]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ecryptfs/crypto.c
Merge tag 'ecryptfs-3.19-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / ecryptfs / crypto.c
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39
40 #define DECRYPT 0
41 #define ENCRYPT 1
42
43 /**
44 * ecryptfs_to_hex
45 * @dst: Buffer to take hex character representation of contents of
46 * src; must be at least of size (src_size * 2)
47 * @src: Buffer to be converted to a hex string respresentation
48 * @src_size: number of bytes to convert
49 */
50 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
51 {
52 int x;
53
54 for (x = 0; x < src_size; x++)
55 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
56 }
57
58 /**
59 * ecryptfs_from_hex
60 * @dst: Buffer to take the bytes from src hex; must be at least of
61 * size (src_size / 2)
62 * @src: Buffer to be converted from a hex string respresentation to raw value
63 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
64 */
65 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
66 {
67 int x;
68 char tmp[3] = { 0, };
69
70 for (x = 0; x < dst_size; x++) {
71 tmp[0] = src[x * 2];
72 tmp[1] = src[x * 2 + 1];
73 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
74 }
75 }
76
77 /**
78 * ecryptfs_calculate_md5 - calculates the md5 of @src
79 * @dst: Pointer to 16 bytes of allocated memory
80 * @crypt_stat: Pointer to crypt_stat struct for the current inode
81 * @src: Data to be md5'd
82 * @len: Length of @src
83 *
84 * Uses the allocated crypto context that crypt_stat references to
85 * generate the MD5 sum of the contents of src.
86 */
87 static int ecryptfs_calculate_md5(char *dst,
88 struct ecryptfs_crypt_stat *crypt_stat,
89 char *src, int len)
90 {
91 struct scatterlist sg;
92 struct hash_desc desc = {
93 .tfm = crypt_stat->hash_tfm,
94 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
95 };
96 int rc = 0;
97
98 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99 sg_init_one(&sg, (u8 *)src, len);
100 if (!desc.tfm) {
101 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
102 CRYPTO_ALG_ASYNC);
103 if (IS_ERR(desc.tfm)) {
104 rc = PTR_ERR(desc.tfm);
105 ecryptfs_printk(KERN_ERR, "Error attempting to "
106 "allocate crypto context; rc = [%d]\n",
107 rc);
108 goto out;
109 }
110 crypt_stat->hash_tfm = desc.tfm;
111 }
112 rc = crypto_hash_init(&desc);
113 if (rc) {
114 printk(KERN_ERR
115 "%s: Error initializing crypto hash; rc = [%d]\n",
116 __func__, rc);
117 goto out;
118 }
119 rc = crypto_hash_update(&desc, &sg, len);
120 if (rc) {
121 printk(KERN_ERR
122 "%s: Error updating crypto hash; rc = [%d]\n",
123 __func__, rc);
124 goto out;
125 }
126 rc = crypto_hash_final(&desc, dst);
127 if (rc) {
128 printk(KERN_ERR
129 "%s: Error finalizing crypto hash; rc = [%d]\n",
130 __func__, rc);
131 goto out;
132 }
133 out:
134 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135 return rc;
136 }
137
138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
139 char *cipher_name,
140 char *chaining_modifier)
141 {
142 int cipher_name_len = strlen(cipher_name);
143 int chaining_modifier_len = strlen(chaining_modifier);
144 int algified_name_len;
145 int rc;
146
147 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
148 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149 if (!(*algified_name)) {
150 rc = -ENOMEM;
151 goto out;
152 }
153 snprintf((*algified_name), algified_name_len, "%s(%s)",
154 chaining_modifier, cipher_name);
155 rc = 0;
156 out:
157 return rc;
158 }
159
160 /**
161 * ecryptfs_derive_iv
162 * @iv: destination for the derived iv vale
163 * @crypt_stat: Pointer to crypt_stat struct for the current inode
164 * @offset: Offset of the extent whose IV we are to derive
165 *
166 * Generate the initialization vector from the given root IV and page
167 * offset.
168 *
169 * Returns zero on success; non-zero on error.
170 */
171 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
172 loff_t offset)
173 {
174 int rc = 0;
175 char dst[MD5_DIGEST_SIZE];
176 char src[ECRYPTFS_MAX_IV_BYTES + 16];
177
178 if (unlikely(ecryptfs_verbosity > 0)) {
179 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
180 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
181 }
182 /* TODO: It is probably secure to just cast the least
183 * significant bits of the root IV into an unsigned long and
184 * add the offset to that rather than go through all this
185 * hashing business. -Halcrow */
186 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
187 memset((src + crypt_stat->iv_bytes), 0, 16);
188 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189 if (unlikely(ecryptfs_verbosity > 0)) {
190 ecryptfs_printk(KERN_DEBUG, "source:\n");
191 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
192 }
193 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
194 (crypt_stat->iv_bytes + 16));
195 if (rc) {
196 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
197 "MD5 while generating IV for a page\n");
198 goto out;
199 }
200 memcpy(iv, dst, crypt_stat->iv_bytes);
201 if (unlikely(ecryptfs_verbosity > 0)) {
202 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
203 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
204 }
205 out:
206 return rc;
207 }
208
209 /**
210 * ecryptfs_init_crypt_stat
211 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212 *
213 * Initialize the crypt_stat structure.
214 */
215 void
216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
217 {
218 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219 INIT_LIST_HEAD(&crypt_stat->keysig_list);
220 mutex_init(&crypt_stat->keysig_list_mutex);
221 mutex_init(&crypt_stat->cs_mutex);
222 mutex_init(&crypt_stat->cs_tfm_mutex);
223 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225 }
226
227 /**
228 * ecryptfs_destroy_crypt_stat
229 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
230 *
231 * Releases all memory associated with a crypt_stat struct.
232 */
233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234 {
235 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
236
237 if (crypt_stat->tfm)
238 crypto_free_ablkcipher(crypt_stat->tfm);
239 if (crypt_stat->hash_tfm)
240 crypto_free_hash(crypt_stat->hash_tfm);
241 list_for_each_entry_safe(key_sig, key_sig_tmp,
242 &crypt_stat->keysig_list, crypt_stat_list) {
243 list_del(&key_sig->crypt_stat_list);
244 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
245 }
246 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
247 }
248
249 void ecryptfs_destroy_mount_crypt_stat(
250 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
251 {
252 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
253
254 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
255 return;
256 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
257 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
258 &mount_crypt_stat->global_auth_tok_list,
259 mount_crypt_stat_list) {
260 list_del(&auth_tok->mount_crypt_stat_list);
261 if (auth_tok->global_auth_tok_key
262 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
263 key_put(auth_tok->global_auth_tok_key);
264 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
265 }
266 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
267 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
268 }
269
270 /**
271 * virt_to_scatterlist
272 * @addr: Virtual address
273 * @size: Size of data; should be an even multiple of the block size
274 * @sg: Pointer to scatterlist array; set to NULL to obtain only
275 * the number of scatterlist structs required in array
276 * @sg_size: Max array size
277 *
278 * Fills in a scatterlist array with page references for a passed
279 * virtual address.
