]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/eventpoll.c
Merge tag 'mtd/fixes-for-4.16-rc2' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-hirsute-kernel.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46
47 /*
48 * LOCKING:
49 * There are three level of locking required by epoll :
50 *
51 * 1) epmutex (mutex)
52 * 2) ep->mtx (mutex)
53 * 3) ep->lock (spinlock)
54 *
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * and ep_free().
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
77 * going to.
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
86 * the lockdep subkey.
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
93 */
94
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97
98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
99
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111
112 struct epoll_filefd {
113 struct file *file;
114 int fd;
115 } __packed;
116
117 /*
118 * Structure used to track possible nested calls, for too deep recursions
119 * and loop cycles.
120 */
121 struct nested_call_node {
122 struct list_head llink;
123 void *cookie;
124 void *ctx;
125 };
126
127 /*
128 * This structure is used as collector for nested calls, to check for
129 * maximum recursion dept and loop cycles.
130 */
131 struct nested_calls {
132 struct list_head tasks_call_list;
133 spinlock_t lock;
134 };
135
136 /*
137 * Each file descriptor added to the eventpoll interface will
138 * have an entry of this type linked to the "rbr" RB tree.
139 * Avoid increasing the size of this struct, there can be many thousands
140 * of these on a server and we do not want this to take another cache line.
141 */
142 struct epitem {
143 union {
144 /* RB tree node links this structure to the eventpoll RB tree */
145 struct rb_node rbn;
146 /* Used to free the struct epitem */
147 struct rcu_head rcu;
148 };
149
150 /* List header used to link this structure to the eventpoll ready list */
151 struct list_head rdllink;
152
153 /*
154 * Works together "struct eventpoll"->ovflist in keeping the
155 * single linked chain of items.
156 */
157 struct epitem *next;
158
159 /* The file descriptor information this item refers to */
160 struct epoll_filefd ffd;
161
162 /* Number of active wait queue attached to poll operations */
163 int nwait;
164
165 /* List containing poll wait queues */
166 struct list_head pwqlist;
167
168 /* The "container" of this item */
169 struct eventpoll *ep;
170
171 /* List header used to link this item to the "struct file" items list */
172 struct list_head fllink;
173
174 /* wakeup_source used when EPOLLWAKEUP is set */
175 struct wakeup_source __rcu *ws;
176
177 /* The structure that describe the interested events and the source fd */
178 struct epoll_event event;
179 };
180
181 /*
182 * This structure is stored inside the "private_data" member of the file
183 * structure and represents the main data structure for the eventpoll
184 * interface.
185 */
186 struct eventpoll {
187 /* Protect the access to this structure */
188 spinlock_t lock;
189
190 /*
191 * This mutex is used to ensure that files are not removed
192 * while epoll is using them. This is held during the event
193 * collection loop, the file cleanup path, the epoll file exit
194 * code and the ctl operations.
195 */
196 struct mutex mtx;
197
198 /* Wait queue used by sys_epoll_wait() */
199 wait_queue_head_t wq;
200
201 /* Wait queue used by file->poll() */
202 wait_queue_head_t poll_wait;
203
204 /* List of ready file descriptors */
205 struct list_head rdllist;
206
207 /* RB tree root used to store monitored fd structs */
208 struct rb_root_cached rbr;
209
210 /*
211 * This is a single linked list that chains all the "struct epitem" that
212 * happened while transferring ready events to userspace w/out
213 * holding ->lock.
214 */
215 struct epitem *ovflist;
216
217 /* wakeup_source used when ep_scan_ready_list is running */
218 struct wakeup_source *ws;
219
220 /* The user that created the eventpoll descriptor */
221 struct user_struct *user;
222
223 struct file *file;
224
225 /* used to optimize loop detection check */
226 int visited;
227 struct list_head visited_list_link;
228
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 /* used to track busy poll napi_id */
231 unsigned int napi_id;
232 #endif
233 };
234
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 /* List header used to link this structure to the "struct epitem" */
238 struct list_head llink;
239
240 /* The "base" pointer is set to the container "struct epitem" */
241 struct epitem *base;
242
243 /*
244 * Wait queue item that will be linked to the target file wait
245 * queue head.
246 */
247 wait_queue_entry_t wait;
248
249 /* The wait queue head that linked the "wait" wait queue item */
250 wait_queue_head_t *whead;
251 };
252
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 poll_table pt;
256 struct epitem *epi;
257 };
258
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 int maxevents;
262 struct epoll_event __user *events;
263 int res;
264 };
265
266 /*
267 * Configuration options available inside /proc/sys/fs/epoll/
268 */
269 /* Maximum number of epoll watched descriptors, per user */
270 static long max_user_watches __read_mostly;
271
272 /*
273 * This mutex is used to serialize ep_free() and eventpoll_release_file().
274 */
275 static DEFINE_MUTEX(epmutex);
276
277 /* Used to check for epoll file descriptor inclusion loops */
278 static struct nested_calls poll_loop_ncalls;
279
280 /* Slab cache used to allocate "struct epitem" */
281 static struct kmem_cache *epi_cache __read_mostly;
282
283 /* Slab cache used to allocate "struct eppoll_entry" */
284 static struct kmem_cache *pwq_cache __read_mostly;
285
286 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
287 static LIST_HEAD(visited_list);
288
289 /*
290 * List of files with newly added links, where we may need to limit the number
291 * of emanating paths. Protected by the epmutex.
