]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ecryptfs/crypto.c
Merge tag 'xfs-4.15-fixes-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-bionic-kernel.git] / fs / ecryptfs / crypto.c
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
28 #include <linux/fs.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include <linux/kernel.h>
40 #include "ecryptfs_kernel.h"
41
42 #define DECRYPT 0
43 #define ENCRYPT 1
44
45 /**
46 * ecryptfs_from_hex
47 * @dst: Buffer to take the bytes from src hex; must be at least of
48 * size (src_size / 2)
49 * @src: Buffer to be converted from a hex string representation to raw value
50 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
51 */
52 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
53 {
54 int x;
55 char tmp[3] = { 0, };
56
57 for (x = 0; x < dst_size; x++) {
58 tmp[0] = src[x * 2];
59 tmp[1] = src[x * 2 + 1];
60 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
61 }
62 }
63
64 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
65 char *src, int len, char *dst)
66 {
67 SHASH_DESC_ON_STACK(desc, tfm);
68 int err;
69
70 desc->tfm = tfm;
71 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
72 err = crypto_shash_digest(desc, src, len, dst);
73 shash_desc_zero(desc);
74 return err;
75 }
76
77 /**
78 * ecryptfs_calculate_md5 - calculates the md5 of @src
79 * @dst: Pointer to 16 bytes of allocated memory
80 * @crypt_stat: Pointer to crypt_stat struct for the current inode
81 * @src: Data to be md5'd
82 * @len: Length of @src
83 *
84 * Uses the allocated crypto context that crypt_stat references to
85 * generate the MD5 sum of the contents of src.
86 */
87 static int ecryptfs_calculate_md5(char *dst,
88 struct ecryptfs_crypt_stat *crypt_stat,
89 char *src, int len)
90 {
91 struct crypto_shash *tfm;
92 int rc = 0;
93
94 tfm = crypt_stat->hash_tfm;
95 rc = ecryptfs_hash_digest(tfm, src, len, dst);
96 if (rc) {
97 printk(KERN_ERR
98 "%s: Error computing crypto hash; rc = [%d]\n",
99 __func__, rc);
100 goto out;
101 }
102 out:
103 return rc;
104 }
105
106 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
107 char *cipher_name,
108 char *chaining_modifier)
109 {
110 int cipher_name_len = strlen(cipher_name);
111 int chaining_modifier_len = strlen(chaining_modifier);
112 int algified_name_len;
113 int rc;
114
115 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
116 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
117 if (!(*algified_name)) {
118 rc = -ENOMEM;
119 goto out;
120 }
121 snprintf((*algified_name), algified_name_len, "%s(%s)",
122 chaining_modifier, cipher_name);
123 rc = 0;
124 out:
125 return rc;
126 }
127
128 /**
129 * ecryptfs_derive_iv
130 * @iv: destination for the derived iv vale
131 * @crypt_stat: Pointer to crypt_stat struct for the current inode
132 * @offset: Offset of the extent whose IV we are to derive
133 *
134 * Generate the initialization vector from the given root IV and page
135 * offset.
136 *
137 * Returns zero on success; non-zero on error.
138 */
139 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
140 loff_t offset)
141 {
142 int rc = 0;
143 char dst[MD5_DIGEST_SIZE];
144 char src[ECRYPTFS_MAX_IV_BYTES + 16];
145
146 if (unlikely(ecryptfs_verbosity > 0)) {
147 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
148 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
149 }
150 /* TODO: It is probably secure to just cast the least
151 * significant bits of the root IV into an unsigned long and
152 * add the offset to that rather than go through all this
153 * hashing business. -Halcrow */
154 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
155 memset((src + crypt_stat->iv_bytes), 0, 16);
156 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
157 if (unlikely(ecryptfs_verbosity > 0)) {
158 ecryptfs_printk(KERN_DEBUG, "source:\n");
159 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
160 }
161 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
162 (crypt_stat->iv_bytes + 16));
163 if (rc) {
164 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
165 "MD5 while generating IV for a page\n");
166 goto out;
167 }
168 memcpy(iv, dst, crypt_stat->iv_bytes);
169 if (unlikely(ecryptfs_verbosity > 0)) {
170 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
171 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
172 }
173 out:
174 return rc;
175 }
176
177 /**
178 * ecryptfs_init_crypt_stat
179 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
180 *
181 * Initialize the crypt_stat structure.
182 */
183 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
184 {
185 struct crypto_shash *tfm;
186 int rc;
187
188 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
189 if (IS_ERR(tfm)) {
190 rc = PTR_ERR(tfm);
191 ecryptfs_printk(KERN_ERR, "Error attempting to "
192 "allocate crypto context; rc = [%d]\n",
193 rc);
194 return rc;
195 }
196
197 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
198 INIT_LIST_HEAD(&crypt_stat->keysig_list);
199 mutex_init(&crypt_stat->keysig_list_mutex);
200 mutex_init(&crypt_stat->cs_mutex);
201 mutex_init(&crypt_stat->cs_tfm_mutex);
202 crypt_stat->hash_tfm = tfm;
203 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
204
205 return 0;
206 }
207
208 /**
209 * ecryptfs_destroy_crypt_stat
210 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
211 *
212 * Releases all memory associated with a crypt_stat struct.
213 */
214 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
215 {
216 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
217
218 crypto_free_skcipher(crypt_stat->tfm);
219 crypto_free_shash(crypt_stat->hash_tfm);
220 list_for_each_entry_safe(key_sig, key_sig_tmp,
221 &crypt_stat->keysig_list, crypt_stat_list) {
222 list_del(&key_sig->crypt_stat_list);
223 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
224 }
225 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 }
227
228 void ecryptfs_destroy_mount_crypt_stat(
229 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
230 {
231 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
232
233 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
234 return;
235 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
236 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
237 &mount_crypt_stat->global_auth_tok_list,
238 mount_crypt_stat_list) {
239 list_del(&auth_tok->mount_crypt_stat_list);
240 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
241 key_put(auth_tok->global_auth_tok_key);
242 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
243 }
244 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
245 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
246 }
247
248 /**
249 * virt_to_scatterlist
250 * @addr: Virtual address
251 * @size: Size of data; should be an even multiple of the block size
252 * @sg: Pointer to scatterlist array; set to NULL to obtain only
253 * the number of scatterlist structs required in array
254 * @sg_size: Max array size
255 *
256 * Fills in a scatterlist array with page references for a passed
257 * virtual address.
