]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/dlm/lowcomms.c
Merge branch 'release' of git://lm-sensors.org/kernel/mhoffman/hwmon-2.6
[mirror_ubuntu-zesty-kernel.git] / fs / dlm / lowcomms.c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 /*
15 * lowcomms.c
16 *
17 * This is the "low-level" comms layer.
18 *
19 * It is responsible for sending/receiving messages
20 * from other nodes in the cluster.
21 *
22 * Cluster nodes are referred to by their nodeids. nodeids are
23 * simply 32 bit numbers to the locking module - if they need to
24 * be expanded for the cluster infrastructure then that is it's
25 * responsibility. It is this layer's
26 * responsibility to resolve these into IP address or
27 * whatever it needs for inter-node communication.
28 *
29 * The comms level is two kernel threads that deal mainly with
30 * the receiving of messages from other nodes and passing them
31 * up to the mid-level comms layer (which understands the
32 * message format) for execution by the locking core, and
33 * a send thread which does all the setting up of connections
34 * to remote nodes and the sending of data. Threads are not allowed
35 * to send their own data because it may cause them to wait in times
36 * of high load. Also, this way, the sending thread can collect together
37 * messages bound for one node and send them in one block.
38 *
39 * lowcomms will choose to use wither TCP or SCTP as its transport layer
40 * depending on the configuration variable 'protocol'. This should be set
41 * to 0 (default) for TCP or 1 for SCTP. It shouldbe configured using a
42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
43 * for the DLM to function.
44 *
45 */
46
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/idr.h>
52 #include <linux/file.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60
61 #define NEEDED_RMEM (4*1024*1024)
62
63 struct cbuf {
64 unsigned int base;
65 unsigned int len;
66 unsigned int mask;
67 };
68
69 static void cbuf_add(struct cbuf *cb, int n)
70 {
71 cb->len += n;
72 }
73
74 static int cbuf_data(struct cbuf *cb)
75 {
76 return ((cb->base + cb->len) & cb->mask);
77 }
78
79 static void cbuf_init(struct cbuf *cb, int size)
80 {
81 cb->base = cb->len = 0;
82 cb->mask = size-1;
83 }
84
85 static void cbuf_eat(struct cbuf *cb, int n)
86 {
87 cb->len -= n;
88 cb->base += n;
89 cb->base &= cb->mask;
90 }
91
92 static bool cbuf_empty(struct cbuf *cb)
93 {
94 return cb->len == 0;
95 }
96
97 struct connection {
98 struct socket *sock; /* NULL if not connected */
99 uint32_t nodeid; /* So we know who we are in the list */
100 struct mutex sock_mutex;
101 unsigned long flags;
102 #define CF_READ_PENDING 1
103 #define CF_WRITE_PENDING 2
104 #define CF_CONNECT_PENDING 3
105 #define CF_INIT_PENDING 4
106 #define CF_IS_OTHERCON 5
107 struct list_head writequeue; /* List of outgoing writequeue_entries */
108 spinlock_t writequeue_lock;
109 int (*rx_action) (struct connection *); /* What to do when active */
110 void (*connect_action) (struct connection *); /* What to do to connect */
111 struct page *rx_page;
112 struct cbuf cb;
113 int retries;
114 #define MAX_CONNECT_RETRIES 3
115 int sctp_assoc;
116 struct connection *othercon;
117 struct work_struct rwork; /* Receive workqueue */
118 struct work_struct swork; /* Send workqueue */
119 };
120 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
121
122 /* An entry waiting to be sent */
123 struct writequeue_entry {
124 struct list_head list;
125 struct page *page;
126 int offset;
127 int len;
128 int end;
129 int users;
130 struct connection *con;
131 };
132
133 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
134 static int dlm_local_count;
135
136 /* Work queues */
137 static struct workqueue_struct *recv_workqueue;
138 static struct workqueue_struct *send_workqueue;
139
140 static DEFINE_IDR(connections_idr);
141 static DECLARE_MUTEX(connections_lock);
142 static int max_nodeid;
143 static struct kmem_cache *con_cache;
144
145 static void process_recv_sockets(struct work_struct *work);
146 static void process_send_sockets(struct work_struct *work);
147
148 /*
149 * If 'allocation' is zero then we don't attempt to create a new
150 * connection structure for this node.