280 *
281 * Returns the number of scatterlist structs in array used
282 */
283 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
284 int sg_size)
285 {
286 int i = 0;
287 struct page *pg;
288 int offset;
289 int remainder_of_page;
290
291 sg_init_table(sg, sg_size);
292
293 while (size > 0 && i < sg_size) {
294 pg = virt_to_page(addr);
295 offset = offset_in_page(addr);
296 sg_set_page(&sg[i], pg, 0, offset);
297 remainder_of_page = PAGE_CACHE_SIZE - offset;
298 if (size >= remainder_of_page) {
299 sg[i].length = remainder_of_page;
300 addr += remainder_of_page;
301 size -= remainder_of_page;
302 } else {
303 sg[i].length = size;
304 addr += size;
305 size = 0;
306 }
307 i++;
308 }
309 if (size > 0)
310 return -ENOMEM;
311 return i;
312 }
313
314 struct extent_crypt_result {
315 struct completion completion;
316 int rc;
317 };
318
319 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
320 {
321 struct extent_crypt_result *ecr = req->data;
322
323 if (rc == -EINPROGRESS)
324 return;
325
326 ecr->rc = rc;
327 complete(&ecr->completion);
328 }
329
330 /**
331 * crypt_scatterlist
332 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
333 * @dst_sg: Destination of the data after performing the crypto operation
334 * @src_sg: Data to be encrypted or decrypted
335 * @size: Length of data
336 * @iv: IV to use
337 * @op: ENCRYPT or DECRYPT to indicate the desired operation
338 *
339 * Returns the number of bytes encrypted or decrypted; negative value on error
340 */
341 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
342 struct scatterlist *dst_sg,
343 struct scatterlist *src_sg, int size,
344 unsigned char *iv, int op)
345 {
346 struct ablkcipher_request *req = NULL;
347 struct extent_crypt_result ecr;
348 int rc = 0;
349
350 BUG_ON(!crypt_stat || !crypt_stat->tfm
351 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
352 if (unlikely(ecryptfs_verbosity > 0)) {
353 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
354 crypt_stat->key_size);
355 ecryptfs_dump_hex(crypt_stat->key,
356 crypt_stat->key_size);
357 }
358
359 init_completion(&ecr.completion);
360
361 mutex_lock(&crypt_stat->cs_tfm_mutex);
362 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
363 if (!req) {
364 mutex_unlock(&crypt_stat->cs_tfm_mutex);
365 rc = -ENOMEM;
366 goto out;
367 }
368
369 ablkcipher_request_set_callback(req,
370 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
371 extent_crypt_complete, &ecr);
372 /* Consider doing this once, when the file is opened */
373 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
374 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
375 crypt_stat->key_size);
376 if (rc) {
377 ecryptfs_printk(KERN_ERR,
378 "Error setting key; rc = [%d]\n",
379 rc);
380 mutex_unlock(&crypt_stat->cs_tfm_mutex);
381 rc = -EINVAL;
382 goto out;
383 }
384 crypt_stat->flags |= ECRYPTFS_KEY_SET;
385 }
386 mutex_unlock(&crypt_stat->cs_tfm_mutex);
387 ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
388 rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
389 crypto_ablkcipher_decrypt(req);
390 if (rc == -EINPROGRESS || rc == -EBUSY) {
391 struct extent_crypt_result *ecr = req->base.data;
392
393 wait_for_completion(&ecr->completion);
394 rc = ecr->rc;
395 reinit_completion(&ecr->completion);
396 }
397 out:
398 ablkcipher_request_free(req);
399 return rc;
400 }
401
402 /**
403 * lower_offset_for_page
404 *
405 * Convert an eCryptfs page index into a lower byte offset
406 */
407 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
408 struct page *page)
409 {
410 return ecryptfs_lower_header_size(crypt_stat) +
411 ((loff_t)page->index << PAGE_CACHE_SHIFT);
412 }
413
414 /**
415 * crypt_extent
416 * @crypt_stat: crypt_stat containing cryptographic context for the
417 * encryption operation
418 * @dst_page: The page to write the result into
419 * @src_page: The page to read from
420 * @extent_offset: Page extent offset for use in generating IV
421 * @op: ENCRYPT or DECRYPT to indicate the desired operation
422 *
423 * Encrypts or decrypts one extent of data.
424 *
425 * Return zero on success; non-zero otherwise
426 */
427 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
428 struct page *dst_page,
429 struct page *src_page,
430 unsigned long extent_offset, int op)
431 {
432 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
433 loff_t extent_base;
434 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
435 struct scatterlist src_sg, dst_sg;
436 size_t extent_size = crypt_stat->extent_size;
437 int rc;
438
439 extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
440 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
441 (extent_base + extent_offset));
442 if (rc) {
443 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
444 "extent [0x%.16llx]; rc = [%d]\n",
445 (unsigned long long)(extent_base + extent_offset), rc);
446 goto out;
447 }
448
449 sg_init_table(&src_sg, 1);
450 sg_init_table(&dst_sg, 1);
451
452 sg_set_page(&src_sg, src_page, extent_size,
453 extent_offset * extent_size);
454 sg_set_page(&dst_sg, dst_page, extent_size,
455 extent_offset * extent_size);
456
457 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
458 extent_iv, op);
459 if (rc < 0) {
460 printk(KERN_ERR "%s: Error attempting to crypt page with "
461 "page_index = [%ld], extent_offset = [%ld]; "
462 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
463 goto out;
464 }
465 rc = 0;
466 out:
467 return rc;
468 }
469
470 /**
471 * ecryptfs_encrypt_page
472 * @page: Page mapped from the eCryptfs inode for the file; contains
473 * decrypted content that needs to be encrypted (to a temporary
474 * page; not in place) and written out to the lower file
475 *
476 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
477 * that eCryptfs pages may straddle the lower pages -- for instance,
478 * if the file was created on a machine with an 8K page size
479 * (resulting in an 8K header), and then the file is copied onto a
480 * host with a 32K page size, then when reading page 0 of the eCryptfs
481 * file, 24K of page 0 of the lower file will be read and decrypted,
482 * and then 8K of page 1 of the lower file will be read and decrypted.
483 *
484 * Returns zero on success; negative on error
485 */
486 int ecryptfs_encrypt_page(struct page *page)
487 {
488 struct inode *ecryptfs_inode;
489 struct ecryptfs_crypt_stat *crypt_stat;
490 char *enc_extent_virt;
491 struct page *enc_extent_page = NULL;
492 loff_t extent_offset;
493 loff_t lower_offset;
494 int rc = 0;
495
496 ecryptfs_inode = page->mapping->host;
497 crypt_stat =
498 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
499 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
500 enc_extent_page = alloc_page(GFP_USER);
501 if (!enc_extent_page) {
502 rc = -ENOMEM;
503 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
504 "encrypted extent\n");
505 goto out;
506 }
507
508 for (extent_offset = 0;
509 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
510 extent_offset++) {
511 rc = crypt_extent(crypt_stat, enc_extent_page, page,
512 extent_offset, ENCRYPT);
513 if (rc) {
514 printk(KERN_ERR "%s: Error encrypting extent; "
515 "rc = [%d]\n", __func__, rc);
516 goto out;
517 }
518 }
519
520 lower_offset = lower_offset_for_page(crypt_stat, page);
521 enc_extent_virt = kmap(enc_extent_page);
522 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
523 PAGE_CACHE_SIZE);
524 kunmap(enc_extent_page);
525 if (rc < 0) {
526 ecryptfs_printk(KERN_ERR,
527 "Error attempting to write lower page; rc = [%d]\n",
528 rc);
529 goto out;
530 }
531 rc = 0;
532 out:
533 if (enc_extent_page) {
534 __free_page(enc_extent_page);
535 }
536 return rc;
537 }
538
539 /**
540 * ecryptfs_decrypt_page
541 * @page: Page mapped from the eCryptfs inode for the file; data read
542 * and decrypted from the lower file will be written into this
543 * page
544 *
545 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
546 * that eCryptfs pages may straddle the lower pages -- for instance,
547 * if the file was created on a machine with an 8K page size
548 * (resulting in an 8K header), and then the file is copied onto a
549 * host with a 32K page size, then when reading page 0 of the eCryptfs
550 * file, 24K of page 0 of the lower file will be read and decrypted,
551 * and then 8K of page 1 of the lower file will be read and decrypted.
