]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/direct-io.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[mirror_ubuntu-bionic-kernel.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40
41 /*
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
44 */
45 #define DIO_PAGES 64
46
47 /*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
57 */
58
59 /* dio_state only used in the submission path */
60
61 struct dio_submit {
62 struct bio *bio; /* bio under assembly */
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
76 int reap_counter; /* rate limit reaping */
77 sector_t final_block_in_request;/* doesn't change */
78 int boundary; /* prev block is at a boundary */
79 get_block_t *get_block; /* block mapping function */
80 dio_submit_t *submit_io; /* IO submition function */
81
82 loff_t logical_offset_in_bio; /* current first logical block in bio */
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
96 loff_t cur_page_fs_offset; /* Offset in file */
97
98 struct iov_iter *iter;
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
105 size_t from, to;
106 };
107
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 int flags; /* doesn't change */
111 int rw;
112 struct inode *inode;
113 loff_t i_size; /* i_size when submitted */
114 dio_iodone_t *end_io; /* IO completion function */
115
116 void *private; /* copy from map_bh.b_private */
117
118 /* BIO completion state */
119 spinlock_t bio_lock; /* protects BIO fields below */
120 int page_errors; /* errno from get_user_pages() */
121 int is_async; /* is IO async ? */
122 bool defer_completion; /* defer AIO completion to workqueue? */
123 bool should_dirty; /* if pages should be dirtied */
124 int io_error; /* IO error in completion path */
125 unsigned long refcount; /* direct_io_worker() and bios */
126 struct bio *bio_list; /* singly linked via bi_private */
127 struct task_struct *waiter; /* waiting task (NULL if none) */
128
129 /* AIO related stuff */
130 struct kiocb *iocb; /* kiocb */
131 ssize_t result; /* IO result */
132
133 /*
134 * pages[] (and any fields placed after it) are not zeroed out at
135 * allocation time. Don't add new fields after pages[] unless you
136 * wish that they not be zeroed.
137 */
138 union {
139 struct page *pages[DIO_PAGES]; /* page buffer */
140 struct work_struct complete_work;/* deferred AIO completion */
141 };
142 } ____cacheline_aligned_in_smp;
143
144 static struct kmem_cache *dio_cache __read_mostly;
145
146 /*
147 * How many pages are in the queue?
148 */
149 static inline unsigned dio_pages_present(struct dio_submit *sdio)
150 {
151 return sdio->tail - sdio->head;
152 }
153
154 /*
155 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
156 */
157 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
158 {
159 ssize_t ret;
160
161 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
162 &sdio->from);
163
164 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
165 struct page *page = ZERO_PAGE(0);
166 /*
167 * A memory fault, but the filesystem has some outstanding
168 * mapped blocks. We need to use those blocks up to avoid
169 * leaking stale data in the file.
170 */
171 if (dio->page_errors == 0)
172 dio->page_errors = ret;
173 page_cache_get(page);
174 dio->pages[0] = page;
175 sdio->head = 0;
176 sdio->tail = 1;
177 sdio->from = 0;
178 sdio->to = PAGE_SIZE;
179 return 0;
180 }
181
182 if (ret >= 0) {
183 iov_iter_advance(sdio->iter, ret);
184 ret += sdio->from;
185 sdio->head = 0;
186 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
187 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
188 return 0;
189 }
190 return ret;
191 }
192
193 /*
194 * Get another userspace page. Returns an ERR_PTR on error. Pages are
195 * buffered inside the dio so that we can call get_user_pages() against a
196 * decent number of pages, less frequently. To provide nicer use of the
197 * L1 cache.
198 */
199 static inline struct page *dio_get_page(struct dio *dio,
200 struct dio_submit *sdio)
201 {
202 if (dio_pages_present(sdio) == 0) {
203 int ret;
204
205 ret = dio_refill_pages(dio, sdio);
206 if (ret)
207 return ERR_PTR(ret);
208 BUG_ON(dio_pages_present(sdio) == 0);
209 }
210 return dio->pages[sdio->head];
211 }
212
213 /**
214 * dio_complete() - called when all DIO BIO I/O has been completed
215 * @offset: the byte offset in the file of the completed operation
216 *
217 * This drops i_dio_count, lets interested parties know that a DIO operation
218 * has completed, and calculates the resulting return code for the operation.
219 *
220 * It lets the filesystem know if it registered an interest earlier via
221 * get_block. Pass the private field of the map buffer_head so that
222 * filesystems can use it to hold additional state between get_block calls and
223 * dio_complete.
224 */
225 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
226 bool is_async)
227 {
228 ssize_t transferred = 0;
229
230 /*
231 * AIO submission can race with bio completion to get here while
232 * expecting to have the last io completed by bio completion.
233 * In that case -EIOCBQUEUED is in fact not an error we want
234 * to preserve through this call.