151 */
152 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
153 {
154 struct connection *con = NULL;
155 int r;
156 int n;
157
158 con = idr_find(&connections_idr, nodeid);
159 if (con || !alloc)
160 return con;
161
162 r = idr_pre_get(&connections_idr, alloc);
163 if (!r)
164 return NULL;
165
166 con = kmem_cache_zalloc(con_cache, alloc);
167 if (!con)
168 return NULL;
169
170 r = idr_get_new_above(&connections_idr, con, nodeid, &n);
171 if (r) {
172 kmem_cache_free(con_cache, con);
173 return NULL;
174 }
175
176 if (n != nodeid) {
177 idr_remove(&connections_idr, n);
178 kmem_cache_free(con_cache, con);
179 return NULL;
180 }
181
182 con->nodeid = nodeid;
183 mutex_init(&con->sock_mutex);
184 INIT_LIST_HEAD(&con->writequeue);
185 spin_lock_init(&con->writequeue_lock);
186 INIT_WORK(&con->swork, process_send_sockets);
187 INIT_WORK(&con->rwork, process_recv_sockets);
188
189 /* Setup action pointers for child sockets */
190 if (con->nodeid) {
191 struct connection *zerocon = idr_find(&connections_idr, 0);
192
193 con->connect_action = zerocon->connect_action;
194 if (!con->rx_action)
195 con->rx_action = zerocon->rx_action;
196 }
197
198 if (nodeid > max_nodeid)
199 max_nodeid = nodeid;
200
201 return con;
202 }
203
204 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
205 {
206 struct connection *con;
207
208 down(&connections_lock);
209 con = __nodeid2con(nodeid, allocation);
210 up(&connections_lock);
211
212 return con;
213 }
214
215 /* This is a bit drastic, but only called when things go wrong */
216 static struct connection *assoc2con(int assoc_id)
217 {
218 int i;
219 struct connection *con;
220
221 down(&connections_lock);
222 for (i=0; i<=max_nodeid; i++) {
223 con = __nodeid2con(i, 0);
224 if (con && con->sctp_assoc == assoc_id) {
225 up(&connections_lock);
226 return con;
227 }
228 }
229 up(&connections_lock);
230 return NULL;
231 }
232
233 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
234 {
235 struct sockaddr_storage addr;
236 int error;
237
238 if (!dlm_local_count)
239 return -1;
240
241 error = dlm_nodeid_to_addr(nodeid, &addr);
242 if (error)
243 return error;
244
245 if (dlm_local_addr[0]->ss_family == AF_INET) {
246 struct sockaddr_in *in4 = (struct sockaddr_in *) &addr;
247 struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
248 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
249 } else {
250 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &addr;
251 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
252 memcpy(&ret6->sin6_addr, &in6->sin6_addr,
253 sizeof(in6->sin6_addr));
254 }
255
256 return 0;
257 }
258
259 /* Data available on socket or listen socket received a connect */
260 static void lowcomms_data_ready(struct sock *sk, int count_unused)
261 {
262 struct connection *con = sock2con(sk);
263 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
264 queue_work(recv_workqueue, &con->rwork);
265 }
266
267 static void lowcomms_write_space(struct sock *sk)
268 {
269 struct connection *con = sock2con(sk);
270
271 if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
272 queue_work(send_workqueue, &con->swork);
273 }
274
275 static inline void lowcomms_connect_sock(struct connection *con)
276 {
277 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
278 queue_work(send_workqueue, &con->swork);
279 }
280
281 static void lowcomms_state_change(struct sock *sk)
282 {
283 if (sk->sk_state == TCP_ESTABLISHED)
284 lowcomms_write_space(sk);
285 }
286
287 /* Make a socket active */
288 static int add_sock(struct socket *sock, struct connection *con)
289 {
290 con->sock = sock;
291
292 /* Install a data_ready callback */
293 con->sock->sk->sk_data_ready = lowcomms_data_ready;
294 con->sock->sk->sk_write_space = lowcomms_write_space;
295 con->sock->sk->sk_state_change = lowcomms_state_change;
296 con->sock->sk->sk_user_data = con;
297 return 0;
298 }
299
300 /* Add the port number to an IPv6 or 4 sockaddr and return the address
301 length */
302 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
303 int *addr_len)
304 {
305 saddr->ss_family = dlm_local_addr[0]->ss_family;
306 if (saddr->ss_family == AF_INET) {
307 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
308 in4_addr->sin_port = cpu_to_be16(port);
309 *addr_len = sizeof(struct sockaddr_in);
310 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
311 } else {
312 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
313 in6_addr->sin6_port = cpu_to_be16(port);
314 *addr_len = sizeof(struct sockaddr_in6);
315 }
316 }
317
318 /* Close a remote connection and tidy up */
319 static void close_connection(struct connection *con, bool and_other)
320 {
321 mutex_lock(&con->sock_mutex);
322
323 if (con->sock) {
324 sock_release(con->sock);
325 con->sock = NULL;
326 }
327 if (con->othercon && and_other) {
328 /* Will only re-enter once. */
329 close_connection(con->othercon, false);
330 }
331 if (con->rx_page) {
332 __free_page(con->rx_page);
333 con->rx_page = NULL;
334 }
335 con->retries = 0;
336 mutex_unlock(&con->sock_mutex);
337 }
338
339 /* We only send shutdown messages to nodes that are not part of the cluster */
340 static void sctp_send_shutdown(sctp_assoc_t associd)
341 {
342 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
343 struct msghdr outmessage;
344 struct cmsghdr *cmsg;
345 struct sctp_sndrcvinfo *sinfo;
346 int ret;
347 struct connection *con;
348
349 con = nodeid2con(0,0);
350 BUG_ON(con == NULL);
351
352 outmessage.msg_name = NULL;
353 outmessage.msg_namelen = 0;
354 outmessage.msg_control = outcmsg;
355 outmessage.msg_controllen = sizeof(outcmsg);
356 outmessage.msg_flags = MSG_EOR;
357
358 cmsg = CMSG_FIRSTHDR(&outmessage);
359 cmsg->cmsg_level = IPPROTO_SCTP;
360 cmsg->cmsg_type = SCTP_SNDRCV;
361 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
362 outmessage.msg_controllen = cmsg->cmsg_len;
363 sinfo = CMSG_DATA(cmsg);
364 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
365
366 sinfo->sinfo_flags |= MSG_EOF;
367 sinfo->sinfo_assoc_id = associd;
368
369 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
370
371 if (ret != 0)
372 log_print("send EOF to node failed: %d", ret);
373 }
374
375 /* INIT failed but we don't know which node...
