]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/direct-io.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-zesty-kernel.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40
41 /*
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
44 */
45 #define DIO_PAGES 64
46
47 /*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
57 */
58
59 /* dio_state only used in the submission path */
60
61 struct dio_submit {
62 struct bio *bio; /* bio under assembly */
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
76 int reap_counter; /* rate limit reaping */
77 sector_t final_block_in_request;/* doesn't change */
78 int boundary; /* prev block is at a boundary */
79 get_block_t *get_block; /* block mapping function */
80 dio_submit_t *submit_io; /* IO submition function */
81
82 loff_t logical_offset_in_bio; /* current first logical block in bio */
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
96 loff_t cur_page_fs_offset; /* Offset in file */
97
98 struct iov_iter *iter;
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
105 size_t from, to;
106 };
107
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 int flags; /* doesn't change */
111 int rw;
112 blk_qc_t bio_cookie;
113 struct block_device *bio_bdev;
114 struct inode *inode;
115 loff_t i_size; /* i_size when submitted */
116 dio_iodone_t *end_io; /* IO completion function */
117
118 void *private; /* copy from map_bh.b_private */
119
120 /* BIO completion state */
121 spinlock_t bio_lock; /* protects BIO fields below */
122 int page_errors; /* errno from get_user_pages() */
123 int is_async; /* is IO async ? */
124 bool defer_completion; /* defer AIO completion to workqueue? */
125 bool should_dirty; /* if pages should be dirtied */
126 int io_error; /* IO error in completion path */
127 unsigned long refcount; /* direct_io_worker() and bios */
128 struct bio *bio_list; /* singly linked via bi_private */
129 struct task_struct *waiter; /* waiting task (NULL if none) */
130
131 /* AIO related stuff */
132 struct kiocb *iocb; /* kiocb */
133 ssize_t result; /* IO result */
134
135 /*
136 * pages[] (and any fields placed after it) are not zeroed out at
137 * allocation time. Don't add new fields after pages[] unless you
138 * wish that they not be zeroed.
139 */
140 union {
141 struct page *pages[DIO_PAGES]; /* page buffer */
142 struct work_struct complete_work;/* deferred AIO completion */
143 };
144 } ____cacheline_aligned_in_smp;
145
146 static struct kmem_cache *dio_cache __read_mostly;
147
148 /*
149 * How many pages are in the queue?
150 */
151 static inline unsigned dio_pages_present(struct dio_submit *sdio)
152 {
153 return sdio->tail - sdio->head;
154 }
155
156 /*
157 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
158 */
159 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
160 {
161 ssize_t ret;
162
163 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
164 &sdio->from);
165
166 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
167 struct page *page = ZERO_PAGE(0);
168 /*
169 * A memory fault, but the filesystem has some outstanding
170 * mapped blocks. We need to use those blocks up to avoid
171 * leaking stale data in the file.
172 */
173 if (dio->page_errors == 0)
174 dio->page_errors = ret;
175 get_page(page);
176 dio->pages[0] = page;
177 sdio->head = 0;
178 sdio->tail = 1;
179 sdio->from = 0;
180 sdio->to = PAGE_SIZE;
181 return 0;
182 }
183
184 if (ret >= 0) {
185 iov_iter_advance(sdio->iter, ret);
186 ret += sdio->from;
187 sdio->head = 0;
188 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
189 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
190 return 0;
191 }
192 return ret;
193 }
194
195 /*
196 * Get another userspace page. Returns an ERR_PTR on error. Pages are
197 * buffered inside the dio so that we can call get_user_pages() against a
198 * decent number of pages, less frequently. To provide nicer use of the
199 * L1 cache.
200 */
201 static inline struct page *dio_get_page(struct dio *dio,
202 struct dio_submit *sdio)
203 {
204 if (dio_pages_present(sdio) == 0) {
205 int ret;
206
207 ret = dio_refill_pages(dio, sdio);
208 if (ret)
209 return ERR_PTR(ret);
210 BUG_ON(dio_pages_present(sdio) == 0);
211 }
212 return dio->pages[sdio->head];
213 }
214
215 /**
216 * dio_complete() - called when all DIO BIO I/O has been completed
217 * @offset: the byte offset in the file of the completed operation
218 *
219 * This drops i_dio_count, lets interested parties know that a DIO operation
220 * has completed, and calculates the resulting return code for the operation.
221 *
222 * It lets the filesystem know if it registered an interest earlier via
223 * get_block. Pass the private field of the map buffer_head so that
224 * filesystems can use it to hold additional state between get_block calls and
225 * dio_complete.
226 */
227 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
228 {
229 loff_t offset = dio->iocb->ki_pos;
230 ssize_t transferred = 0;
231
232 /*
233 * AIO submission can race with bio completion to get here while
234 * expecting to have the last io completed by bio completion.
235 * In that case -EIOCBQUEUED is in fact not an error we want
236 * to preserve through this call.