258 *
259 * Returns the number of scatterlist structs in array used
260 */
261 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
262 int sg_size)
263 {
264 int i = 0;
265 struct page *pg;
266 int offset;
267 int remainder_of_page;
268
269 sg_init_table(sg, sg_size);
270
271 while (size > 0 && i < sg_size) {
272 pg = virt_to_page(addr);
273 offset = offset_in_page(addr);
274 sg_set_page(&sg[i], pg, 0, offset);
275 remainder_of_page = PAGE_SIZE - offset;
276 if (size >= remainder_of_page) {
277 sg[i].length = remainder_of_page;
278 addr += remainder_of_page;
279 size -= remainder_of_page;
280 } else {
281 sg[i].length = size;
282 addr += size;
283 size = 0;
284 }
285 i++;
286 }
287 if (size > 0)
288 return -ENOMEM;
289 return i;
290 }
291
292 struct extent_crypt_result {
293 struct completion completion;
294 int rc;
295 };
296
297 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
298 {
299 struct extent_crypt_result *ecr = req->data;
300
301 if (rc == -EINPROGRESS)
302 return;
303
304 ecr->rc = rc;
305 complete(&ecr->completion);
306 }
307
308 /**
309 * crypt_scatterlist
310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311 * @dst_sg: Destination of the data after performing the crypto operation
312 * @src_sg: Data to be encrypted or decrypted
313 * @size: Length of data
314 * @iv: IV to use
315 * @op: ENCRYPT or DECRYPT to indicate the desired operation
316 *
317 * Returns the number of bytes encrypted or decrypted; negative value on error
318 */
319 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
320 struct scatterlist *dst_sg,
321 struct scatterlist *src_sg, int size,
322 unsigned char *iv, int op)
323 {
324 struct skcipher_request *req = NULL;
325 struct extent_crypt_result ecr;
326 int rc = 0;
327
328 BUG_ON(!crypt_stat || !crypt_stat->tfm
329 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
330 if (unlikely(ecryptfs_verbosity > 0)) {
331 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
332 crypt_stat->key_size);
333 ecryptfs_dump_hex(crypt_stat->key,
334 crypt_stat->key_size);
335 }
336
337 init_completion(&ecr.completion);
338
339 mutex_lock(&crypt_stat->cs_tfm_mutex);
340 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
341 if (!req) {
342 mutex_unlock(&crypt_stat->cs_tfm_mutex);
343 rc = -ENOMEM;
344 goto out;
345 }
346
347 skcipher_request_set_callback(req,
348 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
349 extent_crypt_complete, &ecr);
350 /* Consider doing this once, when the file is opened */
351 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
352 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
353 crypt_stat->key_size);
354 if (rc) {
355 ecryptfs_printk(KERN_ERR,
356 "Error setting key; rc = [%d]\n",
357 rc);
358 mutex_unlock(&crypt_stat->cs_tfm_mutex);
359 rc = -EINVAL;
360 goto out;
361 }
362 crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 }
364 mutex_unlock(&crypt_stat->cs_tfm_mutex);
365 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
366 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
367 crypto_skcipher_decrypt(req);
368 if (rc == -EINPROGRESS || rc == -EBUSY) {
369 struct extent_crypt_result *ecr = req->base.data;
370
371 wait_for_completion(&ecr->completion);
372 rc = ecr->rc;
373 reinit_completion(&ecr->completion);
374 }
375 out:
376 skcipher_request_free(req);
377 return rc;
378 }
379
380 /**
381 * lower_offset_for_page
382 *
383 * Convert an eCryptfs page index into a lower byte offset
384 */
385 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
386 struct page *page)
387 {
388 return ecryptfs_lower_header_size(crypt_stat) +
389 ((loff_t)page->index << PAGE_SHIFT);
390 }
391
392 /**
393 * crypt_extent
394 * @crypt_stat: crypt_stat containing cryptographic context for the
395 * encryption operation
396 * @dst_page: The page to write the result into
397 * @src_page: The page to read from
398 * @extent_offset: Page extent offset for use in generating IV
399 * @op: ENCRYPT or DECRYPT to indicate the desired operation
400 *
401 * Encrypts or decrypts one extent of data.
402 *
403 * Return zero on success; non-zero otherwise
404 */
405 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
406 struct page *dst_page,
407 struct page *src_page,
408 unsigned long extent_offset, int op)
409 {
410 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
411 loff_t extent_base;
412 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
413 struct scatterlist src_sg, dst_sg;
414 size_t extent_size = crypt_stat->extent_size;
415 int rc;
416
417 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
418 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
419 (extent_base + extent_offset));
420 if (rc) {
421 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
422 "extent [0x%.16llx]; rc = [%d]\n",
423 (unsigned long long)(extent_base + extent_offset), rc);
424 goto out;
425 }
426
427 sg_init_table(&src_sg, 1);
428 sg_init_table(&dst_sg, 1);
429
430 sg_set_page(&src_sg, src_page, extent_size,
431 extent_offset * extent_size);
432 sg_set_page(&dst_sg, dst_page, extent_size,
433 extent_offset * extent_size);
434
435 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
436 extent_iv, op);
437 if (rc < 0) {
438 printk(KERN_ERR "%s: Error attempting to crypt page with "
439 "page_index = [%ld], extent_offset = [%ld]; "
440 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
441 goto out;
442 }
443 rc = 0;
444 out:
445 return rc;
446 }
447
448 /**
449 * ecryptfs_encrypt_page
450 * @page: Page mapped from the eCryptfs inode for the file; contains
451 * decrypted content that needs to be encrypted (to a temporary
452 * page; not in place) and written out to the lower file
453 *
454 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
455 * that eCryptfs pages may straddle the lower pages -- for instance,
456 * if the file was created on a machine with an 8K page size
457 * (resulting in an 8K header), and then the file is copied onto a
458 * host with a 32K page size, then when reading page 0 of the eCryptfs
459 * file, 24K of page 0 of the lower file will be read and decrypted,
460 * and then 8K of page 1 of the lower file will be read and decrypted.
461 *
462 * Returns zero on success; negative on error
463 */
464 int ecryptfs_encrypt_page(struct page *page)
465 {
466 struct inode *ecryptfs_inode;
467 struct ecryptfs_crypt_stat *crypt_stat;
468 char *enc_extent_virt;
469 struct page *enc_extent_page = NULL;
470 loff_t extent_offset;
471 loff_t lower_offset;
472 int rc = 0;
473
474 ecryptfs_inode = page->mapping->host;
475 crypt_stat =
476 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
477 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
478 enc_extent_page = alloc_page(GFP_USER);
479 if (!enc_extent_page) {
480 rc = -ENOMEM;
481 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
482 "encrypted extent\n");
483 goto out;
484 }
485
486 for (extent_offset = 0;
487 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
488 extent_offset++) {
489 rc = crypt_extent(crypt_stat, enc_extent_page, page,
490 extent_offset, ENCRYPT);
491 if (rc) {
492 printk(KERN_ERR "%s: Error encrypting extent; "
493 "rc = [%d]\n", __func__, rc);
494 goto out;
495 }
496 }
497
498 lower_offset = lower_offset_for_page(crypt_stat, page);
499 enc_extent_virt = kmap(enc_extent_page);
500 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
501 PAGE_SIZE);
502 kunmap(enc_extent_page);
503 if (rc < 0) {
504 ecryptfs_printk(KERN_ERR,
505 "Error attempting to write lower page; rc = [%d]\n",
506 rc);
507 goto out;
508 }
509 rc = 0;
510 out:
511 if (enc_extent_page) {
512 __free_page(enc_extent_page);
513 }
514 return rc;
515 }
516
517 /**
518 * ecryptfs_decrypt_page
519 * @page: Page mapped from the eCryptfs inode for the file; data read
520 * and decrypted from the lower file will be written into this
521 * page
522 *
523 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
524 * that eCryptfs pages may straddle the lower pages -- for instance,
525 * if the file was created on a machine with an 8K page size
526 * (resulting in an 8K header), and then the file is copied onto a
527 * host with a 32K page size, then when reading page 0 of the eCryptfs
528 * file, 24K of page 0 of the lower file will be read and decrypted,
529 * and then 8K of page 1 of the lower file will be read and decrypted.