376 restart INIT on all pending nodes */
377 static void sctp_init_failed(void)
378 {
379 int i;
380 struct connection *con;
381
382 down(&connections_lock);
383 for (i=1; i<=max_nodeid; i++) {
384 con = __nodeid2con(i, 0);
385 if (!con)
386 continue;
387 con->sctp_assoc = 0;
388 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
389 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
390 queue_work(send_workqueue, &con->swork);
391 }
392 }
393 }
394 up(&connections_lock);
395 }
396
397 /* Something happened to an association */
398 static void process_sctp_notification(struct connection *con,
399 struct msghdr *msg, char *buf)
400 {
401 union sctp_notification *sn = (union sctp_notification *)buf;
402
403 if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
404 switch (sn->sn_assoc_change.sac_state) {
405
406 case SCTP_COMM_UP:
407 case SCTP_RESTART:
408 {
409 /* Check that the new node is in the lockspace */
410 struct sctp_prim prim;
411 int nodeid;
412 int prim_len, ret;
413 int addr_len;
414 struct connection *new_con;
415 struct file *file;
416 sctp_peeloff_arg_t parg;
417 int parglen = sizeof(parg);
418
419 /*
420 * We get this before any data for an association.
421 * We verify that the node is in the cluster and
422 * then peel off a socket for it.
423 */
424 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
425 log_print("COMM_UP for invalid assoc ID %d",
426 (int)sn->sn_assoc_change.sac_assoc_id);
427 sctp_init_failed();
428 return;
429 }
430 memset(&prim, 0, sizeof(struct sctp_prim));
431 prim_len = sizeof(struct sctp_prim);
432 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
433
434 ret = kernel_getsockopt(con->sock,
435 IPPROTO_SCTP,
436 SCTP_PRIMARY_ADDR,
437 (char*)&prim,
438 &prim_len);
439 if (ret < 0) {
440 log_print("getsockopt/sctp_primary_addr on "
441 "new assoc %d failed : %d",
442 (int)sn->sn_assoc_change.sac_assoc_id,
443 ret);
444
445 /* Retry INIT later */
446 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
447 if (new_con)
448 clear_bit(CF_CONNECT_PENDING, &con->flags);
449 return;
450 }
451 make_sockaddr(&prim.ssp_addr, 0, &addr_len);
452 if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
453 int i;
454 unsigned char *b=(unsigned char *)&prim.ssp_addr;
455 log_print("reject connect from unknown addr");
456 for (i=0; i<sizeof(struct sockaddr_storage);i++)
457 printk("%02x ", b[i]);
458 printk("\n");
459 sctp_send_shutdown(prim.ssp_assoc_id);
460 return;
461 }
462
463 new_con = nodeid2con(nodeid, GFP_KERNEL);
464 if (!new_con)
465 return;
466
467 /* Peel off a new sock */
468 parg.associd = sn->sn_assoc_change.sac_assoc_id;
469 ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
470 SCTP_SOCKOPT_PEELOFF,
471 (void *)&parg, &parglen);
472 if (ret) {
473 log_print("Can't peel off a socket for "
474 "connection %d to node %d: err=%d\n",
475 parg.associd, nodeid, ret);
476 }
477 file = fget(parg.sd);
478 new_con->sock = SOCKET_I(file->f_dentry->d_inode);
479 add_sock(new_con->sock, new_con);
480 fput(file);
481 put_unused_fd(parg.sd);
482
483 log_print("got new/restarted association %d nodeid %d",
484 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
485
486 /* Send any pending writes */
487 clear_bit(CF_CONNECT_PENDING, &new_con->flags);
488 clear_bit(CF_INIT_PENDING, &con->flags);
489 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
490 queue_work(send_workqueue, &new_con->swork);
491 }
492 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
493 queue_work(recv_workqueue, &new_con->rwork);
494 }
495 break;
496
497 case SCTP_COMM_LOST:
498 case SCTP_SHUTDOWN_COMP:
499 {
500 con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
501 if (con) {
502 con->sctp_assoc = 0;
503 }
504 }
505 break;
506
507 /* We don't know which INIT failed, so clear the PENDING flags
508 * on them all. if assoc_id is zero then it will then try
509 * again */
510
511 case SCTP_CANT_STR_ASSOC:
512 {
513 log_print("Can't start SCTP association - retrying");
514 sctp_init_failed();
515 }
516 break;
517
518 default:
519 log_print("unexpected SCTP assoc change id=%d state=%d",
520 (int)sn->sn_assoc_change.sac_assoc_id,
521 sn->sn_assoc_change.sac_state);
522 }
523 }
524 }
525
526 /* Data received from remote end */
527 static int receive_from_sock(struct connection *con)
528 {
529 int ret = 0;
530 struct msghdr msg = {};
531 struct kvec iov[2];
532 unsigned len;
533 int r;
534 int call_again_soon = 0;
535 int nvec;
536 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
537
538 mutex_lock(&con->sock_mutex);
539
540 if (con->sock == NULL) {
541 ret = -EAGAIN;
542 goto out_close;
543 }
544
545 if (con->rx_page == NULL) {
546 /*
547 * This doesn't need to be atomic, but I think it should
548 * improve performance if it is.
549 */
550 con->rx_page = alloc_page(GFP_ATOMIC);
551 if (con->rx_page == NULL)
552 goto out_resched;
553 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
554 }
555
556 /* Only SCTP needs these really */
557 memset(&incmsg, 0, sizeof(incmsg));
558 msg.msg_control = incmsg;
559 msg.msg_controllen = sizeof(incmsg);
560
561 /*
562 * iov[0] is the bit of the circular buffer between the current end
563 * point (cb.base + cb.len) and the end of the buffer.
