]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ecryptfs/crypto.c
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
[mirror_ubuntu-bionic-kernel.git] / fs / ecryptfs / crypto.c
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
28 #include <linux/fs.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include "ecryptfs_kernel.h"
40
41 #define DECRYPT 0
42 #define ENCRYPT 1
43
44 /**
45 * ecryptfs_to_hex
46 * @dst: Buffer to take hex character representation of contents of
47 * src; must be at least of size (src_size * 2)
48 * @src: Buffer to be converted to a hex string respresentation
49 * @src_size: number of bytes to convert
50 */
51 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
52 {
53 int x;
54
55 for (x = 0; x < src_size; x++)
56 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
57 }
58
59 /**
60 * ecryptfs_from_hex
61 * @dst: Buffer to take the bytes from src hex; must be at least of
62 * size (src_size / 2)
63 * @src: Buffer to be converted from a hex string respresentation to raw value
64 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
65 */
66 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
67 {
68 int x;
69 char tmp[3] = { 0, };
70
71 for (x = 0; x < dst_size; x++) {
72 tmp[0] = src[x * 2];
73 tmp[1] = src[x * 2 + 1];
74 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
75 }
76 }
77
78 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
79 char *src, int len, char *dst)
80 {
81 SHASH_DESC_ON_STACK(desc, tfm);
82 int err;
83
84 desc->tfm = tfm;
85 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
86 err = crypto_shash_digest(desc, src, len, dst);
87 shash_desc_zero(desc);
88 return err;
89 }
90
91 /**
92 * ecryptfs_calculate_md5 - calculates the md5 of @src
93 * @dst: Pointer to 16 bytes of allocated memory
94 * @crypt_stat: Pointer to crypt_stat struct for the current inode
95 * @src: Data to be md5'd
96 * @len: Length of @src
97 *
98 * Uses the allocated crypto context that crypt_stat references to
99 * generate the MD5 sum of the contents of src.
100 */
101 static int ecryptfs_calculate_md5(char *dst,
102 struct ecryptfs_crypt_stat *crypt_stat,
103 char *src, int len)
104 {
105 struct crypto_shash *tfm;
106 int rc = 0;
107
108 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
109 tfm = crypt_stat->hash_tfm;
110 if (!tfm) {
111 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
112 if (IS_ERR(tfm)) {
113 rc = PTR_ERR(tfm);
114 ecryptfs_printk(KERN_ERR, "Error attempting to "
115 "allocate crypto context; rc = [%d]\n",
116 rc);
117 goto out;
118 }
119 crypt_stat->hash_tfm = tfm;
120 }
121 rc = ecryptfs_hash_digest(tfm, src, len, dst);
122 if (rc) {
123 printk(KERN_ERR
124 "%s: Error computing crypto hash; rc = [%d]\n",
125 __func__, rc);
126 goto out;
127 }
128 out:
129 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
130 return rc;
131 }
132
133 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
134 char *cipher_name,
135 char *chaining_modifier)
136 {
137 int cipher_name_len = strlen(cipher_name);
138 int chaining_modifier_len = strlen(chaining_modifier);
139 int algified_name_len;
140 int rc;
141
142 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
143 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
144 if (!(*algified_name)) {
145 rc = -ENOMEM;
146 goto out;
147 }
148 snprintf((*algified_name), algified_name_len, "%s(%s)",
149 chaining_modifier, cipher_name);
150 rc = 0;
151 out:
152 return rc;
153 }
154
155 /**
156 * ecryptfs_derive_iv
157 * @iv: destination for the derived iv vale
158 * @crypt_stat: Pointer to crypt_stat struct for the current inode
159 * @offset: Offset of the extent whose IV we are to derive
160 *
161 * Generate the initialization vector from the given root IV and page
162 * offset.
163 *
164 * Returns zero on success; non-zero on error.
165 */
166 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
167 loff_t offset)
168 {
169 int rc = 0;
170 char dst[MD5_DIGEST_SIZE];
171 char src[ECRYPTFS_MAX_IV_BYTES + 16];
172
173 if (unlikely(ecryptfs_verbosity > 0)) {
174 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
175 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
176 }
177 /* TODO: It is probably secure to just cast the least
178 * significant bits of the root IV into an unsigned long and
179 * add the offset to that rather than go through all this
180 * hashing business. -Halcrow */
181 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
182 memset((src + crypt_stat->iv_bytes), 0, 16);
183 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
184 if (unlikely(ecryptfs_verbosity > 0)) {
185 ecryptfs_printk(KERN_DEBUG, "source:\n");
186 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
187 }
188 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
189 (crypt_stat->iv_bytes + 16));
190 if (rc) {
191 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
192 "MD5 while generating IV for a page\n");
193 goto out;
194 }
195 memcpy(iv, dst, crypt_stat->iv_bytes);
196 if (unlikely(ecryptfs_verbosity > 0)) {
197 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
198 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
199 }
200 out:
201 return rc;
202 }
203
204 /**
205 * ecryptfs_init_crypt_stat
206 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
207 *
208 * Initialize the crypt_stat structure.
209 */
210 void
211 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
212 {
213 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
214 INIT_LIST_HEAD(&crypt_stat->keysig_list);
215 mutex_init(&crypt_stat->keysig_list_mutex);
216 mutex_init(&crypt_stat->cs_mutex);
217 mutex_init(&crypt_stat->cs_tfm_mutex);
218 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
219 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
220 }
221
222 /**
223 * ecryptfs_destroy_crypt_stat
224 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
225 *
226 * Releases all memory associated with a crypt_stat struct.
227 */
228 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
229 {
230 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
231
232 crypto_free_skcipher(crypt_stat->tfm);
233 crypto_free_shash(crypt_stat->hash_tfm);
234 list_for_each_entry_safe(key_sig, key_sig_tmp,
235 &crypt_stat->keysig_list, crypt_stat_list) {
236 list_del(&key_sig->crypt_stat_list);
237 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
238 }
239 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
240 }
241
242 void ecryptfs_destroy_mount_crypt_stat(
243 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
244 {
245 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
246
247 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
248 return;
249 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
250 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
251 &mount_crypt_stat->global_auth_tok_list,
252 mount_crypt_stat_list) {
253 list_del(&auth_tok->mount_crypt_stat_list);
254 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
255 key_put(auth_tok->global_auth_tok_key);
256 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
257 }
258 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
259 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
260 }
261
262 /**
263 * virt_to_scatterlist
264 * @addr: Virtual address
265 * @size: Size of data; should be an even multiple of the block size
266 * @sg: Pointer to scatterlist array; set to NULL to obtain only
267 * the number of scatterlist structs required in array
268 * @sg_size: Max array size
269 *
270 * Fills in a scatterlist array with page references for a passed
271 * virtual address.