552 *
553 * Returns zero on success; negative on error
554 */
555 int ecryptfs_decrypt_page(struct page *page)
556 {
557 struct inode *ecryptfs_inode;
558 struct ecryptfs_crypt_stat *crypt_stat;
559 char *page_virt;
560 unsigned long extent_offset;
561 loff_t lower_offset;
562 int rc = 0;
563
564 ecryptfs_inode = page->mapping->host;
565 crypt_stat =
566 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
567 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
568
569 lower_offset = lower_offset_for_page(crypt_stat, page);
570 page_virt = kmap(page);
571 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
572 ecryptfs_inode);
573 kunmap(page);
574 if (rc < 0) {
575 ecryptfs_printk(KERN_ERR,
576 "Error attempting to read lower page; rc = [%d]\n",
577 rc);
578 goto out;
579 }
580
581 for (extent_offset = 0;
582 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
583 extent_offset++) {
584 rc = crypt_extent(crypt_stat, page, page,
585 extent_offset, DECRYPT);
586 if (rc) {
587 printk(KERN_ERR "%s: Error encrypting extent; "
588 "rc = [%d]\n", __func__, rc);
589 goto out;
590 }
591 }
592 out:
593 return rc;
594 }
595
596 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
597
598 /**
599 * ecryptfs_init_crypt_ctx
600 * @crypt_stat: Uninitialized crypt stats structure
601 *
602 * Initialize the crypto context.
603 *
604 * TODO: Performance: Keep a cache of initialized cipher contexts;
605 * only init if needed
606 */
607 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
608 {
609 char *full_alg_name;
610 int rc = -EINVAL;
611
612 ecryptfs_printk(KERN_DEBUG,
613 "Initializing cipher [%s]; strlen = [%d]; "
614 "key_size_bits = [%zd]\n",
615 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
616 crypt_stat->key_size << 3);
617 mutex_lock(&crypt_stat->cs_tfm_mutex);
618 if (crypt_stat->tfm) {
619 rc = 0;
620 goto out_unlock;
621 }
622 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
623 crypt_stat->cipher, "cbc");
624 if (rc)
625 goto out_unlock;
626 crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
627 if (IS_ERR(crypt_stat->tfm)) {
628 rc = PTR_ERR(crypt_stat->tfm);
629 crypt_stat->tfm = NULL;
630 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
631 "Error initializing cipher [%s]\n",
632 full_alg_name);
633 goto out_free;
634 }
635 crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
636 rc = 0;
637 out_free:
638 kfree(full_alg_name);
639 out_unlock:
640 mutex_unlock(&crypt_stat->cs_tfm_mutex);
641 return rc;
642 }
643
644 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
645 {
646 int extent_size_tmp;
647
648 crypt_stat->extent_mask = 0xFFFFFFFF;
649 crypt_stat->extent_shift = 0;
650 if (crypt_stat->extent_size == 0)
651 return;
652 extent_size_tmp = crypt_stat->extent_size;
653 while ((extent_size_tmp & 0x01) == 0) {
654 extent_size_tmp >>= 1;
655 crypt_stat->extent_mask <<= 1;
656 crypt_stat->extent_shift++;
657 }
658 }
659
660 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
661 {
662 /* Default values; may be overwritten as we are parsing the
663 * packets. */
664 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
665 set_extent_mask_and_shift(crypt_stat);
666 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
667 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
668 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
669 else {
670 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
671 crypt_stat->metadata_size =
672 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
673 else
674 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
675 }
676 }
677
678 /**
679 * ecryptfs_compute_root_iv
680 * @crypt_stats
681 *
682 * On error, sets the root IV to all 0's.
683 */
684 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
685 {
686 int rc = 0;
687 char dst[MD5_DIGEST_SIZE];
688
689 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
690 BUG_ON(crypt_stat->iv_bytes <= 0);
691 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
692 rc = -EINVAL;
693 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
694 "cannot generate root IV\n");
695 goto out;
696 }
697 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
698 crypt_stat->key_size);
699 if (rc) {
700 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
701 "MD5 while generating root IV\n");
702 goto out;
703 }
704 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
705 out:
706 if (rc) {
707 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
708 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
709 }
710 return rc;
711 }
712
713 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
714 {
715 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
716 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
717 ecryptfs_compute_root_iv(crypt_stat);
718 if (unlikely(ecryptfs_verbosity > 0)) {
719 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
720 ecryptfs_dump_hex(crypt_stat->key,
721 crypt_stat->key_size);
722 }
723 }
724
725 /**
726 * ecryptfs_copy_mount_wide_flags_to_inode_flags
727 * @crypt_stat: The inode's cryptographic context
728 * @mount_crypt_stat: The mount point's cryptographic context
729 *
730 * This function propagates the mount-wide flags to individual inode
731 * flags.
732 */
733 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
734 struct ecryptfs_crypt_stat *crypt_stat,
735 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
736 {
737 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
738 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
739 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
740 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
741 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
742 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
743 if (mount_crypt_stat->flags
744 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
745 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
746 else if (mount_crypt_stat->flags
747 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
748 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
749 }
750 }
751
752 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
753 struct ecryptfs_crypt_stat *crypt_stat,
754 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
755 {
756 struct ecryptfs_global_auth_tok *global_auth_tok;
757 int rc = 0;
758
759 mutex_lock(&crypt_stat->keysig_list_mutex);
760 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
761
762 list_for_each_entry(global_auth_tok,
763 &mount_crypt_stat->global_auth_tok_list,
764 mount_crypt_stat_list) {
765 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
766 continue;
767 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
768 if (rc) {
769 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
770 goto out;
771 }
772 }
773
774 out:
775 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
776 mutex_unlock(&crypt_stat->keysig_list_mutex);
777 return rc;
778 }
779
780 /**
781 * ecryptfs_set_default_crypt_stat_vals
782 * @crypt_stat: The inode's cryptographic context
783 * @mount_crypt_stat: The mount point's cryptographic context
784 *
785 * Default values in the event that policy does not override them.
786 */
787 static void ecryptfs_set_default_crypt_stat_vals(
788 struct ecryptfs_crypt_stat *crypt_stat,
789 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
790 {
791 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
792 mount_crypt_stat);
793 ecryptfs_set_default_sizes(crypt_stat);
794 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
795 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
796 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
797 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
798 crypt_stat->mount_crypt_stat = mount_crypt_stat;
799 }
800
801 /**
802 * ecryptfs_new_file_context
803 * @ecryptfs_inode: The eCryptfs inode
804 *
805 * If the crypto context for the file has not yet been established,
806 * this is where we do that. Establishing a new crypto context
807 * involves the following decisions:
808 * - What cipher to use?
809 * - What set of authentication tokens to use?
810 * Here we just worry about getting enough information into the
811 * authentication tokens so that we know that they are available.
812 * We associate the available authentication tokens with the new file
813 * via the set of signatures in the crypt_stat struct. Later, when
814 * the headers are actually written out, we may again defer to
815 * userspace to perform the encryption of the session key; for the
816 * foreseeable future, this will be the case with public key packets.