564 */
565 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
566 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
567 iov[1].iov_len = 0;
568 nvec = 1;
569
570 /*
571 * iov[1] is the bit of the circular buffer between the start of the
572 * buffer and the start of the currently used section (cb.base)
573 */
574 if (cbuf_data(&con->cb) >= con->cb.base) {
575 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
576 iov[1].iov_len = con->cb.base;
577 iov[1].iov_base = page_address(con->rx_page);
578 nvec = 2;
579 }
580 len = iov[0].iov_len + iov[1].iov_len;
581
582 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
583 MSG_DONTWAIT | MSG_NOSIGNAL);
584 if (ret <= 0)
585 goto out_close;
586
587 /* Process SCTP notifications */
588 if (msg.msg_flags & MSG_NOTIFICATION) {
589 msg.msg_control = incmsg;
590 msg.msg_controllen = sizeof(incmsg);
591
592 process_sctp_notification(con, &msg,
593 page_address(con->rx_page) + con->cb.base);
594 mutex_unlock(&con->sock_mutex);
595 return 0;
596 }
597 BUG_ON(con->nodeid == 0);
598
599 if (ret == len)
600 call_again_soon = 1;
601 cbuf_add(&con->cb, ret);
602 ret = dlm_process_incoming_buffer(con->nodeid,
603 page_address(con->rx_page),
604 con->cb.base, con->cb.len,
605 PAGE_CACHE_SIZE);
606 if (ret == -EBADMSG) {
607 log_print("lowcomms: addr=%p, base=%u, len=%u, "
608 "iov_len=%u, iov_base[0]=%p, read=%d",
609 page_address(con->rx_page), con->cb.base, con->cb.len,
610 len, iov[0].iov_base, r);
611 }
612 if (ret < 0)
613 goto out_close;
614 cbuf_eat(&con->cb, ret);
615
616 if (cbuf_empty(&con->cb) && !call_again_soon) {
617 __free_page(con->rx_page);
618 con->rx_page = NULL;
619 }
620
621 if (call_again_soon)
622 goto out_resched;
623 mutex_unlock(&con->sock_mutex);
624 return 0;
625
626 out_resched:
627 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
628 queue_work(recv_workqueue, &con->rwork);
629 mutex_unlock(&con->sock_mutex);
630 return -EAGAIN;
631
632 out_close:
633 mutex_unlock(&con->sock_mutex);
634 if (ret != -EAGAIN && !test_bit(CF_IS_OTHERCON, &con->flags)) {
635 close_connection(con, false);
636 /* Reconnect when there is something to send */
637 }
638 /* Don't return success if we really got EOF */
639 if (ret == 0)
640 ret = -EAGAIN;
641
642 return ret;
643 }
644
645 /* Listening socket is busy, accept a connection */
646 static int tcp_accept_from_sock(struct connection *con)
647 {
648 int result;
649 struct sockaddr_storage peeraddr;
650 struct socket *newsock;
651 int len;
652 int nodeid;
653 struct connection *newcon;
654 struct connection *addcon;
655
656 memset(&peeraddr, 0, sizeof(peeraddr));
657 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
658 IPPROTO_TCP, &newsock);
659 if (result < 0)
660 return -ENOMEM;
661
662 mutex_lock_nested(&con->sock_mutex, 0);
663
664 result = -ENOTCONN;
665 if (con->sock == NULL)
666 goto accept_err;
667
668 newsock->type = con->sock->type;
669 newsock->ops = con->sock->ops;
670
671 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
672 if (result < 0)
673 goto accept_err;
674
675 /* Get the connected socket's peer */
676 memset(&peeraddr, 0, sizeof(peeraddr));
677 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
678 &len, 2)) {
679 result = -ECONNABORTED;
680 goto accept_err;
681 }
682
683 /* Get the new node's NODEID */
684 make_sockaddr(&peeraddr, 0, &len);
685 if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
686 log_print("connect from non cluster node");
687 sock_release(newsock);
688 mutex_unlock(&con->sock_mutex);
689 return -1;
690 }
691
692 log_print("got connection from %d", nodeid);
693
694 /* Check to see if we already have a connection to this node. This
695 * could happen if the two nodes initiate a connection at roughly
696 * the same time and the connections cross on the wire.