292 */
293 static LIST_HEAD(tfile_check_list);
294
295 #ifdef CONFIG_SYSCTL
296
297 #include <linux/sysctl.h>
298
299 static long zero;
300 static long long_max = LONG_MAX;
301
302 struct ctl_table epoll_table[] = {
303 {
304 .procname = "max_user_watches",
305 .data = &max_user_watches,
306 .maxlen = sizeof(max_user_watches),
307 .mode = 0644,
308 .proc_handler = proc_doulongvec_minmax,
309 .extra1 = &zero,
310 .extra2 = &long_max,
311 },
312 { }
313 };
314 #endif /* CONFIG_SYSCTL */
315
316 static const struct file_operations eventpoll_fops;
317
318 static inline int is_file_epoll(struct file *f)
319 {
320 return f->f_op == &eventpoll_fops;
321 }
322
323 /* Setup the structure that is used as key for the RB tree */
324 static inline void ep_set_ffd(struct epoll_filefd *ffd,
325 struct file *file, int fd)
326 {
327 ffd->file = file;
328 ffd->fd = fd;
329 }
330
331 /* Compare RB tree keys */
332 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
333 struct epoll_filefd *p2)
334 {
335 return (p1->file > p2->file ? +1:
336 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
337 }
338
339 /* Tells us if the item is currently linked */
340 static inline int ep_is_linked(struct list_head *p)
341 {
342 return !list_empty(p);
343 }
344
345 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
346 {
347 return container_of(p, struct eppoll_entry, wait);
348 }
349
350 /* Get the "struct epitem" from a wait queue pointer */
351 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
352 {
353 return container_of(p, struct eppoll_entry, wait)->base;
354 }
355
356 /* Get the "struct epitem" from an epoll queue wrapper */
357 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
358 {
359 return container_of(p, struct ep_pqueue, pt)->epi;
360 }
361
362 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
363 static inline int ep_op_has_event(int op)
364 {
365 return op != EPOLL_CTL_DEL;
366 }
367
368 /* Initialize the poll safe wake up structure */
369 static void ep_nested_calls_init(struct nested_calls *ncalls)
370 {
371 INIT_LIST_HEAD(&ncalls->tasks_call_list);
372 spin_lock_init(&ncalls->lock);
373 }
374
375 /**
376 * ep_events_available - Checks if ready events might be available.
377 *
378 * @ep: Pointer to the eventpoll context.
379 *
380 * Returns: Returns a value different than zero if ready events are available,
381 * or zero otherwise.
382 */
383 static inline int ep_events_available(struct eventpoll *ep)
384 {
385 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
386 }
387
388 #ifdef CONFIG_NET_RX_BUSY_POLL
389 static bool ep_busy_loop_end(void *p, unsigned long start_time)
390 {
391 struct eventpoll *ep = p;
392
393 return ep_events_available(ep) || busy_loop_timeout(start_time);
394 }
395 #endif /* CONFIG_NET_RX_BUSY_POLL */
396
397 /*
398 * Busy poll if globally on and supporting sockets found && no events,
399 * busy loop will return if need_resched or ep_events_available.
400 *
401 * we must do our busy polling with irqs enabled
402 */
403 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
404 {
405 #ifdef CONFIG_NET_RX_BUSY_POLL
406 unsigned int napi_id = READ_ONCE(ep->napi_id);
407
408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
410 #endif
411 }
412
413 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
414 {
415 #ifdef CONFIG_NET_RX_BUSY_POLL
416 if (ep->napi_id)
417 ep->napi_id = 0;
418 #endif
419 }
420
421 /*
422 * Set epoll busy poll NAPI ID from sk.
423 */
424 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
425 {
426 #ifdef CONFIG_NET_RX_BUSY_POLL
427 struct eventpoll *ep;
428 unsigned int napi_id;
429 struct socket *sock;
430 struct sock *sk;
431 int err;
432
433 if (!net_busy_loop_on())
434 return;
435
436 sock = sock_from_file(epi->ffd.file, &err);
437 if (!sock)
438 return;
439
440 sk = sock->sk;
441 if (!sk)
442 return;
443
444 napi_id = READ_ONCE(sk->sk_napi_id);
445 ep = epi->ep;
446
447 /* Non-NAPI IDs can be rejected
448 * or
449 * Nothing to do if we already have this ID
450 */
451 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
452 return;
453
454 /* record NAPI ID for use in next busy poll */
455 ep->napi_id = napi_id;
456 #endif
457 }
458
459 /**
460 * ep_call_nested - Perform a bound (possibly) nested call, by checking
461 * that the recursion limit is not exceeded, and that
462 * the same nested call (by the meaning of same cookie) is
463 * no re-entered.
464 *
465 * @ncalls: Pointer to the nested_calls structure to be used for this call.
466 * @max_nests: Maximum number of allowed nesting calls.
467 * @nproc: Nested call core function pointer.
468 * @priv: Opaque data to be passed to the @nproc callback.
469 * @cookie: Cookie to be used to identify this nested call.
470 * @ctx: This instance context.
471 *
472 * Returns: Returns the code returned by the @nproc callback, or -1 if
473 * the maximum recursion limit has been exceeded.
474 */
475 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
476 int (*nproc)(void *, void *, int), void *priv,
477 void *cookie, void *ctx)
478 {
479 int error, call_nests = 0;
480 unsigned long flags;
481 struct list_head *lsthead = &ncalls->tasks_call_list;
482 struct nested_call_node *tncur;
483 struct nested_call_node tnode;
484
485 spin_lock_irqsave(&ncalls->lock, flags);
486
487 /*
488 * Try to see if the current task is already inside this wakeup call.
489 * We use a list here, since the population inside this set is always
490 * very much limited.
491 */
492 list_for_each_entry(tncur, lsthead, llink) {
493 if (tncur->ctx == ctx &&
494 (tncur->cookie == cookie || ++call_nests > max_nests)) {
495 /*
496 * Ops ... loop detected or maximum nest level reached.
497 * We abort this wake by breaking the cycle itself.
