lock, flags);
327 remaining = --dio->refcount;
328 if (remaining == 1 && dio->waiter)
329 wake_up_process(dio->waiter);
330 spin_unlock_irqrestore(&dio->bio_lock, flags);
331
332 if (remaining == 0) {
333 dio_complete(dio, dio->iocb->ki_pos, 0, true);
334 kfree(dio);
335 }
336 }
337
338 /*
339 * The BIO completion handler simply queues the BIO up for the process-context
340 * handler.
341 *
342 * During I/O bi_private points at the dio. After I/O, bi_private is used to
343 * implement a singly-linked list of completed BIOs, at dio->bio_list.
344 */
345 static void dio_bio_end_io(struct bio *bio, int error)
346 {
347 struct dio *dio = bio->bi_private;
348 unsigned long flags;
349
350 spin_lock_irqsave(&dio->bio_lock, flags);
351 bio->bi_private = dio->bio_list;
352 dio->bio_list = bio;
353 if (--dio->refcount == 1 && dio->waiter)
354 wake_up_process(dio->waiter);
355 spin_unlock_irqrestore(&dio->bio_lock, flags);
356 }
357
358 /**
359 * dio_end_io - handle the end io action for the given bio
360 * @bio: The direct io bio thats being completed
361 * @error: Error if there was one
362 *
363 * This is meant to be called by any filesystem that uses their own dio_submit_t
364 * so that the DIO specific endio actions are dealt with after the filesystem
365 * has done it's completion work.
366 */
367 void dio_end_io(struct bio *bio, int error)
368 {
369 struct dio *dio = bio->bi_private;
370
371 if (dio->is_async)
372 dio_bio_end_aio(bio, error);
373 else
374 dio_bio_end_io(bio, error);
375 }
376 EXPORT_SYMBOL_GPL(dio_end_io);
377
378 static void
379 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
380 struct block_device *bdev,
381 sector_t first_sector, int nr_vecs)
382 {
383 struct bio *bio;
384
385 /*
386 * bio_alloc() is guaranteed to return a bio when called with
387 * __GFP_WAIT and we request a valid number of vectors.
388 */
389 bio = bio_alloc(GFP_KERNEL, nr_vecs);
390
391 bio->bi_bdev = bdev;
392 bio->bi_sector = first_sector;
393 if (dio->is_async)
394 bio->bi_end_io = dio_bio_end_aio;
395 else
396 bio->bi_end_io = dio_bio_end_io;
397
398 sdio->bio = bio;
399 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
400 }
401
402 /*
403 * In the AIO read case we speculatively dirty the pages before starting IO.
404 * During IO completion, any of these pages which happen to have been written
405 * back will be redirtied by bio_check_pages_dirty().
406 *
407 * bios hold a dio reference between submit_bio and ->end_io.
408 */
409 static void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
410 {
411 struct bio *bio = sdio->bio;
412 unsigned long flags;
413
414 bio->bi_private = dio;
415
416 spin_lock_irqsave(&dio->bio_lock, flags);
417 dio->refcount++;
418 spin_unlock_irqrestore(&dio->bio_lock, flags);
419
420 if (dio->is_async && dio->rw == READ)
421 bio_set_pages_dirty(bio);
422
423 if (sdio->submit_io)
424 sdio->submit_io(dio->rw, bio, dio->inode,
425 sdio->logical_offset_in_bio);
426 else
427 submit_bio(dio->rw, bio);
428
429 sdio->bio = NULL;
430 sdio->boundary = 0;
431 sdio->logical_offset_in_bio = 0;
432 }
433
434 /*
435 * Release any resources in case of a failure
436 */
437 static void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
438 {
439 while (dio_pages_present(sdio))
440 page_cache_release(dio_get_page(dio, sdio));
441 }
442
443 /*
444 * Wait for the next BIO to complete. Remove it and return it. NULL is
445 * returned once all BIOs have been completed. This must only be called once
446 * all bios have been issued so that dio->refcount can only decrease. This
447 * requires that that the caller hold a reference on the dio.