235 */
236 if (ret == -EIOCBQUEUED)
237 ret = 0;
238
239 if (dio->result) {
240 transferred = dio->result;
241
242 /* Check for short read case */
243 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
244 transferred = dio->i_size - offset;
245 }
246
247 if (ret == 0)
248 ret = dio->page_errors;
249 if (ret == 0)
250 ret = dio->io_error;
251 if (ret == 0)
252 ret = transferred;
253
254 if (dio->end_io && dio->result)
255 dio->end_io(dio->iocb, offset, transferred, dio->private);
256
257 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
258 inode_dio_end(dio->inode);
259
260 if (is_async) {
261 if (dio->rw & WRITE) {
262 int err;
263
264 err = generic_write_sync(dio->iocb->ki_filp, offset,
265 transferred);
266 if (err < 0 && ret > 0)
267 ret = err;
268 }
269
270 dio->iocb->ki_complete(dio->iocb, ret, 0);
271 }
272
273 kmem_cache_free(dio_cache, dio);
274 return ret;
275 }
276
277 static void dio_aio_complete_work(struct work_struct *work)
278 {
279 struct dio *dio = container_of(work, struct dio, complete_work);
280
281 dio_complete(dio, dio->iocb->ki_pos, 0, true);
282 }
283
284 static int dio_bio_complete(struct dio *dio, struct bio *bio);
285
286 /*
287 * Asynchronous IO callback.
288 */
289 static void dio_bio_end_aio(struct bio *bio)
290 {
291 struct dio *dio = bio->bi_private;
292 unsigned long remaining;
293 unsigned long flags;
294
295 /* cleanup the bio */
296 dio_bio_complete(dio, bio);
297
298 spin_lock_irqsave(&dio->bio_lock, flags);
299 remaining = --dio->refcount;
300 if (remaining == 1 && dio->waiter)
301 wake_up_process(dio->waiter);
302 spin_unlock_irqrestore(&dio->bio_lock, flags);
303
304 if (remaining == 0) {
305 if (dio->result && dio->defer_completion) {
306 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
307 queue_work(dio->inode->i_sb->s_dio_done_wq,
308 &dio->complete_work);
309 } else {
310 dio_complete(dio, dio->iocb->ki_pos, 0, true);
311 }
312 }
313 }
314
315 /*
316 * The BIO completion handler simply queues the BIO up for the process-context
317 * handler.
318 *
319 * During I/O bi_private points at the dio. After I/O, bi_private is used to
320 * implement a singly-linked list of completed BIOs, at dio->bio_list.
321 */
322 static void dio_bio_end_io(struct bio *bio)
323 {
324 struct dio *dio = bio->bi_private;
325 unsigned long flags;
326
327 spin_lock_irqsave(&dio->bio_lock, flags);
328 bio->bi_private = dio->bio_list;
329 dio->bio_list = bio;
330 if (--dio->refcount == 1 && dio->waiter)
331 wake_up_process(dio->waiter);
332 spin_unlock_irqrestore(&dio->bio_lock, flags);
333 }
334
335 /**
336 * dio_end_io - handle the end io action for the given bio
337 * @bio: The direct io bio thats being completed
338 * @error: Error if there was one
339 *
340 * This is meant to be called by any filesystem that uses their own dio_submit_t
341 * so that the DIO specific endio actions are dealt with after the filesystem
342 * has done it's completion work.
343 */
344 void dio_end_io(struct bio *bio, int error)
345 {
346 struct dio *dio = bio->bi_private;
347
348 if (dio->is_async)
349 dio_bio_end_aio(bio);
350 else
351 dio_bio_end_io(bio);
352 }
353 EXPORT_SYMBOL_GPL(dio_end_io);
354
355 static inline void
356 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
357 struct block_device *bdev,
358 sector_t first_sector, int nr_vecs)
359 {
360 struct bio *bio;
361
362 /*
363 * bio_alloc() is guaranteed to return a bio when called with
364 * __GFP_WAIT and we request a valid number of vectors.
365 */
366 bio = bio_alloc(GFP_KERNEL, nr_vecs);
367
368 bio->bi_bdev = bdev;
369 bio->bi_iter.bi_sector = first_sector;
370 if (dio->is_async)
371 bio->bi_end_io = dio_bio_end_aio;
372 else
373 bio->bi_end_io = dio_bio_end_io;
374
375 sdio->bio = bio;
376 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
377 }
378
379 /*
380 * In the AIO read case we speculatively dirty the pages before starting IO.
381 * During IO completion, any of these pages which happen to have been written
382 * back will be redirtied by bio_check_pages_dirty().
383 *
384 * bios hold a dio reference between submit_bio and ->end_io.