498 */
499 error = -1;
500 goto out_unlock;
501 }
502 }
503
504 /* Add the current task and cookie to the list */
505 tnode.ctx = ctx;
506 tnode.cookie = cookie;
507 list_add(&tnode.llink, lsthead);
508
509 spin_unlock_irqrestore(&ncalls->lock, flags);
510
511 /* Call the nested function */
512 error = (*nproc)(priv, cookie, call_nests);
513
514 /* Remove the current task from the list */
515 spin_lock_irqsave(&ncalls->lock, flags);
516 list_del(&tnode.llink);
517 out_unlock:
518 spin_unlock_irqrestore(&ncalls->lock, flags);
519
520 return error;
521 }
522
523 /*
524 * As described in commit 0ccf831cb lockdep: annotate epoll
525 * the use of wait queues used by epoll is done in a very controlled
526 * manner. Wake ups can nest inside each other, but are never done
527 * with the same locking. For example:
528 *
529 * dfd = socket(...);
530 * efd1 = epoll_create();
531 * efd2 = epoll_create();
532 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
533 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
534 *
535 * When a packet arrives to the device underneath "dfd", the net code will
536 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
537 * callback wakeup entry on that queue, and the wake_up() performed by the
538 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
539 * (efd1) notices that it may have some event ready, so it needs to wake up
540 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
541 * that ends up in another wake_up(), after having checked about the
542 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
543 * avoid stack blasting.
544 *
545 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
546 * this special case of epoll.
547 */
548 #ifdef CONFIG_DEBUG_LOCK_ALLOC
549
550 static struct nested_calls poll_safewake_ncalls;
551
552 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
553 {
554 unsigned long flags;
555 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
556
557 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
558 wake_up_locked_poll(wqueue, EPOLLIN);
559 spin_unlock_irqrestore(&wqueue->lock, flags);
560
561 return 0;
562 }
563
564 static void ep_poll_safewake(wait_queue_head_t *wq)
565 {
566 int this_cpu = get_cpu();
567
568 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
569 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
570
571 put_cpu();
572 }
573
574 #else
575
576 static void ep_poll_safewake(wait_queue_head_t *wq)
577 {
578 wake_up_poll(wq, EPOLLIN);
579 }
580
581 #endif
582
583 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
584 {
585 wait_queue_head_t *whead;
586
587 rcu_read_lock();
588 /*
589 * If it is cleared by POLLFREE, it should be rcu-safe.
590 * If we read NULL we need a barrier paired with
591 * smp_store_release() in ep_poll_callback(), otherwise
592 * we rely on whead->lock.
593 */
594 whead = smp_load_acquire(&pwq->whead);
595 if (whead)
596 remove_wait_queue(whead, &pwq->wait);
597 rcu_read_unlock();
598 }
599
600 /*
601 * This function unregisters poll callbacks from the associated file
602 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
603 * ep_free).
604 */
605 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
606 {
607 struct list_head *lsthead = &epi->pwqlist;
608 struct eppoll_entry *pwq;
609
610 while (!list_empty(lsthead)) {
611 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
612
613 list_del(&pwq->llink);
614 ep_remove_wait_queue(pwq);
615 kmem_cache_free(pwq_cache, pwq);
616 }
617 }
618
619 /* call only when ep->mtx is held */
620 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
621 {
622 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
623 }
624
625 /* call only when ep->mtx is held */
626 static inline void ep_pm_stay_awake(struct epitem *epi)
627 {
628 struct wakeup_source *ws = ep_wakeup_source(epi);
629
630 if (ws)
631 __pm_stay_awake(ws);
632 }
633
634 static inline bool ep_has_wakeup_source(struct epitem *epi)
635 {
636 return rcu_access_pointer(epi->ws) ? true : false;
637 }
638
639 /* call when ep->mtx cannot be held (ep_poll_callback) */
640 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
641 {
642 struct wakeup_source *ws;
643
644 rcu_read_lock();
645 ws = rcu_dereference(epi->ws);
646 if (ws)
647 __pm_stay_awake(ws);
648 rcu_read_unlock();
649 }
650
651 /**
652 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
653 * the scan code, to call f_op->poll(). Also allows for
654 * O(NumReady) performance.
655 *
656 * @ep: Pointer to the epoll private data structure.
657 * @sproc: Pointer to the scan callback.
658 * @priv: Private opaque data passed to the @sproc callback.
659 * @depth: The current depth of recursive f_op->poll calls.
660 * @ep_locked: caller already holds ep->mtx
661 *
662 * Returns: The same integer error code returned by the @sproc callback.
663 */
664 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
665 __poll_t (*sproc)(struct eventpoll *,
666 struct list_head *, void *),
667 void *priv, int depth, bool ep_locked)
668 {
669 __poll_t res;
670 int pwake = 0;
671 unsigned long flags;
672 struct epitem *epi, *nepi;
673 LIST_HEAD(txlist);
674
675 /*
676 * We need to lock this because we could be hit by
677 * eventpoll_release_file() and epoll_ctl().
678 */
679
680 if (!ep_locked)
681 mutex_lock_nested(&ep->mtx, depth);
682
683 /*
684 * Steal the ready list, and re-init the original one to the
685 * empty list. Also, set ep->ovflist to NULL so that events
686 * happening while looping w/out locks, are not lost. We cannot
687 * have the poll callback to queue directly on ep->rdllist,
688 * because we want the "sproc" callback to be able to do it
689 * in a lockless way.
690 */
691 spin_lock_irqsave(&ep->lock, flags);
692 list_splice_init(&ep->rdllist, &txlist);
693 ep->ovflist = NULL;
694 spin_unlock_irqrestore(&ep->lock, flags);
695
696 /*
697 * Now call the callback function.
698 */
699 res = (*sproc)(ep, &txlist, priv);
700
701 spin_lock_irqsave(&ep->lock, flags);
702 /*
703 * During the time we spent inside the "sproc" callback, some
704 * other events might have been queued by the poll callback.
705 * We re-insert them inside the main ready-list here.
706 */
707 for (nepi = ep->ovflist; (epi = nepi) != NULL;
708 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
709 /*
710 * We need to check if the item is already in the list.