817 *
818 * Returns zero on success; non-zero otherwise
819 */
820 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
821 {
822 struct ecryptfs_crypt_stat *crypt_stat =
823 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
824 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
825 &ecryptfs_superblock_to_private(
826 ecryptfs_inode->i_sb)->mount_crypt_stat;
827 int cipher_name_len;
828 int rc = 0;
829
830 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
831 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
832 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
833 mount_crypt_stat);
834 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
835 mount_crypt_stat);
836 if (rc) {
837 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
838 "to the inode key sigs; rc = [%d]\n", rc);
839 goto out;
840 }
841 cipher_name_len =
842 strlen(mount_crypt_stat->global_default_cipher_name);
843 memcpy(crypt_stat->cipher,
844 mount_crypt_stat->global_default_cipher_name,
845 cipher_name_len);
846 crypt_stat->cipher[cipher_name_len] = '\0';
847 crypt_stat->key_size =
848 mount_crypt_stat->global_default_cipher_key_size;
849 ecryptfs_generate_new_key(crypt_stat);
850 rc = ecryptfs_init_crypt_ctx(crypt_stat);
851 if (rc)
852 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
853 "context for cipher [%s]: rc = [%d]\n",
854 crypt_stat->cipher, rc);
855 out:
856 return rc;
857 }
858
859 /**
860 * ecryptfs_validate_marker - check for the ecryptfs marker
861 * @data: The data block in which to check
862 *
863 * Returns zero if marker found; -EINVAL if not found
864 */
865 static int ecryptfs_validate_marker(char *data)
866 {
867 u32 m_1, m_2;
868
869 m_1 = get_unaligned_be32(data);
870 m_2 = get_unaligned_be32(data + 4);
871 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
872 return 0;
873 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
874 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
875 MAGIC_ECRYPTFS_MARKER);
876 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
877 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
878 return -EINVAL;
879 }
880
881 struct ecryptfs_flag_map_elem {
882 u32 file_flag;
883 u32 local_flag;
884 };
885
886 /* Add support for additional flags by adding elements here. */
887 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
888 {0x00000001, ECRYPTFS_ENABLE_HMAC},
889 {0x00000002, ECRYPTFS_ENCRYPTED},
890 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
891 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
892 };
893
894 /**
895 * ecryptfs_process_flags
896 * @crypt_stat: The cryptographic context
897 * @page_virt: Source data to be parsed
898 * @bytes_read: Updated with the number of bytes read
899 *
900 * Returns zero on success; non-zero if the flag set is invalid
901 */
902 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
903 char *page_virt, int *bytes_read)
904 {
905 int rc = 0;
906 int i;
907 u32 flags;
908
909 flags = get_unaligned_be32(page_virt);
910 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
911 / sizeof(struct ecryptfs_flag_map_elem))); i++)
912 if (flags & ecryptfs_flag_map[i].file_flag) {
913 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
914 } else
915 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
916 /* Version is in top 8 bits of the 32-bit flag vector */
917 crypt_stat->file_version = ((flags >> 24) & 0xFF);
918 (*bytes_read) = 4;
919 return rc;
920 }
921
922 /**
923 * write_ecryptfs_marker
924 * @page_virt: The pointer to in a page to begin writing the marker
925 * @written: Number of bytes written
926 *
927 * Marker = 0x3c81b7f5
928 */
929 static void write_ecryptfs_marker(char *page_virt, size_t *written)
930 {
931 u32 m_1, m_2;
932
933 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
934 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
935 put_unaligned_be32(m_1, page_virt);
936 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
937 put_unaligned_be32(m_2, page_virt);
938 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
939 }
940
941 void ecryptfs_write_crypt_stat_flags(char *page_virt,
942 struct ecryptfs_crypt_stat *crypt_stat,
943 size_t *written)
944 {
945 u32 flags = 0;
946 int i;
947
948 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
949 / sizeof(struct ecryptfs_flag_map_elem))); i++)
950 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
951 flags |= ecryptfs_flag_map[i].file_flag;
952 /* Version is in top 8 bits of the 32-bit flag vector */
953 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
954 put_unaligned_be32(flags, page_virt);
955 (*written) = 4;
956 }
957
958 struct ecryptfs_cipher_code_str_map_elem {
959 char cipher_str[16];
960 u8 cipher_code;
961 };
962
963 /* Add support for additional ciphers by adding elements here. The
964 * cipher_code is whatever OpenPGP applicatoins use to identify the
965 * ciphers. List in order of probability. */
966 static struct ecryptfs_cipher_code_str_map_elem
967 ecryptfs_cipher_code_str_map[] = {
968 {"aes",RFC2440_CIPHER_AES_128 },
969 {"blowfish", RFC2440_CIPHER_BLOWFISH},
970 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
971 {"cast5", RFC2440_CIPHER_CAST_5},
972 {"twofish", RFC2440_CIPHER_TWOFISH},
973 {"cast6", RFC2440_CIPHER_CAST_6},
974 {"aes", RFC2440_CIPHER_AES_192},
975 {"aes", RFC2440_CIPHER_AES_256}
976 };
977
978 /**
979 * ecryptfs_code_for_cipher_string
980 * @cipher_name: The string alias for the cipher
981 * @key_bytes: Length of key in bytes; used for AES code selection
982 *
983 * Returns zero on no match, or the cipher code on match
984 */
985 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
986 {
987 int i;
988 u8 code = 0;
989 struct ecryptfs_cipher_code_str_map_elem *map =
990 ecryptfs_cipher_code_str_map;
991
992 if (strcmp(cipher_name, "aes") == 0) {
993 switch (key_bytes) {
994 case 16:
995 code = RFC2440_CIPHER_AES_128;
996 break;
997 case 24:
998 code = RFC2440_CIPHER_AES_192;
999 break;
1000 case 32:
1001 code = RFC2440_CIPHER_AES_256;
1002 }
1003 } else {
1004 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1005 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1006 code = map[i].cipher_code;
1007 break;
1008 }
1009 }
1010 return code;
1011 }
1012
1013 /**
1014 * ecryptfs_cipher_code_to_string
1015 * @str: Destination to write out the cipher name
1016 * @cipher_code: The code to convert to cipher name string
1017 *
1018 * Returns zero on success
1019 */
1020 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1021 {
1022 int rc = 0;
1023 int i;
1024
1025 str[0] = '\0';
1026 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1027 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1028 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1029 if (str[0] == '\0') {
1030 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1031 "[%d]\n", cipher_code);
1032 rc = -EINVAL;
1033 }
1034 return rc;
1035 }
1036
1037 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1038 {
1039 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1040 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1041 int rc;
1042
1043 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1044 inode);
1045 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1046 return rc >= 0 ? -EINVAL : rc;
1047 rc = ecryptfs_validate_marker(marker);
1048 if (!rc)
1049 ecryptfs_i_size_init(file_size, inode);
1050 return rc;
1051 }
1052
1053 void
1054 ecryptfs_write_header_metadata(char *virt,
1055 struct ecryptfs_crypt_stat *crypt_stat,
1056 size_t *written)
1057 {
1058 u32 header_extent_size;
1059 u16 num_header_extents_at_front;
1060
1061 header_extent_size = (u32)crypt_stat->extent_size;
1062 num_header_extents_at_front =
1063 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1064 put_unaligned_be32(header_extent_size, virt);
1065 virt += 4;
1066 put_unaligned_be16(num_header_extents_at_front, virt);
1067 (*written) = 6;
1068 }
1069
1070 struct kmem_cache *ecryptfs_header_cache;
1071
1072 /**
1073 * ecryptfs_write_headers_virt
1074 * @page_virt: The virtual address to write the headers to
1075 * @max: The size of memory allocated at page_virt
1076 * @size: Set to the number of bytes written by this function
1077 * @crypt_stat: The cryptographic context
1078 * @ecryptfs_dentry: The eCryptfs dentry
1079 *
1080 * Format version: 1
1081 *
1082 * Header Extent:
1083 * Octets 0-7: Unencrypted file size (big-endian)
1084 * Octets 8-15: eCryptfs special marker
1085 * Octets 16-19: Flags
1086 * Octet 16: File format version number (between 0 and 255)
1087 * Octets 17-18: Reserved
1088 * Octet 19: Bit 1 (lsb): Reserved
1089 * Bit 2: Encrypted?