237 */
238 if (ret == -EIOCBQUEUED)
239 ret = 0;
240
241 if (dio->result) {
242 transferred = dio->result;
243
244 /* Check for short read case */
245 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
246 transferred = dio->i_size - offset;
247 }
248
249 if (ret == 0)
250 ret = dio->page_errors;
251 if (ret == 0)
252 ret = dio->io_error;
253 if (ret == 0)
254 ret = transferred;
255
256 if (dio->end_io) {
257 int err;
258
259 // XXX: ki_pos??
260 err = dio->end_io(dio->iocb, offset, ret, dio->private);
261 if (err)
262 ret = err;
263 }
264
265 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
266 inode_dio_end(dio->inode);
267
268 if (is_async) {
269 /*
270 * generic_write_sync expects ki_pos to have been updated
271 * already, but the submission path only does this for
272 * synchronous I/O.
273 */
274 dio->iocb->ki_pos += transferred;
275
276 if (dio->rw & WRITE)
277 ret = generic_write_sync(dio->iocb, transferred);
278 dio->iocb->ki_complete(dio->iocb, ret, 0);
279 }
280
281 kmem_cache_free(dio_cache, dio);
282 return ret;
283 }
284
285 static void dio_aio_complete_work(struct work_struct *work)
286 {
287 struct dio *dio = container_of(work, struct dio, complete_work);
288
289 dio_complete(dio, 0, true);
290 }
291
292 static int dio_bio_complete(struct dio *dio, struct bio *bio);
293
294 /*
295 * Asynchronous IO callback.
296 */
297 static void dio_bio_end_aio(struct bio *bio)
298 {
299 struct dio *dio = bio->bi_private;
300 unsigned long remaining;
301 unsigned long flags;
302
303 /* cleanup the bio */
304 dio_bio_complete(dio, bio);
305
306 spin_lock_irqsave(&dio->bio_lock, flags);
307 remaining = --dio->refcount;
308 if (remaining == 1 && dio->waiter)
309 wake_up_process(dio->waiter);
310 spin_unlock_irqrestore(&dio->bio_lock, flags);
311
312 if (remaining == 0) {
313 if (dio->result && dio->defer_completion) {
314 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
315 queue_work(dio->inode->i_sb->s_dio_done_wq,
316 &dio->complete_work);
317 } else {
318 dio_complete(dio, 0, true);
319 }
320 }
321 }
322
323 /*
324 * The BIO completion handler simply queues the BIO up for the process-context
325 * handler.
326 *
327 * During I/O bi_private points at the dio. After I/O, bi_private is used to
328 * implement a singly-linked list of completed BIOs, at dio->bio_list.
329 */
330 static void dio_bio_end_io(struct bio *bio)
331 {
332 struct dio *dio = bio->bi_private;
333 unsigned long flags;
334
335 spin_lock_irqsave(&dio->bio_lock, flags);
336 bio->bi_private = dio->bio_list;
337 dio->bio_list = bio;
338 if (--dio->refcount == 1 && dio->waiter)
339 wake_up_process(dio->waiter);
340 spin_unlock_irqrestore(&dio->bio_lock, flags);
341 }
342
343 /**
344 * dio_end_io - handle the end io action for the given bio
345 * @bio: The direct io bio thats being completed
346 * @error: Error if there was one
347 *
348 * This is meant to be called by any filesystem that uses their own dio_submit_t
349 * so that the DIO specific endio actions are dealt with after the filesystem
350 * has done it's completion work.
351 */
352 void dio_end_io(struct bio *bio, int error)
353 {
354 struct dio *dio = bio->bi_private;
355
356 if (dio->is_async)
357 dio_bio_end_aio(bio);
358 else
359 dio_bio_end_io(bio);
360 }
361 EXPORT_SYMBOL_GPL(dio_end_io);
362
363 static inline void
364 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
365 struct block_device *bdev,
366 sector_t first_sector, int nr_vecs)
367 {
368 struct bio *bio;
369
370 /*
371 * bio_alloc() is guaranteed to return a bio when called with
372 * __GFP_RECLAIM and we request a valid number of vectors.
373 */
374 bio = bio_alloc(GFP_KERNEL, nr_vecs);
375
376 bio->bi_bdev = bdev;
377 bio->bi_iter.bi_sector = first_sector;
378 if (dio->is_async)
379 bio->bi_end_io = dio_bio_end_aio;
380 else
381 bio->bi_end_io = dio_bio_end_io;
382
383 sdio->bio = bio;
384 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
385 }
386
387 /*
388 * In the AIO read case we speculatively dirty the pages before starting IO.
389 * During IO completion, any of these pages which happen to have been written
390 * back will be redirtied by bio_check_pages_dirty().
391 *
392 * bios hold a dio reference between submit_bio and ->end_io.