711 * During the "sproc" callback execution time, items are
712 * queued into ->ovflist but the "txlist" might already
713 * contain them, and the list_splice() below takes care of them.
714 */
715 if (!ep_is_linked(&epi->rdllink)) {
716 list_add_tail(&epi->rdllink, &ep->rdllist);
717 ep_pm_stay_awake(epi);
718 }
719 }
720 /*
721 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
722 * releasing the lock, events will be queued in the normal way inside
723 * ep->rdllist.
724 */
725 ep->ovflist = EP_UNACTIVE_PTR;
726
727 /*
728 * Quickly re-inject items left on "txlist".
729 */
730 list_splice(&txlist, &ep->rdllist);
731 __pm_relax(ep->ws);
732
733 if (!list_empty(&ep->rdllist)) {
734 /*
735 * Wake up (if active) both the eventpoll wait list and
736 * the ->poll() wait list (delayed after we release the lock).
737 */
738 if (waitqueue_active(&ep->wq))
739 wake_up_locked(&ep->wq);
740 if (waitqueue_active(&ep->poll_wait))
741 pwake++;
742 }
743 spin_unlock_irqrestore(&ep->lock, flags);
744
745 if (!ep_locked)
746 mutex_unlock(&ep->mtx);
747
748 /* We have to call this outside the lock */
749 if (pwake)
750 ep_poll_safewake(&ep->poll_wait);
751
752 return res;
753 }
754
755 static void epi_rcu_free(struct rcu_head *head)
756 {
757 struct epitem *epi = container_of(head, struct epitem, rcu);
758 kmem_cache_free(epi_cache, epi);
759 }
760
761 /*
762 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
763 * all the associated resources. Must be called with "mtx" held.
764 */
765 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
766 {
767 unsigned long flags;
768 struct file *file = epi->ffd.file;
769
770 /*
771 * Removes poll wait queue hooks. We _have_ to do this without holding
772 * the "ep->lock" otherwise a deadlock might occur. This because of the
773 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
774 * queue head lock when unregistering the wait queue. The wakeup callback
775 * will run by holding the wait queue head lock and will call our callback
776 * that will try to get "ep->lock".
777 */
778 ep_unregister_pollwait(ep, epi);
779
780 /* Remove the current item from the list of epoll hooks */
781 spin_lock(&file->f_lock);
782 list_del_rcu(&epi->fllink);
783 spin_unlock(&file->f_lock);
784
785 rb_erase_cached(&epi->rbn, &ep->rbr);
786
787 spin_lock_irqsave(&ep->lock, flags);
788 if (ep_is_linked(&epi->rdllink))
789 list_del_init(&epi->rdllink);
790 spin_unlock_irqrestore(&ep->lock, flags);
791
792 wakeup_source_unregister(ep_wakeup_source(epi));
793 /*
794 * At this point it is safe to free the eventpoll item. Use the union
795 * field epi->rcu, since we are trying to minimize the size of
796 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
797 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
798 * use of the rbn field.
799 */
800 call_rcu(&epi->rcu, epi_rcu_free);
801
802 atomic_long_dec(&ep->user->epoll_watches);
803
804 return 0;
805 }
806
807 static void ep_free(struct eventpoll *ep)
808 {
809 struct rb_node *rbp;
810 struct epitem *epi;
811
812 /* We need to release all tasks waiting for these file */
813 if (waitqueue_active(&ep->poll_wait))
814 ep_poll_safewake(&ep->poll_wait);
815
816 /*
817 * We need to lock this because we could be hit by
818 * eventpoll_release_file() while we're freeing the "struct eventpoll".
819 * We do not need to hold "ep->mtx" here because the epoll file
820 * is on the way to be removed and no one has references to it
821 * anymore. The only hit might come from eventpoll_release_file() but
822 * holding "epmutex" is sufficient here.
823 */
824 mutex_lock(&epmutex);
825
826 /*
827 * Walks through the whole tree by unregistering poll callbacks.
828 */
829 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
830 epi = rb_entry(rbp, struct epitem, rbn);
831
832 ep_unregister_pollwait(ep, epi);
833 cond_resched();
834 }
835
836 /*
837 * Walks through the whole tree by freeing each "struct epitem". At this
838 * point we are sure no poll callbacks will be lingering around, and also by
839 * holding "epmutex" we can be sure that no file cleanup code will hit
840 * us during this operation. So we can avoid the lock on "ep->lock".
841 * We do not need to lock ep->mtx, either, we only do it to prevent
842 * a lockdep warning.
843 */
844 mutex_lock(&ep->mtx);
845 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
846 epi = rb_entry(rbp, struct epitem, rbn);
847 ep_remove(ep, epi);
848 cond_resched();
849 }
850 mutex_unlock(&ep->mtx);
851
852 mutex_unlock(&epmutex);
853 mutex_destroy(&ep->mtx);
854 free_uid(ep->user);
855 wakeup_source_unregister(ep->ws);
856 kfree(ep);
857 }
858
859 static int ep_eventpoll_release(struct inode *inode, struct file *file)
860 {
861 struct eventpoll *ep = file->private_data;
862
863 if (ep)
864 ep_free(ep);
865
866 return 0;
867 }
868
869 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
870 void *priv);
871 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
872 poll_table *pt);
873
874 /*
875 * Differs from ep_eventpoll_poll() in that internal callers already have
876 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
877 * is correctly annotated.