1090 * Bits 3-8: Reserved
1091 * Octets 20-23: Header extent size (big-endian)
1092 * Octets 24-25: Number of header extents at front of file
1093 * (big-endian)
1094 * Octet 26: Begin RFC 2440 authentication token packet set
1095 * Data Extent 0:
1096 * Lower data (CBC encrypted)
1097 * Data Extent 1:
1098 * Lower data (CBC encrypted)
1099 * ...
1100 *
1101 * Returns zero on success
1102 */
1103 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1104 size_t *size,
1105 struct ecryptfs_crypt_stat *crypt_stat,
1106 struct dentry *ecryptfs_dentry)
1107 {
1108 int rc;
1109 size_t written;
1110 size_t offset;
1111
1112 offset = ECRYPTFS_FILE_SIZE_BYTES;
1113 write_ecryptfs_marker((page_virt + offset), &written);
1114 offset += written;
1115 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1116 &written);
1117 offset += written;
1118 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1119 &written);
1120 offset += written;
1121 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1122 ecryptfs_dentry, &written,
1123 max - offset);
1124 if (rc)
1125 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1126 "set; rc = [%d]\n", rc);
1127 if (size) {
1128 offset += written;
1129 *size = offset;
1130 }
1131 return rc;
1132 }
1133
1134 static int
1135 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1136 char *virt, size_t virt_len)
1137 {
1138 int rc;
1139
1140 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1141 0, virt_len);
1142 if (rc < 0)
1143 printk(KERN_ERR "%s: Error attempting to write header "
1144 "information to lower file; rc = [%d]\n", __func__, rc);
1145 else
1146 rc = 0;
1147 return rc;
1148 }
1149
1150 static int
1151 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1152 char *page_virt, size_t size)
1153 {
1154 int rc;
1155
1156 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1157 size, 0);
1158 return rc;
1159 }
1160
1161 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1162 unsigned int order)
1163 {
1164 struct page *page;
1165
1166 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1167 if (page)
1168 return (unsigned long) page_address(page);
1169 return 0;
1170 }
1171
1172 /**
1173 * ecryptfs_write_metadata
1174 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1175 * @ecryptfs_inode: The newly created eCryptfs inode
1176 *
1177 * Write the file headers out. This will likely involve a userspace
1178 * callout, in which the session key is encrypted with one or more
1179 * public keys and/or the passphrase necessary to do the encryption is
1180 * retrieved via a prompt. Exactly what happens at this point should
1181 * be policy-dependent.
1182 *
1183 * Returns zero on success; non-zero on error
1184 */
1185 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1186 struct inode *ecryptfs_inode)
1187 {
1188 struct ecryptfs_crypt_stat *crypt_stat =
1189 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1190 unsigned int order;
1191 char *virt;
1192 size_t virt_len;
1193 size_t size = 0;
1194 int rc = 0;
1195
1196 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1197 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1198 printk(KERN_ERR "Key is invalid; bailing out\n");
1199 rc = -EINVAL;
1200 goto out;
1201 }
1202 } else {
1203 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1204 __func__);
1205 rc = -EINVAL;
1206 goto out;
1207 }
1208 virt_len = crypt_stat->metadata_size;
1209 order = get_order(virt_len);
1210 /* Released in this function */
1211 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1212 if (!virt) {
1213 printk(KERN_ERR "%s: Out of memory\n", __func__);
1214 rc = -ENOMEM;
1215 goto out;
1216 }
1217 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1218 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1219 ecryptfs_dentry);
1220 if (unlikely(rc)) {
1221 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1222 __func__, rc);
1223 goto out_free;
1224 }
1225 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1226 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1227 size);
1228 else
1229 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1230 virt_len);
1231 if (rc) {
1232 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1233 "rc = [%d]\n", __func__, rc);
1234 goto out_free;
1235 }
1236 out_free:
1237 free_pages((unsigned long)virt, order);
1238 out:
1239 return rc;
1240 }
1241
1242 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1243 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1244 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1245 char *virt, int *bytes_read,
1246 int validate_header_size)
1247 {
1248 int rc = 0;
1249 u32 header_extent_size;
1250 u16 num_header_extents_at_front;
1251
1252 header_extent_size = get_unaligned_be32(virt);
1253 virt += sizeof(__be32);
1254 num_header_extents_at_front = get_unaligned_be16(virt);
1255 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1256 * (size_t)header_extent_size));
1257 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1258 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1259 && (crypt_stat->metadata_size
1260 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1261 rc = -EINVAL;
1262 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1263 crypt_stat->metadata_size);
1264 }
1265 return rc;
1266 }
1267
1268 /**
1269 * set_default_header_data
1270 * @crypt_stat: The cryptographic context
1271 *
1272 * For version 0 file format; this function is only for backwards
1273 * compatibility for files created with the prior versions of
1274 * eCryptfs.
1275 */
1276 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1277 {
1278 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1279 }
1280
1281 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1282 {
1283 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1284 struct ecryptfs_crypt_stat *crypt_stat;
1285 u64 file_size;
1286
1287 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1288 mount_crypt_stat =
1289 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1290 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1291 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1292 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1293 file_size += crypt_stat->metadata_size;
1294 } else
1295 file_size = get_unaligned_be64(page_virt);
1296 i_size_write(inode, (loff_t)file_size);
1297 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1298 }
1299
1300 /**
1301 * ecryptfs_read_headers_virt
1302 * @page_virt: The virtual address into which to read the headers
1303 * @crypt_stat: The cryptographic context
1304 * @ecryptfs_dentry: The eCryptfs dentry
1305 * @validate_header_size: Whether to validate the header size while reading
1306 *
1307 * Read/parse the header data. The header format is detailed in the
1308 * comment block for the ecryptfs_write_headers_virt() function.
1309 *
1310 * Returns zero on success
1311 */
1312 static int ecryptfs_read_headers_virt(char *page_virt,
1313 struct ecryptfs_crypt_stat *crypt_stat,
1314 struct dentry *ecryptfs_dentry,
1315 int validate_header_size)
1316 {
1317 int rc = 0;
1318 int offset;
1319 int bytes_read;
1320
1321 ecryptfs_set_default_sizes(crypt_stat);
1322 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1323 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1324 offset = ECRYPTFS_FILE_SIZE_BYTES;
1325 rc = ecryptfs_validate_marker(page_virt + offset);
1326 if (rc)
1327 goto out;
1328 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1329 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1330 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1331 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1332 &bytes_read);
1333 if (rc) {
1334 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1335 goto out;
1336 }
1337 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1338 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1339 "file version [%d] is supported by this "
1340 "version of eCryptfs\n",
1341 crypt_stat->file_version,
1342 ECRYPTFS_SUPPORTED_FILE_VERSION);
1343 rc = -EINVAL;
1344 goto out;
1345 }
1346 offset += bytes_read;
1347 if (crypt_stat->file_version >= 1) {
1348 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1349 &bytes_read, validate_header_size);
1350 if (rc) {
1351 ecryptfs_printk(KERN_WARNING, "Error reading header "
1352 "metadata; rc = [%d]\n", rc);
1353 }
1354 offset += bytes_read;
1355 } else
1356 set_default_header_data(crypt_stat);
1357 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1358 ecryptfs_dentry);
1359 out:
1360 return rc;
1361 }
1362
1363 /**
1364 * ecryptfs_read_xattr_region
1365 * @page_virt: The vitual address into which to read the xattr data
1366 * @ecryptfs_inode: The eCryptfs inode
1367 *
1368 * Attempts to read the crypto metadata from the extended attribute
1369 * region of the lower file.