448 */
449 static struct bio *dio_await_one(struct dio *dio)
450 {
451 unsigned long flags;
452 struct bio *bio = NULL;
453
454 spin_lock_irqsave(&dio->bio_lock, flags);
455
456 /*
457 * Wait as long as the list is empty and there are bios in flight. bio
458 * completion drops the count, maybe adds to the list, and wakes while
459 * holding the bio_lock so we don't need set_current_state()'s barrier
460 * and can call it after testing our condition.
461 */
462 while (dio->refcount > 1 && dio->bio_list == NULL) {
463 __set_current_state(TASK_UNINTERRUPTIBLE);
464 dio->waiter = current;
465 spin_unlock_irqrestore(&dio->bio_lock, flags);
466 io_schedule();
467 /* wake up sets us TASK_RUNNING */
468 spin_lock_irqsave(&dio->bio_lock, flags);
469 dio->waiter = NULL;
470 }
471 if (dio->bio_list) {
472 bio = dio->bio_list;
473 dio->bio_list = bio->bi_private;
474 }
475 spin_unlock_irqrestore(&dio->bio_lock, flags);
476 return bio;
477 }
478
479 /*
480 * Process one completed BIO. No locks are held.
481 */
482 static int dio_bio_complete(struct dio *dio, struct bio *bio)
483 {
484 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
485 struct bio_vec *bvec = bio->bi_io_vec;
486 int page_no;
487
488 if (!uptodate)
489 dio->io_error = -EIO;
490
491 if (dio->is_async && dio->rw == READ) {
492 bio_check_pages_dirty(bio); /* transfers ownership */
493 } else {
494 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
495 struct page *page = bvec[page_no].bv_page;
496
497 if (dio->rw == READ && !PageCompound(page))
498 set_page_dirty_lock(page);
499 page_cache_release(page);
500 }
501 bio_put(bio);
502 }
503 return uptodate ? 0 : -EIO;
504 }
505
506 /*
507 * Wait on and process all in-flight BIOs. This must only be called once
508 * all bios have been issued so that the refcount can only decrease.
509 * This just waits for all bios to make it through dio_bio_complete. IO
510 * errors are propagated through dio->io_error and should be propagated via
511 * dio_complete().
512 */
513 static void dio_await_completion(struct dio *dio)
514 {
515 struct bio *bio;
516 do {
517 bio = dio_await_one(dio);
518 if (bio)
519 dio_bio_complete(dio, bio);
520 } while (bio);
521 }
522
523 /*
524 * A really large O_DIRECT read or write can generate a lot of BIOs. So
525 * to keep the memory consumption sane we periodically reap any completed BIOs
526 * during the BIO generation phase.
527 *
528 * This also helps to limit the peak amount of pinned userspace memory.
529 */
530 static int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
531 {
532 int ret = 0;
533
534 if (sdio->reap_counter++ >= 64) {
535 while (dio->bio_list) {
536 unsigned long flags;
537 struct bio *bio;
538 int ret2;
539
540 spin_lock_irqsave(&dio->bio_lock, flags);
541 bio = dio->bio_list;
542 dio->bio_list = bio->bi_private;
543 spin_unlock_irqrestore(&dio->bio_lock, flags);
544 ret2 = dio_bio_complete(dio, bio);
545 if (ret == 0)
546 ret = ret2;
547 }
548 sdio->reap_counter = 0;
549 }
550 return ret;
551 }
552
553 /*
554 * Call into the fs to map some more disk blocks. We record the current number
555 * of available blocks at sdio->blocks_available. These are in units of the
556 * fs blocksize, (1 << inode->i_blkbits).
557 *
558 * The fs is allowed to map lots of blocks at once. If it wants to do that,
559 * it uses the passed inode-relative block number as the file offset, as usual.
560 *
561 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
562 * has remaining to do. The fs should not map more than this number of blocks.
563 *
564 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
565 * indicate how much contiguous disk space has been made available at
566 * bh->b_blocknr.
567 *
568 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
569 * This isn't very efficient...
570 *
571 * In the case of filesystem holes: the fs may return an arbitrarily-large
572 * hole by returning an appropriate value in b_size and by clearing
573 * buffer_mapped(). However the direct-io code will only process holes one
574 * block at a time - it will repeatedly call get_block() as it walks the hole.