878 */
879 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
880 int depth)
881 {
882 struct eventpoll *ep;
883 bool locked;
884
885 pt->_key = epi->event.events;
886 if (!is_file_epoll(epi->ffd.file))
887 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) &
888 epi->event.events;
889
890 ep = epi->ffd.file->private_data;
891 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
892 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
893
894 return ep_scan_ready_list(epi->ffd.file->private_data,
895 ep_read_events_proc, &depth, depth,
896 locked) & epi->event.events;
897 }
898
899 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
900 void *priv)
901 {
902 struct epitem *epi, *tmp;
903 poll_table pt;
904 int depth = *(int *)priv;
905
906 init_poll_funcptr(&pt, NULL);
907 depth++;
908
909 list_for_each_entry_safe(epi, tmp, head, rdllink) {
910 if (ep_item_poll(epi, &pt, depth)) {
911 return EPOLLIN | EPOLLRDNORM;
912 } else {
913 /*
914 * Item has been dropped into the ready list by the poll
915 * callback, but it's not actually ready, as far as
916 * caller requested events goes. We can remove it here.
917 */
918 __pm_relax(ep_wakeup_source(epi));
919 list_del_init(&epi->rdllink);
920 }
921 }
922
923 return 0;
924 }
925
926 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
927 {
928 struct eventpoll *ep = file->private_data;
929 int depth = 0;
930
931 /* Insert inside our poll wait queue */
932 poll_wait(file, &ep->poll_wait, wait);
933
934 /*
935 * Proceed to find out if wanted events are really available inside
936 * the ready list.
937 */
938 return ep_scan_ready_list(ep, ep_read_events_proc,
939 &depth, depth, false);
940 }
941
942 #ifdef CONFIG_PROC_FS
943 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
944 {
945 struct eventpoll *ep = f->private_data;
946 struct rb_node *rbp;
947
948 mutex_lock(&ep->mtx);
949 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
950 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
951 struct inode *inode = file_inode(epi->ffd.file);
952
953 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
954 " pos:%lli ino:%lx sdev:%x\n",
955 epi->ffd.fd, epi->event.events,
956 (long long)epi->event.data,
957 (long long)epi->ffd.file->f_pos,
958 inode->i_ino, inode->i_sb->s_dev);
959 if (seq_has_overflowed(m))
960 break;
961 }
962 mutex_unlock(&ep->mtx);
963 }
964 #endif
965
966 /* File callbacks that implement the eventpoll file behaviour */
967 static const struct file_operations eventpoll_fops = {
968 #ifdef CONFIG_PROC_FS
969 .show_fdinfo = ep_show_fdinfo,
970 #endif
971 .release = ep_eventpoll_release,
972 .poll = ep_eventpoll_poll,
973 .llseek = noop_llseek,
974 };
975
976 /*
977 * This is called from eventpoll_release() to unlink files from the eventpoll
978 * interface. We need to have this facility to cleanup correctly files that are
979 * closed without being removed from the eventpoll interface.
980 */
981 void eventpoll_release_file(struct file *file)
982 {
983 struct eventpoll *ep;
984 struct epitem *epi, *next;
985
986 /*
987 * We don't want to get "file->f_lock" because it is not
988 * necessary. It is not necessary because we're in the "struct file"
989 * cleanup path, and this means that no one is using this file anymore.
990 * So, for example, epoll_ctl() cannot hit here since if we reach this
991 * point, the file counter already went to zero and fget() would fail.
992 * The only hit might come from ep_free() but by holding the mutex
993 * will correctly serialize the operation. We do need to acquire
994 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
995 * from anywhere but ep_free().
996 *
997 * Besides, ep_remove() acquires the lock, so we can't hold it here.
998 */
999 mutex_lock(&epmutex);
1000 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1001 ep = epi->ep;
1002 mutex_lock_nested(&ep->mtx, 0);
1003 ep_remove(ep, epi);
1004 mutex_unlock(&ep->mtx);
1005 }
1006 mutex_unlock(&epmutex);
1007 }
1008
1009 static int ep_alloc(struct eventpoll **pep)
1010 {
1011 int error;
1012 struct user_struct *user;
1013 struct eventpoll *ep;
1014
1015 user = get_current_user();
1016 error = -ENOMEM;
1017 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1018 if (unlikely(!ep))
1019 goto free_uid;
1020
1021 spin_lock_init(&ep->lock);
1022 mutex_init(&ep->mtx);
1023 init_waitqueue_head(&ep->wq);
1024 init_waitqueue_head(&ep->poll_wait);
1025 INIT_LIST_HEAD(&ep->rdllist);
1026 ep->rbr = RB_ROOT_CACHED;
1027 ep->ovflist = EP_UNACTIVE_PTR;
1028 ep->user = user;
1029
1030 *pep = ep;
1031
1032 return 0;
1033
1034 free_uid:
1035 free_uid(user);
1036 return error;
1037 }
1038
1039 /*
1040 * Search the file inside the eventpoll tree. The RB tree operations
1041 * are protected by the "mtx" mutex, and ep_find() must be called with
1042 * "mtx" held.
1043 */
1044 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1045 {
1046 int kcmp;
1047 struct rb_node *rbp;
1048 struct epitem *epi, *epir = NULL;
1049 struct epoll_filefd ffd;
1050
1051 ep_set_ffd(&ffd, file, fd);
1052 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1053 epi = rb_entry(rbp, struct epitem, rbn);
1054 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1055 if (kcmp > 0)
1056 rbp = rbp->rb_right;
1057 else if (kcmp < 0)
1058 rbp = rbp->rb_left;
1059 else {
1060 epir = epi;
1061 break;
1062 }
1063 }
1064
1065 return epir;
1066 }
1067
1068 #ifdef CONFIG_CHECKPOINT_RESTORE
1069 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1070 {
1071 struct rb_node *rbp;
1072 struct epitem *epi;
1073
1074 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1075 epi = rb_entry(rbp, struct epitem, rbn);
1076 if (epi->ffd.fd == tfd) {
1077 if (toff == 0)
1078 return epi;
1079 else
1080 toff--;
1081 }
1082 cond_resched();
1083 }
1084
1085 return NULL;
1086 }
1087
1088 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1089 unsigned long toff)
1090 {
1091 struct file *file_raw;
1092 struct eventpoll *ep;
1093 struct epitem *epi;
1094
1095 if (!is_file_epoll(file))
1096 return ERR_PTR(-EINVAL);
1097
1098 ep = file->private_data;
1099
1100 mutex_lock(&ep->mtx);
1101 epi = ep_find_tfd(ep, tfd, toff);
1102 if (epi)
1103 file_raw = epi->ffd.file;
1104 else
1105 file_raw = ERR_PTR(-ENOENT);
1106 mutex_unlock(&ep->mtx);
1107
1108 return file_raw;
1109 }
1110 #endif /* CONFIG_CHECKPOINT_RESTORE */
1111
1112 /*
1113 * This is the callback that is passed to the wait queue wakeup
1114 * mechanism. It is called by the stored file descriptors when they
1115 * have events to report.