385 */
386 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
387 {
388 struct bio *bio = sdio->bio;
389 unsigned long flags;
390
391 bio->bi_private = dio;
392
393 spin_lock_irqsave(&dio->bio_lock, flags);
394 dio->refcount++;
395 spin_unlock_irqrestore(&dio->bio_lock, flags);
396
397 if (dio->is_async && dio->rw == READ && dio->should_dirty)
398 bio_set_pages_dirty(bio);
399
400 if (sdio->submit_io)
401 sdio->submit_io(dio->rw, bio, dio->inode,
402 sdio->logical_offset_in_bio);
403 else
404 submit_bio(dio->rw, bio);
405
406 sdio->bio = NULL;
407 sdio->boundary = 0;
408 sdio->logical_offset_in_bio = 0;
409 }
410
411 /*
412 * Release any resources in case of a failure
413 */
414 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
415 {
416 while (sdio->head < sdio->tail)
417 page_cache_release(dio->pages[sdio->head++]);
418 }
419
420 /*
421 * Wait for the next BIO to complete. Remove it and return it. NULL is
422 * returned once all BIOs have been completed. This must only be called once
423 * all bios have been issued so that dio->refcount can only decrease. This
424 * requires that that the caller hold a reference on the dio.
425 */
426 static struct bio *dio_await_one(struct dio *dio)
427 {
428 unsigned long flags;
429 struct bio *bio = NULL;
430
431 spin_lock_irqsave(&dio->bio_lock, flags);
432
433 /*
434 * Wait as long as the list is empty and there are bios in flight. bio
435 * completion drops the count, maybe adds to the list, and wakes while
436 * holding the bio_lock so we don't need set_current_state()'s barrier
437 * and can call it after testing our condition.
438 */
439 while (dio->refcount > 1 && dio->bio_list == NULL) {
440 __set_current_state(TASK_UNINTERRUPTIBLE);
441 dio->waiter = current;
442 spin_unlock_irqrestore(&dio->bio_lock, flags);
443 io_schedule();
444 /* wake up sets us TASK_RUNNING */
445 spin_lock_irqsave(&dio->bio_lock, flags);
446 dio->waiter = NULL;
447 }
448 if (dio->bio_list) {
449 bio = dio->bio_list;
450 dio->bio_list = bio->bi_private;
451 }
452 spin_unlock_irqrestore(&dio->bio_lock, flags);
453 return bio;
454 }
455
456 /*
457 * Process one completed BIO. No locks are held.
458 */
459 static int dio_bio_complete(struct dio *dio, struct bio *bio)
460 {
461 struct bio_vec *bvec;
462 unsigned i;
463 int err;
464
465 if (bio->bi_error)
466 dio->io_error = -EIO;
467
468 if (dio->is_async && dio->rw == READ && dio->should_dirty) {
469 bio_check_pages_dirty(bio); /* transfers ownership */
470 err = bio->bi_error;
471 } else {
472 bio_for_each_segment_all(bvec, bio, i) {
473 struct page *page = bvec->bv_page;
474
475 if (dio->rw == READ && !PageCompound(page) &&
476 dio->should_dirty)
477 set_page_dirty_lock(page);
478 page_cache_release(page);
479 }
480 err = bio->bi_error;
481 bio_put(bio);
482 }
483 return err;
484 }
485
486 /*
487 * Wait on and process all in-flight BIOs. This must only be called once
488 * all bios have been issued so that the refcount can only decrease.
489 * This just waits for all bios to make it through dio_bio_complete. IO
490 * errors are propagated through dio->io_error and should be propagated via
491 * dio_complete().
492 */
493 static void dio_await_completion(struct dio *dio)
494 {
495 struct bio *bio;
496 do {
497 bio = dio_await_one(dio);
498 if (bio)
499 dio_bio_complete(dio, bio);
500 } while (bio);
501 }
502
503 /*
504 * A really large O_DIRECT read or write can generate a lot of BIOs. So
505 * to keep the memory consumption sane we periodically reap any completed BIOs
506 * during the BIO generation phase.
507 *
508 * This also helps to limit the peak amount of pinned userspace memory.
509 */
510 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
511 {
512 int ret = 0;
513
514 if (sdio->reap_counter++ >= 64) {
515 while (dio->bio_list) {
516 unsigned long flags;
517 struct bio *bio;
518 int ret2;
519
520 spin_lock_irqsave(&dio->bio_lock, flags);
521 bio = dio->bio_list;
522 dio->bio_list = bio->bi_private;
523 spin_unlock_irqrestore(&dio->bio_lock, flags);
524 ret2 = dio_bio_complete(dio, bio);
525 if (ret == 0)
526 ret = ret2;
527 }
528 sdio->reap_counter = 0;
529 }
530 return ret;
531 }
532
533 /*
534 * Create workqueue for deferred direct IO completions. We allocate the
535 * workqueue when it's first needed. This avoids creating workqueue for
536 * filesystems that don't need it and also allows us to create the workqueue
537 * late enough so the we can include s_id in the name of the workqueue.