575 */
576 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio)
577 {
578 int ret;
579 struct buffer_head *map_bh = &dio->map_bh;
580 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
581 unsigned long fs_count; /* Number of filesystem-sized blocks */
582 unsigned long dio_count;/* Number of dio_block-sized blocks */
583 unsigned long blkmask;
584 int create;
585
586 /*
587 * If there was a memory error and we've overwritten all the
588 * mapped blocks then we can now return that memory error
589 */
590 ret = dio->page_errors;
591 if (ret == 0) {
592 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
593 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
594 dio_count = sdio->final_block_in_request - sdio->block_in_file;
595 fs_count = dio_count >> sdio->blkfactor;
596 blkmask = (1 << sdio->blkfactor) - 1;
597 if (dio_count & blkmask)
598 fs_count++;
599
600 map_bh->b_state = 0;
601 map_bh->b_size = fs_count << dio->inode->i_blkbits;
602
603 /*
604 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
605 * forbid block creations: only overwrites are permitted.
606 * We will return early to the caller once we see an
607 * unmapped buffer head returned, and the caller will fall
608 * back to buffered I/O.
609 *
610 * Otherwise the decision is left to the get_blocks method,
611 * which may decide to handle it or also return an unmapped
612 * buffer head.
613 */
614 create = dio->rw & WRITE;
615 if (dio->flags & DIO_SKIP_HOLES) {
616 if (sdio->block_in_file < (i_size_read(dio->inode) >>
617 sdio->blkbits))
618 create = 0;
619 }
620
621 ret = (*sdio->get_block)(dio->inode, fs_startblk,
622 map_bh, create);
623 }
624 return ret;
625 }
626
627 /*
628 * There is no bio. Make one now.
629 */
630 static int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
631 sector_t start_sector)
632 {
633 sector_t sector;
634 int ret, nr_pages;
635
636 ret = dio_bio_reap(dio, sdio);
637 if (ret)
638 goto out;
639 sector = start_sector << (sdio->blkbits - 9);
640 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
641 nr_pages = min(nr_pages, BIO_MAX_PAGES);
642 BUG_ON(nr_pages <= 0);
643 dio_bio_alloc(dio, sdio, dio->map_bh.b_bdev, sector, nr_pages);
644 sdio->boundary = 0;
645 out:
646 return ret;
647 }
648
649 /*
650 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
651 * that was successful then update final_block_in_bio and take a ref against
652 * the just-added page.
653 *
654 * Return zero on success. Non-zero means the caller needs to start a new BIO.
655 */
656 static int dio_bio_add_page(struct dio_submit *sdio)
657 {
658 int ret;
659
660 ret = bio_add_page(sdio->bio, sdio->cur_page,
661 sdio->cur_page_len, sdio->cur_page_offset);
662 if (ret == sdio->cur_page_len) {
663 /*
664 * Decrement count only, if we are done with this page
665 */
666 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
667 sdio->pages_in_io--;
668 page_cache_get(sdio->cur_page);
669 sdio->final_block_in_bio = sdio->cur_page_block +
670 (sdio->cur_page_len >> sdio->blkbits);
671 ret = 0;
672 } else {
673 ret = 1;
674 }
675 return ret;
676 }
677
678 /*
679 * Put cur_page under IO. The section of cur_page which is described by
680 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
681 * starts on-disk at cur_page_block.
682 *
683 * We take a ref against the page here (on behalf of its presence in the bio).
684 *
685 * The caller of this function is responsible for removing cur_page from the
686 * dio, and for dropping the refcount which came from that presence.
687 */
688 static int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio)
689 {
690 int ret = 0;
691
692 if (sdio->bio) {
693 loff_t cur_offset = sdio->cur_page_fs_offset;
694 loff_t bio_next_offset = sdio->logical_offset_in_bio +
695 sdio->bio->bi_size;
696
697 /*
698 * See whether this new request is contiguous with the old.