1116 */
1117 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1118 {
1119 int pwake = 0;
1120 unsigned long flags;
1121 struct epitem *epi = ep_item_from_wait(wait);
1122 struct eventpoll *ep = epi->ep;
1123 __poll_t pollflags = key_to_poll(key);
1124 int ewake = 0;
1125
1126 spin_lock_irqsave(&ep->lock, flags);
1127
1128 ep_set_busy_poll_napi_id(epi);
1129
1130 /*
1131 * If the event mask does not contain any poll(2) event, we consider the
1132 * descriptor to be disabled. This condition is likely the effect of the
1133 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1134 * until the next EPOLL_CTL_MOD will be issued.
1135 */
1136 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1137 goto out_unlock;
1138
1139 /*
1140 * Check the events coming with the callback. At this stage, not
1141 * every device reports the events in the "key" parameter of the
1142 * callback. We need to be able to handle both cases here, hence the
1143 * test for "key" != NULL before the event match test.
1144 */
1145 if (pollflags && !(pollflags & epi->event.events))
1146 goto out_unlock;
1147
1148 /*
1149 * If we are transferring events to userspace, we can hold no locks
1150 * (because we're accessing user memory, and because of linux f_op->poll()
1151 * semantics). All the events that happen during that period of time are
1152 * chained in ep->ovflist and requeued later on.
1153 */
1154 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1155 if (epi->next == EP_UNACTIVE_PTR) {
1156 epi->next = ep->ovflist;
1157 ep->ovflist = epi;
1158 if (epi->ws) {
1159 /*
1160 * Activate ep->ws since epi->ws may get
1161 * deactivated at any time.
1162 */
1163 __pm_stay_awake(ep->ws);
1164 }
1165
1166 }
1167 goto out_unlock;
1168 }
1169
1170 /* If this file is already in the ready list we exit soon */
1171 if (!ep_is_linked(&epi->rdllink)) {
1172 list_add_tail(&epi->rdllink, &ep->rdllist);
1173 ep_pm_stay_awake_rcu(epi);
1174 }
1175
1176 /*
1177 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1178 * wait list.
1179 */
1180 if (waitqueue_active(&ep->wq)) {
1181 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1182 !(pollflags & POLLFREE)) {
1183 switch (pollflags & EPOLLINOUT_BITS) {
1184 case EPOLLIN:
1185 if (epi->event.events & EPOLLIN)
1186 ewake = 1;
1187 break;
1188 case EPOLLOUT:
1189 if (epi->event.events & EPOLLOUT)
1190 ewake = 1;
1191 break;
1192 case 0:
1193 ewake = 1;
1194 break;
1195 }
1196 }
1197 wake_up_locked(&ep->wq);
1198 }
1199 if (waitqueue_active(&ep->poll_wait))
1200 pwake++;
1201
1202 out_unlock:
1203 spin_unlock_irqrestore(&ep->lock, flags);
1204
1205 /* We have to call this outside the lock */
1206 if (pwake)
1207 ep_poll_safewake(&ep->poll_wait);
1208
1209 if (!(epi->event.events & EPOLLEXCLUSIVE))
1210 ewake = 1;
1211
1212 if (pollflags & POLLFREE) {
1213 /*
1214 * If we race with ep_remove_wait_queue() it can miss
1215 * ->whead = NULL and do another remove_wait_queue() after
1216 * us, so we can't use __remove_wait_queue().
1217 */
1218 list_del_init(&wait->entry);
1219 /*
1220 * ->whead != NULL protects us from the race with ep_free()
1221 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1222 * held by the caller. Once we nullify it, nothing protects
1223 * ep/epi or even wait.
1224 */
1225 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1226 }
1227
1228 return ewake;
1229 }
1230
1231 /*
1232 * This is the callback that is used to add our wait queue to the
1233 * target file wakeup lists.
1234 */
1235 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1236 poll_table *pt)
1237 {
1238 struct epitem *epi = ep_item_from_epqueue(pt);
1239 struct eppoll_entry *pwq;
1240
1241 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1242 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1243 pwq->whead = whead;
1244 pwq->base = epi;
1245 if (epi->event.events & EPOLLEXCLUSIVE)
1246 add_wait_queue_exclusive(whead, &pwq->wait);
1247 else
1248 add_wait_queue(whead, &pwq->wait);
1249 list_add_tail(&pwq->llink, &epi->pwqlist);
1250 epi->nwait++;
1251 } else {
1252 /* We have to signal that an error occurred */
1253 epi->nwait = -1;
1254 }
1255 }
1256
1257 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1258 {
1259 int kcmp;
1260 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1261 struct epitem *epic;
1262 bool leftmost = true;
1263
1264 while (*p) {
1265 parent = *p;
1266 epic = rb_entry(parent, struct epitem, rbn);
1267 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1268 if (kcmp > 0) {
1269 p = &parent->rb_right;
1270 leftmost = false;
1271 } else
1272 p = &parent->rb_left;
1273 }
1274 rb_link_node(&epi->rbn, parent, p);
1275 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1276 }
1277
1278
1279
1280 #define PATH_ARR_SIZE 5
1281 /*
1282 * These are the number paths of length 1 to 5, that we are allowing to emanate
1283 * from a single file of interest. For example, we allow 1000 paths of length
1284 * 1, to emanate from each file of interest. This essentially represents the
1285 * potential wakeup paths, which need to be limited in order to avoid massive
1286 * uncontrolled wakeup storms. The common use case should be a single ep which
1287 * is connected to n file sources. In this case each file source has 1 path
1288 * of length 1. Thus, the numbers below should be more than sufficient. These
1289 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1290 * and delete can't add additional paths. Protected by the epmutex.