393 */
394 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
395 {
396 struct bio *bio = sdio->bio;
397 unsigned long flags;
398
399 bio->bi_private = dio;
400
401 spin_lock_irqsave(&dio->bio_lock, flags);
402 dio->refcount++;
403 spin_unlock_irqrestore(&dio->bio_lock, flags);
404
405 if (dio->is_async && dio->rw == READ && dio->should_dirty)
406 bio_set_pages_dirty(bio);
407
408 dio->bio_bdev = bio->bi_bdev;
409
410 if (sdio->submit_io) {
411 sdio->submit_io(dio->rw, bio, dio->inode,
412 sdio->logical_offset_in_bio);
413 dio->bio_cookie = BLK_QC_T_NONE;
414 } else
415 dio->bio_cookie = submit_bio(dio->rw, bio);
416
417 sdio->bio = NULL;
418 sdio->boundary = 0;
419 sdio->logical_offset_in_bio = 0;
420 }
421
422 /*
423 * Release any resources in case of a failure
424 */
425 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
426 {
427 while (sdio->head < sdio->tail)
428 put_page(dio->pages[sdio->head++]);
429 }
430
431 /*
432 * Wait for the next BIO to complete. Remove it and return it. NULL is
433 * returned once all BIOs have been completed. This must only be called once
434 * all bios have been issued so that dio->refcount can only decrease. This
435 * requires that that the caller hold a reference on the dio.
436 */
437 static struct bio *dio_await_one(struct dio *dio)
438 {
439 unsigned long flags;
440 struct bio *bio = NULL;
441
442 spin_lock_irqsave(&dio->bio_lock, flags);
443
444 /*
445 * Wait as long as the list is empty and there are bios in flight. bio
446 * completion drops the count, maybe adds to the list, and wakes while
447 * holding the bio_lock so we don't need set_current_state()'s barrier
448 * and can call it after testing our condition.
449 */
450 while (dio->refcount > 1 && dio->bio_list == NULL) {
451 __set_current_state(TASK_UNINTERRUPTIBLE);
452 dio->waiter = current;
453 spin_unlock_irqrestore(&dio->bio_lock, flags);
454 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
455 !blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
456 io_schedule();
457 /* wake up sets us TASK_RUNNING */
458 spin_lock_irqsave(&dio->bio_lock, flags);
459 dio->waiter = NULL;
460 }
461 if (dio->bio_list) {
462 bio = dio->bio_list;
463 dio->bio_list = bio->bi_private;
464 }
465 spin_unlock_irqrestore(&dio->bio_lock, flags);
466 return bio;
467 }
468
469 /*
470 * Process one completed BIO. No locks are held.
471 */
472 static int dio_bio_complete(struct dio *dio, struct bio *bio)
473 {
474 struct bio_vec *bvec;
475 unsigned i;
476 int err;
477
478 if (bio->bi_error)
479 dio->io_error = -EIO;
480
481 if (dio->is_async && dio->rw == READ && dio->should_dirty) {
482 err = bio->bi_error;
483 bio_check_pages_dirty(bio); /* transfers ownership */
484 } else {
485 bio_for_each_segment_all(bvec, bio, i) {
486 struct page *page = bvec->bv_page;
487
488 if (dio->rw == READ && !PageCompound(page) &&
489 dio->should_dirty)
490 set_page_dirty_lock(page);
491 put_page(page);
492 }
493 err = bio->bi_error;
494 bio_put(bio);
495 }
496 return err;
497 }
498
499 /*
500 * Wait on and process all in-flight BIOs. This must only be called once
501 * all bios have been issued so that the refcount can only decrease.
502 * This just waits for all bios to make it through dio_bio_complete. IO
503 * errors are propagated through dio->io_error and should be propagated via
504 * dio_complete().
505 */
506 static void dio_await_completion(struct dio *dio)
507 {
508 struct bio *bio;
509 do {
510 bio = dio_await_one(dio);
511 if (bio)
512 dio_bio_complete(dio, bio);
513 } while (bio);
514 }
515
516 /*
517 * A really large O_DIRECT read or write can generate a lot of BIOs. So
518 * to keep the memory consumption sane we periodically reap any completed BIOs
519 * during the BIO generation phase.
520 *
521 * This also helps to limit the peak amount of pinned userspace memory.
522 */
523 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
524 {
525 int ret = 0;
526
527 if (sdio->reap_counter++ >= 64) {
528 while (dio->bio_list) {
529 unsigned long flags;
530 struct bio *bio;
531 int ret2;
532
533 spin_lock_irqsave(&dio->bio_lock, flags);
534 bio = dio->bio_list;
535 dio->bio_list = bio->bi_private;
536 spin_unlock_irqrestore(&dio->bio_lock, flags);
537 ret2 = dio_bio_complete(dio, bio);
538 if (ret == 0)
539 ret = ret2;
540 }
541 sdio->reap_counter = 0;
542 }
543 return ret;
544 }
545
546 /*
547 * Create workqueue for deferred direct IO completions. We allocate the
548 * workqueue when it's first needed. This avoids creating workqueue for
549 * filesystems that don't need it and also allows us to create the workqueue
550 * late enough so the we can include s_id in the name of the workqueue.