697 * In this case we store the incoming one in "othercon"
698 */
699 newcon = nodeid2con(nodeid, GFP_KERNEL);
700 if (!newcon) {
701 result = -ENOMEM;
702 goto accept_err;
703 }
704 mutex_lock_nested(&newcon->sock_mutex, 1);
705 if (newcon->sock) {
706 struct connection *othercon = newcon->othercon;
707
708 if (!othercon) {
709 othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
710 if (!othercon) {
711 log_print("failed to allocate incoming socket");
712 mutex_unlock(&newcon->sock_mutex);
713 result = -ENOMEM;
714 goto accept_err;
715 }
716 othercon->nodeid = nodeid;
717 othercon->rx_action = receive_from_sock;
718 mutex_init(&othercon->sock_mutex);
719 INIT_WORK(&othercon->swork, process_send_sockets);
720 INIT_WORK(&othercon->rwork, process_recv_sockets);
721 set_bit(CF_IS_OTHERCON, &othercon->flags);
722 newcon->othercon = othercon;
723 othercon->sock = newsock;
724 newsock->sk->sk_user_data = othercon;
725 add_sock(newsock, othercon);
726 addcon = othercon;
727 }
728 else {
729 printk("Extra connection from node %d attempted\n", nodeid);
730 result = -EAGAIN;
731 mutex_unlock(&newcon->sock_mutex);
732 goto accept_err;
733 }
734 }
735 else {
736 newsock->sk->sk_user_data = newcon;
737 newcon->rx_action = receive_from_sock;
738 add_sock(newsock, newcon);
739 addcon = newcon;
740 }
741
742 mutex_unlock(&newcon->sock_mutex);
743
744 /*
745 * Add it to the active queue in case we got data
746 * beween processing the accept adding the socket
747 * to the read_sockets list
748 */
749 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
750 queue_work(recv_workqueue, &addcon->rwork);
751 mutex_unlock(&con->sock_mutex);
752
753 return 0;
754
755 accept_err:
756 mutex_unlock(&con->sock_mutex);
757 sock_release(newsock);
758
759 if (result != -EAGAIN)
760 log_print("error accepting connection from node: %d", result);
761 return result;
762 }
763
764 static void free_entry(struct writequeue_entry *e)
765 {
766 __free_page(e->page);
767 kfree(e);
768 }
769
770 /* Initiate an SCTP association.
771 This is a special case of send_to_sock() in that we don't yet have a
772 peeled-off socket for this association, so we use the listening socket
773 and add the primary IP address of the remote node.
774 */
775 static void sctp_init_assoc(struct connection *con)
776 {
777 struct sockaddr_storage rem_addr;
778 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
779 struct msghdr outmessage;
780 struct cmsghdr *cmsg;
781 struct sctp_sndrcvinfo *sinfo;
782 struct connection *base_con;
783 struct writequeue_entry *e;
784 int len, offset;
785 int ret;
786 int addrlen;
787 struct kvec iov[1];
788
789 if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
790 return;
791
792 if (con->retries++ > MAX_CONNECT_RETRIES)
793 return;
794
795 log_print("Initiating association with node %d", con->nodeid);
796
797 if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
798 log_print("no address for nodeid %d", con->nodeid);
799 return;
800 }
801 base_con = nodeid2con(0, 0);
802 BUG_ON(base_con == NULL);
803
804 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
805
806 outmessage.msg_name = &rem_addr;
807 outmessage.msg_namelen = addrlen;
808 outmessage.msg_control = outcmsg;
809 outmessage.msg_controllen = sizeof(outcmsg);
810 outmessage.msg_flags = MSG_EOR;
811
812 spin_lock(&con->writequeue_lock);
813 e = list_entry(con->writequeue.next, struct writequeue_entry,
814 list);
815
816 BUG_ON((struct list_head *) e == &con->writequeue);
817
818 len = e->len;
819 offset = e->offset;
820 spin_unlock(&con->writequeue_lock);
821 kmap(e->page);
822
823 /* Send the first block off the write queue */
824 iov[0].iov_base = page_address(e->page)+offset;
825 iov[0].iov_len = len;
826
827 cmsg = CMSG_FIRSTHDR(&outmessage);
828 cmsg->cmsg_level = IPPROTO_SCTP;
829 cmsg->cmsg_type = SCTP_SNDRCV;
830 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
831 sinfo = CMSG_DATA(cmsg);
832 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
833 sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
834 outmessage.msg_controllen = cmsg->cmsg_len;
835
836 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
837 if (ret < 0) {
838 log_print("Send first packet to node %d failed: %d",
839 con->nodeid, ret);
840
841 /* Try again later */
842 clear_bit(CF_CONNECT_PENDING, &con->flags);
843 clear_bit(CF_INIT_PENDING, &con->flags);
844 }
845 else {
846 spin_lock(&con->writequeue_lock);
847 e->offset += ret;
848 e->len -= ret;
849
850 if (e->len == 0 && e->users == 0) {
851 list_del(&e->list);
852 kunmap(e->page);
853 free_entry(e);
854 }
855 spin_unlock(&con->writequeue_lock);
856 }
857 }
858
859 /* Connect a new socket to its peer */
860 static void tcp_connect_to_sock(struct connection *con)
861 {
862 int result = -EHOSTUNREACH;
863 struct sockaddr_storage saddr;
864 int addr_len;
865 struct socket *sock;
866
867 if (con->nodeid == 0) {
868 log_print("attempt to connect sock 0 foiled");
869 return;
870 }
871
872 mutex_lock(&con->sock_mutex);
873 if (con->retries++ > MAX_CONNECT_RETRIES)
874 goto out;
875
876 /* Some odd races can cause double-connects, ignore them */
877 if (con->sock) {
878 result = 0;
879 goto out;
880 }
881
882 /* Create a socket to communicate with */
883 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
884 IPPROTO_TCP, &sock);
885 if (result < 0)
886 goto out_err;
887
888 memset(&saddr, 0, sizeof(saddr));
889 if (dlm_nodeid_to_addr(con->nodeid, &saddr))
890 goto out_err;
891
892 sock->sk->sk_user_data = con;
893 con->rx_action = receive_from_sock;
894 con->connect_action = tcp_connect_to_sock;
895 add_sock(sock, con);
896
897 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
898
899 log_print("connecting to %d", con->nodeid);
900 result =
901 sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
902 O_NONBLOCK);
903 if (result == -EINPROGRESS)
904 result = 0;
905 if (result == 0)
906 goto out;
907
908 out_err:
909 if (con->sock) {
910 sock_release(con->sock);
911 con->sock = NULL;
912 }
913 /*
914 * Some errors are fatal and this list might need adjusting. For other
915 * errors we try again until the max number of retries is reached.