272 *
273 * Returns the number of scatterlist structs in array used
274 */
275 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
276 int sg_size)
277 {
278 int i = 0;
279 struct page *pg;
280 int offset;
281 int remainder_of_page;
282
283 sg_init_table(sg, sg_size);
284
285 while (size > 0 && i < sg_size) {
286 pg = virt_to_page(addr);
287 offset = offset_in_page(addr);
288 sg_set_page(&sg[i], pg, 0, offset);
289 remainder_of_page = PAGE_SIZE - offset;
290 if (size >= remainder_of_page) {
291 sg[i].length = remainder_of_page;
292 addr += remainder_of_page;
293 size -= remainder_of_page;
294 } else {
295 sg[i].length = size;
296 addr += size;
297 size = 0;
298 }
299 i++;
300 }
301 if (size > 0)
302 return -ENOMEM;
303 return i;
304 }
305
306 struct extent_crypt_result {
307 struct completion completion;
308 int rc;
309 };
310
311 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
312 {
313 struct extent_crypt_result *ecr = req->data;
314
315 if (rc == -EINPROGRESS)
316 return;
317
318 ecr->rc = rc;
319 complete(&ecr->completion);
320 }
321
322 /**
323 * crypt_scatterlist
324 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
325 * @dst_sg: Destination of the data after performing the crypto operation
326 * @src_sg: Data to be encrypted or decrypted
327 * @size: Length of data
328 * @iv: IV to use
329 * @op: ENCRYPT or DECRYPT to indicate the desired operation
330 *
331 * Returns the number of bytes encrypted or decrypted; negative value on error
332 */
333 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
334 struct scatterlist *dst_sg,
335 struct scatterlist *src_sg, int size,
336 unsigned char *iv, int op)
337 {
338 struct skcipher_request *req = NULL;
339 struct extent_crypt_result ecr;
340 int rc = 0;
341
342 BUG_ON(!crypt_stat || !crypt_stat->tfm
343 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
344 if (unlikely(ecryptfs_verbosity > 0)) {
345 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
346 crypt_stat->key_size);
347 ecryptfs_dump_hex(crypt_stat->key,
348 crypt_stat->key_size);
349 }
350
351 init_completion(&ecr.completion);
352
353 mutex_lock(&crypt_stat->cs_tfm_mutex);
354 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
355 if (!req) {
356 mutex_unlock(&crypt_stat->cs_tfm_mutex);
357 rc = -ENOMEM;
358 goto out;
359 }
360
361 skcipher_request_set_callback(req,
362 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
363 extent_crypt_complete, &ecr);
364 /* Consider doing this once, when the file is opened */
365 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
366 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
367 crypt_stat->key_size);
368 if (rc) {
369 ecryptfs_printk(KERN_ERR,
370 "Error setting key; rc = [%d]\n",
371 rc);
372 mutex_unlock(&crypt_stat->cs_tfm_mutex);
373 rc = -EINVAL;
374 goto out;
375 }
376 crypt_stat->flags |= ECRYPTFS_KEY_SET;
377 }
378 mutex_unlock(&crypt_stat->cs_tfm_mutex);
379 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
380 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
381 crypto_skcipher_decrypt(req);
382 if (rc == -EINPROGRESS || rc == -EBUSY) {
383 struct extent_crypt_result *ecr = req->base.data;
384
385 wait_for_completion(&ecr->completion);
386 rc = ecr->rc;
387 reinit_completion(&ecr->completion);
388 }
389 out:
390 skcipher_request_free(req);
391 return rc;
392 }
393
394 /**
395 * lower_offset_for_page
396 *
397 * Convert an eCryptfs page index into a lower byte offset
398 */
399 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
400 struct page *page)
401 {
402 return ecryptfs_lower_header_size(crypt_stat) +
403 ((loff_t)page->index << PAGE_SHIFT);
404 }
405
406 /**
407 * crypt_extent
408 * @crypt_stat: crypt_stat containing cryptographic context for the
409 * encryption operation
410 * @dst_page: The page to write the result into
411 * @src_page: The page to read from
412 * @extent_offset: Page extent offset for use in generating IV
413 * @op: ENCRYPT or DECRYPT to indicate the desired operation
414 *
415 * Encrypts or decrypts one extent of data.
416 *
417 * Return zero on success; non-zero otherwise
418 */
419 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
420 struct page *dst_page,
421 struct page *src_page,
422 unsigned long extent_offset, int op)
423 {
424 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
425 loff_t extent_base;
426 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
427 struct scatterlist src_sg, dst_sg;
428 size_t extent_size = crypt_stat->extent_size;
429 int rc;
430
431 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
432 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
433 (extent_base + extent_offset));
434 if (rc) {
435 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
436 "extent [0x%.16llx]; rc = [%d]\n",
437 (unsigned long long)(extent_base + extent_offset), rc);
438 goto out;
439 }
440
441 sg_init_table(&src_sg, 1);
442 sg_init_table(&dst_sg, 1);
443
444 sg_set_page(&src_sg, src_page, extent_size,
445 extent_offset * extent_size);
446 sg_set_page(&dst_sg, dst_page, extent_size,
447 extent_offset * extent_size);
448
449 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
450 extent_iv, op);
451 if (rc < 0) {
452 printk(KERN_ERR "%s: Error attempting to crypt page with "
453 "page_index = [%ld], extent_offset = [%ld]; "
454 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
455 goto out;
456 }
457 rc = 0;
458 out:
459 return rc;
460 }
461
462 /**
463 * ecryptfs_encrypt_page
464 * @page: Page mapped from the eCryptfs inode for the file; contains
465 * decrypted content that needs to be encrypted (to a temporary
466 * page; not in place) and written out to the lower file
467 *
468 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
469 * that eCryptfs pages may straddle the lower pages -- for instance,
470 * if the file was created on a machine with an 8K page size
471 * (resulting in an 8K header), and then the file is copied onto a
472 * host with a 32K page size, then when reading page 0 of the eCryptfs
473 * file, 24K of page 0 of the lower file will be read and decrypted,
474 * and then 8K of page 1 of the lower file will be read and decrypted.
475 *
476 * Returns zero on success; negative on error
477 */
478 int ecryptfs_encrypt_page(struct page *page)
479 {
480 struct inode *ecryptfs_inode;
481 struct ecryptfs_crypt_stat *crypt_stat;
482 char *enc_extent_virt;
483 struct page *enc_extent_page = NULL;
484 loff_t extent_offset;
485 loff_t lower_offset;
486 int rc = 0;
487
488 ecryptfs_inode = page->mapping->host;
489 crypt_stat =
490 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
491 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
492 enc_extent_page = alloc_page(GFP_USER);
493 if (!enc_extent_page) {
494 rc = -ENOMEM;
495 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
496 "encrypted extent\n");
497 goto out;
498 }
499
500 for (extent_offset = 0;
501 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
502 extent_offset++) {
503 rc = crypt_extent(crypt_stat, enc_extent_page, page,
504 extent_offset, ENCRYPT);
505 if (rc) {
506 printk(KERN_ERR "%s: Error encrypting extent; "
507 "rc = [%d]\n", __func__, rc);
508 goto out;
509 }
510 }
511
512 lower_offset = lower_offset_for_page(crypt_stat, page);
513 enc_extent_virt = kmap(enc_extent_page);
514 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
515 PAGE_SIZE);
516 kunmap(enc_extent_page);
517 if (rc < 0) {
518 ecryptfs_printk(KERN_ERR,
519 "Error attempting to write lower page; rc = [%d]\n",
520 rc);
521 goto out;
522 }
523 rc = 0;
524 out:
525 if (enc_extent_page) {
526 __free_page(enc_extent_page);
527 }
528 return rc;
529 }
530
531 /**
532 * ecryptfs_decrypt_page
533 * @page: Page mapped from the eCryptfs inode for the file; data read
534 * and decrypted from the lower file will be written into this
535 * page
536 *
537 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
538 * that eCryptfs pages may straddle the lower pages -- for instance,
539 * if the file was created on a machine with an 8K page size
540 * (resulting in an 8K header), and then the file is copied onto a
541 * host with a 32K page size, then when reading page 0 of the eCryptfs
542 * file, 24K of page 0 of the lower file will be read and decrypted,
543 * and then 8K of page 1 of the lower file will be read and decrypted.