551 */
552 static int sb_init_dio_done_wq(struct super_block *sb)
553 {
554 struct workqueue_struct *old;
555 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
556 WQ_MEM_RECLAIM, 0,
557 sb->s_id);
558 if (!wq)
559 return -ENOMEM;
560 /*
561 * This has to be atomic as more DIOs can race to create the workqueue
562 */
563 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
564 /* Someone created workqueue before us? Free ours... */
565 if (old)
566 destroy_workqueue(wq);
567 return 0;
568 }
569
570 static int dio_set_defer_completion(struct dio *dio)
571 {
572 struct super_block *sb = dio->inode->i_sb;
573
574 if (dio->defer_completion)
575 return 0;
576 dio->defer_completion = true;
577 if (!sb->s_dio_done_wq)
578 return sb_init_dio_done_wq(sb);
579 return 0;
580 }
581
582 /*
583 * Call into the fs to map some more disk blocks. We record the current number
584 * of available blocks at sdio->blocks_available. These are in units of the
585 * fs blocksize, (1 << inode->i_blkbits).
586 *
587 * The fs is allowed to map lots of blocks at once. If it wants to do that,
588 * it uses the passed inode-relative block number as the file offset, as usual.
589 *
590 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
591 * has remaining to do. The fs should not map more than this number of blocks.
592 *
593 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
594 * indicate how much contiguous disk space has been made available at
595 * bh->b_blocknr.
596 *
597 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
598 * This isn't very efficient...
599 *
600 * In the case of filesystem holes: the fs may return an arbitrarily-large
601 * hole by returning an appropriate value in b_size and by clearing
602 * buffer_mapped(). However the direct-io code will only process holes one
603 * block at a time - it will repeatedly call get_block() as it walks the hole.
604 */
605 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
606 struct buffer_head *map_bh)
607 {
608 int ret;
609 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
610 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
611 unsigned long fs_count; /* Number of filesystem-sized blocks */
612 int create;
613 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
614
615 /*
616 * If there was a memory error and we've overwritten all the
617 * mapped blocks then we can now return that memory error
618 */
619 ret = dio->page_errors;
620 if (ret == 0) {
621 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
622 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
623 fs_endblk = (sdio->final_block_in_request - 1) >>
624 sdio->blkfactor;
625 fs_count = fs_endblk - fs_startblk + 1;
626
627 map_bh->b_state = 0;
628 map_bh->b_size = fs_count << i_blkbits;
629
630 /*
631 * For writes that could fill holes inside i_size on a
632 * DIO_SKIP_HOLES filesystem we forbid block creations: only
633 * overwrites are permitted. We will return early to the caller
634 * once we see an unmapped buffer head returned, and the caller
635 * will fall back to buffered I/O.
636 *
637 * Otherwise the decision is left to the get_blocks method,
638 * which may decide to handle it or also return an unmapped
639 * buffer head.
640 */
641 create = dio->rw & WRITE;
642 if (dio->flags & DIO_SKIP_HOLES) {
643 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
644 i_blkbits))
645 create = 0;
646 }
647
648 ret = (*sdio->get_block)(dio->inode, fs_startblk,
649 map_bh, create);
650
651 /* Store for completion */
652 dio->private = map_bh->b_private;
653
654 if (ret == 0 && buffer_defer_completion(map_bh))
655 ret = dio_set_defer_completion(dio);
656 }
657 return ret;
658 }
659
660 /*
661 * There is no bio. Make one now.
662 */
663 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
664 sector_t start_sector, struct buffer_head *map_bh)
665 {
666 sector_t sector;
667 int ret, nr_pages;
668
669 ret = dio_bio_reap(dio, sdio);
670 if (ret)
671 goto out;
672 sector = start_sector << (sdio->blkbits - 9);
673 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
674 BUG_ON(nr_pages <= 0);
675 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
676 sdio->boundary = 0;
677 out:
678 return ret;
679 }
680
681 /*
682 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
683 * that was successful then update final_block_in_bio and take a ref against
684 * the just-added page.
685 *
686 * Return zero on success. Non-zero means the caller needs to start a new BIO.
687 */
688 static inline int dio_bio_add_page(struct dio_submit *sdio)
689 {
690 int ret;
691
692 ret = bio_add_page(sdio->bio, sdio->cur_page,
693 sdio->cur_page_len, sdio->cur_page_offset);
694 if (ret == sdio->cur_page_len) {
695 /*
696 * Decrement count only, if we are done with this page
697 */
698 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
699 sdio->pages_in_io--;
700 get_page(sdio->cur_page);
701 sdio->final_block_in_bio = sdio->cur_page_block +
702 (sdio->cur_page_len >> sdio->blkbits);
703 ret = 0;
704 } else {
705 ret = 1;
706 }
707 return ret;
708 }
709
710 /*
711 * Put cur_page under IO. The section of cur_page which is described by
712 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
713 * starts on-disk at cur_page_block.
714 *
715 * We take a ref against the page here (on behalf of its presence in the bio).
716 *
717 * The caller of this function is responsible for removing cur_page from the
718 * dio, and for dropping the refcount which came from that presence.
719 */
720 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
721 struct buffer_head *map_bh)
722 {
723 int ret = 0;
724
725 if (sdio->bio) {
726 loff_t cur_offset = sdio->cur_page_fs_offset;
727 loff_t bio_next_offset = sdio->logical_offset_in_bio +
728 sdio->bio->bi_iter.bi_size;
729
730 /*
731 * See whether this new request is contiguous with the old.