530 *
531 * Returns zero on success; negative on error
532 */
533 int ecryptfs_decrypt_page(struct page *page)
534 {
535 struct inode *ecryptfs_inode;
536 struct ecryptfs_crypt_stat *crypt_stat;
537 char *page_virt;
538 unsigned long extent_offset;
539 loff_t lower_offset;
540 int rc = 0;
541
542 ecryptfs_inode = page->mapping->host;
543 crypt_stat =
544 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
545 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
546
547 lower_offset = lower_offset_for_page(crypt_stat, page);
548 page_virt = kmap(page);
549 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
550 ecryptfs_inode);
551 kunmap(page);
552 if (rc < 0) {
553 ecryptfs_printk(KERN_ERR,
554 "Error attempting to read lower page; rc = [%d]\n",
555 rc);
556 goto out;
557 }
558
559 for (extent_offset = 0;
560 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
561 extent_offset++) {
562 rc = crypt_extent(crypt_stat, page, page,
563 extent_offset, DECRYPT);
564 if (rc) {
565 printk(KERN_ERR "%s: Error encrypting extent; "
566 "rc = [%d]\n", __func__, rc);
567 goto out;
568 }
569 }
570 out:
571 return rc;
572 }
573
574 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
575
576 /**
577 * ecryptfs_init_crypt_ctx
578 * @crypt_stat: Uninitialized crypt stats structure
579 *
580 * Initialize the crypto context.
581 *
582 * TODO: Performance: Keep a cache of initialized cipher contexts;
583 * only init if needed
584 */
585 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
586 {
587 char *full_alg_name;
588 int rc = -EINVAL;
589
590 ecryptfs_printk(KERN_DEBUG,
591 "Initializing cipher [%s]; strlen = [%d]; "
592 "key_size_bits = [%zd]\n",
593 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
594 crypt_stat->key_size << 3);
595 mutex_lock(&crypt_stat->cs_tfm_mutex);
596 if (crypt_stat->tfm) {
597 rc = 0;
598 goto out_unlock;
599 }
600 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
601 crypt_stat->cipher, "cbc");
602 if (rc)
603 goto out_unlock;
604 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
605 if (IS_ERR(crypt_stat->tfm)) {
606 rc = PTR_ERR(crypt_stat->tfm);
607 crypt_stat->tfm = NULL;
608 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
609 "Error initializing cipher [%s]\n",
610 full_alg_name);
611 goto out_free;
612 }
613 crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
614 rc = 0;
615 out_free:
616 kfree(full_alg_name);
617 out_unlock:
618 mutex_unlock(&crypt_stat->cs_tfm_mutex);
619 return rc;
620 }
621
622 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
623 {
624 int extent_size_tmp;
625
626 crypt_stat->extent_mask = 0xFFFFFFFF;
627 crypt_stat->extent_shift = 0;
628 if (crypt_stat->extent_size == 0)
629 return;
630 extent_size_tmp = crypt_stat->extent_size;
631 while ((extent_size_tmp & 0x01) == 0) {
632 extent_size_tmp >>= 1;
633 crypt_stat->extent_mask <<= 1;
634 crypt_stat->extent_shift++;
635 }
636 }
637
638 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
639 {
640 /* Default values; may be overwritten as we are parsing the
641 * packets. */
642 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
643 set_extent_mask_and_shift(crypt_stat);
644 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
645 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
646 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
647 else {
648 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
649 crypt_stat->metadata_size =
650 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
651 else
652 crypt_stat->metadata_size = PAGE_SIZE;
653 }
654 }
655
656 /**
657 * ecryptfs_compute_root_iv
658 * @crypt_stats
659 *
660 * On error, sets the root IV to all 0's.
661 */
662 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
663 {
664 int rc = 0;
665 char dst[MD5_DIGEST_SIZE];
666
667 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
668 BUG_ON(crypt_stat->iv_bytes <= 0);
669 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
670 rc = -EINVAL;
671 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
672 "cannot generate root IV\n");
673 goto out;
674 }
675 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
676 crypt_stat->key_size);
677 if (rc) {
678 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
679 "MD5 while generating root IV\n");
680 goto out;
681 }
682 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
683 out:
684 if (rc) {
685 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
686 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
687 }
688 return rc;
689 }
690
691 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
692 {
693 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
694 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
695 ecryptfs_compute_root_iv(crypt_stat);
696 if (unlikely(ecryptfs_verbosity > 0)) {
697 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
698 ecryptfs_dump_hex(crypt_stat->key,
699 crypt_stat->key_size);
700 }
701 }
702
703 /**
704 * ecryptfs_copy_mount_wide_flags_to_inode_flags
705 * @crypt_stat: The inode's cryptographic context
706 * @mount_crypt_stat: The mount point's cryptographic context
707 *
708 * This function propagates the mount-wide flags to individual inode
709 * flags.
710 */
711 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
712 struct ecryptfs_crypt_stat *crypt_stat,
713 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
714 {
715 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
716 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
717 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
718 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
719 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
720 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
721 if (mount_crypt_stat->flags
722 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
723 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
724 else if (mount_crypt_stat->flags
725 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
726 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
727 }
728 }
729
730 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
731 struct ecryptfs_crypt_stat *crypt_stat,
732 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
733 {
734 struct ecryptfs_global_auth_tok *global_auth_tok;
735 int rc = 0;
736
737 mutex_lock(&crypt_stat->keysig_list_mutex);
738 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
739
740 list_for_each_entry(global_auth_tok,
741 &mount_crypt_stat->global_auth_tok_list,
742 mount_crypt_stat_list) {
743 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
744 continue;
745 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
746 if (rc) {
747 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
748 goto out;
749 }
750 }
751
752 out:
753 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
754 mutex_unlock(&crypt_stat->keysig_list_mutex);
755 return rc;
756 }
757
758 /**
759 * ecryptfs_set_default_crypt_stat_vals
760 * @crypt_stat: The inode's cryptographic context
761 * @mount_crypt_stat: The mount point's cryptographic context
762 *
763 * Default values in the event that policy does not override them.
764 */
765 static void ecryptfs_set_default_crypt_stat_vals(
766 struct ecryptfs_crypt_stat *crypt_stat,
767 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
768 {
769 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
770 mount_crypt_stat);
771 ecryptfs_set_default_sizes(crypt_stat);
772 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
773 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
774 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
775 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
776 crypt_stat->mount_crypt_stat = mount_crypt_stat;
777 }
778
779 /**
780 * ecryptfs_new_file_context
781 * @ecryptfs_inode: The eCryptfs inode
782 *
783 * If the crypto context for the file has not yet been established,
784 * this is where we do that. Establishing a new crypto context
785 * involves the following decisions:
786 * - What cipher to use?
787 * - What set of authentication tokens to use?
788 * Here we just worry about getting enough information into the
789 * authentication tokens so that we know that they are available.
790 * We associate the available authentication tokens with the new file
791 * via the set of signatures in the crypt_stat struct. Later, when
792 * the headers are actually written out, we may again defer to
793 * userspace to perform the encryption of the session key; for the
794 * foreseeable future, this will be the case with public key packets.