538 */
539 static int sb_init_dio_done_wq(struct super_block *sb)
540 {
541 struct workqueue_struct *old;
542 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
543 WQ_MEM_RECLAIM, 0,
544 sb->s_id);
545 if (!wq)
546 return -ENOMEM;
547 /*
548 * This has to be atomic as more DIOs can race to create the workqueue
549 */
550 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
551 /* Someone created workqueue before us? Free ours... */
552 if (old)
553 destroy_workqueue(wq);
554 return 0;
555 }
556
557 static int dio_set_defer_completion(struct dio *dio)
558 {
559 struct super_block *sb = dio->inode->i_sb;
560
561 if (dio->defer_completion)
562 return 0;
563 dio->defer_completion = true;
564 if (!sb->s_dio_done_wq)
565 return sb_init_dio_done_wq(sb);
566 return 0;
567 }
568
569 /*
570 * Call into the fs to map some more disk blocks. We record the current number
571 * of available blocks at sdio->blocks_available. These are in units of the
572 * fs blocksize, (1 << inode->i_blkbits).
573 *
574 * The fs is allowed to map lots of blocks at once. If it wants to do that,
575 * it uses the passed inode-relative block number as the file offset, as usual.
576 *
577 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
578 * has remaining to do. The fs should not map more than this number of blocks.
579 *
580 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
581 * indicate how much contiguous disk space has been made available at
582 * bh->b_blocknr.
583 *
584 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
585 * This isn't very efficient...
586 *
587 * In the case of filesystem holes: the fs may return an arbitrarily-large
588 * hole by returning an appropriate value in b_size and by clearing
589 * buffer_mapped(). However the direct-io code will only process holes one
590 * block at a time - it will repeatedly call get_block() as it walks the hole.
591 */
592 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
593 struct buffer_head *map_bh)
594 {
595 int ret;
596 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
597 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
598 unsigned long fs_count; /* Number of filesystem-sized blocks */
599 int create;
600 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
601
602 /*
603 * If there was a memory error and we've overwritten all the
604 * mapped blocks then we can now return that memory error
605 */
606 ret = dio->page_errors;
607 if (ret == 0) {
608 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
609 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
610 fs_endblk = (sdio->final_block_in_request - 1) >>
611 sdio->blkfactor;
612 fs_count = fs_endblk - fs_startblk + 1;
613
614 map_bh->b_state = 0;
615 map_bh->b_size = fs_count << i_blkbits;
616
617 /*
618 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
619 * forbid block creations: only overwrites are permitted.
620 * We will return early to the caller once we see an
621 * unmapped buffer head returned, and the caller will fall
622 * back to buffered I/O.
623 *
624 * Otherwise the decision is left to the get_blocks method,
625 * which may decide to handle it or also return an unmapped
626 * buffer head.
627 */
628 create = dio->rw & WRITE;
629 if (dio->flags & DIO_SKIP_HOLES) {
630 if (sdio->block_in_file < (i_size_read(dio->inode) >>
631 sdio->blkbits))
632 create = 0;
633 }
634
635 ret = (*sdio->get_block)(dio->inode, fs_startblk,
636 map_bh, create);
637
638 /* Store for completion */
639 dio->private = map_bh->b_private;
640
641 if (ret == 0 && buffer_defer_completion(map_bh))
642 ret = dio_set_defer_completion(dio);
643 }
644 return ret;
645 }
646
647 /*
648 * There is no bio. Make one now.
649 */
650 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
651 sector_t start_sector, struct buffer_head *map_bh)
652 {
653 sector_t sector;
654 int ret, nr_pages;
655
656 ret = dio_bio_reap(dio, sdio);
657 if (ret)
658 goto out;
659 sector = start_sector << (sdio->blkbits - 9);
660 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
661 BUG_ON(nr_pages <= 0);
662 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
663 sdio->boundary = 0;
664 out:
665 return ret;
666 }
667
668 /*
669 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
670 * that was successful then update final_block_in_bio and take a ref against
671 * the just-added page.
672 *
673 * Return zero on success. Non-zero means the caller needs to start a new BIO.
674 */
675 static inline int dio_bio_add_page(struct dio_submit *sdio)
676 {
677 int ret;
678
679 ret = bio_add_page(sdio->bio, sdio->cur_page,
680 sdio->cur_page_len, sdio->cur_page_offset);
681 if (ret == sdio->cur_page_len) {
682 /*
683 * Decrement count only, if we are done with this page
684 */
685 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
686 sdio->pages_in_io--;
687 page_cache_get(sdio->cur_page);
688 sdio->final_block_in_bio = sdio->cur_page_block +
689 (sdio->cur_page_len >> sdio->blkbits);
690 ret = 0;
691 } else {
692 ret = 1;
693 }
694 return ret;
695 }
696
697 /*
698 * Put cur_page under IO. The section of cur_page which is described by
699 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
700 * starts on-disk at cur_page_block.
701 *
702 * We take a ref against the page here (on behalf of its presence in the bio).
703 *
704 * The caller of this function is responsible for removing cur_page from the
705 * dio, and for dropping the refcount which came from that presence.
706 */
707 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
708 struct buffer_head *map_bh)
709 {
710 int ret = 0;
711
712 if (sdio->bio) {
713 loff_t cur_offset = sdio->cur_page_fs_offset;
714 loff_t bio_next_offset = sdio->logical_offset_in_bio +
715 sdio->bio->bi_iter.bi_size;
716
717 /*
718 * See whether this new request is contiguous with the old.