1370 *
1371 * Returns zero on success; non-zero on error
1372 */
1373 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1374 {
1375 struct dentry *lower_dentry =
1376 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1377 ssize_t size;
1378 int rc = 0;
1379
1380 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1381 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1382 if (size < 0) {
1383 if (unlikely(ecryptfs_verbosity > 0))
1384 printk(KERN_INFO "Error attempting to read the [%s] "
1385 "xattr from the lower file; return value = "
1386 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1387 rc = -EINVAL;
1388 goto out;
1389 }
1390 out:
1391 return rc;
1392 }
1393
1394 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1395 struct inode *inode)
1396 {
1397 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1398 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1399 int rc;
1400
1401 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1402 ECRYPTFS_XATTR_NAME, file_size,
1403 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1404 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1405 return rc >= 0 ? -EINVAL : rc;
1406 rc = ecryptfs_validate_marker(marker);
1407 if (!rc)
1408 ecryptfs_i_size_init(file_size, inode);
1409 return rc;
1410 }
1411
1412 /**
1413 * ecryptfs_read_metadata
1414 *
1415 * Common entry point for reading file metadata. From here, we could
1416 * retrieve the header information from the header region of the file,
1417 * the xattr region of the file, or some other repostory that is
1418 * stored separately from the file itself. The current implementation
1419 * supports retrieving the metadata information from the file contents
1420 * and from the xattr region.
1421 *
1422 * Returns zero if valid headers found and parsed; non-zero otherwise
1423 */
1424 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1425 {
1426 int rc;
1427 char *page_virt;
1428 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1429 struct ecryptfs_crypt_stat *crypt_stat =
1430 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1431 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1432 &ecryptfs_superblock_to_private(
1433 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1434
1435 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1436 mount_crypt_stat);
1437 /* Read the first page from the underlying file */
1438 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1439 if (!page_virt) {
1440 rc = -ENOMEM;
1441 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1442 __func__);
1443 goto out;
1444 }
1445 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1446 ecryptfs_inode);
1447 if (rc >= 0)
1448 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1449 ecryptfs_dentry,
1450 ECRYPTFS_VALIDATE_HEADER_SIZE);
1451 if (rc) {
1452 /* metadata is not in the file header, so try xattrs */
1453 memset(page_virt, 0, PAGE_CACHE_SIZE);
1454 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1455 if (rc) {
1456 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1457 "file header region or xattr region, inode %lu\n",
1458 ecryptfs_inode->i_ino);
1459 rc = -EINVAL;
1460 goto out;
1461 }
1462 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1463 ecryptfs_dentry,
1464 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1465 if (rc) {
1466 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1467 "file xattr region either, inode %lu\n",
1468 ecryptfs_inode->i_ino);
1469 rc = -EINVAL;
1470 }
1471 if (crypt_stat->mount_crypt_stat->flags
1472 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1473 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1474 } else {
1475 printk(KERN_WARNING "Attempt to access file with "
1476 "crypto metadata only in the extended attribute "
1477 "region, but eCryptfs was mounted without "
1478 "xattr support enabled. eCryptfs will not treat "
1479 "this like an encrypted file, inode %lu\n",
1480 ecryptfs_inode->i_ino);
1481 rc = -EINVAL;
1482 }
1483 }
1484 out:
1485 if (page_virt) {
1486 memset(page_virt, 0, PAGE_CACHE_SIZE);
1487 kmem_cache_free(ecryptfs_header_cache, page_virt);
1488 }
1489 return rc;
1490 }
1491
1492 /**
1493 * ecryptfs_encrypt_filename - encrypt filename
1494 *
1495 * CBC-encrypts the filename. We do not want to encrypt the same
1496 * filename with the same key and IV, which may happen with hard
1497 * links, so we prepend random bits to each filename.
1498 *
1499 * Returns zero on success; non-zero otherwise
1500 */
1501 static int
1502 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1503 struct ecryptfs_crypt_stat *crypt_stat,
1504 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1505 {
1506 int rc = 0;
1507
1508 filename->encrypted_filename = NULL;
1509 filename->encrypted_filename_size = 0;
1510 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1511 || (mount_crypt_stat && (mount_crypt_stat->flags
1512 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1513 size_t packet_size;
1514 size_t remaining_bytes;
1515
1516 rc = ecryptfs_write_tag_70_packet(
1517 NULL, NULL,
1518 &filename->encrypted_filename_size,
1519 mount_crypt_stat, NULL,
1520 filename->filename_size);
1521 if (rc) {
1522 printk(KERN_ERR "%s: Error attempting to get packet "
1523 "size for tag 72; rc = [%d]\n", __func__,
1524 rc);
1525 filename->encrypted_filename_size = 0;
1526 goto out;
1527 }
1528 filename->encrypted_filename =
1529 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1530 if (!filename->encrypted_filename) {
1531 printk(KERN_ERR "%s: Out of memory whilst attempting "
1532 "to kmalloc [%zd] bytes\n", __func__,
1533 filename->encrypted_filename_size);
1534 rc = -ENOMEM;
1535 goto out;
1536 }
1537 remaining_bytes = filename->encrypted_filename_size;
1538 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1539 &remaining_bytes,
1540 &packet_size,
1541 mount_crypt_stat,
1542 filename->filename,
1543 filename->filename_size);
1544 if (rc) {
1545 printk(KERN_ERR "%s: Error attempting to generate "
1546 "tag 70 packet; rc = [%d]\n", __func__,
1547 rc);
1548 kfree(filename->encrypted_filename);
1549 filename->encrypted_filename = NULL;
1550 filename->encrypted_filename_size = 0;
1551 goto out;
1552 }
1553 filename->encrypted_filename_size = packet_size;
1554 } else {
1555 printk(KERN_ERR "%s: No support for requested filename "
1556 "encryption method in this release\n", __func__);
1557 rc = -EOPNOTSUPP;
1558 goto out;
1559 }
1560 out:
1561 return rc;
1562 }
1563
1564 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1565 const char *name, size_t name_size)
1566 {
1567 int rc = 0;
1568
1569 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1570 if (!(*copied_name)) {
1571 rc = -ENOMEM;
1572 goto out;
1573 }
1574 memcpy((void *)(*copied_name), (void *)name, name_size);
1575 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1576 * in printing out the
1577 * string in debug
1578 * messages */
1579 (*copied_name_size) = name_size;
1580 out:
1581 return rc;
1582 }
1583
1584 /**
1585 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1586 * @key_tfm: Crypto context for key material, set by this function
1587 * @cipher_name: Name of the cipher
1588 * @key_size: Size of the key in bytes
1589 *
1590 * Returns zero on success. Any crypto_tfm structs allocated here
1591 * should be released by other functions, such as on a superblock put
1592 * event, regardless of whether this function succeeds for fails.