699 *
700 * Btrfs cannot handle having logically non-contiguous requests
701 * submitted. For example if you have
702 *
703 * Logical: [0-4095][HOLE][8192-12287]
704 * Physical: [0-4095] [4096-8191]
705 *
706 * We cannot submit those pages together as one BIO. So if our
707 * current logical offset in the file does not equal what would
708 * be the next logical offset in the bio, submit the bio we
709 * have.
710 */
711 if (sdio->final_block_in_bio != sdio->cur_page_block ||
712 cur_offset != bio_next_offset)
713 dio_bio_submit(dio, sdio);
714 /*
715 * Submit now if the underlying fs is about to perform a
716 * metadata read
717 */
718 else if (sdio->boundary)
719 dio_bio_submit(dio, sdio);
720 }
721
722 if (sdio->bio == NULL) {
723 ret = dio_new_bio(dio, sdio, sdio->cur_page_block);
724 if (ret)
725 goto out;
726 }
727
728 if (dio_bio_add_page(sdio) != 0) {
729 dio_bio_submit(dio, sdio);
730 ret = dio_new_bio(dio, sdio, sdio->cur_page_block);
731 if (ret == 0) {
732 ret = dio_bio_add_page(sdio);
733 BUG_ON(ret != 0);
734 }
735 }
736 out:
737 return ret;
738 }
739
740 /*
741 * An autonomous function to put a chunk of a page under deferred IO.
742 *
743 * The caller doesn't actually know (or care) whether this piece of page is in
744 * a BIO, or is under IO or whatever. We just take care of all possible
745 * situations here. The separation between the logic of do_direct_IO() and
746 * that of submit_page_section() is important for clarity. Please don't break.
747 *
748 * The chunk of page starts on-disk at blocknr.
749 *
750 * We perform deferred IO, by recording the last-submitted page inside our
751 * private part of the dio structure. If possible, we just expand the IO
752 * across that page here.
753 *
754 * If that doesn't work out then we put the old page into the bio and add this
755 * page to the dio instead.
756 */
757 static int
758 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
759 unsigned offset, unsigned len, sector_t blocknr)
760 {
761 int ret = 0;
762
763 if (dio->rw & WRITE) {
764 /*
765 * Read accounting is performed in submit_bio()
766 */
767 task_io_account_write(len);
768 }
769
770 /*
771 * Can we just grow the current page's presence in the dio?
772 */
773 if (sdio->cur_page == page &&
774 sdio->cur_page_offset + sdio->cur_page_len == offset &&
775 sdio->cur_page_block +
776 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
777 sdio->cur_page_len += len;
778
779 /*
780 * If sdio->boundary then we want to schedule the IO now to
781 * avoid metadata seeks.
782 */
783 if (sdio->boundary) {
784 ret = dio_send_cur_page(dio, sdio);
785 page_cache_release(sdio->cur_page);
786 sdio->cur_page = NULL;
787 }
788 goto out;
789 }
790
791 /*
792 * If there's a deferred page already there then send it.
793 */
794 if (sdio->cur_page) {
795 ret = dio_send_cur_page(dio, sdio);
796 page_cache_release(sdio->cur_page);
797 sdio->cur_page = NULL;
798 if (ret)
799 goto out;
800 }
801
802 page_cache_get(page); /* It is in dio */
803 sdio->cur_page = page;
804 sdio->cur_page_offset = offset;
805 sdio->cur_page_len = len;
806 sdio->cur_page_block = blocknr;
807 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
808 out:
809 return ret;
810 }
811
812 /*
813 * Clean any dirty buffers in the blockdev mapping which alias newly-created
814 * file blocks. Only called for S_ISREG files - blockdevs do not set
815 * buffer_new
816 */
817 static void clean_blockdev_aliases(struct dio *dio)
818 {
819 unsigned i;
820 unsigned nblocks;
821
822 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
823
824 for (i = 0; i < nblocks; i++) {
825 unmap_underlying_metadata(dio->map_bh.b_bdev,
826 dio->map_bh.b_blocknr + i);
827 }
828 }
829
830 /*
831 * If we are not writing the entire block and get_block() allocated
832 * the block for us, we need to fill-in the unused portion of the
833 * block with zeros. This happens only if user-buffer, fileoffset or
834 * io length is not filesystem block-size multiple.