719 *
720 * Btrfs cannot handle having logically non-contiguous requests
721 * submitted. For example if you have
722 *
723 * Logical: [0-4095][HOLE][8192-12287]
724 * Physical: [0-4095] [4096-8191]
725 *
726 * We cannot submit those pages together as one BIO. So if our
727 * current logical offset in the file does not equal what would
728 * be the next logical offset in the bio, submit the bio we
729 * have.
730 */
731 if (sdio->final_block_in_bio != sdio->cur_page_block ||
732 cur_offset != bio_next_offset)
733 dio_bio_submit(dio, sdio);
734 }
735
736 if (sdio->bio == NULL) {
737 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
738 if (ret)
739 goto out;
740 }
741
742 if (dio_bio_add_page(sdio) != 0) {
743 dio_bio_submit(dio, sdio);
744 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
745 if (ret == 0) {
746 ret = dio_bio_add_page(sdio);
747 BUG_ON(ret != 0);
748 }
749 }
750 out:
751 return ret;
752 }
753
754 /*
755 * An autonomous function to put a chunk of a page under deferred IO.
756 *
757 * The caller doesn't actually know (or care) whether this piece of page is in
758 * a BIO, or is under IO or whatever. We just take care of all possible
759 * situations here. The separation between the logic of do_direct_IO() and
760 * that of submit_page_section() is important for clarity. Please don't break.
761 *
762 * The chunk of page starts on-disk at blocknr.
763 *
764 * We perform deferred IO, by recording the last-submitted page inside our
765 * private part of the dio structure. If possible, we just expand the IO
766 * across that page here.
767 *
768 * If that doesn't work out then we put the old page into the bio and add this
769 * page to the dio instead.
770 */
771 static inline int
772 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
773 unsigned offset, unsigned len, sector_t blocknr,
774 struct buffer_head *map_bh)
775 {
776 int ret = 0;
777
778 if (dio->rw & WRITE) {
779 /*
780 * Read accounting is performed in submit_bio()
781 */
782 task_io_account_write(len);
783 }
784
785 /*
786 * Can we just grow the current page's presence in the dio?
787 */
788 if (sdio->cur_page == page &&
789 sdio->cur_page_offset + sdio->cur_page_len == offset &&
790 sdio->cur_page_block +
791 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
792 sdio->cur_page_len += len;
793 goto out;
794 }
795
796 /*
797 * If there's a deferred page already there then send it.
798 */
799 if (sdio->cur_page) {
800 ret = dio_send_cur_page(dio, sdio, map_bh);
801 page_cache_release(sdio->cur_page);
802 sdio->cur_page = NULL;
803 if (ret)
804 return ret;
805 }
806
807 page_cache_get(page); /* It is in dio */
808 sdio->cur_page = page;
809 sdio->cur_page_offset = offset;
810 sdio->cur_page_len = len;
811 sdio->cur_page_block = blocknr;
812 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
813 out:
814 /*
815 * If sdio->boundary then we want to schedule the IO now to
816 * avoid metadata seeks.
817 */
818 if (sdio->boundary) {
819 ret = dio_send_cur_page(dio, sdio, map_bh);
820 dio_bio_submit(dio, sdio);
821 page_cache_release(sdio->cur_page);
822 sdio->cur_page = NULL;
823 }
824 return ret;
825 }
826
827 /*
828 * Clean any dirty buffers in the blockdev mapping which alias newly-created
829 * file blocks. Only called for S_ISREG files - blockdevs do not set
830 * buffer_new
831 */
832 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
833 {
834 unsigned i;
835 unsigned nblocks;
836
837 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
838
839 for (i = 0; i < nblocks; i++) {
840 unmap_underlying_metadata(map_bh->b_bdev,
841 map_bh->b_blocknr + i);
842 }
843 }
844
845 /*
846 * If we are not writing the entire block and get_block() allocated
847 * the block for us, we need to fill-in the unused portion of the
848 * block with zeros. This happens only if user-buffer, fileoffset or
849 * io length is not filesystem block-size multiple.
850 *
851 * `end' is zero if we're doing the start of the IO, 1 at the end of the
852 * IO.
853 */
854 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
855 int end, struct buffer_head *map_bh)
856 {
857 unsigned dio_blocks_per_fs_block;
858 unsigned this_chunk_blocks; /* In dio_blocks */
859 unsigned this_chunk_bytes;
860 struct page *page;
861
862 sdio->start_zero_done = 1;
863 if (!sdio->blkfactor || !buffer_new(map_bh))
864 return;
865
866 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
867 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
868
869 if (!this_chunk_blocks)
870 return;
871
872 /*
873 * We need to zero out part of an fs block. It is either at the
874 * beginning or the end of the fs block.