544 *
545 * Returns zero on success; negative on error
546 */
547 int ecryptfs_decrypt_page(struct page *page)
548 {
549 struct inode *ecryptfs_inode;
550 struct ecryptfs_crypt_stat *crypt_stat;
551 char *page_virt;
552 unsigned long extent_offset;
553 loff_t lower_offset;
554 int rc = 0;
555
556 ecryptfs_inode = page->mapping->host;
557 crypt_stat =
558 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
559 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
560
561 lower_offset = lower_offset_for_page(crypt_stat, page);
562 page_virt = kmap(page);
563 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
564 ecryptfs_inode);
565 kunmap(page);
566 if (rc < 0) {
567 ecryptfs_printk(KERN_ERR,
568 "Error attempting to read lower page; rc = [%d]\n",
569 rc);
570 goto out;
571 }
572
573 for (extent_offset = 0;
574 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
575 extent_offset++) {
576 rc = crypt_extent(crypt_stat, page, page,
577 extent_offset, DECRYPT);
578 if (rc) {
579 printk(KERN_ERR "%s: Error encrypting extent; "
580 "rc = [%d]\n", __func__, rc);
581 goto out;
582 }
583 }
584 out:
585 return rc;
586 }
587
588 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
589
590 /**
591 * ecryptfs_init_crypt_ctx
592 * @crypt_stat: Uninitialized crypt stats structure
593 *
594 * Initialize the crypto context.
595 *
596 * TODO: Performance: Keep a cache of initialized cipher contexts;
597 * only init if needed
598 */
599 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
600 {
601 char *full_alg_name;
602 int rc = -EINVAL;
603
604 ecryptfs_printk(KERN_DEBUG,
605 "Initializing cipher [%s]; strlen = [%d]; "
606 "key_size_bits = [%zd]\n",
607 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
608 crypt_stat->key_size << 3);
609 mutex_lock(&crypt_stat->cs_tfm_mutex);
610 if (crypt_stat->tfm) {
611 rc = 0;
612 goto out_unlock;
613 }
614 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
615 crypt_stat->cipher, "cbc");
616 if (rc)
617 goto out_unlock;
618 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
619 if (IS_ERR(crypt_stat->tfm)) {
620 rc = PTR_ERR(crypt_stat->tfm);
621 crypt_stat->tfm = NULL;
622 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
623 "Error initializing cipher [%s]\n",
624 full_alg_name);
625 goto out_free;
626 }
627 crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
628 rc = 0;
629 out_free:
630 kfree(full_alg_name);
631 out_unlock:
632 mutex_unlock(&crypt_stat->cs_tfm_mutex);
633 return rc;
634 }
635
636 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
637 {
638 int extent_size_tmp;
639
640 crypt_stat->extent_mask = 0xFFFFFFFF;
641 crypt_stat->extent_shift = 0;
642 if (crypt_stat->extent_size == 0)
643 return;
644 extent_size_tmp = crypt_stat->extent_size;
645 while ((extent_size_tmp & 0x01) == 0) {
646 extent_size_tmp >>= 1;
647 crypt_stat->extent_mask <<= 1;
648 crypt_stat->extent_shift++;
649 }
650 }
651
652 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
653 {
654 /* Default values; may be overwritten as we are parsing the
655 * packets. */
656 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
657 set_extent_mask_and_shift(crypt_stat);
658 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
659 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
660 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
661 else {
662 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
663 crypt_stat->metadata_size =
664 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
665 else
666 crypt_stat->metadata_size = PAGE_SIZE;
667 }
668 }
669
670 /**
671 * ecryptfs_compute_root_iv
672 * @crypt_stats
673 *
674 * On error, sets the root IV to all 0's.
675 */
676 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
677 {
678 int rc = 0;
679 char dst[MD5_DIGEST_SIZE];
680
681 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
682 BUG_ON(crypt_stat->iv_bytes <= 0);
683 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
684 rc = -EINVAL;
685 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
686 "cannot generate root IV\n");
687 goto out;
688 }
689 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
690 crypt_stat->key_size);
691 if (rc) {
692 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
693 "MD5 while generating root IV\n");
694 goto out;
695 }
696 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
697 out:
698 if (rc) {
699 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
700 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
701 }
702 return rc;
703 }
704
705 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
706 {
707 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
708 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
709 ecryptfs_compute_root_iv(crypt_stat);
710 if (unlikely(ecryptfs_verbosity > 0)) {
711 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
712 ecryptfs_dump_hex(crypt_stat->key,
713 crypt_stat->key_size);
714 }
715 }
716
717 /**
718 * ecryptfs_copy_mount_wide_flags_to_inode_flags
719 * @crypt_stat: The inode's cryptographic context
720 * @mount_crypt_stat: The mount point's cryptographic context
721 *
722 * This function propagates the mount-wide flags to individual inode
723 * flags.
724 */
725 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
726 struct ecryptfs_crypt_stat *crypt_stat,
727 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
728 {
729 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
730 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
731 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
732 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
733 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
734 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
735 if (mount_crypt_stat->flags
736 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
737 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
738 else if (mount_crypt_stat->flags
739 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
740 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
741 }
742 }
743
744 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
745 struct ecryptfs_crypt_stat *crypt_stat,
746 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
747 {
748 struct ecryptfs_global_auth_tok *global_auth_tok;
749 int rc = 0;
750
751 mutex_lock(&crypt_stat->keysig_list_mutex);
752 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
753
754 list_for_each_entry(global_auth_tok,
755 &mount_crypt_stat->global_auth_tok_list,
756 mount_crypt_stat_list) {
757 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
758 continue;
759 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
760 if (rc) {
761 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
762 goto out;
763 }
764 }
765
766 out:
767 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
768 mutex_unlock(&crypt_stat->keysig_list_mutex);
769 return rc;
770 }
771
772 /**
773 * ecryptfs_set_default_crypt_stat_vals
774 * @crypt_stat: The inode's cryptographic context
775 * @mount_crypt_stat: The mount point's cryptographic context
776 *
777 * Default values in the event that policy does not override them.
778 */
779 static void ecryptfs_set_default_crypt_stat_vals(
780 struct ecryptfs_crypt_stat *crypt_stat,
781 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
782 {
783 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
784 mount_crypt_stat);
785 ecryptfs_set_default_sizes(crypt_stat);
786 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
787 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
788 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
789 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
790 crypt_stat->mount_crypt_stat = mount_crypt_stat;
791 }
792
793 /**
794 * ecryptfs_new_file_context
795 * @ecryptfs_inode: The eCryptfs inode
796 *
797 * If the crypto context for the file has not yet been established,
798 * this is where we do that. Establishing a new crypto context
799 * involves the following decisions:
800 * - What cipher to use?
801 * - What set of authentication tokens to use?
802 * Here we just worry about getting enough information into the
803 * authentication tokens so that we know that they are available.
804 * We associate the available authentication tokens with the new file
805 * via the set of signatures in the crypt_stat struct. Later, when
806 * the headers are actually written out, we may again defer to
807 * userspace to perform the encryption of the session key; for the
808 * foreseeable future, this will be the case with public key packets.