835 *
836 * `end' is zero if we're doing the start of the IO, 1 at the end of the
837 * IO.
838 */
839 static void dio_zero_block(struct dio *dio, struct dio_submit *sdio, int end)
840 {
841 unsigned dio_blocks_per_fs_block;
842 unsigned this_chunk_blocks; /* In dio_blocks */
843 unsigned this_chunk_bytes;
844 struct page *page;
845
846 sdio->start_zero_done = 1;
847 if (!sdio->blkfactor || !buffer_new(&dio->map_bh))
848 return;
849
850 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
851 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
852
853 if (!this_chunk_blocks)
854 return;
855
856 /*
857 * We need to zero out part of an fs block. It is either at the
858 * beginning or the end of the fs block.
859 */
860 if (end)
861 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
862
863 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
864
865 page = ZERO_PAGE(0);
866 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
867 sdio->next_block_for_io))
868 return;
869
870 sdio->next_block_for_io += this_chunk_blocks;
871 }
872
873 /*
874 * Walk the user pages, and the file, mapping blocks to disk and generating
875 * a sequence of (page,offset,len,block) mappings. These mappings are injected
876 * into submit_page_section(), which takes care of the next stage of submission
877 *
878 * Direct IO against a blockdev is different from a file. Because we can
879 * happily perform page-sized but 512-byte aligned IOs. It is important that
880 * blockdev IO be able to have fine alignment and large sizes.
881 *
882 * So what we do is to permit the ->get_block function to populate bh.b_size
883 * with the size of IO which is permitted at this offset and this i_blkbits.
884 *
885 * For best results, the blockdev should be set up with 512-byte i_blkbits and
886 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
887 * fine alignment but still allows this function to work in PAGE_SIZE units.
888 */
889 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio)
890 {
891 const unsigned blkbits = sdio->blkbits;
892 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
893 struct page *page;
894 unsigned block_in_page;
895 struct buffer_head *map_bh = &dio->map_bh;
896 int ret = 0;
897
898 /* The I/O can start at any block offset within the first page */
899 block_in_page = sdio->first_block_in_page;
900
901 while (sdio->block_in_file < sdio->final_block_in_request) {
902 page = dio_get_page(dio, sdio);
903 if (IS_ERR(page)) {
904 ret = PTR_ERR(page);
905 goto out;
906 }
907
908 while (block_in_page < blocks_per_page) {
909 unsigned offset_in_page = block_in_page << blkbits;
910 unsigned this_chunk_bytes; /* # of bytes mapped */
911 unsigned this_chunk_blocks; /* # of blocks */
912 unsigned u;
913
914 if (sdio->blocks_available == 0) {
915 /*
916 * Need to go and map some more disk
917 */
918 unsigned long blkmask;
919 unsigned long dio_remainder;
920
921 ret = get_more_blocks(dio, sdio);
922 if (ret) {
923 page_cache_release(page);
924 goto out;
925 }
926 if (!buffer_mapped(map_bh))
927 goto do_holes;
928
929 sdio->blocks_available =
930 map_bh->b_size >> sdio->blkbits;
931 sdio->next_block_for_io =
932 map_bh->b_blocknr << sdio->blkfactor;
933 if (buffer_new(map_bh))
934 clean_blockdev_aliases(dio);
935
936 if (!sdio->blkfactor)
937 goto do_holes;
938
939 blkmask = (1 << sdio->blkfactor) - 1;
940 dio_remainder = (sdio->block_in_file & blkmask);
941
942 /*
943 * If we are at the start of IO and that IO
944 * starts partway into a fs-block,
945 * dio_remainder will be non-zero. If the IO
946 * is a read then we can simply advance the IO
947 * cursor to the first block which is to be
948 * read. But if the IO is a write and the
949 * block was newly allocated we cannot do that;
950 * the start of the fs block must be zeroed out
951 * on-disk
952 */
953 if (!buffer_new(map_bh))
954 sdio->next_block_for_io += dio_remainder;
955 sdio->blocks_available -= dio_remainder;
956 }
957 do_holes:
958 /* Handle holes */
959 if (!buffer_mapped(map_bh)) {
960 loff_t i_size_aligned;
961
962 /* AKPM: eargh, -ENOTBLK is a hack */
963 if (dio->rw & WRITE) {
964 page_cache_release(page);
965 return -ENOTBLK;
966 }
967
968 /*
969 * Be sure to account for a partial block as the
970 * last block in the file
971 */
972 i_size_aligned = ALIGN(i_size_read(dio->inode),
973 1 << blkbits);
974 if (sdio->block_in_file >=
975 i_size_aligned >> blkbits) {
976 /* We hit eof */
977 page_cache_release(page);
978 goto out;
979 }
980 zero_user(page, block_in_page << blkbits,
981 1 << blkbits);
982 sdio->block_in_file++;
983 block_in_page++;
984 goto next_block;
985 }
986
987 /*
988 * If we're performing IO which has an alignment which
989 * is finer than the underlying fs, go check to see if
990 * we must zero out the start of this block.