795 *
796 * Returns zero on success; non-zero otherwise
797 */
798 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
799 {
800 struct ecryptfs_crypt_stat *crypt_stat =
801 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
802 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
803 &ecryptfs_superblock_to_private(
804 ecryptfs_inode->i_sb)->mount_crypt_stat;
805 int cipher_name_len;
806 int rc = 0;
807
808 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
809 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
810 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
811 mount_crypt_stat);
812 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
813 mount_crypt_stat);
814 if (rc) {
815 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
816 "to the inode key sigs; rc = [%d]\n", rc);
817 goto out;
818 }
819 cipher_name_len =
820 strlen(mount_crypt_stat->global_default_cipher_name);
821 memcpy(crypt_stat->cipher,
822 mount_crypt_stat->global_default_cipher_name,
823 cipher_name_len);
824 crypt_stat->cipher[cipher_name_len] = '\0';
825 crypt_stat->key_size =
826 mount_crypt_stat->global_default_cipher_key_size;
827 ecryptfs_generate_new_key(crypt_stat);
828 rc = ecryptfs_init_crypt_ctx(crypt_stat);
829 if (rc)
830 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
831 "context for cipher [%s]: rc = [%d]\n",
832 crypt_stat->cipher, rc);
833 out:
834 return rc;
835 }
836
837 /**
838 * ecryptfs_validate_marker - check for the ecryptfs marker
839 * @data: The data block in which to check
840 *
841 * Returns zero if marker found; -EINVAL if not found
842 */
843 static int ecryptfs_validate_marker(char *data)
844 {
845 u32 m_1, m_2;
846
847 m_1 = get_unaligned_be32(data);
848 m_2 = get_unaligned_be32(data + 4);
849 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
850 return 0;
851 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
852 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
853 MAGIC_ECRYPTFS_MARKER);
854 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
855 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
856 return -EINVAL;
857 }
858
859 struct ecryptfs_flag_map_elem {
860 u32 file_flag;
861 u32 local_flag;
862 };
863
864 /* Add support for additional flags by adding elements here. */
865 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
866 {0x00000001, ECRYPTFS_ENABLE_HMAC},
867 {0x00000002, ECRYPTFS_ENCRYPTED},
868 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
869 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
870 };
871
872 /**
873 * ecryptfs_process_flags
874 * @crypt_stat: The cryptographic context
875 * @page_virt: Source data to be parsed
876 * @bytes_read: Updated with the number of bytes read
877 *
878 * Returns zero on success; non-zero if the flag set is invalid
879 */
880 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
881 char *page_virt, int *bytes_read)
882 {
883 int rc = 0;
884 int i;
885 u32 flags;
886
887 flags = get_unaligned_be32(page_virt);
888 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
889 if (flags & ecryptfs_flag_map[i].file_flag) {
890 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
891 } else
892 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
893 /* Version is in top 8 bits of the 32-bit flag vector */
894 crypt_stat->file_version = ((flags >> 24) & 0xFF);
895 (*bytes_read) = 4;
896 return rc;
897 }
898
899 /**
900 * write_ecryptfs_marker
901 * @page_virt: The pointer to in a page to begin writing the marker
902 * @written: Number of bytes written
903 *
904 * Marker = 0x3c81b7f5
905 */
906 static void write_ecryptfs_marker(char *page_virt, size_t *written)
907 {
908 u32 m_1, m_2;
909
910 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
911 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
912 put_unaligned_be32(m_1, page_virt);
913 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
914 put_unaligned_be32(m_2, page_virt);
915 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
916 }
917
918 void ecryptfs_write_crypt_stat_flags(char *page_virt,
919 struct ecryptfs_crypt_stat *crypt_stat,
920 size_t *written)
921 {
922 u32 flags = 0;
923 int i;
924
925 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
926 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
927 flags |= ecryptfs_flag_map[i].file_flag;
928 /* Version is in top 8 bits of the 32-bit flag vector */
929 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
930 put_unaligned_be32(flags, page_virt);
931 (*written) = 4;
932 }
933
934 struct ecryptfs_cipher_code_str_map_elem {
935 char cipher_str[16];
936 u8 cipher_code;
937 };
938
939 /* Add support for additional ciphers by adding elements here. The
940 * cipher_code is whatever OpenPGP applications use to identify the
941 * ciphers. List in order of probability. */
942 static struct ecryptfs_cipher_code_str_map_elem
943 ecryptfs_cipher_code_str_map[] = {
944 {"aes",RFC2440_CIPHER_AES_128 },
945 {"blowfish", RFC2440_CIPHER_BLOWFISH},
946 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
947 {"cast5", RFC2440_CIPHER_CAST_5},
948 {"twofish", RFC2440_CIPHER_TWOFISH},
949 {"cast6", RFC2440_CIPHER_CAST_6},
950 {"aes", RFC2440_CIPHER_AES_192},
951 {"aes", RFC2440_CIPHER_AES_256}
952 };
953
954 /**
955 * ecryptfs_code_for_cipher_string
956 * @cipher_name: The string alias for the cipher
957 * @key_bytes: Length of key in bytes; used for AES code selection
958 *
959 * Returns zero on no match, or the cipher code on match
960 */
961 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
962 {
963 int i;
964 u8 code = 0;
965 struct ecryptfs_cipher_code_str_map_elem *map =
966 ecryptfs_cipher_code_str_map;
967
968 if (strcmp(cipher_name, "aes") == 0) {
969 switch (key_bytes) {
970 case 16:
971 code = RFC2440_CIPHER_AES_128;
972 break;
973 case 24:
974 code = RFC2440_CIPHER_AES_192;
975 break;
976 case 32:
977 code = RFC2440_CIPHER_AES_256;
978 }
979 } else {
980 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
981 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
982 code = map[i].cipher_code;
983 break;
984 }
985 }
986 return code;
987 }
988
989 /**
990 * ecryptfs_cipher_code_to_string
991 * @str: Destination to write out the cipher name
992 * @cipher_code: The code to convert to cipher name string
993 *
994 * Returns zero on success
995 */
996 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
997 {
998 int rc = 0;
999 int i;
1000
1001 str[0] = '\0';
1002 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1003 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1004 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1005 if (str[0] == '\0') {
1006 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1007 "[%d]\n", cipher_code);
1008 rc = -EINVAL;
1009 }
1010 return rc;
1011 }
1012
1013 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1014 {
1015 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1016 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1017 int rc;
1018
1019 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1020 inode);
1021 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1022 return rc >= 0 ? -EINVAL : rc;
1023 rc = ecryptfs_validate_marker(marker);
1024 if (!rc)
1025 ecryptfs_i_size_init(file_size, inode);
1026 return rc;
1027 }
1028
1029 void
1030 ecryptfs_write_header_metadata(char *virt,
1031 struct ecryptfs_crypt_stat *crypt_stat,
1032 size_t *written)
1033 {
1034 u32 header_extent_size;
1035 u16 num_header_extents_at_front;
1036
1037 header_extent_size = (u32)crypt_stat->extent_size;
1038 num_header_extents_at_front =
1039 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1040 put_unaligned_be32(header_extent_size, virt);
1041 virt += 4;
1042 put_unaligned_be16(num_header_extents_at_front, virt);
1043 (*written) = 6;
1044 }
1045
1046 struct kmem_cache *ecryptfs_header_cache;
1047
1048 /**
1049 * ecryptfs_write_headers_virt
1050 * @page_virt: The virtual address to write the headers to
1051 * @max: The size of memory allocated at page_virt
1052 * @size: Set to the number of bytes written by this function
1053 * @crypt_stat: The cryptographic context
1054 * @ecryptfs_dentry: The eCryptfs dentry
1055 *
1056 * Format version: 1
1057 *
1058 * Header Extent:
1059 * Octets 0-7: Unencrypted file size (big-endian)
1060 * Octets 8-15: eCryptfs special marker
1061 * Octets 16-19: Flags
1062 * Octet 16: File format version number (between 0 and 255)
1063 * Octets 17-18: Reserved
1064 * Octet 19: Bit 1 (lsb): Reserved
1065 * Bit 2: Encrypted?