732 *
733 * Btrfs cannot handle having logically non-contiguous requests
734 * submitted. For example if you have
735 *
736 * Logical: [0-4095][HOLE][8192-12287]
737 * Physical: [0-4095] [4096-8191]
738 *
739 * We cannot submit those pages together as one BIO. So if our
740 * current logical offset in the file does not equal what would
741 * be the next logical offset in the bio, submit the bio we
742 * have.
743 */
744 if (sdio->final_block_in_bio != sdio->cur_page_block ||
745 cur_offset != bio_next_offset)
746 dio_bio_submit(dio, sdio);
747 }
748
749 if (sdio->bio == NULL) {
750 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
751 if (ret)
752 goto out;
753 }
754
755 if (dio_bio_add_page(sdio) != 0) {
756 dio_bio_submit(dio, sdio);
757 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
758 if (ret == 0) {
759 ret = dio_bio_add_page(sdio);
760 BUG_ON(ret != 0);
761 }
762 }
763 out:
764 return ret;
765 }
766
767 /*
768 * An autonomous function to put a chunk of a page under deferred IO.
769 *
770 * The caller doesn't actually know (or care) whether this piece of page is in
771 * a BIO, or is under IO or whatever. We just take care of all possible
772 * situations here. The separation between the logic of do_direct_IO() and
773 * that of submit_page_section() is important for clarity. Please don't break.
774 *
775 * The chunk of page starts on-disk at blocknr.
776 *
777 * We perform deferred IO, by recording the last-submitted page inside our
778 * private part of the dio structure. If possible, we just expand the IO
779 * across that page here.
780 *
781 * If that doesn't work out then we put the old page into the bio and add this
782 * page to the dio instead.
783 */
784 static inline int
785 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
786 unsigned offset, unsigned len, sector_t blocknr,
787 struct buffer_head *map_bh)
788 {
789 int ret = 0;
790
791 if (dio->rw & WRITE) {
792 /*
793 * Read accounting is performed in submit_bio()
794 */
795 task_io_account_write(len);
796 }
797
798 /*
799 * Can we just grow the current page's presence in the dio?
800 */
801 if (sdio->cur_page == page &&
802 sdio->cur_page_offset + sdio->cur_page_len == offset &&
803 sdio->cur_page_block +
804 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
805 sdio->cur_page_len += len;
806 goto out;
807 }
808
809 /*
810 * If there's a deferred page already there then send it.
811 */
812 if (sdio->cur_page) {
813 ret = dio_send_cur_page(dio, sdio, map_bh);
814 put_page(sdio->cur_page);
815 sdio->cur_page = NULL;
816 if (ret)
817 return ret;
818 }
819
820 get_page(page); /* It is in dio */
821 sdio->cur_page = page;
822 sdio->cur_page_offset = offset;
823 sdio->cur_page_len = len;
824 sdio->cur_page_block = blocknr;
825 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
826 out:
827 /*
828 * If sdio->boundary then we want to schedule the IO now to
829 * avoid metadata seeks.
830 */
831 if (sdio->boundary) {
832 ret = dio_send_cur_page(dio, sdio, map_bh);
833 dio_bio_submit(dio, sdio);
834 put_page(sdio->cur_page);
835 sdio->cur_page = NULL;
836 }
837 return ret;
838 }
839
840 /*
841 * Clean any dirty buffers in the blockdev mapping which alias newly-created
842 * file blocks. Only called for S_ISREG files - blockdevs do not set
843 * buffer_new
844 */
845 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
846 {
847 unsigned i;
848 unsigned nblocks;
849
850 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
851
852 for (i = 0; i < nblocks; i++) {
853 unmap_underlying_metadata(map_bh->b_bdev,
854 map_bh->b_blocknr + i);
855 }
856 }
857
858 /*
859 * If we are not writing the entire block and get_block() allocated
860 * the block for us, we need to fill-in the unused portion of the
861 * block with zeros. This happens only if user-buffer, fileoffset or
862 * io length is not filesystem block-size multiple.
863 *
864 * `end' is zero if we're doing the start of the IO, 1 at the end of the
865 * IO.
866 */
867 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
868 int end, struct buffer_head *map_bh)
869 {
870 unsigned dio_blocks_per_fs_block;
871 unsigned this_chunk_blocks; /* In dio_blocks */
872 unsigned this_chunk_bytes;
873 struct page *page;
874
875 sdio->start_zero_done = 1;
876 if (!sdio->blkfactor || !buffer_new(map_bh))
877 return;
878
879 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
880 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
881
882 if (!this_chunk_blocks)
883 return;
884
885 /*
886 * We need to zero out part of an fs block. It is either at the
887 * beginning or the end of the fs block.