809 *
810 * Returns zero on success; non-zero otherwise
811 */
812 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
813 {
814 struct ecryptfs_crypt_stat *crypt_stat =
815 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
816 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
817 &ecryptfs_superblock_to_private(
818 ecryptfs_inode->i_sb)->mount_crypt_stat;
819 int cipher_name_len;
820 int rc = 0;
821
822 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
823 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
824 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
825 mount_crypt_stat);
826 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
827 mount_crypt_stat);
828 if (rc) {
829 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
830 "to the inode key sigs; rc = [%d]\n", rc);
831 goto out;
832 }
833 cipher_name_len =
834 strlen(mount_crypt_stat->global_default_cipher_name);
835 memcpy(crypt_stat->cipher,
836 mount_crypt_stat->global_default_cipher_name,
837 cipher_name_len);
838 crypt_stat->cipher[cipher_name_len] = '\0';
839 crypt_stat->key_size =
840 mount_crypt_stat->global_default_cipher_key_size;
841 ecryptfs_generate_new_key(crypt_stat);
842 rc = ecryptfs_init_crypt_ctx(crypt_stat);
843 if (rc)
844 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
845 "context for cipher [%s]: rc = [%d]\n",
846 crypt_stat->cipher, rc);
847 out:
848 return rc;
849 }
850
851 /**
852 * ecryptfs_validate_marker - check for the ecryptfs marker
853 * @data: The data block in which to check
854 *
855 * Returns zero if marker found; -EINVAL if not found
856 */
857 static int ecryptfs_validate_marker(char *data)
858 {
859 u32 m_1, m_2;
860
861 m_1 = get_unaligned_be32(data);
862 m_2 = get_unaligned_be32(data + 4);
863 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
864 return 0;
865 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
866 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
867 MAGIC_ECRYPTFS_MARKER);
868 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
869 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
870 return -EINVAL;
871 }
872
873 struct ecryptfs_flag_map_elem {
874 u32 file_flag;
875 u32 local_flag;
876 };
877
878 /* Add support for additional flags by adding elements here. */
879 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
880 {0x00000001, ECRYPTFS_ENABLE_HMAC},
881 {0x00000002, ECRYPTFS_ENCRYPTED},
882 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
883 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
884 };
885
886 /**
887 * ecryptfs_process_flags
888 * @crypt_stat: The cryptographic context
889 * @page_virt: Source data to be parsed
890 * @bytes_read: Updated with the number of bytes read
891 *
892 * Returns zero on success; non-zero if the flag set is invalid
893 */
894 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
895 char *page_virt, int *bytes_read)
896 {
897 int rc = 0;
898 int i;
899 u32 flags;
900
901 flags = get_unaligned_be32(page_virt);
902 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
903 / sizeof(struct ecryptfs_flag_map_elem))); i++)
904 if (flags & ecryptfs_flag_map[i].file_flag) {
905 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
906 } else
907 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
908 /* Version is in top 8 bits of the 32-bit flag vector */
909 crypt_stat->file_version = ((flags >> 24) & 0xFF);
910 (*bytes_read) = 4;
911 return rc;
912 }
913
914 /**
915 * write_ecryptfs_marker
916 * @page_virt: The pointer to in a page to begin writing the marker
917 * @written: Number of bytes written
918 *
919 * Marker = 0x3c81b7f5
920 */
921 static void write_ecryptfs_marker(char *page_virt, size_t *written)
922 {
923 u32 m_1, m_2;
924
925 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
926 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
927 put_unaligned_be32(m_1, page_virt);
928 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
929 put_unaligned_be32(m_2, page_virt);
930 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
931 }
932
933 void ecryptfs_write_crypt_stat_flags(char *page_virt,
934 struct ecryptfs_crypt_stat *crypt_stat,
935 size_t *written)
936 {
937 u32 flags = 0;
938 int i;
939
940 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
941 / sizeof(struct ecryptfs_flag_map_elem))); i++)
942 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
943 flags |= ecryptfs_flag_map[i].file_flag;
944 /* Version is in top 8 bits of the 32-bit flag vector */
945 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
946 put_unaligned_be32(flags, page_virt);
947 (*written) = 4;
948 }
949
950 struct ecryptfs_cipher_code_str_map_elem {
951 char cipher_str[16];
952 u8 cipher_code;
953 };
954
955 /* Add support for additional ciphers by adding elements here. The
956 * cipher_code is whatever OpenPGP applicatoins use to identify the
957 * ciphers. List in order of probability. */
958 static struct ecryptfs_cipher_code_str_map_elem
959 ecryptfs_cipher_code_str_map[] = {
960 {"aes",RFC2440_CIPHER_AES_128 },
961 {"blowfish", RFC2440_CIPHER_BLOWFISH},
962 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
963 {"cast5", RFC2440_CIPHER_CAST_5},
964 {"twofish", RFC2440_CIPHER_TWOFISH},
965 {"cast6", RFC2440_CIPHER_CAST_6},
966 {"aes", RFC2440_CIPHER_AES_192},
967 {"aes", RFC2440_CIPHER_AES_256}
968 };
969
970 /**
971 * ecryptfs_code_for_cipher_string
972 * @cipher_name: The string alias for the cipher
973 * @key_bytes: Length of key in bytes; used for AES code selection
974 *
975 * Returns zero on no match, or the cipher code on match
976 */
977 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
978 {
979 int i;
980 u8 code = 0;
981 struct ecryptfs_cipher_code_str_map_elem *map =
982 ecryptfs_cipher_code_str_map;
983
984 if (strcmp(cipher_name, "aes") == 0) {
985 switch (key_bytes) {
986 case 16:
987 code = RFC2440_CIPHER_AES_128;
988 break;
989 case 24:
990 code = RFC2440_CIPHER_AES_192;
991 break;
992 case 32:
993 code = RFC2440_CIPHER_AES_256;
994 }
995 } else {
996 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
997 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
998 code = map[i].cipher_code;
999 break;
1000 }
1001 }
1002 return code;
1003 }
1004
1005 /**
1006 * ecryptfs_cipher_code_to_string
1007 * @str: Destination to write out the cipher name
1008 * @cipher_code: The code to convert to cipher name string
1009 *
1010 * Returns zero on success
1011 */
1012 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1013 {
1014 int rc = 0;
1015 int i;
1016
1017 str[0] = '\0';
1018 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1019 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1020 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1021 if (str[0] == '\0') {
1022 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1023 "[%d]\n", cipher_code);
1024 rc = -EINVAL;
1025 }
1026 return rc;
1027 }
1028
1029 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1030 {
1031 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1032 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1033 int rc;
1034
1035 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1036 inode);
1037 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1038 return rc >= 0 ? -EINVAL : rc;
1039 rc = ecryptfs_validate_marker(marker);
1040 if (!rc)
1041 ecryptfs_i_size_init(file_size, inode);
1042 return rc;
1043 }
1044
1045 void
1046 ecryptfs_write_header_metadata(char *virt,
1047 struct ecryptfs_crypt_stat *crypt_stat,
1048 size_t *written)
1049 {
1050 u32 header_extent_size;
1051 u16 num_header_extents_at_front;
1052
1053 header_extent_size = (u32)crypt_stat->extent_size;
1054 num_header_extents_at_front =
1055 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1056 put_unaligned_be32(header_extent_size, virt);
1057 virt += 4;
1058 put_unaligned_be16(num_header_extents_at_front, virt);
1059 (*written) = 6;
1060 }
1061
1062 struct kmem_cache *ecryptfs_header_cache;
1063
1064 /**
1065 * ecryptfs_write_headers_virt
1066 * @page_virt: The virtual address to write the headers to
1067 * @max: The size of memory allocated at page_virt
1068 * @size: Set to the number of bytes written by this function
1069 * @crypt_stat: The cryptographic context
1070 * @ecryptfs_dentry: The eCryptfs dentry
1071 *
1072 * Format version: 1
1073 *
1074 * Header Extent:
1075 * Octets 0-7: Unencrypted file size (big-endian)
1076 * Octets 8-15: eCryptfs special marker
1077 * Octets 16-19: Flags
1078 * Octet 16: File format version number (between 0 and 255)
1079 * Octets 17-18: Reserved
1080 * Octet 19: Bit 1 (lsb): Reserved
1081 * Bit 2: Encrypted?