875 */
876 if (end)
877 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
878
879 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
880
881 page = ZERO_PAGE(0);
882 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
883 sdio->next_block_for_io, map_bh))
884 return;
885
886 sdio->next_block_for_io += this_chunk_blocks;
887 }
888
889 /*
890 * Walk the user pages, and the file, mapping blocks to disk and generating
891 * a sequence of (page,offset,len,block) mappings. These mappings are injected
892 * into submit_page_section(), which takes care of the next stage of submission
893 *
894 * Direct IO against a blockdev is different from a file. Because we can
895 * happily perform page-sized but 512-byte aligned IOs. It is important that
896 * blockdev IO be able to have fine alignment and large sizes.
897 *
898 * So what we do is to permit the ->get_block function to populate bh.b_size
899 * with the size of IO which is permitted at this offset and this i_blkbits.
900 *
901 * For best results, the blockdev should be set up with 512-byte i_blkbits and
902 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
903 * fine alignment but still allows this function to work in PAGE_SIZE units.
904 */
905 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
906 struct buffer_head *map_bh)
907 {
908 const unsigned blkbits = sdio->blkbits;
909 int ret = 0;
910
911 while (sdio->block_in_file < sdio->final_block_in_request) {
912 struct page *page;
913 size_t from, to;
914
915 page = dio_get_page(dio, sdio);
916 if (IS_ERR(page)) {
917 ret = PTR_ERR(page);
918 goto out;
919 }
920 from = sdio->head ? 0 : sdio->from;
921 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
922 sdio->head++;
923
924 while (from < to) {
925 unsigned this_chunk_bytes; /* # of bytes mapped */
926 unsigned this_chunk_blocks; /* # of blocks */
927 unsigned u;
928
929 if (sdio->blocks_available == 0) {
930 /*
931 * Need to go and map some more disk
932 */
933 unsigned long blkmask;
934 unsigned long dio_remainder;
935
936 ret = get_more_blocks(dio, sdio, map_bh);
937 if (ret) {
938 page_cache_release(page);
939 goto out;
940 }
941 if (!buffer_mapped(map_bh))
942 goto do_holes;
943
944 sdio->blocks_available =
945 map_bh->b_size >> sdio->blkbits;
946 sdio->next_block_for_io =
947 map_bh->b_blocknr << sdio->blkfactor;
948 if (buffer_new(map_bh))
949 clean_blockdev_aliases(dio, map_bh);
950
951 if (!sdio->blkfactor)
952 goto do_holes;
953
954 blkmask = (1 << sdio->blkfactor) - 1;
955 dio_remainder = (sdio->block_in_file & blkmask);
956
957 /*
958 * If we are at the start of IO and that IO
959 * starts partway into a fs-block,
960 * dio_remainder will be non-zero. If the IO
961 * is a read then we can simply advance the IO
962 * cursor to the first block which is to be
963 * read. But if the IO is a write and the
964 * block was newly allocated we cannot do that;
965 * the start of the fs block must be zeroed out
966 * on-disk
967 */
968 if (!buffer_new(map_bh))
969 sdio->next_block_for_io += dio_remainder;
970 sdio->blocks_available -= dio_remainder;
971 }
972 do_holes:
973 /* Handle holes */
974 if (!buffer_mapped(map_bh)) {
975 loff_t i_size_aligned;
976
977 /* AKPM: eargh, -ENOTBLK is a hack */
978 if (dio->rw & WRITE) {
979 page_cache_release(page);
980 return -ENOTBLK;
981 }
982
983 /*
984 * Be sure to account for a partial block as the
985 * last block in the file
986 */
987 i_size_aligned = ALIGN(i_size_read(dio->inode),
988 1 << blkbits);
989 if (sdio->block_in_file >=
990 i_size_aligned >> blkbits) {
991 /* We hit eof */
992 page_cache_release(page);
993 goto out;
994 }
995 zero_user(page, from, 1 << blkbits);
996 sdio->block_in_file++;
997 from += 1 << blkbits;
998 dio->result += 1 << blkbits;
999 goto next_block;
1000 }
1001
1002 /*
1003 * If we're performing IO which has an alignment which
1004 * is finer than the underlying fs, go check to see if
1005 * we must zero out the start of this block.
1006 */
1007 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1008 dio_zero_block(dio, sdio, 0, map_bh);
1009
1010 /*
1011 * Work out, in this_chunk_blocks, how much disk we
1012 * can add to this page
1013 */
1014 this_chunk_blocks = sdio->blocks_available;
1015 u = (to - from) >> blkbits;
1016 if (this_chunk_blocks > u)
1017 this_chunk_blocks = u;
1018 u = sdio->final_block_in_request - sdio->block_in_file;
1019 if (this_chunk_blocks > u)
1020 this_chunk_blocks = u;
1021 this_chunk_bytes = this_chunk_blocks << blkbits;
1022 BUG_ON(this_chunk_bytes == 0);
1023
1024 if (this_chunk_blocks == sdio->blocks_available)
1025 sdio->boundary = buffer_boundary(map_bh);
1026 ret = submit_page_section(dio, sdio, page,
1027 from,
1028 this_chunk_bytes,
1029 sdio->next_block_for_io,
1030 map_bh);
1031 if (ret) {
1032 page_cache_release(page);
1033 goto out;
1034 }
1035 sdio->next_block_for_io += this_chunk_blocks;
1036
1037 sdio->block_in_file += this_chunk_blocks;
1038 from += this_chunk_bytes;
1039 dio->result += this_chunk_bytes;
1040 sdio->blocks_available -= this_chunk_blocks;
1041 next_block:
1042 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1043 if (sdio->block_in_file == sdio->final_block_in_request)
1044 break;
1045 }
1046
1047 /* Drop the ref which was taken in get_user_pages() */
1048 page_cache_release(page);
1049 }
1050 out:
1051 return ret;
1052 }
1053
1054 static inline int drop_refcount(struct dio *dio)
1055 {
1056 int ret2;
1057 unsigned long flags;
1058
1059 /*
1060 * Sync will always be dropping the final ref and completing the
1061 * operation. AIO can if it was a broken operation described above or
1062 * in fact if all the bios race to complete before we get here. In
1063 * that case dio_complete() translates the EIOCBQUEUED into the proper
1064 * return code that the caller will hand to ->complete().