991 */
992 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
993 dio_zero_block(dio, sdio, 0);
994
995 /*
996 * Work out, in this_chunk_blocks, how much disk we
997 * can add to this page
998 */
999 this_chunk_blocks = sdio->blocks_available;
1000 u = (PAGE_SIZE - offset_in_page) >> blkbits;
1001 if (this_chunk_blocks > u)
1002 this_chunk_blocks = u;
1003 u = sdio->final_block_in_request - sdio->block_in_file;
1004 if (this_chunk_blocks > u)
1005 this_chunk_blocks = u;
1006 this_chunk_bytes = this_chunk_blocks << blkbits;
1007 BUG_ON(this_chunk_bytes == 0);
1008
1009 sdio->boundary = buffer_boundary(map_bh);
1010 ret = submit_page_section(dio, sdio, page,
1011 offset_in_page,
1012 this_chunk_bytes,
1013 sdio->next_block_for_io);
1014 if (ret) {
1015 page_cache_release(page);
1016 goto out;
1017 }
1018 sdio->next_block_for_io += this_chunk_blocks;
1019
1020 sdio->block_in_file += this_chunk_blocks;
1021 block_in_page += this_chunk_blocks;
1022 sdio->blocks_available -= this_chunk_blocks;
1023 next_block:
1024 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1025 if (sdio->block_in_file == sdio->final_block_in_request)
1026 break;
1027 }
1028
1029 /* Drop the ref which was taken in get_user_pages() */
1030 page_cache_release(page);
1031 block_in_page = 0;
1032 }
1033 out:
1034 return ret;
1035 }
1036
1037 static ssize_t
1038 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
1039 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1040 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
1041 dio_submit_t submit_io, struct dio *dio, struct dio_submit *sdio)
1042 {
1043 unsigned long user_addr;
1044 unsigned long flags;
1045 int seg;
1046 ssize_t ret = 0;
1047 ssize_t ret2;
1048 size_t bytes;
1049
1050 dio->inode = inode;
1051 dio->rw = rw;
1052 sdio->blkbits = blkbits;
1053 sdio->blkfactor = inode->i_blkbits - blkbits;
1054 sdio->block_in_file = offset >> blkbits;
1055
1056 sdio->get_block = get_block;
1057 dio->end_io = end_io;
1058 sdio->submit_io = submit_io;
1059 sdio->final_block_in_bio = -1;
1060 sdio->next_block_for_io = -1;
1061
1062 dio->iocb = iocb;
1063 dio->i_size = i_size_read(inode);
1064
1065 spin_lock_init(&dio->bio_lock);
1066 dio->refcount = 1;
1067
1068 /*
1069 * In case of non-aligned buffers, we may need 2 more
1070 * pages since we need to zero out first and last block.