1082 * Bits 3-8: Reserved
1083 * Octets 20-23: Header extent size (big-endian)
1084 * Octets 24-25: Number of header extents at front of file
1085 * (big-endian)
1086 * Octet 26: Begin RFC 2440 authentication token packet set
1087 * Data Extent 0:
1088 * Lower data (CBC encrypted)
1089 * Data Extent 1:
1090 * Lower data (CBC encrypted)
1091 * ...
1092 *
1093 * Returns zero on success
1094 */
1095 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1096 size_t *size,
1097 struct ecryptfs_crypt_stat *crypt_stat,
1098 struct dentry *ecryptfs_dentry)
1099 {
1100 int rc;
1101 size_t written;
1102 size_t offset;
1103
1104 offset = ECRYPTFS_FILE_SIZE_BYTES;
1105 write_ecryptfs_marker((page_virt + offset), &written);
1106 offset += written;
1107 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1108 &written);
1109 offset += written;
1110 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1111 &written);
1112 offset += written;
1113 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1114 ecryptfs_dentry, &written,
1115 max - offset);
1116 if (rc)
1117 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1118 "set; rc = [%d]\n", rc);
1119 if (size) {
1120 offset += written;
1121 *size = offset;
1122 }
1123 return rc;
1124 }
1125
1126 static int
1127 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1128 char *virt, size_t virt_len)
1129 {
1130 int rc;
1131
1132 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1133 0, virt_len);
1134 if (rc < 0)
1135 printk(KERN_ERR "%s: Error attempting to write header "
1136 "information to lower file; rc = [%d]\n", __func__, rc);
1137 else
1138 rc = 0;
1139 return rc;
1140 }
1141
1142 static int
1143 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1144 char *page_virt, size_t size)
1145 {
1146 int rc;
1147
1148 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1149 size, 0);
1150 return rc;
1151 }
1152
1153 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1154 unsigned int order)
1155 {
1156 struct page *page;
1157
1158 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1159 if (page)
1160 return (unsigned long) page_address(page);
1161 return 0;
1162 }
1163
1164 /**
1165 * ecryptfs_write_metadata
1166 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1167 * @ecryptfs_inode: The newly created eCryptfs inode
1168 *
1169 * Write the file headers out. This will likely involve a userspace
1170 * callout, in which the session key is encrypted with one or more
1171 * public keys and/or the passphrase necessary to do the encryption is
1172 * retrieved via a prompt. Exactly what happens at this point should
1173 * be policy-dependent.
1174 *
1175 * Returns zero on success; non-zero on error
1176 */
1177 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1178 struct inode *ecryptfs_inode)
1179 {
1180 struct ecryptfs_crypt_stat *crypt_stat =
1181 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1182 unsigned int order;
1183 char *virt;
1184 size_t virt_len;
1185 size_t size = 0;
1186 int rc = 0;
1187
1188 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1189 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1190 printk(KERN_ERR "Key is invalid; bailing out\n");
1191 rc = -EINVAL;
1192 goto out;
1193 }
1194 } else {
1195 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1196 __func__);
1197 rc = -EINVAL;
1198 goto out;
1199 }
1200 virt_len = crypt_stat->metadata_size;
1201 order = get_order(virt_len);
1202 /* Released in this function */
1203 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1204 if (!virt) {
1205 printk(KERN_ERR "%s: Out of memory\n", __func__);
1206 rc = -ENOMEM;
1207 goto out;
1208 }
1209 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1210 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1211 ecryptfs_dentry);
1212 if (unlikely(rc)) {
1213 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1214 __func__, rc);
1215 goto out_free;
1216 }
1217 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1218 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1219 size);
1220 else
1221 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1222 virt_len);
1223 if (rc) {
1224 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1225 "rc = [%d]\n", __func__, rc);
1226 goto out_free;
1227 }
1228 out_free:
1229 free_pages((unsigned long)virt, order);
1230 out:
1231 return rc;
1232 }
1233
1234 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1235 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1236 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1237 char *virt, int *bytes_read,
1238 int validate_header_size)
1239 {
1240 int rc = 0;
1241 u32 header_extent_size;
1242 u16 num_header_extents_at_front;
1243
1244 header_extent_size = get_unaligned_be32(virt);
1245 virt += sizeof(__be32);
1246 num_header_extents_at_front = get_unaligned_be16(virt);
1247 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1248 * (size_t)header_extent_size));
1249 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1250 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1251 && (crypt_stat->metadata_size
1252 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1253 rc = -EINVAL;
1254 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1255 crypt_stat->metadata_size);
1256 }
1257 return rc;
1258 }
1259
1260 /**
1261 * set_default_header_data
1262 * @crypt_stat: The cryptographic context
1263 *
1264 * For version 0 file format; this function is only for backwards
1265 * compatibility for files created with the prior versions of
1266 * eCryptfs.
1267 */
1268 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1269 {
1270 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1271 }
1272
1273 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1274 {
1275 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1276 struct ecryptfs_crypt_stat *crypt_stat;
1277 u64 file_size;
1278
1279 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1280 mount_crypt_stat =
1281 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1282 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1283 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1284 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1285 file_size += crypt_stat->metadata_size;
1286 } else
1287 file_size = get_unaligned_be64(page_virt);
1288 i_size_write(inode, (loff_t)file_size);
1289 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1290 }
1291
1292 /**
1293 * ecryptfs_read_headers_virt
1294 * @page_virt: The virtual address into which to read the headers
1295 * @crypt_stat: The cryptographic context
1296 * @ecryptfs_dentry: The eCryptfs dentry
1297 * @validate_header_size: Whether to validate the header size while reading
1298 *
1299 * Read/parse the header data. The header format is detailed in the
1300 * comment block for the ecryptfs_write_headers_virt() function.
1301 *
1302 * Returns zero on success
1303 */
1304 static int ecryptfs_read_headers_virt(char *page_virt,
1305 struct ecryptfs_crypt_stat *crypt_stat,
1306 struct dentry *ecryptfs_dentry,
1307 int validate_header_size)
1308 {
1309 int rc = 0;
1310 int offset;
1311 int bytes_read;
1312
1313 ecryptfs_set_default_sizes(crypt_stat);
1314 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1315 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1316 offset = ECRYPTFS_FILE_SIZE_BYTES;
1317 rc = ecryptfs_validate_marker(page_virt + offset);
1318 if (rc)
1319 goto out;
1320 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1321 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1322 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1323 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1324 &bytes_read);
1325 if (rc) {
1326 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1327 goto out;
1328 }
1329 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1330 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1331 "file version [%d] is supported by this "
1332 "version of eCryptfs\n",
1333 crypt_stat->file_version,
1334 ECRYPTFS_SUPPORTED_FILE_VERSION);
1335 rc = -EINVAL;
1336 goto out;
1337 }
1338 offset += bytes_read;
1339 if (crypt_stat->file_version >= 1) {
1340 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1341 &bytes_read, validate_header_size);
1342 if (rc) {
1343 ecryptfs_printk(KERN_WARNING, "Error reading header "
1344 "metadata; rc = [%d]\n", rc);
1345 }
1346 offset += bytes_read;
1347 } else
1348 set_default_header_data(crypt_stat);
1349 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1350 ecryptfs_dentry);
1351 out:
1352 return rc;
1353 }
1354
1355 /**
1356 * ecryptfs_read_xattr_region
1357 * @page_virt: The vitual address into which to read the xattr data
1358 * @ecryptfs_inode: The eCryptfs inode
1359 *
1360 * Attempts to read the crypto metadata from the extended attribute
1361 * region of the lower file.