1065 *
1066 * This is managed by the bio_lock instead of being an atomic_t so that
1067 * completion paths can drop their ref and use the remaining count to
1068 * decide to wake the submission path atomically.
1069 */
1070 spin_lock_irqsave(&dio->bio_lock, flags);
1071 ret2 = --dio->refcount;
1072 spin_unlock_irqrestore(&dio->bio_lock, flags);
1073 return ret2;
1074 }
1075
1076 /*
1077 * This is a library function for use by filesystem drivers.
1078 *
1079 * The locking rules are governed by the flags parameter:
1080 * - if the flags value contains DIO_LOCKING we use a fancy locking
1081 * scheme for dumb filesystems.
1082 * For writes this function is called under i_mutex and returns with
1083 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1084 * taken and dropped again before returning.
1085 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1086 * internal locking but rather rely on the filesystem to synchronize
1087 * direct I/O reads/writes versus each other and truncate.
1088 *
1089 * To help with locking against truncate we incremented the i_dio_count
1090 * counter before starting direct I/O, and decrement it once we are done.
1091 * Truncate can wait for it to reach zero to provide exclusion. It is
1092 * expected that filesystem provide exclusion between new direct I/O
1093 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1094 * but other filesystems need to take care of this on their own.
1095 *
1096 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1097 * is always inlined. Otherwise gcc is unable to split the structure into
1098 * individual fields and will generate much worse code. This is important
1099 * for the whole file.
1100 */
1101 static inline ssize_t
1102 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1103 struct block_device *bdev, struct iov_iter *iter,
1104 loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1105 dio_submit_t submit_io, int flags)
1106 {
1107 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1108 unsigned blkbits = i_blkbits;
1109 unsigned blocksize_mask = (1 << blkbits) - 1;
1110 ssize_t retval = -EINVAL;
1111 size_t count = iov_iter_count(iter);
1112 loff_t end = offset + count;
1113 struct dio *dio;
1114 struct dio_submit sdio = { 0, };
1115 struct buffer_head map_bh = { 0, };
1116 struct blk_plug plug;
1117 unsigned long align = offset | iov_iter_alignment(iter);
1118
1119 /*
1120 * Avoid references to bdev if not absolutely needed to give
1121 * the early prefetch in the caller enough time.
1122 */
1123
1124 if (align & blocksize_mask) {
1125 if (bdev)
1126 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1127 blocksize_mask = (1 << blkbits) - 1;
1128 if (align & blocksize_mask)
1129 goto out;
1130 }
1131
1132 /* watch out for a 0 len io from a tricksy fs */
1133 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1134 return 0;
1135
1136 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1137 retval = -ENOMEM;
1138 if (!dio)
1139 goto out;
1140 /*
1141 * Believe it or not, zeroing out the page array caused a .5%
1142 * performance regression in a database benchmark. So, we take
1143 * care to only zero out what's needed.
1144 */
1145 memset(dio, 0, offsetof(struct dio, pages));
1146
1147 dio->flags = flags;
1148 if (dio->flags & DIO_LOCKING) {
1149 if (iov_iter_rw(iter) == READ) {
1150 struct address_space *mapping =
1151 iocb->ki_filp->f_mapping;
1152
1153 /* will be released by direct_io_worker */
1154 mutex_lock(&inode->i_mutex);
1155
1156 retval = filemap_write_and_wait_range(mapping, offset,
1157 end - 1);
1158 if (retval) {
1159 mutex_unlock(&inode->i_mutex);
1160 kmem_cache_free(dio_cache, dio);
1161 goto out;
1162 }
1163 }
1164 }
1165
1166 /*
1167 * For file extending writes updating i_size before data writeouts
1168 * complete can expose uninitialized blocks in dumb filesystems.
1169 * In that case we need to wait for I/O completion even if asked
1170 * for an asynchronous write.