1066 * Bits 3-8: Reserved
1067 * Octets 20-23: Header extent size (big-endian)
1068 * Octets 24-25: Number of header extents at front of file
1069 * (big-endian)
1070 * Octet 26: Begin RFC 2440 authentication token packet set
1071 * Data Extent 0:
1072 * Lower data (CBC encrypted)
1073 * Data Extent 1:
1074 * Lower data (CBC encrypted)
1075 * ...
1076 *
1077 * Returns zero on success
1078 */
1079 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1080 size_t *size,
1081 struct ecryptfs_crypt_stat *crypt_stat,
1082 struct dentry *ecryptfs_dentry)
1083 {
1084 int rc;
1085 size_t written;
1086 size_t offset;
1087
1088 offset = ECRYPTFS_FILE_SIZE_BYTES;
1089 write_ecryptfs_marker((page_virt + offset), &written);
1090 offset += written;
1091 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1092 &written);
1093 offset += written;
1094 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1095 &written);
1096 offset += written;
1097 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1098 ecryptfs_dentry, &written,
1099 max - offset);
1100 if (rc)
1101 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1102 "set; rc = [%d]\n", rc);
1103 if (size) {
1104 offset += written;
1105 *size = offset;
1106 }
1107 return rc;
1108 }
1109
1110 static int
1111 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1112 char *virt, size_t virt_len)
1113 {
1114 int rc;
1115
1116 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1117 0, virt_len);
1118 if (rc < 0)
1119 printk(KERN_ERR "%s: Error attempting to write header "
1120 "information to lower file; rc = [%d]\n", __func__, rc);
1121 else
1122 rc = 0;
1123 return rc;
1124 }
1125
1126 static int
1127 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1128 struct inode *ecryptfs_inode,
1129 char *page_virt, size_t size)
1130 {
1131 int rc;
1132
1133 rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1134 ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1135 return rc;
1136 }
1137
1138 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1139 unsigned int order)
1140 {
1141 struct page *page;
1142
1143 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1144 if (page)
1145 return (unsigned long) page_address(page);
1146 return 0;
1147 }
1148
1149 /**
1150 * ecryptfs_write_metadata
1151 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1152 * @ecryptfs_inode: The newly created eCryptfs inode
1153 *
1154 * Write the file headers out. This will likely involve a userspace
1155 * callout, in which the session key is encrypted with one or more
1156 * public keys and/or the passphrase necessary to do the encryption is
1157 * retrieved via a prompt. Exactly what happens at this point should
1158 * be policy-dependent.
1159 *
1160 * Returns zero on success; non-zero on error
1161 */
1162 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1163 struct inode *ecryptfs_inode)
1164 {
1165 struct ecryptfs_crypt_stat *crypt_stat =
1166 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1167 unsigned int order;
1168 char *virt;
1169 size_t virt_len;
1170 size_t size = 0;
1171 int rc = 0;
1172
1173 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1174 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1175 printk(KERN_ERR "Key is invalid; bailing out\n");
1176 rc = -EINVAL;
1177 goto out;
1178 }
1179 } else {
1180 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1181 __func__);
1182 rc = -EINVAL;
1183 goto out;
1184 }
1185 virt_len = crypt_stat->metadata_size;
1186 order = get_order(virt_len);
1187 /* Released in this function */
1188 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1189 if (!virt) {
1190 printk(KERN_ERR "%s: Out of memory\n", __func__);
1191 rc = -ENOMEM;
1192 goto out;
1193 }
1194 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1195 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1196 ecryptfs_dentry);
1197 if (unlikely(rc)) {
1198 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1199 __func__, rc);
1200 goto out_free;
1201 }
1202 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1203 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1204 virt, size);
1205 else
1206 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1207 virt_len);
1208 if (rc) {
1209 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1210 "rc = [%d]\n", __func__, rc);
1211 goto out_free;
1212 }
1213 out_free:
1214 free_pages((unsigned long)virt, order);
1215 out:
1216 return rc;
1217 }
1218
1219 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1220 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1221 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1222 char *virt, int *bytes_read,
1223 int validate_header_size)
1224 {
1225 int rc = 0;
1226 u32 header_extent_size;
1227 u16 num_header_extents_at_front;
1228
1229 header_extent_size = get_unaligned_be32(virt);
1230 virt += sizeof(__be32);
1231 num_header_extents_at_front = get_unaligned_be16(virt);
1232 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1233 * (size_t)header_extent_size));
1234 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1235 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1236 && (crypt_stat->metadata_size
1237 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1238 rc = -EINVAL;
1239 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1240 crypt_stat->metadata_size);
1241 }
1242 return rc;
1243 }
1244
1245 /**
1246 * set_default_header_data
1247 * @crypt_stat: The cryptographic context
1248 *
1249 * For version 0 file format; this function is only for backwards
1250 * compatibility for files created with the prior versions of
1251 * eCryptfs.
1252 */
1253 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1254 {
1255 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1256 }
1257
1258 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1259 {
1260 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1261 struct ecryptfs_crypt_stat *crypt_stat;
1262 u64 file_size;
1263
1264 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1265 mount_crypt_stat =
1266 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1267 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1268 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1269 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1270 file_size += crypt_stat->metadata_size;
1271 } else
1272 file_size = get_unaligned_be64(page_virt);
1273 i_size_write(inode, (loff_t)file_size);
1274 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1275 }
1276
1277 /**
1278 * ecryptfs_read_headers_virt
1279 * @page_virt: The virtual address into which to read the headers
1280 * @crypt_stat: The cryptographic context
1281 * @ecryptfs_dentry: The eCryptfs dentry
1282 * @validate_header_size: Whether to validate the header size while reading
1283 *
1284 * Read/parse the header data. The header format is detailed in the
1285 * comment block for the ecryptfs_write_headers_virt() function.
1286 *
1287 * Returns zero on success
1288 */
1289 static int ecryptfs_read_headers_virt(char *page_virt,
1290 struct ecryptfs_crypt_stat *crypt_stat,
1291 struct dentry *ecryptfs_dentry,
1292 int validate_header_size)
1293 {
1294 int rc = 0;
1295 int offset;
1296 int bytes_read;
1297
1298 ecryptfs_set_default_sizes(crypt_stat);
1299 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1300 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1301 offset = ECRYPTFS_FILE_SIZE_BYTES;
1302 rc = ecryptfs_validate_marker(page_virt + offset);
1303 if (rc)
1304 goto out;
1305 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1306 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1307 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1308 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1309 &bytes_read);
1310 if (rc) {
1311 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1312 goto out;
1313 }
1314 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1315 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1316 "file version [%d] is supported by this "
1317 "version of eCryptfs\n",
1318 crypt_stat->file_version,
1319 ECRYPTFS_SUPPORTED_FILE_VERSION);
1320 rc = -EINVAL;
1321 goto out;
1322 }
1323 offset += bytes_read;
1324 if (crypt_stat->file_version >= 1) {
1325 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1326 &bytes_read, validate_header_size);
1327 if (rc) {
1328 ecryptfs_printk(KERN_WARNING, "Error reading header "
1329 "metadata; rc = [%d]\n", rc);
1330 }
1331 offset += bytes_read;
1332 } else
1333 set_default_header_data(crypt_stat);
1334 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1335 ecryptfs_dentry);
1336 out:
1337 return rc;
1338 }
1339
1340 /**
1341 * ecryptfs_read_xattr_region
1342 * @page_virt: The vitual address into which to read the xattr data
1343 * @ecryptfs_inode: The eCryptfs inode
1344 *
1345 * Attempts to read the crypto metadata from the extended attribute
1346 * region of the lower file.