1362 *
1363 * Returns zero on success; non-zero on error
1364 */
1365 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1366 {
1367 struct dentry *lower_dentry =
1368 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1369 ssize_t size;
1370 int rc = 0;
1371
1372 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1373 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1374 if (size < 0) {
1375 if (unlikely(ecryptfs_verbosity > 0))
1376 printk(KERN_INFO "Error attempting to read the [%s] "
1377 "xattr from the lower file; return value = "
1378 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1379 rc = -EINVAL;
1380 goto out;
1381 }
1382 out:
1383 return rc;
1384 }
1385
1386 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1387 struct inode *inode)
1388 {
1389 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1390 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1391 int rc;
1392
1393 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1394 ECRYPTFS_XATTR_NAME, file_size,
1395 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1396 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1397 return rc >= 0 ? -EINVAL : rc;
1398 rc = ecryptfs_validate_marker(marker);
1399 if (!rc)
1400 ecryptfs_i_size_init(file_size, inode);
1401 return rc;
1402 }
1403
1404 /**
1405 * ecryptfs_read_metadata
1406 *
1407 * Common entry point for reading file metadata. From here, we could
1408 * retrieve the header information from the header region of the file,
1409 * the xattr region of the file, or some other repostory that is
1410 * stored separately from the file itself. The current implementation
1411 * supports retrieving the metadata information from the file contents
1412 * and from the xattr region.
1413 *
1414 * Returns zero if valid headers found and parsed; non-zero otherwise
1415 */
1416 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1417 {
1418 int rc;
1419 char *page_virt;
1420 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1421 struct ecryptfs_crypt_stat *crypt_stat =
1422 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1423 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1424 &ecryptfs_superblock_to_private(
1425 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1426
1427 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1428 mount_crypt_stat);
1429 /* Read the first page from the underlying file */
1430 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1431 if (!page_virt) {
1432 rc = -ENOMEM;
1433 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1434 __func__);
1435 goto out;
1436 }
1437 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1438 ecryptfs_inode);
1439 if (rc >= 0)
1440 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1441 ecryptfs_dentry,
1442 ECRYPTFS_VALIDATE_HEADER_SIZE);
1443 if (rc) {
1444 /* metadata is not in the file header, so try xattrs */
1445 memset(page_virt, 0, PAGE_SIZE);
1446 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1447 if (rc) {
1448 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1449 "file header region or xattr region, inode %lu\n",
1450 ecryptfs_inode->i_ino);
1451 rc = -EINVAL;
1452 goto out;
1453 }
1454 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1455 ecryptfs_dentry,
1456 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1457 if (rc) {
1458 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1459 "file xattr region either, inode %lu\n",
1460 ecryptfs_inode->i_ino);
1461 rc = -EINVAL;
1462 }
1463 if (crypt_stat->mount_crypt_stat->flags
1464 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1465 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1466 } else {
1467 printk(KERN_WARNING "Attempt to access file with "
1468 "crypto metadata only in the extended attribute "
1469 "region, but eCryptfs was mounted without "
1470 "xattr support enabled. eCryptfs will not treat "
1471 "this like an encrypted file, inode %lu\n",
1472 ecryptfs_inode->i_ino);
1473 rc = -EINVAL;
1474 }
1475 }
1476 out:
1477 if (page_virt) {
1478 memset(page_virt, 0, PAGE_SIZE);
1479 kmem_cache_free(ecryptfs_header_cache, page_virt);
1480 }
1481 return rc;
1482 }
1483
1484 /**
1485 * ecryptfs_encrypt_filename - encrypt filename
1486 *
1487 * CBC-encrypts the filename. We do not want to encrypt the same
1488 * filename with the same key and IV, which may happen with hard
1489 * links, so we prepend random bits to each filename.
1490 *
1491 * Returns zero on success; non-zero otherwise
1492 */
1493 static int
1494 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1495 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1496 {
1497 int rc = 0;
1498
1499 filename->encrypted_filename = NULL;
1500 filename->encrypted_filename_size = 0;
1501 if (mount_crypt_stat && (mount_crypt_stat->flags
1502 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1503 size_t packet_size;
1504 size_t remaining_bytes;
1505
1506 rc = ecryptfs_write_tag_70_packet(
1507 NULL, NULL,
1508 &filename->encrypted_filename_size,
1509 mount_crypt_stat, NULL,
1510 filename->filename_size);
1511 if (rc) {
1512 printk(KERN_ERR "%s: Error attempting to get packet "
1513 "size for tag 72; rc = [%d]\n", __func__,
1514 rc);
1515 filename->encrypted_filename_size = 0;
1516 goto out;
1517 }
1518 filename->encrypted_filename =
1519 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1520 if (!filename->encrypted_filename) {
1521 printk(KERN_ERR "%s: Out of memory whilst attempting "
1522 "to kmalloc [%zd] bytes\n", __func__,
1523 filename->encrypted_filename_size);
1524 rc = -ENOMEM;
1525 goto out;
1526 }
1527 remaining_bytes = filename->encrypted_filename_size;
1528 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1529 &remaining_bytes,
1530 &packet_size,
1531 mount_crypt_stat,
1532 filename->filename,
1533 filename->filename_size);
1534 if (rc) {
1535 printk(KERN_ERR "%s: Error attempting to generate "
1536 "tag 70 packet; rc = [%d]\n", __func__,
1537 rc);
1538 kfree(filename->encrypted_filename);
1539 filename->encrypted_filename = NULL;
1540 filename->encrypted_filename_size = 0;
1541 goto out;
1542 }
1543 filename->encrypted_filename_size = packet_size;
1544 } else {
1545 printk(KERN_ERR "%s: No support for requested filename "
1546 "encryption method in this release\n", __func__);
1547 rc = -EOPNOTSUPP;
1548 goto out;
1549 }
1550 out:
1551 return rc;
1552 }
1553
1554 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1555 const char *name, size_t name_size)
1556 {
1557 int rc = 0;
1558
1559 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1560 if (!(*copied_name)) {
1561 rc = -ENOMEM;
1562 goto out;
1563 }
1564 memcpy((void *)(*copied_name), (void *)name, name_size);
1565 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1566 * in printing out the
1567 * string in debug
1568 * messages */
1569 (*copied_name_size) = name_size;
1570 out:
1571 return rc;
1572 }
1573
1574 /**
1575 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1576 * @key_tfm: Crypto context for key material, set by this function
1577 * @cipher_name: Name of the cipher
1578 * @key_size: Size of the key in bytes
1579 *
1580 * Returns zero on success. Any crypto_tfm structs allocated here
1581 * should be released by other functions, such as on a superblock put
1582 * event, regardless of whether this function succeeds for fails.