888 */
889 if (end)
890 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
891
892 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
893
894 page = ZERO_PAGE(0);
895 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
896 sdio->next_block_for_io, map_bh))
897 return;
898
899 sdio->next_block_for_io += this_chunk_blocks;
900 }
901
902 /*
903 * Walk the user pages, and the file, mapping blocks to disk and generating
904 * a sequence of (page,offset,len,block) mappings. These mappings are injected
905 * into submit_page_section(), which takes care of the next stage of submission
906 *
907 * Direct IO against a blockdev is different from a file. Because we can
908 * happily perform page-sized but 512-byte aligned IOs. It is important that
909 * blockdev IO be able to have fine alignment and large sizes.
910 *
911 * So what we do is to permit the ->get_block function to populate bh.b_size
912 * with the size of IO which is permitted at this offset and this i_blkbits.
913 *
914 * For best results, the blockdev should be set up with 512-byte i_blkbits and
915 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
916 * fine alignment but still allows this function to work in PAGE_SIZE units.
917 */
918 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
919 struct buffer_head *map_bh)
920 {
921 const unsigned blkbits = sdio->blkbits;
922 int ret = 0;
923
924 while (sdio->block_in_file < sdio->final_block_in_request) {
925 struct page *page;
926 size_t from, to;
927
928 page = dio_get_page(dio, sdio);
929 if (IS_ERR(page)) {
930 ret = PTR_ERR(page);
931 goto out;
932 }
933 from = sdio->head ? 0 : sdio->from;
934 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
935 sdio->head++;
936
937 while (from < to) {
938 unsigned this_chunk_bytes; /* # of bytes mapped */
939 unsigned this_chunk_blocks; /* # of blocks */
940 unsigned u;
941
942 if (sdio->blocks_available == 0) {
943 /*
944 * Need to go and map some more disk
945 */
946 unsigned long blkmask;
947 unsigned long dio_remainder;
948
949 ret = get_more_blocks(dio, sdio, map_bh);
950 if (ret) {
951 put_page(page);
952 goto out;
953 }
954 if (!buffer_mapped(map_bh))
955 goto do_holes;
956
957 sdio->blocks_available =
958 map_bh->b_size >> sdio->blkbits;
959 sdio->next_block_for_io =
960 map_bh->b_blocknr << sdio->blkfactor;
961 if (buffer_new(map_bh))
962 clean_blockdev_aliases(dio, map_bh);
963
964 if (!sdio->blkfactor)
965 goto do_holes;
966
967 blkmask = (1 << sdio->blkfactor) - 1;
968 dio_remainder = (sdio->block_in_file & blkmask);
969
970 /*
971 * If we are at the start of IO and that IO
972 * starts partway into a fs-block,
973 * dio_remainder will be non-zero. If the IO
974 * is a read then we can simply advance the IO
975 * cursor to the first block which is to be
976 * read. But if the IO is a write and the
977 * block was newly allocated we cannot do that;
978 * the start of the fs block must be zeroed out
979 * on-disk
980 */
981 if (!buffer_new(map_bh))
982 sdio->next_block_for_io += dio_remainder;
983 sdio->blocks_available -= dio_remainder;
984 }
985 do_holes:
986 /* Handle holes */
987 if (!buffer_mapped(map_bh)) {
988 loff_t i_size_aligned;
989
990 /* AKPM: eargh, -ENOTBLK is a hack */
991 if (dio->rw & WRITE) {
992 put_page(page);
993 return -ENOTBLK;
994 }
995
996 /*
997 * Be sure to account for a partial block as the
998 * last block in the file
999 */
1000 i_size_aligned = ALIGN(i_size_read(dio->inode),
1001 1 << blkbits);
1002 if (sdio->block_in_file >=
1003 i_size_aligned >> blkbits) {
1004 /* We hit eof */
1005 put_page(page);
1006 goto out;
1007 }
1008 zero_user(page, from, 1 << blkbits);
1009 sdio->block_in_file++;
1010 from += 1 << blkbits;
1011 dio->result += 1 << blkbits;
1012 goto next_block;
1013 }
1014
1015 /*
1016 * If we're performing IO which has an alignment which
1017 * is finer than the underlying fs, go check to see if
1018 * we must zero out the start of this block.
1019 */
1020 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1021 dio_zero_block(dio, sdio, 0, map_bh);
1022
1023 /*
1024 * Work out, in this_chunk_blocks, how much disk we
1025 * can add to this page
1026 */
1027 this_chunk_blocks = sdio->blocks_available;
1028 u = (to - from) >> blkbits;
1029 if (this_chunk_blocks > u)
1030 this_chunk_blocks = u;
1031 u = sdio->final_block_in_request - sdio->block_in_file;
1032 if (this_chunk_blocks > u)
1033 this_chunk_blocks = u;
1034 this_chunk_bytes = this_chunk_blocks << blkbits;
1035 BUG_ON(this_chunk_bytes == 0);
1036
1037 if (this_chunk_blocks == sdio->blocks_available)
1038 sdio->boundary = buffer_boundary(map_bh);
1039 ret = submit_page_section(dio, sdio, page,
1040 from,
1041 this_chunk_bytes,
1042 sdio->next_block_for_io,
1043 map_bh);
1044 if (ret) {
1045 put_page(page);
1046 goto out;
1047 }
1048 sdio->next_block_for_io += this_chunk_blocks;
1049
1050 sdio->block_in_file += this_chunk_blocks;
1051 from += this_chunk_bytes;
1052 dio->result += this_chunk_bytes;
1053 sdio->blocks_available -= this_chunk_blocks;
1054 next_block:
1055 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1056 if (sdio->block_in_file == sdio->final_block_in_request)
1057 break;
1058 }
1059
1060 /* Drop the ref which was taken in get_user_pages() */
1061 put_page(page);
1062 }
1063 out:
1064 return ret;
1065 }
1066
1067 static inline int drop_refcount(struct dio *dio)
1068 {
1069 int ret2;
1070 unsigned long flags;
1071
1072 /*
1073 * Sync will always be dropping the final ref and completing the
1074 * operation. AIO can if it was a broken operation described above or
1075 * in fact if all the bios race to complete before we get here. In
1076 * that case dio_complete() translates the EIOCBQUEUED into the proper
1077 * return code that the caller will hand to ->complete().