1347 *
1348 * Returns zero on success; non-zero on error
1349 */
1350 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1351 {
1352 struct dentry *lower_dentry =
1353 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1354 ssize_t size;
1355 int rc = 0;
1356
1357 size = ecryptfs_getxattr_lower(lower_dentry,
1358 ecryptfs_inode_to_lower(ecryptfs_inode),
1359 ECRYPTFS_XATTR_NAME,
1360 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1361 if (size < 0) {
1362 if (unlikely(ecryptfs_verbosity > 0))
1363 printk(KERN_INFO "Error attempting to read the [%s] "
1364 "xattr from the lower file; return value = "
1365 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1366 rc = -EINVAL;
1367 goto out;
1368 }
1369 out:
1370 return rc;
1371 }
1372
1373 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1374 struct inode *inode)
1375 {
1376 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1377 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1378 int rc;
1379
1380 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1381 ecryptfs_inode_to_lower(inode),
1382 ECRYPTFS_XATTR_NAME, file_size,
1383 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1384 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1385 return rc >= 0 ? -EINVAL : rc;
1386 rc = ecryptfs_validate_marker(marker);
1387 if (!rc)
1388 ecryptfs_i_size_init(file_size, inode);
1389 return rc;
1390 }
1391
1392 /**
1393 * ecryptfs_read_metadata
1394 *
1395 * Common entry point for reading file metadata. From here, we could
1396 * retrieve the header information from the header region of the file,
1397 * the xattr region of the file, or some other repository that is
1398 * stored separately from the file itself. The current implementation
1399 * supports retrieving the metadata information from the file contents
1400 * and from the xattr region.
1401 *
1402 * Returns zero if valid headers found and parsed; non-zero otherwise
1403 */
1404 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1405 {
1406 int rc;
1407 char *page_virt;
1408 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1409 struct ecryptfs_crypt_stat *crypt_stat =
1410 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1411 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1412 &ecryptfs_superblock_to_private(
1413 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1414
1415 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1416 mount_crypt_stat);
1417 /* Read the first page from the underlying file */
1418 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1419 if (!page_virt) {
1420 rc = -ENOMEM;
1421 goto out;
1422 }
1423 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1424 ecryptfs_inode);
1425 if (rc >= 0)
1426 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1427 ecryptfs_dentry,
1428 ECRYPTFS_VALIDATE_HEADER_SIZE);
1429 if (rc) {
1430 /* metadata is not in the file header, so try xattrs */
1431 memset(page_virt, 0, PAGE_SIZE);
1432 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1433 if (rc) {
1434 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1435 "file header region or xattr region, inode %lu\n",
1436 ecryptfs_inode->i_ino);
1437 rc = -EINVAL;
1438 goto out;
1439 }
1440 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1441 ecryptfs_dentry,
1442 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1443 if (rc) {
1444 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1445 "file xattr region either, inode %lu\n",
1446 ecryptfs_inode->i_ino);
1447 rc = -EINVAL;
1448 }
1449 if (crypt_stat->mount_crypt_stat->flags
1450 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1451 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1452 } else {
1453 printk(KERN_WARNING "Attempt to access file with "
1454 "crypto metadata only in the extended attribute "
1455 "region, but eCryptfs was mounted without "
1456 "xattr support enabled. eCryptfs will not treat "
1457 "this like an encrypted file, inode %lu\n",
1458 ecryptfs_inode->i_ino);
1459 rc = -EINVAL;
1460 }
1461 }
1462 out:
1463 if (page_virt) {
1464 memset(page_virt, 0, PAGE_SIZE);
1465 kmem_cache_free(ecryptfs_header_cache, page_virt);
1466 }
1467 return rc;
1468 }
1469
1470 /**
1471 * ecryptfs_encrypt_filename - encrypt filename
1472 *
1473 * CBC-encrypts the filename. We do not want to encrypt the same
1474 * filename with the same key and IV, which may happen with hard
1475 * links, so we prepend random bits to each filename.
1476 *
1477 * Returns zero on success; non-zero otherwise
1478 */
1479 static int
1480 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1481 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1482 {
1483 int rc = 0;
1484
1485 filename->encrypted_filename = NULL;
1486 filename->encrypted_filename_size = 0;
1487 if (mount_crypt_stat && (mount_crypt_stat->flags
1488 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1489 size_t packet_size;
1490 size_t remaining_bytes;
1491
1492 rc = ecryptfs_write_tag_70_packet(
1493 NULL, NULL,
1494 &filename->encrypted_filename_size,
1495 mount_crypt_stat, NULL,
1496 filename->filename_size);
1497 if (rc) {
1498 printk(KERN_ERR "%s: Error attempting to get packet "
1499 "size for tag 72; rc = [%d]\n", __func__,
1500 rc);
1501 filename->encrypted_filename_size = 0;
1502 goto out;
1503 }
1504 filename->encrypted_filename =
1505 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1506 if (!filename->encrypted_filename) {
1507 rc = -ENOMEM;
1508 goto out;
1509 }
1510 remaining_bytes = filename->encrypted_filename_size;
1511 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1512 &remaining_bytes,
1513 &packet_size,
1514 mount_crypt_stat,
1515 filename->filename,
1516 filename->filename_size);
1517 if (rc) {
1518 printk(KERN_ERR "%s: Error attempting to generate "
1519 "tag 70 packet; rc = [%d]\n", __func__,
1520 rc);
1521 kfree(filename->encrypted_filename);
1522 filename->encrypted_filename = NULL;
1523 filename->encrypted_filename_size = 0;
1524 goto out;
1525 }
1526 filename->encrypted_filename_size = packet_size;
1527 } else {
1528 printk(KERN_ERR "%s: No support for requested filename "
1529 "encryption method in this release\n", __func__);
1530 rc = -EOPNOTSUPP;
1531 goto out;
1532 }
1533 out:
1534 return rc;
1535 }
1536
1537 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1538 const char *name, size_t name_size)
1539 {
1540 int rc = 0;
1541
1542 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1543 if (!(*copied_name)) {
1544 rc = -ENOMEM;
1545 goto out;
1546 }
1547 memcpy((void *)(*copied_name), (void *)name, name_size);
1548 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1549 * in printing out the
1550 * string in debug
1551 * messages */
1552 (*copied_name_size) = name_size;
1553 out:
1554 return rc;
1555 }
1556
1557 /**
1558 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1559 * @key_tfm: Crypto context for key material, set by this function
1560 * @cipher_name: Name of the cipher
1561 * @key_size: Size of the key in bytes
1562 *
1563 * Returns zero on success. Any crypto_tfm structs allocated here
1564 * should be released by other functions, such as on a superblock put
1565 * event, regardless of whether this function succeeds for fails.