1583 */
1584 static int
1585 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1586 char *cipher_name, size_t *key_size)
1587 {
1588 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1589 char *full_alg_name = NULL;
1590 int rc;
1591
1592 *key_tfm = NULL;
1593 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1594 rc = -EINVAL;
1595 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1596 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1597 goto out;
1598 }
1599 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1600 "ecb");
1601 if (rc)
1602 goto out;
1603 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1604 if (IS_ERR(*key_tfm)) {
1605 rc = PTR_ERR(*key_tfm);
1606 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1607 "[%s]; rc = [%d]\n", full_alg_name, rc);
1608 goto out;
1609 }
1610 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1611 if (*key_size == 0)
1612 *key_size = crypto_skcipher_default_keysize(*key_tfm);
1613 get_random_bytes(dummy_key, *key_size);
1614 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1615 if (rc) {
1616 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1617 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1618 rc);
1619 rc = -EINVAL;
1620 goto out;
1621 }
1622 out:
1623 kfree(full_alg_name);
1624 return rc;
1625 }
1626
1627 struct kmem_cache *ecryptfs_key_tfm_cache;
1628 static struct list_head key_tfm_list;
1629 struct mutex key_tfm_list_mutex;
1630
1631 int __init ecryptfs_init_crypto(void)
1632 {
1633 mutex_init(&key_tfm_list_mutex);
1634 INIT_LIST_HEAD(&key_tfm_list);
1635 return 0;
1636 }
1637
1638 /**
1639 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1640 *
1641 * Called only at module unload time
1642 */
1643 int ecryptfs_destroy_crypto(void)
1644 {
1645 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1646
1647 mutex_lock(&key_tfm_list_mutex);
1648 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1649 key_tfm_list) {
1650 list_del(&key_tfm->key_tfm_list);
1651 crypto_free_skcipher(key_tfm->key_tfm);
1652 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1653 }
1654 mutex_unlock(&key_tfm_list_mutex);
1655 return 0;
1656 }
1657
1658 int
1659 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1660 size_t key_size)
1661 {
1662 struct ecryptfs_key_tfm *tmp_tfm;
1663 int rc = 0;
1664
1665 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1666
1667 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1668 if (key_tfm != NULL)
1669 (*key_tfm) = tmp_tfm;
1670 if (!tmp_tfm) {
1671 rc = -ENOMEM;
1672 printk(KERN_ERR "Error attempting to allocate from "
1673 "ecryptfs_key_tfm_cache\n");
1674 goto out;
1675 }
1676 mutex_init(&tmp_tfm->key_tfm_mutex);
1677 strncpy(tmp_tfm->cipher_name, cipher_name,
1678 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1679 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1680 tmp_tfm->key_size = key_size;
1681 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1682 tmp_tfm->cipher_name,
1683 &tmp_tfm->key_size);
1684 if (rc) {
1685 printk(KERN_ERR "Error attempting to initialize key TFM "
1686 "cipher with name = [%s]; rc = [%d]\n",
1687 tmp_tfm->cipher_name, rc);
1688 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1689 if (key_tfm != NULL)
1690 (*key_tfm) = NULL;
1691 goto out;
1692 }
1693 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1694 out:
1695 return rc;
1696 }
1697
1698 /**
1699 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1700 * @cipher_name: the name of the cipher to search for
1701 * @key_tfm: set to corresponding tfm if found
1702 *
1703 * Searches for cached key_tfm matching @cipher_name
1704 * Must be called with &key_tfm_list_mutex held
1705 * Returns 1 if found, with @key_tfm set
1706 * Returns 0 if not found, with @key_tfm set to NULL
1707 */
1708 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1709 {
1710 struct ecryptfs_key_tfm *tmp_key_tfm;
1711
1712 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1713
1714 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1715 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1716 if (key_tfm)
1717 (*key_tfm) = tmp_key_tfm;
1718 return 1;
1719 }
1720 }
1721 if (key_tfm)
1722 (*key_tfm) = NULL;
1723 return 0;
1724 }
1725
1726 /**
1727 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1728 *
1729 * @tfm: set to cached tfm found, or new tfm created
1730 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1731 * @cipher_name: the name of the cipher to search for and/or add
1732 *
1733 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1734 * Searches for cached item first, and creates new if not found.
1735 * Returns 0 on success, non-zero if adding new cipher failed
1736 */
1737 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1738 struct mutex **tfm_mutex,
1739 char *cipher_name)
1740 {
1741 struct ecryptfs_key_tfm *key_tfm;
1742 int rc = 0;
1743
1744 (*tfm) = NULL;
1745 (*tfm_mutex) = NULL;
1746
1747 mutex_lock(&key_tfm_list_mutex);
1748 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1749 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1750 if (rc) {
1751 printk(KERN_ERR "Error adding new key_tfm to list; "
1752 "rc = [%d]\n", rc);
1753 goto out;
1754 }
1755 }
1756 (*tfm) = key_tfm->key_tfm;
1757 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1758 out:
1759 mutex_unlock(&key_tfm_list_mutex);
1760 return rc;
1761 }
1762
1763 /* 64 characters forming a 6-bit target field */
1764 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1765 "EFGHIJKLMNOPQRST"
1766 "UVWXYZabcdefghij"
1767 "klmnopqrstuvwxyz");
1768
1769 /* We could either offset on every reverse map or just pad some 0x00's
1770 * at the front here */
1771 static const unsigned char filename_rev_map[256] = {
1772 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1773 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1774 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1775 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1776 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1777 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1778 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1779 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1780 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1781 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1782 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1783 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1784 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1785 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1786 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1787 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1788 };
1789
1790 /**
1791 * ecryptfs_encode_for_filename
1792 * @dst: Destination location for encoded filename
1793 * @dst_size: Size of the encoded filename in bytes
1794 * @src: Source location for the filename to encode
1795 * @src_size: Size of the source in bytes
1796 */
1797 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1798 unsigned char *src, size_t src_size)
1799 {
1800 size_t num_blocks;
1801 size_t block_num = 0;
1802 size_t dst_offset = 0;
1803 unsigned char last_block[3];
1804
1805 if (src_size == 0) {
1806 (*dst_size) = 0;
1807 goto out;
1808 }
1809 num_blocks = (src_size / 3);
1810 if ((src_size % 3) == 0) {
1811 memcpy(last_block, (&src[src_size - 3]), 3);
1812 } else {
1813 num_blocks++;
1814 last_block[2] = 0x00;
1815 switch (src_size % 3) {
1816 case 1:
1817 last_block[0] = src[src_size - 1];
1818 last_block[1] = 0x00;
1819 break;
1820 case 2:
1821 last_block[0] = src[src_size - 2];
1822 last_block[1] = src[src_size - 1];
1823 }
1824 }
1825 (*dst_size) = (num_blocks * 4);
1826 if (!dst)
1827 goto out;
1828 while (block_num < num_blocks) {
1829 unsigned char *src_block;
1830 unsigned char dst_block[4];
1831
1832 if (block_num == (num_blocks - 1))
1833 src_block = last_block;
1834 else
1835 src_block = &src[block_num * 3];
1836 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1837 dst_block[1] = (((src_block[0] << 4) & 0x30)
1838 | ((src_block[1] >> 4) & 0x0F));
1839 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1840 | ((src_block[2] >> 6) & 0x03));
1841 dst_block[3] = (src_block[2] & 0x3F);
1842 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1843 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1844 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1845 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1846 block_num++;
1847 }
1848 out:
1849 return;
1850 }
1851
1852 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1853 {
1854 /* Not exact; conservatively long. Every block of 4
1855 * encoded characters decodes into a block of 3
1856 * decoded characters. This segment of code provides
1857 * the caller with the maximum amount of allocated
1858 * space that @dst will need to point to in a
1859 * subsequent call. */
1860 return ((encoded_size + 1) * 3) / 4;
1861 }
1862
1863 /**
1864 * ecryptfs_decode_from_filename
1865 * @dst: If NULL, this function only sets @dst_size and returns. If
1866 * non-NULL, this function decodes the encoded octets in @src
1867 * into the memory that @dst points to.
1868 * @dst_size: Set to the size of the decoded string.
1869 * @src: The encoded set of octets to decode.
1870 * @src_size: The size of the encoded set of octets to decode.