1078 *
1079 * This is managed by the bio_lock instead of being an atomic_t so that
1080 * completion paths can drop their ref and use the remaining count to
1081 * decide to wake the submission path atomically.
1082 */
1083 spin_lock_irqsave(&dio->bio_lock, flags);
1084 ret2 = --dio->refcount;
1085 spin_unlock_irqrestore(&dio->bio_lock, flags);
1086 return ret2;
1087 }
1088
1089 /*
1090 * This is a library function for use by filesystem drivers.
1091 *
1092 * The locking rules are governed by the flags parameter:
1093 * - if the flags value contains DIO_LOCKING we use a fancy locking
1094 * scheme for dumb filesystems.
1095 * For writes this function is called under i_mutex and returns with
1096 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1097 * taken and dropped again before returning.
1098 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1099 * internal locking but rather rely on the filesystem to synchronize
1100 * direct I/O reads/writes versus each other and truncate.
1101 *
1102 * To help with locking against truncate we incremented the i_dio_count
1103 * counter before starting direct I/O, and decrement it once we are done.
1104 * Truncate can wait for it to reach zero to provide exclusion. It is
1105 * expected that filesystem provide exclusion between new direct I/O
1106 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1107 * but other filesystems need to take care of this on their own.
1108 *
1109 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1110 * is always inlined. Otherwise gcc is unable to split the structure into
1111 * individual fields and will generate much worse code. This is important
1112 * for the whole file.
1113 */
1114 static inline ssize_t
1115 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1116 struct block_device *bdev, struct iov_iter *iter,
1117 get_block_t get_block, dio_iodone_t end_io,
1118 dio_submit_t submit_io, int flags)
1119 {
1120 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1121 unsigned blkbits = i_blkbits;
1122 unsigned blocksize_mask = (1 << blkbits) - 1;
1123 ssize_t retval = -EINVAL;
1124 size_t count = iov_iter_count(iter);
1125 loff_t offset = iocb->ki_pos;
1126 loff_t end = offset + count;
1127 struct dio *dio;
1128 struct dio_submit sdio = { 0, };
1129 struct buffer_head map_bh = { 0, };
1130 struct blk_plug plug;
1131 unsigned long align = offset | iov_iter_alignment(iter);
1132
1133 /*
1134 * Avoid references to bdev if not absolutely needed to give
1135 * the early prefetch in the caller enough time.
1136 */
1137
1138 if (align & blocksize_mask) {
1139 if (bdev)
1140 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1141 blocksize_mask = (1 << blkbits) - 1;
1142 if (align & blocksize_mask)
1143 goto out;
1144 }
1145
1146 /* watch out for a 0 len io from a tricksy fs */
1147 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1148 return 0;
1149
1150 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1151 retval = -ENOMEM;
1152 if (!dio)
1153 goto out;
1154 /*
1155 * Believe it or not, zeroing out the page array caused a .5%
1156 * performance regression in a database benchmark. So, we take
1157 * care to only zero out what's needed.
1158 */
1159 memset(dio, 0, offsetof(struct dio, pages));
1160
1161 dio->flags = flags;
1162 if (dio->flags & DIO_LOCKING) {
1163 if (iov_iter_rw(iter) == READ) {
1164 struct address_space *mapping =
1165 iocb->ki_filp->f_mapping;
1166
1167 /* will be released by direct_io_worker */
1168 inode_lock(inode);
1169
1170 retval = filemap_write_and_wait_range(mapping, offset,
1171 end - 1);
1172 if (retval) {
1173 inode_unlock(inode);
1174 kmem_cache_free(dio_cache, dio);
1175 goto out;
1176 }
1177 }
1178 }
1179
1180 /* Once we sampled i_size check for reads beyond EOF */
1181 dio->i_size = i_size_read(inode);
1182 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1183 if (dio->flags & DIO_LOCKING)
1184 inode_unlock(inode);
1185 kmem_cache_free(dio_cache, dio);
1186 retval = 0;
1187 goto out;
1188 }
1189
1190 /*
1191 * For file extending writes updating i_size before data writeouts
1192 * complete can expose uninitialized blocks in dumb filesystems.