1566 */
1567 static int
1568 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1569 char *cipher_name, size_t *key_size)
1570 {
1571 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1572 char *full_alg_name = NULL;
1573 int rc;
1574
1575 *key_tfm = NULL;
1576 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1577 rc = -EINVAL;
1578 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1579 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1580 goto out;
1581 }
1582 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1583 "ecb");
1584 if (rc)
1585 goto out;
1586 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1587 if (IS_ERR(*key_tfm)) {
1588 rc = PTR_ERR(*key_tfm);
1589 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1590 "[%s]; rc = [%d]\n", full_alg_name, rc);
1591 goto out;
1592 }
1593 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1594 if (*key_size == 0)
1595 *key_size = crypto_skcipher_default_keysize(*key_tfm);
1596 get_random_bytes(dummy_key, *key_size);
1597 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1598 if (rc) {
1599 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1600 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1601 rc);
1602 rc = -EINVAL;
1603 goto out;
1604 }
1605 out:
1606 kfree(full_alg_name);
1607 return rc;
1608 }
1609
1610 struct kmem_cache *ecryptfs_key_tfm_cache;
1611 static struct list_head key_tfm_list;
1612 struct mutex key_tfm_list_mutex;
1613
1614 int __init ecryptfs_init_crypto(void)
1615 {
1616 mutex_init(&key_tfm_list_mutex);
1617 INIT_LIST_HEAD(&key_tfm_list);
1618 return 0;
1619 }
1620
1621 /**
1622 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1623 *
1624 * Called only at module unload time
1625 */
1626 int ecryptfs_destroy_crypto(void)
1627 {
1628 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1629
1630 mutex_lock(&key_tfm_list_mutex);
1631 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1632 key_tfm_list) {
1633 list_del(&key_tfm->key_tfm_list);
1634 crypto_free_skcipher(key_tfm->key_tfm);
1635 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1636 }
1637 mutex_unlock(&key_tfm_list_mutex);
1638 return 0;
1639 }
1640
1641 int
1642 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1643 size_t key_size)
1644 {
1645 struct ecryptfs_key_tfm *tmp_tfm;
1646 int rc = 0;
1647
1648 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1649
1650 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1651 if (key_tfm)
1652 (*key_tfm) = tmp_tfm;
1653 if (!tmp_tfm) {
1654 rc = -ENOMEM;
1655 goto out;
1656 }
1657 mutex_init(&tmp_tfm->key_tfm_mutex);
1658 strncpy(tmp_tfm->cipher_name, cipher_name,
1659 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1660 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1661 tmp_tfm->key_size = key_size;
1662 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1663 tmp_tfm->cipher_name,
1664 &tmp_tfm->key_size);
1665 if (rc) {
1666 printk(KERN_ERR "Error attempting to initialize key TFM "
1667 "cipher with name = [%s]; rc = [%d]\n",
1668 tmp_tfm->cipher_name, rc);
1669 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1670 if (key_tfm)
1671 (*key_tfm) = NULL;
1672 goto out;
1673 }
1674 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1675 out:
1676 return rc;
1677 }
1678
1679 /**
1680 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1681 * @cipher_name: the name of the cipher to search for
1682 * @key_tfm: set to corresponding tfm if found
1683 *
1684 * Searches for cached key_tfm matching @cipher_name
1685 * Must be called with &key_tfm_list_mutex held
1686 * Returns 1 if found, with @key_tfm set
1687 * Returns 0 if not found, with @key_tfm set to NULL
1688 */
1689 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1690 {
1691 struct ecryptfs_key_tfm *tmp_key_tfm;
1692
1693 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1694
1695 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1696 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1697 if (key_tfm)
1698 (*key_tfm) = tmp_key_tfm;
1699 return 1;
1700 }
1701 }
1702 if (key_tfm)
1703 (*key_tfm) = NULL;
1704 return 0;
1705 }
1706
1707 /**
1708 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1709 *
1710 * @tfm: set to cached tfm found, or new tfm created
1711 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1712 * @cipher_name: the name of the cipher to search for and/or add
1713 *
1714 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1715 * Searches for cached item first, and creates new if not found.
1716 * Returns 0 on success, non-zero if adding new cipher failed
1717 */
1718 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1719 struct mutex **tfm_mutex,
1720 char *cipher_name)
1721 {
1722 struct ecryptfs_key_tfm *key_tfm;
1723 int rc = 0;
1724
1725 (*tfm) = NULL;
1726 (*tfm_mutex) = NULL;
1727
1728 mutex_lock(&key_tfm_list_mutex);
1729 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1730 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1731 if (rc) {
1732 printk(KERN_ERR "Error adding new key_tfm to list; "
1733 "rc = [%d]\n", rc);
1734 goto out;
1735 }
1736 }
1737 (*tfm) = key_tfm->key_tfm;
1738 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1739 out:
1740 mutex_unlock(&key_tfm_list_mutex);
1741 return rc;
1742 }
1743
1744 /* 64 characters forming a 6-bit target field */
1745 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1746 "EFGHIJKLMNOPQRST"
1747 "UVWXYZabcdefghij"
1748 "klmnopqrstuvwxyz");
1749
1750 /* We could either offset on every reverse map or just pad some 0x00's
1751 * at the front here */
1752 static const unsigned char filename_rev_map[256] = {
1753 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1754 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1755 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1756 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1757 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1758 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1759 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1760 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1761 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1762 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1763 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1764 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1765 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1766 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1767 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1768 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1769 };
1770
1771 /**
1772 * ecryptfs_encode_for_filename
1773 * @dst: Destination location for encoded filename
1774 * @dst_size: Size of the encoded filename in bytes
1775 * @src: Source location for the filename to encode
1776 * @src_size: Size of the source in bytes
1777 */
1778 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1779 unsigned char *src, size_t src_size)
1780 {
1781 size_t num_blocks;
1782 size_t block_num = 0;
1783 size_t dst_offset = 0;
1784 unsigned char last_block[3];
1785
1786 if (src_size == 0) {
1787 (*dst_size) = 0;
1788 goto out;
1789 }
1790 num_blocks = (src_size / 3);
1791 if ((src_size % 3) == 0) {
1792 memcpy(last_block, (&src[src_size - 3]), 3);
1793 } else {
1794 num_blocks++;
1795 last_block[2] = 0x00;
1796 switch (src_size % 3) {
1797 case 1:
1798 last_block[0] = src[src_size - 1];
1799 last_block[1] = 0x00;
1800 break;
1801 case 2:
1802 last_block[0] = src[src_size - 2];
1803 last_block[1] = src[src_size - 1];
1804 }
1805 }
1806 (*dst_size) = (num_blocks * 4);
1807 if (!dst)
1808 goto out;
1809 while (block_num < num_blocks) {
1810 unsigned char *src_block;
1811 unsigned char dst_block[4];
1812
1813 if (block_num == (num_blocks - 1))
1814 src_block = last_block;
1815 else
1816 src_block = &src[block_num * 3];
1817 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1818 dst_block[1] = (((src_block[0] << 4) & 0x30)
1819 | ((src_block[1] >> 4) & 0x0F));
1820 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1821 | ((src_block[2] >> 6) & 0x03));
1822 dst_block[3] = (src_block[2] & 0x3F);
1823 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1824 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1825 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1826 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1827 block_num++;
1828 }
1829 out:
1830 return;
1831 }
1832
1833 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1834 {
1835 /* Not exact; conservatively long. Every block of 4
1836 * encoded characters decodes into a block of 3
1837 * decoded characters. This segment of code provides
1838 * the caller with the maximum amount of allocated
1839 * space that @dst will need to point to in a
1840 * subsequent call. */
1841 return ((encoded_size + 1) * 3) / 4;
1842 }
1843
1844 /**
1845 * ecryptfs_decode_from_filename
1846 * @dst: If NULL, this function only sets @dst_size and returns. If
1847 * non-NULL, this function decodes the encoded octets in @src
1848 * into the memory that @dst points to.
1849 * @dst_size: Set to the size of the decoded string.
1850 * @src: The encoded set of octets to decode.
1851 * @src_size: The size of the encoded set of octets to decode.