1291 */
1292 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1293 static int path_count[PATH_ARR_SIZE];
1294
1295 static int path_count_inc(int nests)
1296 {
1297 /* Allow an arbitrary number of depth 1 paths */
1298 if (nests == 0)
1299 return 0;
1300
1301 if (++path_count[nests] > path_limits[nests])
1302 return -1;
1303 return 0;
1304 }
1305
1306 static void path_count_init(void)
1307 {
1308 int i;
1309
1310 for (i = 0; i < PATH_ARR_SIZE; i++)
1311 path_count[i] = 0;
1312 }
1313
1314 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1315 {
1316 int error = 0;
1317 struct file *file = priv;
1318 struct file *child_file;
1319 struct epitem *epi;
1320
1321 /* CTL_DEL can remove links here, but that can't increase our count */
1322 rcu_read_lock();
1323 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1324 child_file = epi->ep->file;
1325 if (is_file_epoll(child_file)) {
1326 if (list_empty(&child_file->f_ep_links)) {
1327 if (path_count_inc(call_nests)) {
1328 error = -1;
1329 break;
1330 }
1331 } else {
1332 error = ep_call_nested(&poll_loop_ncalls,
1333 EP_MAX_NESTS,
1334 reverse_path_check_proc,
1335 child_file, child_file,
1336 current);
1337 }
1338 if (error != 0)
1339 break;
1340 } else {
1341 printk(KERN_ERR "reverse_path_check_proc: "
1342 "file is not an ep!\n");
1343 }
1344 }
1345 rcu_read_unlock();
1346 return error;
1347 }
1348
1349 /**
1350 * reverse_path_check - The tfile_check_list is list of file *, which have
1351 * links that are proposed to be newly added. We need to
1352 * make sure that those added links don't add too many
1353 * paths such that we will spend all our time waking up
1354 * eventpoll objects.
1355 *
1356 * Returns: Returns zero if the proposed links don't create too many paths,
1357 * -1 otherwise.
1358 */
1359 static int reverse_path_check(void)
1360 {
1361 int error = 0;
1362 struct file *current_file;
1363
1364 /* let's call this for all tfiles */
1365 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1366 path_count_init();
1367 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1368 reverse_path_check_proc, current_file,
1369 current_file, current);
1370 if (error)
1371 break;
1372 }
1373 return error;
1374 }
1375
1376 static int ep_create_wakeup_source(struct epitem *epi)
1377 {
1378 const char *name;
1379 struct wakeup_source *ws;
1380
1381 if (!epi->ep->ws) {
1382 epi->ep->ws = wakeup_source_register("eventpoll");
1383 if (!epi->ep->ws)
1384 return -ENOMEM;
1385 }
1386
1387 name = epi->ffd.file->f_path.dentry->d_name.name;
1388 ws = wakeup_source_register(name);
1389
1390 if (!ws)
1391 return -ENOMEM;
1392 rcu_assign_pointer(epi->ws, ws);
1393
1394 return 0;
1395 }
1396
1397 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1398 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1399 {
1400 struct wakeup_source *ws = ep_wakeup_source(epi);
1401
1402 RCU_INIT_POINTER(epi->ws, NULL);
1403
1404 /*
1405 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1406 * used internally by wakeup_source_remove, too (called by
1407 * wakeup_source_unregister), so we cannot use call_rcu
1408 */
1409 synchronize_rcu();
1410 wakeup_source_unregister(ws);
1411 }
1412
1413 /*
1414 * Must be called with "mtx" held.
1415 */
1416 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1417 struct file *tfile, int fd, int full_check)
1418 {
1419 int error, pwake = 0;
1420 __poll_t revents;
1421 unsigned long flags;
1422 long user_watches;
1423 struct epitem *epi;
1424 struct ep_pqueue epq;
1425
1426 user_watches = atomic_long_read(&ep->user->epoll_watches);
1427 if (unlikely(user_watches >= max_user_watches))
1428 return -ENOSPC;
1429 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1430 return -ENOMEM;
1431
1432 /* Item initialization follow here ... */
1433 INIT_LIST_HEAD(&epi->rdllink);
1434 INIT_LIST_HEAD(&epi->fllink);
1435 INIT_LIST_HEAD(&epi->pwqlist);
1436 epi->ep = ep;
1437 ep_set_ffd(&epi->ffd, tfile, fd);
1438 epi->event = *event;
1439 epi->nwait = 0;
1440 epi->next = EP_UNACTIVE_PTR;
1441 if (epi->event.events & EPOLLWAKEUP) {
1442 error = ep_create_wakeup_source(epi);
1443 if (error)
1444 goto error_create_wakeup_source;
1445 } else {
1446 RCU_INIT_POINTER(epi->ws, NULL);
1447 }
1448
1449 /* Initialize the poll table using the queue callback */
1450 epq.epi = epi;
1451 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1452
1453 /*
1454 * Attach the item to the poll hooks and get current event bits.
1455 * We can safely use the file* here because its usage count has
1456 * been increased by the caller of this function. Note that after
1457 * this operation completes, the poll callback can start hitting
1458 * the new item.
1459 */
1460 revents = ep_item_poll(epi, &epq.pt, 1);
1461
1462 /*
1463 * We have to check if something went wrong during the poll wait queue
1464 * install process. Namely an allocation for a wait queue failed due
1465 * high memory pressure.