1593 */
1594 static int
1595 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1596 char *cipher_name, size_t *key_size)
1597 {
1598 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1599 char *full_alg_name = NULL;
1600 int rc;
1601
1602 *key_tfm = NULL;
1603 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1604 rc = -EINVAL;
1605 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1606 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1607 goto out;
1608 }
1609 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1610 "ecb");
1611 if (rc)
1612 goto out;
1613 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1614 if (IS_ERR(*key_tfm)) {
1615 rc = PTR_ERR(*key_tfm);
1616 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1617 "[%s]; rc = [%d]\n", full_alg_name, rc);
1618 goto out;
1619 }
1620 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1621 if (*key_size == 0) {
1622 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1623
1624 *key_size = alg->max_keysize;
1625 }
1626 get_random_bytes(dummy_key, *key_size);
1627 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1628 if (rc) {
1629 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1630 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1631 rc);
1632 rc = -EINVAL;
1633 goto out;
1634 }
1635 out:
1636 kfree(full_alg_name);
1637 return rc;
1638 }
1639
1640 struct kmem_cache *ecryptfs_key_tfm_cache;
1641 static struct list_head key_tfm_list;
1642 struct mutex key_tfm_list_mutex;
1643
1644 int __init ecryptfs_init_crypto(void)
1645 {
1646 mutex_init(&key_tfm_list_mutex);
1647 INIT_LIST_HEAD(&key_tfm_list);
1648 return 0;
1649 }
1650
1651 /**
1652 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1653 *
1654 * Called only at module unload time
1655 */
1656 int ecryptfs_destroy_crypto(void)
1657 {
1658 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1659
1660 mutex_lock(&key_tfm_list_mutex);
1661 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1662 key_tfm_list) {
1663 list_del(&key_tfm->key_tfm_list);
1664 if (key_tfm->key_tfm)
1665 crypto_free_blkcipher(key_tfm->key_tfm);
1666 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1667 }
1668 mutex_unlock(&key_tfm_list_mutex);
1669 return 0;
1670 }
1671
1672 int
1673 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1674 size_t key_size)
1675 {
1676 struct ecryptfs_key_tfm *tmp_tfm;
1677 int rc = 0;
1678
1679 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1680
1681 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1682 if (key_tfm != NULL)
1683 (*key_tfm) = tmp_tfm;
1684 if (!tmp_tfm) {
1685 rc = -ENOMEM;
1686 printk(KERN_ERR "Error attempting to allocate from "
1687 "ecryptfs_key_tfm_cache\n");
1688 goto out;
1689 }
1690 mutex_init(&tmp_tfm->key_tfm_mutex);
1691 strncpy(tmp_tfm->cipher_name, cipher_name,
1692 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1693 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1694 tmp_tfm->key_size = key_size;
1695 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1696 tmp_tfm->cipher_name,
1697 &tmp_tfm->key_size);
1698 if (rc) {
1699 printk(KERN_ERR "Error attempting to initialize key TFM "
1700 "cipher with name = [%s]; rc = [%d]\n",
1701 tmp_tfm->cipher_name, rc);
1702 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1703 if (key_tfm != NULL)
1704 (*key_tfm) = NULL;
1705 goto out;
1706 }
1707 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1708 out:
1709 return rc;
1710 }
1711
1712 /**
1713 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1714 * @cipher_name: the name of the cipher to search for
1715 * @key_tfm: set to corresponding tfm if found
1716 *
1717 * Searches for cached key_tfm matching @cipher_name
1718 * Must be called with &key_tfm_list_mutex held
1719 * Returns 1 if found, with @key_tfm set
1720 * Returns 0 if not found, with @key_tfm set to NULL
1721 */
1722 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1723 {
1724 struct ecryptfs_key_tfm *tmp_key_tfm;
1725
1726 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1727
1728 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1729 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1730 if (key_tfm)
1731 (*key_tfm) = tmp_key_tfm;
1732 return 1;
1733 }
1734 }
1735 if (key_tfm)
1736 (*key_tfm) = NULL;
1737 return 0;
1738 }
1739
1740 /**
1741 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1742 *
1743 * @tfm: set to cached tfm found, or new tfm created
1744 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1745 * @cipher_name: the name of the cipher to search for and/or add
1746 *
1747 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1748 * Searches for cached item first, and creates new if not found.
1749 * Returns 0 on success, non-zero if adding new cipher failed
1750 */
1751 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1752 struct mutex **tfm_mutex,
1753 char *cipher_name)
1754 {
1755 struct ecryptfs_key_tfm *key_tfm;
1756 int rc = 0;
1757
1758 (*tfm) = NULL;
1759 (*tfm_mutex) = NULL;
1760
1761 mutex_lock(&key_tfm_list_mutex);
1762 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1763 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1764 if (rc) {
1765 printk(KERN_ERR "Error adding new key_tfm to list; "
1766 "rc = [%d]\n", rc);
1767 goto out;
1768 }
1769 }
1770 (*tfm) = key_tfm->key_tfm;
1771 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1772 out:
1773 mutex_unlock(&key_tfm_list_mutex);
1774 return rc;
1775 }
1776
1777 /* 64 characters forming a 6-bit target field */
1778 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1779 "EFGHIJKLMNOPQRST"
1780 "UVWXYZabcdefghij"
1781 "klmnopqrstuvwxyz");
1782
1783 /* We could either offset on every reverse map or just pad some 0x00's
1784 * at the front here */
1785 static const unsigned char filename_rev_map[256] = {
1786 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1787 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1788 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1789 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1790 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1791 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1792 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1793 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1794 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1795 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1796 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1797 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1798 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1799 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1800 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1801 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1802 };
1803
1804 /**
1805 * ecryptfs_encode_for_filename
1806 * @dst: Destination location for encoded filename
1807 * @dst_size: Size of the encoded filename in bytes
1808 * @src: Source location for the filename to encode
1809 * @src_size: Size of the source in bytes
1810 */
1811 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1812 unsigned char *src, size_t src_size)
1813 {
1814 size_t num_blocks;
1815 size_t block_num = 0;
1816 size_t dst_offset = 0;
1817 unsigned char last_block[3];
1818
1819 if (src_size == 0) {
1820 (*dst_size) = 0;
1821 goto out;
1822 }
1823 num_blocks = (src_size / 3);
1824 if ((src_size % 3) == 0) {
1825 memcpy(last_block, (&src[src_size - 3]), 3);
1826 } else {
1827 num_blocks++;
1828 last_block[2] = 0x00;
1829 switch (src_size % 3) {
1830 case 1:
1831 last_block[0] = src[src_size - 1];
1832 last_block[1] = 0x00;
1833 break;
1834 case 2:
1835 last_block[0] = src[src_size - 2];
1836 last_block[1] = src[src_size - 1];
1837 }
1838 }
1839 (*dst_size) = (num_blocks * 4);
1840 if (!dst)
1841 goto out;
1842 while (block_num < num_blocks) {
1843 unsigned char *src_block;
1844 unsigned char dst_block[4];
1845
1846 if (block_num == (num_blocks - 1))
1847 src_block = last_block;
1848 else
1849 src_block = &src[block_num * 3];
1850 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1851 dst_block[1] = (((src_block[0] << 4) & 0x30)
1852 | ((src_block[1] >> 4) & 0x0F));
1853 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1854 | ((src_block[2] >> 6) & 0x03));
1855 dst_block[3] = (src_block[2] & 0x3F);
1856 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1857 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1858 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1859 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1860 block_num++;
1861 }
1862 out:
1863 return;
1864 }
1865
1866 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1867 {
1868 /* Not exact; conservatively long. Every block of 4
1869 * encoded characters decodes into a block of 3
1870 * decoded characters. This segment of code provides
1871 * the caller with the maximum amount of allocated
1872 * space that @dst will need to point to in a
1873 * subsequent call. */
1874 return ((encoded_size + 1) * 3) / 4;
1875 }
1876
1877 /**
1878 * ecryptfs_decode_from_filename
1879 * @dst: If NULL, this function only sets @dst_size and returns. If
1880 * non-NULL, this function decodes the encoded octets in @src
1881 * into the memory that @dst points to.
1882 * @dst_size: Set to the size of the decoded string.
1883 * @src: The encoded set of octets to decode.
1884 * @src_size: The size of the encoded set of octets to decode.