916 */
917 if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
918 result != -ENETDOWN && result != EINVAL
919 && result != -EPROTONOSUPPORT) {
920 lowcomms_connect_sock(con);
921 result = 0;
922 }
923 out:
924 mutex_unlock(&con->sock_mutex);
925 return;
926 }
927
928 static struct socket *tcp_create_listen_sock(struct connection *con,
929 struct sockaddr_storage *saddr)
930 {
931 struct socket *sock = NULL;
932 int result = 0;
933 int one = 1;
934 int addr_len;
935
936 if (dlm_local_addr[0]->ss_family == AF_INET)
937 addr_len = sizeof(struct sockaddr_in);
938 else
939 addr_len = sizeof(struct sockaddr_in6);
940
941 /* Create a socket to communicate with */
942 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
943 IPPROTO_TCP, &sock);
944 if (result < 0) {
945 log_print("Can't create listening comms socket");
946 goto create_out;
947 }
948
949 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
950 (char *)&one, sizeof(one));
951
952 if (result < 0) {
953 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
954 }
955 sock->sk->sk_user_data = con;
956 con->rx_action = tcp_accept_from_sock;
957 con->connect_action = tcp_connect_to_sock;
958 con->sock = sock;
959
960 /* Bind to our port */
961 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
962 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
963 if (result < 0) {
964 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
965 sock_release(sock);
966 sock = NULL;
967 con->sock = NULL;
968 goto create_out;
969 }
970 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
971 (char *)&one, sizeof(one));
972 if (result < 0) {
973 log_print("Set keepalive failed: %d", result);
974 }
975
976 result = sock->ops->listen(sock, 5);
977 if (result < 0) {
978 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
979 sock_release(sock);
980 sock = NULL;
981 goto create_out;
982 }
983
984 create_out:
985 return sock;
986 }
987
988 /* Get local addresses */
989 static void init_local(void)
990 {
991 struct sockaddr_storage sas, *addr;
992 int i;
993
994 dlm_local_count = 0;
995 for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
996 if (dlm_our_addr(&sas, i))
997 break;
998
999 addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1000 if (!addr)
1001 break;
1002 memcpy(addr, &sas, sizeof(*addr));
1003 dlm_local_addr[dlm_local_count++] = addr;
1004 }
1005 }
1006
1007 /* Bind to an IP address. SCTP allows multiple address so it can do
1008 multi-homing */
1009 static int add_sctp_bind_addr(struct connection *sctp_con,
1010 struct sockaddr_storage *addr,
1011 int addr_len, int num)
1012 {
1013 int result = 0;
1014
1015 if (num == 1)
1016 result = kernel_bind(sctp_con->sock,
1017 (struct sockaddr *) addr,
1018 addr_len);
1019 else
1020 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1021 SCTP_SOCKOPT_BINDX_ADD,
1022 (char *)addr, addr_len);
1023
1024 if (result < 0)
1025 log_print("Can't bind to port %d addr number %d",
1026 dlm_config.ci_tcp_port, num);
1027
1028 return result;
1029 }
1030
1031 /* Initialise SCTP socket and bind to all interfaces */
1032 static int sctp_listen_for_all(void)
1033 {
1034 struct socket *sock = NULL;
1035 struct sockaddr_storage localaddr;
1036 struct sctp_event_subscribe subscribe;
1037 int result = -EINVAL, num = 1, i, addr_len;
1038 struct connection *con = nodeid2con(0, GFP_KERNEL);
1039 int bufsize = NEEDED_RMEM;
1040
1041 if (!con)
1042 return -ENOMEM;
1043
1044 log_print("Using SCTP for communications");
1045
1046 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1047 IPPROTO_SCTP, &sock);
1048 if (result < 0) {
1049 log_print("Can't create comms socket, check SCTP is loaded");
1050 goto out;
1051 }
1052
1053 /* Listen for events */
1054 memset(&subscribe, 0, sizeof(subscribe));
1055 subscribe.sctp_data_io_event = 1;
1056 subscribe.sctp_association_event = 1;
1057 subscribe.sctp_send_failure_event = 1;
1058 subscribe.sctp_shutdown_event = 1;
1059 subscribe.sctp_partial_delivery_event = 1;
1060
1061 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
1062 (char *)&bufsize, sizeof(bufsize));
1063 if (result)
1064 log_print("Error increasing buffer space on socket %d", result);
1065
1066 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1067 (char *)&subscribe, sizeof(subscribe));
1068 if (result < 0) {
1069 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1070 result);
1071 goto create_delsock;
1072 }
1073
1074 /* Init con struct */
1075 sock->sk->sk_user_data = con;
1076 con->sock = sock;
1077 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1078 con->rx_action = receive_from_sock;
1079 con->connect_action = sctp_init_assoc;
1080
1081 /* Bind to all interfaces. */
1082 for (i = 0; i < dlm_local_count; i++) {