1871 */
1872 static void
1873 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1874 const unsigned char *src, size_t src_size)
1875 {
1876 u8 current_bit_offset = 0;
1877 size_t src_byte_offset = 0;
1878 size_t dst_byte_offset = 0;
1879
1880 if (dst == NULL) {
1881 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1882 goto out;
1883 }
1884 while (src_byte_offset < src_size) {
1885 unsigned char src_byte =
1886 filename_rev_map[(int)src[src_byte_offset]];
1887
1888 switch (current_bit_offset) {
1889 case 0:
1890 dst[dst_byte_offset] = (src_byte << 2);
1891 current_bit_offset = 6;
1892 break;
1893 case 6:
1894 dst[dst_byte_offset++] |= (src_byte >> 4);
1895 dst[dst_byte_offset] = ((src_byte & 0xF)
1896 << 4);
1897 current_bit_offset = 4;
1898 break;
1899 case 4:
1900 dst[dst_byte_offset++] |= (src_byte >> 2);
1901 dst[dst_byte_offset] = (src_byte << 6);
1902 current_bit_offset = 2;
1903 break;
1904 case 2:
1905 dst[dst_byte_offset++] |= (src_byte);
1906 current_bit_offset = 0;
1907 break;
1908 }
1909 src_byte_offset++;
1910 }
1911 (*dst_size) = dst_byte_offset;
1912 out:
1913 return;
1914 }
1915
1916 /**
1917 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1918 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1919 * @name: The plaintext name
1920 * @length: The length of the plaintext
1921 * @encoded_name: The encypted name
1922 *
1923 * Encrypts and encodes a filename into something that constitutes a
1924 * valid filename for a filesystem, with printable characters.
1925 *
1926 * We assume that we have a properly initialized crypto context,
1927 * pointed to by crypt_stat->tfm.
1928 *
1929 * Returns zero on success; non-zero on otherwise
1930 */
1931 int ecryptfs_encrypt_and_encode_filename(
1932 char **encoded_name,
1933 size_t *encoded_name_size,
1934 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1935 const char *name, size_t name_size)
1936 {
1937 size_t encoded_name_no_prefix_size;
1938 int rc = 0;
1939
1940 (*encoded_name) = NULL;
1941 (*encoded_name_size) = 0;
1942 if (mount_crypt_stat && (mount_crypt_stat->flags
1943 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1944 struct ecryptfs_filename *filename;
1945
1946 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1947 if (!filename) {
1948 printk(KERN_ERR "%s: Out of memory whilst attempting "
1949 "to kzalloc [%zd] bytes\n", __func__,
1950 sizeof(*filename));
1951 rc = -ENOMEM;
1952 goto out;
1953 }
1954 filename->filename = (char *)name;
1955 filename->filename_size = name_size;
1956 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1957 if (rc) {
1958 printk(KERN_ERR "%s: Error attempting to encrypt "
1959 "filename; rc = [%d]\n", __func__, rc);
1960 kfree(filename);
1961 goto out;
1962 }
1963 ecryptfs_encode_for_filename(
1964 NULL, &encoded_name_no_prefix_size,
1965 filename->encrypted_filename,
1966 filename->encrypted_filename_size);
1967 if (mount_crypt_stat
1968 && (mount_crypt_stat->flags
1969 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1970 (*encoded_name_size) =
1971 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1972 + encoded_name_no_prefix_size);
1973 else
1974 (*encoded_name_size) =
1975 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976 + encoded_name_no_prefix_size);
1977 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1978 if (!(*encoded_name)) {
1979 printk(KERN_ERR "%s: Out of memory whilst attempting "
1980 "to kzalloc [%zd] bytes\n", __func__,
1981 (*encoded_name_size));
1982 rc = -ENOMEM;
1983 kfree(filename->encrypted_filename);
1984 kfree(filename);
1985 goto out;
1986 }
1987 if (mount_crypt_stat
1988 && (mount_crypt_stat->flags
1989 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1990 memcpy((*encoded_name),
1991 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1992 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1993 ecryptfs_encode_for_filename(
1994 ((*encoded_name)
1995 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1996 &encoded_name_no_prefix_size,
1997 filename->encrypted_filename,
1998 filename->encrypted_filename_size);
1999 (*encoded_name_size) =
2000 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2001 + encoded_name_no_prefix_size);
2002 (*encoded_name)[(*encoded_name_size)] = '\0';
2003 } else {
2004 rc = -EOPNOTSUPP;
2005 }
2006 if (rc) {
2007 printk(KERN_ERR "%s: Error attempting to encode "
2008 "encrypted filename; rc = [%d]\n", __func__,
2009 rc);
2010 kfree((*encoded_name));
2011 (*encoded_name) = NULL;
2012 (*encoded_name_size) = 0;
2013 }
2014 kfree(filename->encrypted_filename);
2015 kfree(filename);
2016 } else {
2017 rc = ecryptfs_copy_filename(encoded_name,
2018 encoded_name_size,
2019 name, name_size);
2020 }
2021 out:
2022 return rc;
2023 }
2024
2025 /**
2026 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2027 * @plaintext_name: The plaintext name
2028 * @plaintext_name_size: The plaintext name size
2029 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2030 * @name: The filename in cipher text
2031 * @name_size: The cipher text name size
2032 *
2033 * Decrypts and decodes the filename.
2034 *
2035 * Returns zero on error; non-zero otherwise
2036 */
2037 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2038 size_t *plaintext_name_size,
2039 struct super_block *sb,
2040 const char *name, size_t name_size)
2041 {
2042 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2043 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2044 char *decoded_name;
2045 size_t decoded_name_size;
2046 size_t packet_size;
2047 int rc = 0;
2048
2049 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2050 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2051 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2052 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2053 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2054 const char *orig_name = name;
2055 size_t orig_name_size = name_size;
2056
2057 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2058 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2059 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2060 name, name_size);
2061 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2062 if (!decoded_name) {
2063 printk(KERN_ERR "%s: Out of memory whilst attempting "
2064 "to kmalloc [%zd] bytes\n", __func__,
2065 decoded_name_size);
2066 rc = -ENOMEM;
2067 goto out;
2068 }
2069 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2070 name, name_size);
2071 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2072 plaintext_name_size,
2073 &packet_size,
2074 mount_crypt_stat,
2075 decoded_name,
2076 decoded_name_size);
2077 if (rc) {
2078 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2079 "from filename; copying through filename "
2080 "as-is\n", __func__);
2081 rc = ecryptfs_copy_filename(plaintext_name,
2082 plaintext_name_size,
2083 orig_name, orig_name_size);
2084 goto out_free;
2085 }
2086 } else {
2087 rc = ecryptfs_copy_filename(plaintext_name,
2088 plaintext_name_size,
2089 name, name_size);
2090 goto out;
2091 }
2092 out_free:
2093 kfree(decoded_name);
2094 out:
2095 return rc;
2096 }
2097
2098 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2099
2100 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2101 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2102 {
2103 struct crypto_skcipher *tfm;
2104 struct mutex *tfm_mutex;
2105 size_t cipher_blocksize;
2106 int rc;
2107
2108 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2109 (*namelen) = lower_namelen;
2110 return 0;
2111 }
2112
2113 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2114 mount_crypt_stat->global_default_fn_cipher_name);
2115 if (unlikely(rc)) {
2116 (*namelen) = 0;
2117 return rc;
2118 }
2119
2120 mutex_lock(tfm_mutex);
2121 cipher_blocksize = crypto_skcipher_blocksize(tfm);
2122 mutex_unlock(tfm_mutex);
2123
2124 /* Return an exact amount for the common cases */
2125 if (lower_namelen == NAME_MAX
2126 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2127 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2128 return 0;
2129 }
2130
2131 /* Return a safe estimate for the uncommon cases */
2132 (*namelen) = lower_namelen;
2133 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2134 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2135 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2136 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2137 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2138 /* Worst case is that the filename is padded nearly a full block size */
2139 (*namelen) -= cipher_blocksize - 1;
2140
2141 if ((*namelen) < 0)
2142 (*namelen) = 0;
2143
2144 return 0;
2145 }