1071 */
1072 if (unlikely(sdio->blkfactor))
1073 sdio->pages_in_io = 2;
1074
1075 for (seg = 0; seg < nr_segs; seg++) {
1076 user_addr = (unsigned long)iov[seg].iov_base;
1077 sdio->pages_in_io +=
1078 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1079 - user_addr/PAGE_SIZE);
1080 }
1081
1082 for (seg = 0; seg < nr_segs; seg++) {
1083 user_addr = (unsigned long)iov[seg].iov_base;
1084 sdio->size += bytes = iov[seg].iov_len;
1085
1086 /* Index into the first page of the first block */
1087 sdio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1088 sdio->final_block_in_request = sdio->block_in_file +
1089 (bytes >> blkbits);
1090 /* Page fetching state */
1091 sdio->head = 0;
1092 sdio->tail = 0;
1093 sdio->curr_page = 0;
1094
1095 sdio->total_pages = 0;
1096 if (user_addr & (PAGE_SIZE-1)) {
1097 sdio->total_pages++;
1098 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1099 }
1100 sdio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1101 sdio->curr_user_address = user_addr;
1102
1103 ret = do_direct_IO(dio, sdio);
1104
1105 dio->result += iov[seg].iov_len -
1106 ((sdio->final_block_in_request - sdio->block_in_file) <<
1107 blkbits);
1108
1109 if (ret) {
1110 dio_cleanup(dio, sdio);
1111 break;
1112 }
1113 } /* end iovec loop */
1114
1115 if (ret == -ENOTBLK) {
1116 /*
1117 * The remaining part of the request will be
1118 * be handled by buffered I/O when we return
1119 */
1120 ret = 0;
1121 }
1122 /*
1123 * There may be some unwritten disk at the end of a part-written
1124 * fs-block-sized block. Go zero that now.
1125 */
1126 dio_zero_block(dio, sdio, 1);
1127
1128 if (sdio->cur_page) {
1129 ret2 = dio_send_cur_page(dio, sdio);
1130 if (ret == 0)
1131 ret = ret2;
1132 page_cache_release(sdio->cur_page);
1133 sdio->cur_page = NULL;
1134 }
1135 if (sdio->bio)
1136 dio_bio_submit(dio, sdio);
1137
1138 /*
1139 * It is possible that, we return short IO due to end of file.
1140 * In that case, we need to release all the pages we got hold on.
1141 */
1142 dio_cleanup(dio, sdio);
1143
1144 /*
1145 * All block lookups have been performed. For READ requests
1146 * we can let i_mutex go now that its achieved its purpose
1147 * of protecting us from looking up uninitialized blocks.
1148 */
1149 if (rw == READ && (dio->flags & DIO_LOCKING))
1150 mutex_unlock(&dio->inode->i_mutex);
1151
1152 /*
1153 * The only time we want to leave bios in flight is when a successful
1154 * partial aio read or full aio write have been setup. In that case
1155 * bio completion will call aio_complete. The only time it's safe to
1156 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1157 * This had *better* be the only place that raises -EIOCBQUEUED.
1158 */
1159 BUG_ON(ret == -EIOCBQUEUED);
1160 if (dio->is_async && ret == 0 && dio->result &&
1161 ((rw & READ) || (dio->result == sdio->size)))
1162 ret = -EIOCBQUEUED;
1163
1164 if (ret != -EIOCBQUEUED)
1165 dio_await_completion(dio);
1166
1167 /*
1168 * Sync will always be dropping the final ref and completing the
1169 * operation. AIO can if it was a broken operation described above or
1170 * in fact if all the bios race to complete before we get here. In
1171 * that case dio_complete() translates the EIOCBQUEUED into the proper
1172 * return code that the caller will hand to aio_complete().
1173 *
1174 * This is managed by the bio_lock instead of being an atomic_t so that
1175 * completion paths can drop their ref and use the remaining count to
1176 * decide to wake the submission path atomically.
1177 */
1178 spin_lock_irqsave(&dio->bio_lock, flags);
1179 ret2 = --dio->refcount;
1180 spin_unlock_irqrestore(&dio->bio_lock, flags);
1181
1182 if (ret2 == 0) {
1183 ret = dio_complete(dio, offset, ret, false);
1184 kfree(dio);
1185 } else
1186 BUG_ON(ret != -EIOCBQUEUED);
1187
1188 return ret;
1189 }
1190
1191 /*
1192 * This is a library function for use by filesystem drivers.