1083 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1084 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1085
1086 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1087 if (result)
1088 goto create_delsock;
1089 ++num;
1090 }
1091
1092 result = sock->ops->listen(sock, 5);
1093 if (result < 0) {
1094 log_print("Can't set socket listening");
1095 goto create_delsock;
1096 }
1097
1098 return 0;
1099
1100 create_delsock:
1101 sock_release(sock);
1102 con->sock = NULL;
1103 out:
1104 return result;
1105 }
1106
1107 static int tcp_listen_for_all(void)
1108 {
1109 struct socket *sock = NULL;
1110 struct connection *con = nodeid2con(0, GFP_KERNEL);
1111 int result = -EINVAL;
1112
1113 if (!con)
1114 return -ENOMEM;
1115
1116 /* We don't support multi-homed hosts */
1117 if (dlm_local_addr[1] != NULL) {
1118 log_print("TCP protocol can't handle multi-homed hosts, "
1119 "try SCTP");
1120 return -EINVAL;
1121 }
1122
1123 log_print("Using TCP for communications");
1124
1125 set_bit(CF_IS_OTHERCON, &con->flags);
1126
1127 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1128 if (sock) {
1129 add_sock(sock, con);
1130 result = 0;
1131 }
1132 else {
1133 result = -EADDRINUSE;
1134 }
1135
1136 return result;
1137 }
1138
1139
1140
1141 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1142 gfp_t allocation)
1143 {
1144 struct writequeue_entry *entry;
1145
1146 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1147 if (!entry)
1148 return NULL;
1149
1150 entry->page = alloc_page(allocation);
1151 if (!entry->page) {
1152 kfree(entry);
1153 return NULL;
1154 }
1155
1156 entry->offset = 0;
1157 entry->len = 0;
1158 entry->end = 0;
1159 entry->users = 0;
1160 entry->con = con;
1161
1162 return entry;
1163 }
1164
1165 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1166 {
1167 struct connection *con;
1168 struct writequeue_entry *e;
1169 int offset = 0;
1170 int users = 0;
1171
1172 con = nodeid2con(nodeid, allocation);
1173 if (!con)
1174 return NULL;
1175
1176 spin_lock(&con->writequeue_lock);
1177 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1178 if ((&e->list == &con->writequeue) ||
1179 (PAGE_CACHE_SIZE - e->end < len)) {
1180 e = NULL;
1181 } else {
1182 offset = e->end;
1183 e->end += len;
1184 users = e->users++;
1185 }
1186 spin_unlock(&con->writequeue_lock);
1187
1188 if (e) {
1189 got_one:
1190 if (users == 0)
1191 kmap(e->page);
1192 *ppc = page_address(e->page) + offset;
1193 return e;
1194 }
1195
1196 e = new_writequeue_entry(con, allocation);
1197 if (e) {
1198 spin_lock(&con->writequeue_lock);
1199 offset = e->end;
1200 e->end += len;
1201 users = e->users++;
1202 list_add_tail(&e->list, &con->writequeue);
1203 spin_unlock(&con->writequeue_lock);
1204 goto got_one;
1205 }
1206 return NULL;
1207 }
1208
1209 void dlm_lowcomms_commit_buffer(void *mh)
1210 {
1211 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1212 struct connection *con = e->con;
1213 int users;
1214
1215 spin_lock(&con->writequeue_lock);
1216 users = --e->users;
1217 if (users)
1218 goto out;
1219 e->len = e->end - e->offset;
1220 kunmap(e->page);
1221 spin_unlock(&con->writequeue_lock);
1222
1223 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1224 queue_work(send_workqueue, &con->swork);
1225 }
1226 return;
1227
1228 out:
1229 spin_unlock(&con->writequeue_lock);
1230 return;
1231 }
1232
1233 /* Send a message */
1234 static void send_to_sock(struct connection *con)
1235 {
1236 int ret = 0;
1237 ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1238 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1239 struct writequeue_entry *e;
1240 int len, offset;
1241
1242 mutex_lock(&con->sock_mutex);
1243 if (con->sock == NULL)
1244 goto out_connect;
1245
1246 sendpage = con->sock->ops->sendpage;
1247
1248 spin_lock(&con->writequeue_lock);
1249 for (;;) {
1250 e = list_entry(con->writequeue.next, struct writequeue_entry,
1251 list);
1252 if ((struct list_head *) e == &con->writequeue)
1253 break;
1254
1255 len = e->len;
1256 offset = e->offset;
1257 BUG_ON(len == 0 && e->users == 0);
1258 spin_unlock(&con->writequeue_lock);
1259 kmap(e->page);
1260
1261 ret = 0;
1262 if (len) {
1263 ret = sendpage(con->sock, e->page, offset, len,
1264 msg_flags);
1265 if (ret == -EAGAIN || ret == 0)
1266 goto out;
1267 if (ret <= 0)
1268 goto send_error;
1269 } else {
1270 /* Don't starve people filling buffers */
1271 cond_resched();
1272 }
1273
1274 spin_lock(&con->writequeue_lock);
1275 e->offset += ret;
1276 e->len -= ret;
1277
1278 if (e->len == 0 && e->users == 0) {
1279 list_del(&e->list);
1280 kunmap(e->page);
1281 free_entry(e);
1282 continue;
1283 }
1284 }
1285 spin_unlock(&con->writequeue_lock);
1286 out:
1287 mutex_unlock(&con->sock_mutex);
1288 return;
1289
1290 send_error:
1291 mutex_unlock(&con->sock_mutex);
1292 close_connection(con, false);
1293 lowcomms_connect_sock(con);
1294 return;
1295
1296 out_connect:
1297 mutex_unlock(&con->sock_mutex);
1298 if (!test_bit(CF_INIT_PENDING, &con->flags))
1299 lowcomms_connect_sock(con);
1300 return;
1301 }
1302
1303 static void clean_one_writequeue(struct connection *con)
1304 {
1305 struct list_head *list;
1306 struct list_head *temp;
1307
1308 spin_lock(&con->writequeue_lock);
1309 list_for_each_safe(list, temp, &con->writequeue) {
1310 struct writequeue_entry *e =
1311 list_entry(list, struct writequeue_entry, list);
1312 list_del(&e->list);
1313 free_entry(e);
1314 }
1315 spin_unlock(&con->writequeue_lock);
1316 }
1317
1318 /* Called from recovery when it knows that a node has
1319 left the cluster */
1320 int dlm_lowcomms_close(int nodeid)
1321 {
1322 struct connection *con;
1323
1324 log_print("closing connection to node %d", nodeid);
1325 con = nodeid2con(nodeid, 0);
1326 if (con) {
1327 clean_one_writequeue(con);
1328 close_connection(con, true);
1329 }
1330 return 0;
1331 }
1332
1333 /* Receive workqueue function */
1334 static void process_recv_sockets(struct work_struct *work)
1335 {
1336 struct connection *con = container_of(work, struct connection, rwork);
1337 int err;
1338
1339 clear_bit(CF_READ_PENDING, &con->flags);
1340 do {
1341 err = con->rx_action(con);
1342 } while (!err);
1343 }
1344
1345 /* Send workqueue function */
1346 static void process_send_sockets(struct work_struct *work)
1347 {
1348 struct connection *con = container_of(work, struct connection, swork);
1349
1350 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1351 con->connect_action(con);
1352 }
1353 clear_bit(CF_WRITE_PENDING, &con->flags);
1354 send_to_sock(con);
1355 }
1356
1357
1358 /* Discard all entries on the write queues */
1359 static void clean_writequeues(void)
1360 {
1361 int nodeid;
1362
1363 for (nodeid = 1; nodeid <= max_nodeid; nodeid++) {
1364 struct connection *con = __nodeid2con(nodeid, 0);
1365
1366 if (con)
1367 clean_one_writequeue(con);
1368 }
1369 }
1370
1371 static void work_stop(void)
1372 {
1373 destroy_workqueue(recv_workqueue);
1374 destroy_workqueue(send_workqueue);
1375 }
1376
1377 static int work_start(void)
1378 {
1379 int error;
1380 recv_workqueue = create_workqueue("dlm_recv");
1381 error = IS_ERR(recv_workqueue);
1382 if (error) {
1383 log_print("can't start dlm_recv %d", error);
1384 return error;
1385 }
1386
1387 send_workqueue = create_singlethread_workqueue("dlm_send");
1388 error = IS_ERR(send_workqueue);
1389 if (error) {
1390 log_print("can't start dlm_send %d", error);
1391 destroy_workqueue(recv_workqueue);
1392 return error;
1393 }
1394
1395 return 0;
1396 }
1397
1398 void dlm_lowcomms_stop(void)
1399 {
1400 int i;
1401 struct connection *con;
1402
1403 /* Set all the flags to prevent any
1404 socket activity.
1405 */
1406 down(&connections_lock);
1407 for (i = 0; i <= max_nodeid; i++) {
1408 con = __nodeid2con(i, 0);
1409 if (con) {
1410 con->flags |= 0xFF;
1411 if (con->sock)
1412 con->sock->sk->sk_user_data = NULL;
1413 }
1414 }
1415 up(&connections_lock);
1416
1417 work_stop();
1418
1419 down(&connections_lock);
1420 clean_writequeues();
1421
1422 for (i = 0; i <= max_nodeid; i++) {
1423 con = __nodeid2con(i, 0);
1424 if (con) {
1425 close_connection(con, true);
1426 if (con->othercon)
1427 kmem_cache_free(con_cache, con->othercon);
1428 kmem_cache_free(con_cache, con);
1429 }
1430 }
1431 max_nodeid = 0;
1432 up(&connections_lock);
1433 kmem_cache_destroy(con_cache);
1434 idr_init(&connections_idr);
1435 }
1436
1437 int dlm_lowcomms_start(void)
1438 {
1439 int error = -EINVAL;
1440 struct connection *con;
1441
1442 init_local();
1443 if (!dlm_local_count) {
1444 error = -ENOTCONN;
1445 log_print("no local IP address has been set");
1446 goto out;
1447 }
1448
1449 error = -ENOMEM;
1450 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1451 __alignof__(struct connection), 0,
1452 NULL, NULL);
1453 if (!con_cache)
1454 goto out;
1455
1456 /* Set some sysctl minima */
1457 if (sysctl_rmem_max < NEEDED_RMEM)
1458 sysctl_rmem_max = NEEDED_RMEM;
1459
1460 /* Start listening */
1461 if (dlm_config.ci_protocol == 0)
1462 error = tcp_listen_for_all();
1463 else
1464 error = sctp_listen_for_all();
1465 if (error)
1466 goto fail_unlisten;
1467
1468 error = work_start();
1469 if (error)
1470 goto fail_unlisten;
1471
1472 return 0;
1473
1474 fail_unlisten:
1475 con = nodeid2con(0,0);
1476 if (con) {
1477 close_connection(con, false);
1478 kmem_cache_free(con_cache, con);
1479 }
1480 kmem_cache_destroy(con_cache);
1481
1482 out:
1483 return error;
1484 }