1193 * In that case we need to wait for I/O completion even if asked
1194 * for an asynchronous write.
1195 */
1196 if (is_sync_kiocb(iocb))
1197 dio->is_async = false;
1198 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1199 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1200 dio->is_async = false;
1201 else
1202 dio->is_async = true;
1203
1204 dio->inode = inode;
1205 dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1206
1207 /*
1208 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1209 * so that we can call ->fsync.
1210 */
1211 if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1212 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1213 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1214 retval = dio_set_defer_completion(dio);
1215 if (retval) {
1216 /*
1217 * We grab i_mutex only for reads so we don't have
1218 * to release it here
1219 */
1220 kmem_cache_free(dio_cache, dio);
1221 goto out;
1222 }
1223 }
1224
1225 /*
1226 * Will be decremented at I/O completion time.
1227 */
1228 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1229 inode_dio_begin(inode);
1230
1231 retval = 0;
1232 sdio.blkbits = blkbits;
1233 sdio.blkfactor = i_blkbits - blkbits;
1234 sdio.block_in_file = offset >> blkbits;
1235
1236 sdio.get_block = get_block;
1237 dio->end_io = end_io;
1238 sdio.submit_io = submit_io;
1239 sdio.final_block_in_bio = -1;
1240 sdio.next_block_for_io = -1;
1241
1242 dio->iocb = iocb;
1243
1244 spin_lock_init(&dio->bio_lock);
1245 dio->refcount = 1;
1246
1247 dio->should_dirty = (iter->type == ITER_IOVEC);
1248 sdio.iter = iter;
1249 sdio.final_block_in_request =
1250 (offset + iov_iter_count(iter)) >> blkbits;
1251
1252 /*
1253 * In case of non-aligned buffers, we may need 2 more
1254 * pages since we need to zero out first and last block.
1255 */
1256 if (unlikely(sdio.blkfactor))
1257 sdio.pages_in_io = 2;
1258
1259 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1260
1261 blk_start_plug(&plug);
1262
1263 retval = do_direct_IO(dio, &sdio, &map_bh);
1264 if (retval)
1265 dio_cleanup(dio, &sdio);
1266
1267 if (retval == -ENOTBLK) {
1268 /*
1269 * The remaining part of the request will be
1270 * be handled by buffered I/O when we return
1271 */
1272 retval = 0;
1273 }
1274 /*
1275 * There may be some unwritten disk at the end of a part-written
1276 * fs-block-sized block. Go zero that now.
1277 */
1278 dio_zero_block(dio, &sdio, 1, &map_bh);
1279
1280 if (sdio.cur_page) {
1281 ssize_t ret2;
1282
1283 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1284 if (retval == 0)
1285 retval = ret2;
1286 put_page(sdio.cur_page);
1287 sdio.cur_page = NULL;
1288 }
1289 if (sdio.bio)
1290 dio_bio_submit(dio, &sdio);
1291
1292 blk_finish_plug(&plug);
1293
1294 /*
1295 * It is possible that, we return short IO due to end of file.
1296 * In that case, we need to release all the pages we got hold on.
1297 */
1298 dio_cleanup(dio, &sdio);
1299
1300 /*
1301 * All block lookups have been performed. For READ requests
1302 * we can let i_mutex go now that its achieved its purpose
1303 * of protecting us from looking up uninitialized blocks.
1304 */
1305 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1306 inode_unlock(dio->inode);
1307
1308 /*
1309 * The only time we want to leave bios in flight is when a successful
1310 * partial aio read or full aio write have been setup. In that case
1311 * bio completion will call aio_complete. The only time it's safe to
1312 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1313 * This had *better* be the only place that raises -EIOCBQUEUED.
1314 */
1315 BUG_ON(retval == -EIOCBQUEUED);
1316 if (dio->is_async && retval == 0 && dio->result &&
1317 (iov_iter_rw(iter) == READ || dio->result == count))
1318 retval = -EIOCBQUEUED;
1319 else
1320 dio_await_completion(dio);
1321
1322 if (drop_refcount(dio) == 0) {
1323 retval = dio_complete(dio, retval, false);
1324 } else
1325 BUG_ON(retval != -EIOCBQUEUED);
1326
1327 out:
1328 return retval;
1329 }
1330
1331 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1332 struct block_device *bdev, struct iov_iter *iter,
1333 get_block_t get_block,
1334 dio_iodone_t end_io, dio_submit_t submit_io,
1335 int flags)
1336 {
1337 /*
1338 * The block device state is needed in the end to finally
1339 * submit everything. Since it's likely to be cache cold
1340 * prefetch it here as first thing to hide some of the
1341 * latency.
1342 *
1343 * Attempt to prefetch the pieces we likely need later.
1344 */
1345 prefetch(&bdev->bd_disk->part_tbl);
1346 prefetch(bdev->bd_queue);
1347 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1348
1349 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1350 end_io, submit_io, flags);
1351 }
1352
1353 EXPORT_SYMBOL(__blockdev_direct_IO);
1354
1355 static __init int dio_init(void)
1356 {
1357 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1358 return 0;
1359 }
1360 module_init(dio_init)