1193 *
1194 * The locking rules are governed by the flags parameter:
1195 * - if the flags value contains DIO_LOCKING we use a fancy locking
1196 * scheme for dumb filesystems.
1197 * For writes this function is called under i_mutex and returns with
1198 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1199 * taken and dropped again before returning.
1200 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1201 * internal locking but rather rely on the filesystem to synchronize
1202 * direct I/O reads/writes versus each other and truncate.
1203 *
1204 * To help with locking against truncate we incremented the i_dio_count
1205 * counter before starting direct I/O, and decrement it once we are done.
1206 * Truncate can wait for it to reach zero to provide exclusion. It is
1207 * expected that filesystem provide exclusion between new direct I/O
1208 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1209 * but other filesystems need to take care of this on their own.
1210 */
1211 ssize_t
1212 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1213 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1214 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1215 dio_submit_t submit_io, int flags)
1216 {
1217 int seg;
1218 size_t size;
1219 unsigned long addr;
1220 unsigned blkbits = inode->i_blkbits;
1221 unsigned bdev_blkbits = 0;
1222 unsigned blocksize_mask = (1 << blkbits) - 1;
1223 ssize_t retval = -EINVAL;
1224 loff_t end = offset;
1225 struct dio *dio;
1226 struct dio_submit sdio = { 0, };
1227
1228 if (rw & WRITE)
1229 rw = WRITE_ODIRECT;
1230
1231 if (bdev)
1232 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1233
1234 if (offset & blocksize_mask) {
1235 if (bdev)
1236 blkbits = bdev_blkbits;
1237 blocksize_mask = (1 << blkbits) - 1;
1238 if (offset & blocksize_mask)
1239 goto out;
1240 }
1241
1242 /* Check the memory alignment. Blocks cannot straddle pages */
1243 for (seg = 0; seg < nr_segs; seg++) {
1244 addr = (unsigned long)iov[seg].iov_base;
1245 size = iov[seg].iov_len;
1246 end += size;
1247 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1248 if (bdev)
1249 blkbits = bdev_blkbits;
1250 blocksize_mask = (1 << blkbits) - 1;
1251 if ((addr & blocksize_mask) || (size & blocksize_mask))
1252 goto out;
1253 }
1254 }
1255
1256 /* watch out for a 0 len io from a tricksy fs */
1257 if (rw == READ && end == offset)
1258 return 0;
1259
1260 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1261 retval = -ENOMEM;
1262 if (!dio)
1263 goto out;
1264 /*
1265 * Believe it or not, zeroing out the page array caused a .5%
1266 * performance regression in a database benchmark. So, we take
1267 * care to only zero out what's needed.
1268 */
1269 memset(dio, 0, offsetof(struct dio, pages));
1270
1271 dio->flags = flags;
1272 if (dio->flags & DIO_LOCKING) {
1273 if (rw == READ) {
1274 struct address_space *mapping =
1275 iocb->ki_filp->f_mapping;
1276
1277 /* will be released by direct_io_worker */
1278 mutex_lock(&inode->i_mutex);
1279
1280 retval = filemap_write_and_wait_range(mapping, offset,
1281 end - 1);
1282 if (retval) {
1283 mutex_unlock(&inode->i_mutex);
1284 kfree(dio);
1285 goto out;
1286 }
1287 }
1288 }
1289
1290 /*
1291 * Will be decremented at I/O completion time.
1292 */
1293 atomic_inc(&inode->i_dio_count);
1294
1295 /*
1296 * For file extending writes updating i_size before data
1297 * writeouts complete can expose uninitialized blocks. So
1298 * even for AIO, we need to wait for i/o to complete before
1299 * returning in this case.
1300 */
1301 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1302 (end > i_size_read(inode)));
1303
1304 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1305 nr_segs, blkbits, get_block, end_io,
1306 submit_io, dio, &sdio);
1307
1308 out:
1309 return retval;
1310 }
1311 EXPORT_SYMBOL(__blockdev_direct_IO);