1171 */
1172 if (is_sync_kiocb(iocb))
1173 dio->is_async = false;
1174 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1175 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1176 dio->is_async = false;
1177 else
1178 dio->is_async = true;
1179
1180 dio->inode = inode;
1181 dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1182
1183 /*
1184 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1185 * so that we can call ->fsync.
1186 */
1187 if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1188 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1189 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1190 retval = dio_set_defer_completion(dio);
1191 if (retval) {
1192 /*
1193 * We grab i_mutex only for reads so we don't have
1194 * to release it here
1195 */
1196 kmem_cache_free(dio_cache, dio);
1197 goto out;
1198 }
1199 }
1200
1201 /*
1202 * Will be decremented at I/O completion time.
1203 */
1204 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1205 inode_dio_begin(inode);
1206
1207 retval = 0;
1208 sdio.blkbits = blkbits;
1209 sdio.blkfactor = i_blkbits - blkbits;
1210 sdio.block_in_file = offset >> blkbits;
1211
1212 sdio.get_block = get_block;
1213 dio->end_io = end_io;
1214 sdio.submit_io = submit_io;
1215 sdio.final_block_in_bio = -1;
1216 sdio.next_block_for_io = -1;
1217
1218 dio->iocb = iocb;
1219 dio->i_size = i_size_read(inode);
1220
1221 spin_lock_init(&dio->bio_lock);
1222 dio->refcount = 1;
1223
1224 dio->should_dirty = (iter->type == ITER_IOVEC);
1225 sdio.iter = iter;
1226 sdio.final_block_in_request =
1227 (offset + iov_iter_count(iter)) >> blkbits;
1228
1229 /*
1230 * In case of non-aligned buffers, we may need 2 more
1231 * pages since we need to zero out first and last block.
1232 */
1233 if (unlikely(sdio.blkfactor))
1234 sdio.pages_in_io = 2;
1235
1236 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1237
1238 blk_start_plug(&plug);
1239
1240 retval = do_direct_IO(dio, &sdio, &map_bh);
1241 if (retval)
1242 dio_cleanup(dio, &sdio);
1243
1244 if (retval == -ENOTBLK) {
1245 /*
1246 * The remaining part of the request will be
1247 * be handled by buffered I/O when we return
1248 */
1249 retval = 0;
1250 }
1251 /*
1252 * There may be some unwritten disk at the end of a part-written
1253 * fs-block-sized block. Go zero that now.
1254 */
1255 dio_zero_block(dio, &sdio, 1, &map_bh);
1256
1257 if (sdio.cur_page) {
1258 ssize_t ret2;
1259
1260 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1261 if (retval == 0)
1262 retval = ret2;
1263 page_cache_release(sdio.cur_page);
1264 sdio.cur_page = NULL;
1265 }
1266 if (sdio.bio)
1267 dio_bio_submit(dio, &sdio);
1268
1269 blk_finish_plug(&plug);
1270
1271 /*
1272 * It is possible that, we return short IO due to end of file.
1273 * In that case, we need to release all the pages we got hold on.
1274 */
1275 dio_cleanup(dio, &sdio);
1276
1277 /*
1278 * All block lookups have been performed. For READ requests
1279 * we can let i_mutex go now that its achieved its purpose
1280 * of protecting us from looking up uninitialized blocks.
1281 */
1282 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1283 mutex_unlock(&dio->inode->i_mutex);
1284
1285 /*
1286 * The only time we want to leave bios in flight is when a successful
1287 * partial aio read or full aio write have been setup. In that case
1288 * bio completion will call aio_complete. The only time it's safe to
1289 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1290 * This had *better* be the only place that raises -EIOCBQUEUED.
1291 */
1292 BUG_ON(retval == -EIOCBQUEUED);
1293 if (dio->is_async && retval == 0 && dio->result &&
1294 (iov_iter_rw(iter) == READ || dio->result == count))
1295 retval = -EIOCBQUEUED;
1296 else
1297 dio_await_completion(dio);
1298
1299 if (drop_refcount(dio) == 0) {
1300 retval = dio_complete(dio, offset, retval, false);
1301 } else
1302 BUG_ON(retval != -EIOCBQUEUED);
1303
1304 out:
1305 return retval;
1306 }
1307
1308 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1309 struct block_device *bdev, struct iov_iter *iter,
1310 loff_t offset, get_block_t get_block,
1311 dio_iodone_t end_io, dio_submit_t submit_io,
1312 int flags)
1313 {
1314 /*
1315 * The block device state is needed in the end to finally
1316 * submit everything. Since it's likely to be cache cold
1317 * prefetch it here as first thing to hide some of the
1318 * latency.
1319 *
1320 * Attempt to prefetch the pieces we likely need later.
1321 */
1322 prefetch(&bdev->bd_disk->part_tbl);
1323 prefetch(bdev->bd_queue);
1324 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1325
1326 return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1327 end_io, submit_io, flags);
1328 }
1329
1330 EXPORT_SYMBOL(__blockdev_direct_IO);
1331
1332 static __init int dio_init(void)
1333 {
1334 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1335 return 0;
1336 }
1337 module_init(dio_init)