1885 */
1886 static void
1887 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1888 const unsigned char *src, size_t src_size)
1889 {
1890 u8 current_bit_offset = 0;
1891 size_t src_byte_offset = 0;
1892 size_t dst_byte_offset = 0;
1893
1894 if (dst == NULL) {
1895 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1896 goto out;
1897 }
1898 while (src_byte_offset < src_size) {
1899 unsigned char src_byte =
1900 filename_rev_map[(int)src[src_byte_offset]];
1901
1902 switch (current_bit_offset) {
1903 case 0:
1904 dst[dst_byte_offset] = (src_byte << 2);
1905 current_bit_offset = 6;
1906 break;
1907 case 6:
1908 dst[dst_byte_offset++] |= (src_byte >> 4);
1909 dst[dst_byte_offset] = ((src_byte & 0xF)
1910 << 4);
1911 current_bit_offset = 4;
1912 break;
1913 case 4:
1914 dst[dst_byte_offset++] |= (src_byte >> 2);
1915 dst[dst_byte_offset] = (src_byte << 6);
1916 current_bit_offset = 2;
1917 break;
1918 case 2:
1919 dst[dst_byte_offset++] |= (src_byte);
1920 current_bit_offset = 0;
1921 break;
1922 }
1923 src_byte_offset++;
1924 }
1925 (*dst_size) = dst_byte_offset;
1926 out:
1927 return;
1928 }
1929
1930 /**
1931 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1932 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1933 * @name: The plaintext name
1934 * @length: The length of the plaintext
1935 * @encoded_name: The encypted name
1936 *
1937 * Encrypts and encodes a filename into something that constitutes a
1938 * valid filename for a filesystem, with printable characters.
1939 *
1940 * We assume that we have a properly initialized crypto context,
1941 * pointed to by crypt_stat->tfm.
1942 *
1943 * Returns zero on success; non-zero on otherwise
1944 */
1945 int ecryptfs_encrypt_and_encode_filename(
1946 char **encoded_name,
1947 size_t *encoded_name_size,
1948 struct ecryptfs_crypt_stat *crypt_stat,
1949 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1950 const char *name, size_t name_size)
1951 {
1952 size_t encoded_name_no_prefix_size;
1953 int rc = 0;
1954
1955 (*encoded_name) = NULL;
1956 (*encoded_name_size) = 0;
1957 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
1958 || (mount_crypt_stat && (mount_crypt_stat->flags
1959 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
1960 struct ecryptfs_filename *filename;
1961
1962 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1963 if (!filename) {
1964 printk(KERN_ERR "%s: Out of memory whilst attempting "
1965 "to kzalloc [%zd] bytes\n", __func__,
1966 sizeof(*filename));
1967 rc = -ENOMEM;
1968 goto out;
1969 }
1970 filename->filename = (char *)name;
1971 filename->filename_size = name_size;
1972 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
1973 mount_crypt_stat);
1974 if (rc) {
1975 printk(KERN_ERR "%s: Error attempting to encrypt "
1976 "filename; rc = [%d]\n", __func__, rc);
1977 kfree(filename);
1978 goto out;
1979 }
1980 ecryptfs_encode_for_filename(
1981 NULL, &encoded_name_no_prefix_size,
1982 filename->encrypted_filename,
1983 filename->encrypted_filename_size);
1984 if ((crypt_stat && (crypt_stat->flags
1985 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1986 || (mount_crypt_stat
1987 && (mount_crypt_stat->flags
1988 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
1989 (*encoded_name_size) =
1990 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1991 + encoded_name_no_prefix_size);
1992 else
1993 (*encoded_name_size) =
1994 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1995 + encoded_name_no_prefix_size);
1996 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1997 if (!(*encoded_name)) {
1998 printk(KERN_ERR "%s: Out of memory whilst attempting "
1999 "to kzalloc [%zd] bytes\n", __func__,
2000 (*encoded_name_size));
2001 rc = -ENOMEM;
2002 kfree(filename->encrypted_filename);
2003 kfree(filename);
2004 goto out;
2005 }
2006 if ((crypt_stat && (crypt_stat->flags
2007 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2008 || (mount_crypt_stat
2009 && (mount_crypt_stat->flags
2010 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2011 memcpy((*encoded_name),
2012 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2013 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2014 ecryptfs_encode_for_filename(
2015 ((*encoded_name)
2016 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2017 &encoded_name_no_prefix_size,
2018 filename->encrypted_filename,
2019 filename->encrypted_filename_size);
2020 (*encoded_name_size) =
2021 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2022 + encoded_name_no_prefix_size);
2023 (*encoded_name)[(*encoded_name_size)] = '\0';
2024 } else {
2025 rc = -EOPNOTSUPP;
2026 }
2027 if (rc) {
2028 printk(KERN_ERR "%s: Error attempting to encode "
2029 "encrypted filename; rc = [%d]\n", __func__,
2030 rc);
2031 kfree((*encoded_name));
2032 (*encoded_name) = NULL;
2033 (*encoded_name_size) = 0;
2034 }
2035 kfree(filename->encrypted_filename);
2036 kfree(filename);
2037 } else {
2038 rc = ecryptfs_copy_filename(encoded_name,
2039 encoded_name_size,
2040 name, name_size);
2041 }
2042 out:
2043 return rc;
2044 }
2045
2046 /**
2047 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2048 * @plaintext_name: The plaintext name
2049 * @plaintext_name_size: The plaintext name size
2050 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2051 * @name: The filename in cipher text
2052 * @name_size: The cipher text name size
2053 *
2054 * Decrypts and decodes the filename.
2055 *
2056 * Returns zero on error; non-zero otherwise
2057 */
2058 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2059 size_t *plaintext_name_size,
2060 struct super_block *sb,
2061 const char *name, size_t name_size)
2062 {
2063 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2064 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2065 char *decoded_name;
2066 size_t decoded_name_size;
2067 size_t packet_size;
2068 int rc = 0;
2069
2070 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2071 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2072 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2073 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2074 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2075 const char *orig_name = name;
2076 size_t orig_name_size = name_size;
2077
2078 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2079 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2080 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2081 name, name_size);
2082 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2083 if (!decoded_name) {
2084 printk(KERN_ERR "%s: Out of memory whilst attempting "
2085 "to kmalloc [%zd] bytes\n", __func__,
2086 decoded_name_size);
2087 rc = -ENOMEM;
2088 goto out;
2089 }
2090 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2091 name, name_size);
2092 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2093 plaintext_name_size,
2094 &packet_size,
2095 mount_crypt_stat,
2096 decoded_name,
2097 decoded_name_size);
2098 if (rc) {
2099 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2100 "from filename; copying through filename "
2101 "as-is\n", __func__);
2102 rc = ecryptfs_copy_filename(plaintext_name,
2103 plaintext_name_size,
2104 orig_name, orig_name_size);
2105 goto out_free;
2106 }
2107 } else {
2108 rc = ecryptfs_copy_filename(plaintext_name,
2109 plaintext_name_size,
2110 name, name_size);
2111 goto out;
2112 }
2113 out_free:
2114 kfree(decoded_name);
2115 out:
2116 return rc;
2117 }
2118
2119 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2120
2121 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2122 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2123 {
2124 struct blkcipher_desc desc;
2125 struct mutex *tfm_mutex;
2126 size_t cipher_blocksize;
2127 int rc;
2128
2129 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2130 (*namelen) = lower_namelen;
2131 return 0;
2132 }
2133
2134 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2135 mount_crypt_stat->global_default_fn_cipher_name);
2136 if (unlikely(rc)) {
2137 (*namelen) = 0;
2138 return rc;
2139 }
2140
2141 mutex_lock(tfm_mutex);
2142 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2143 mutex_unlock(tfm_mutex);
2144
2145 /* Return an exact amount for the common cases */
2146 if (lower_namelen == NAME_MAX
2147 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2148 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2149 return 0;
2150 }
2151
2152 /* Return a safe estimate for the uncommon cases */
2153 (*namelen) = lower_namelen;
2154 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2155 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2156 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2157 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2158 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2159 /* Worst case is that the filename is padded nearly a full block size */
2160 (*namelen) -= cipher_blocksize - 1;
2161
2162 if ((*namelen) < 0)
2163 (*namelen) = 0;
2164
2165 return 0;
2166 }