1852 */
1853 static void
1854 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1855 const unsigned char *src, size_t src_size)
1856 {
1857 u8 current_bit_offset = 0;
1858 size_t src_byte_offset = 0;
1859 size_t dst_byte_offset = 0;
1860
1861 if (!dst) {
1862 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1863 goto out;
1864 }
1865 while (src_byte_offset < src_size) {
1866 unsigned char src_byte =
1867 filename_rev_map[(int)src[src_byte_offset]];
1868
1869 switch (current_bit_offset) {
1870 case 0:
1871 dst[dst_byte_offset] = (src_byte << 2);
1872 current_bit_offset = 6;
1873 break;
1874 case 6:
1875 dst[dst_byte_offset++] |= (src_byte >> 4);
1876 dst[dst_byte_offset] = ((src_byte & 0xF)
1877 << 4);
1878 current_bit_offset = 4;
1879 break;
1880 case 4:
1881 dst[dst_byte_offset++] |= (src_byte >> 2);
1882 dst[dst_byte_offset] = (src_byte << 6);
1883 current_bit_offset = 2;
1884 break;
1885 case 2:
1886 dst[dst_byte_offset++] |= (src_byte);
1887 current_bit_offset = 0;
1888 break;
1889 }
1890 src_byte_offset++;
1891 }
1892 (*dst_size) = dst_byte_offset;
1893 out:
1894 return;
1895 }
1896
1897 /**
1898 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1899 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1900 * @name: The plaintext name
1901 * @length: The length of the plaintext
1902 * @encoded_name: The encypted name
1903 *
1904 * Encrypts and encodes a filename into something that constitutes a
1905 * valid filename for a filesystem, with printable characters.
1906 *
1907 * We assume that we have a properly initialized crypto context,
1908 * pointed to by crypt_stat->tfm.
1909 *
1910 * Returns zero on success; non-zero on otherwise
1911 */
1912 int ecryptfs_encrypt_and_encode_filename(
1913 char **encoded_name,
1914 size_t *encoded_name_size,
1915 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1916 const char *name, size_t name_size)
1917 {
1918 size_t encoded_name_no_prefix_size;
1919 int rc = 0;
1920
1921 (*encoded_name) = NULL;
1922 (*encoded_name_size) = 0;
1923 if (mount_crypt_stat && (mount_crypt_stat->flags
1924 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1925 struct ecryptfs_filename *filename;
1926
1927 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1928 if (!filename) {
1929 rc = -ENOMEM;
1930 goto out;
1931 }
1932 filename->filename = (char *)name;
1933 filename->filename_size = name_size;
1934 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1935 if (rc) {
1936 printk(KERN_ERR "%s: Error attempting to encrypt "
1937 "filename; rc = [%d]\n", __func__, rc);
1938 kfree(filename);
1939 goto out;
1940 }
1941 ecryptfs_encode_for_filename(
1942 NULL, &encoded_name_no_prefix_size,
1943 filename->encrypted_filename,
1944 filename->encrypted_filename_size);
1945 if (mount_crypt_stat
1946 && (mount_crypt_stat->flags
1947 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1948 (*encoded_name_size) =
1949 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1950 + encoded_name_no_prefix_size);
1951 else
1952 (*encoded_name_size) =
1953 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1954 + encoded_name_no_prefix_size);
1955 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1956 if (!(*encoded_name)) {
1957 rc = -ENOMEM;
1958 kfree(filename->encrypted_filename);
1959 kfree(filename);
1960 goto out;
1961 }
1962 if (mount_crypt_stat
1963 && (mount_crypt_stat->flags
1964 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1965 memcpy((*encoded_name),
1966 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1967 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1968 ecryptfs_encode_for_filename(
1969 ((*encoded_name)
1970 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1971 &encoded_name_no_prefix_size,
1972 filename->encrypted_filename,
1973 filename->encrypted_filename_size);
1974 (*encoded_name_size) =
1975 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976 + encoded_name_no_prefix_size);
1977 (*encoded_name)[(*encoded_name_size)] = '\0';
1978 } else {
1979 rc = -EOPNOTSUPP;
1980 }
1981 if (rc) {
1982 printk(KERN_ERR "%s: Error attempting to encode "
1983 "encrypted filename; rc = [%d]\n", __func__,
1984 rc);
1985 kfree((*encoded_name));
1986 (*encoded_name) = NULL;
1987 (*encoded_name_size) = 0;
1988 }
1989 kfree(filename->encrypted_filename);
1990 kfree(filename);
1991 } else {
1992 rc = ecryptfs_copy_filename(encoded_name,
1993 encoded_name_size,
1994 name, name_size);
1995 }
1996 out:
1997 return rc;
1998 }
1999
2000 /**
2001 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2002 * @plaintext_name: The plaintext name
2003 * @plaintext_name_size: The plaintext name size
2004 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2005 * @name: The filename in cipher text
2006 * @name_size: The cipher text name size
2007 *
2008 * Decrypts and decodes the filename.
2009 *
2010 * Returns zero on error; non-zero otherwise
2011 */
2012 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2013 size_t *plaintext_name_size,
2014 struct super_block *sb,
2015 const char *name, size_t name_size)
2016 {
2017 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2018 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2019 char *decoded_name;
2020 size_t decoded_name_size;
2021 size_t packet_size;
2022 int rc = 0;
2023
2024 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2025 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2026 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2027 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2028 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2029 const char *orig_name = name;
2030 size_t orig_name_size = name_size;
2031
2032 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2033 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2034 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2035 name, name_size);
2036 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2037 if (!decoded_name) {
2038 rc = -ENOMEM;
2039 goto out;
2040 }
2041 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2042 name, name_size);
2043 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2044 plaintext_name_size,
2045 &packet_size,
2046 mount_crypt_stat,
2047 decoded_name,
2048 decoded_name_size);
2049 if (rc) {
2050 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2051 "from filename; copying through filename "
2052 "as-is\n", __func__);
2053 rc = ecryptfs_copy_filename(plaintext_name,
2054 plaintext_name_size,
2055 orig_name, orig_name_size);
2056 goto out_free;
2057 }
2058 } else {
2059 rc = ecryptfs_copy_filename(plaintext_name,
2060 plaintext_name_size,
2061 name, name_size);
2062 goto out;
2063 }
2064 out_free:
2065 kfree(decoded_name);
2066 out:
2067 return rc;
2068 }
2069
2070 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2071
2072 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2073 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2074 {
2075 struct crypto_skcipher *tfm;
2076 struct mutex *tfm_mutex;
2077 size_t cipher_blocksize;
2078 int rc;
2079
2080 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2081 (*namelen) = lower_namelen;
2082 return 0;
2083 }
2084
2085 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2086 mount_crypt_stat->global_default_fn_cipher_name);
2087 if (unlikely(rc)) {
2088 (*namelen) = 0;
2089 return rc;
2090 }
2091
2092 mutex_lock(tfm_mutex);
2093 cipher_blocksize = crypto_skcipher_blocksize(tfm);
2094 mutex_unlock(tfm_mutex);
2095
2096 /* Return an exact amount for the common cases */
2097 if (lower_namelen == NAME_MAX
2098 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2099 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2100 return 0;
2101 }
2102
2103 /* Return a safe estimate for the uncommon cases */
2104 (*namelen) = lower_namelen;
2105 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2106 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2107 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2108 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2109 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2110 /* Worst case is that the filename is padded nearly a full block size */
2111 (*namelen) -= cipher_blocksize - 1;
2112
2113 if ((*namelen) < 0)
2114 (*namelen) = 0;
2115
2116 return 0;
2117 }