1466 */
1467 error = -ENOMEM;
1468 if (epi->nwait < 0)
1469 goto error_unregister;
1470
1471 /* Add the current item to the list of active epoll hook for this file */
1472 spin_lock(&tfile->f_lock);
1473 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1474 spin_unlock(&tfile->f_lock);
1475
1476 /*
1477 * Add the current item to the RB tree. All RB tree operations are
1478 * protected by "mtx", and ep_insert() is called with "mtx" held.
1479 */
1480 ep_rbtree_insert(ep, epi);
1481
1482 /* now check if we've created too many backpaths */
1483 error = -EINVAL;
1484 if (full_check && reverse_path_check())
1485 goto error_remove_epi;
1486
1487 /* We have to drop the new item inside our item list to keep track of it */
1488 spin_lock_irqsave(&ep->lock, flags);
1489
1490 /* record NAPI ID of new item if present */
1491 ep_set_busy_poll_napi_id(epi);
1492
1493 /* If the file is already "ready" we drop it inside the ready list */
1494 if (revents && !ep_is_linked(&epi->rdllink)) {
1495 list_add_tail(&epi->rdllink, &ep->rdllist);
1496 ep_pm_stay_awake(epi);
1497
1498 /* Notify waiting tasks that events are available */
1499 if (waitqueue_active(&ep->wq))
1500 wake_up_locked(&ep->wq);
1501 if (waitqueue_active(&ep->poll_wait))
1502 pwake++;
1503 }
1504
1505 spin_unlock_irqrestore(&ep->lock, flags);
1506
1507 atomic_long_inc(&ep->user->epoll_watches);
1508
1509 /* We have to call this outside the lock */
1510 if (pwake)
1511 ep_poll_safewake(&ep->poll_wait);
1512
1513 return 0;
1514
1515 error_remove_epi:
1516 spin_lock(&tfile->f_lock);
1517 list_del_rcu(&epi->fllink);
1518 spin_unlock(&tfile->f_lock);
1519
1520 rb_erase_cached(&epi->rbn, &ep->rbr);
1521
1522 error_unregister:
1523 ep_unregister_pollwait(ep, epi);
1524
1525 /*
1526 * We need to do this because an event could have been arrived on some
1527 * allocated wait queue. Note that we don't care about the ep->ovflist
1528 * list, since that is used/cleaned only inside a section bound by "mtx".
1529 * And ep_insert() is called with "mtx" held.
1530 */
1531 spin_lock_irqsave(&ep->lock, flags);
1532 if (ep_is_linked(&epi->rdllink))
1533 list_del_init(&epi->rdllink);
1534 spin_unlock_irqrestore(&ep->lock, flags);
1535
1536 wakeup_source_unregister(ep_wakeup_source(epi));
1537
1538 error_create_wakeup_source:
1539 kmem_cache_free(epi_cache, epi);
1540
1541 return error;
1542 }
1543
1544 /*
1545 * Modify the interest event mask by dropping an event if the new mask
1546 * has a match in the current file status. Must be called with "mtx" held.
1547 */
1548 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1549 const struct epoll_event *event)
1550 {
1551 int pwake = 0;
1552 poll_table pt;
1553
1554 init_poll_funcptr(&pt, NULL);
1555
1556 /*
1557 * Set the new event interest mask before calling f_op->poll();
1558 * otherwise we might miss an event that happens between the
1559 * f_op->poll() call and the new event set registering.
1560 */
1561 epi->event.events = event->events; /* need barrier below */
1562 epi->event.data = event->data; /* protected by mtx */
1563 if (epi->event.events & EPOLLWAKEUP) {
1564 if (!ep_has_wakeup_source(epi))
1565 ep_create_wakeup_source(epi);
1566 } else if (ep_has_wakeup_source(epi)) {
1567 ep_destroy_wakeup_source(epi);
1568 }
1569
1570 /*
1571 * The following barrier has two effects:
1572 *
1573 * 1) Flush epi changes above to other CPUs. This ensures
1574 * we do not miss events from ep_poll_callback if an
1575 * event occurs immediately after we call f_op->poll().
1576 * We need this because we did not take ep->lock while
1577 * changing epi above (but ep_poll_callback does take
1578 * ep->lock).
1579 *
1580 * 2) We also need to ensure we do not miss _past_ events
1581 * when calling f_op->poll(). This barrier also
1582 * pairs with the barrier in wq_has_sleeper (see
1583 * comments for wq_has_sleeper).
1584 *
1585 * This barrier will now guarantee ep_poll_callback or f_op->poll
1586 * (or both) will notice the readiness of an item.
1587 */
1588 smp_mb();
1589
1590 /*
1591 * Get current event bits. We can safely use the file* here because
1592 * its usage count has been increased by the caller of this function.
1593 * If the item is "hot" and it is not registered inside the ready
1594 * list, push it inside.
1595 */
1596 if (ep_item_poll(epi, &pt, 1)) {
1597 spin_lock_irq(&ep->lock);
1598 if (!ep_is_linked(&epi->rdllink)) {
1599 list_add_tail(&epi->rdllink, &ep->rdllist);
1600 ep_pm_stay_awake(epi);
1601
1602 /* Notify waiting tasks that events are available */
1603 if (waitqueue_active(&ep->wq))
1604 wake_up_locked(&ep->wq);
1605 if (waitqueue_active(&ep->poll_wait))
1606 pwake++;
1607 }
1608 spin_unlock_irq(&ep->lock);
1609 }
1610
1611 /* We have to call this outside the lock */
1612 if (pwake)
1613 ep_poll_safewake(&ep->poll_wait);
1614
1615 return 0;
1616 }
1617
1618 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1619 void *priv)
1620 {
1621 struct ep_send_events_data *esed = priv;
1622 __poll_t revents;
1623 struct epitem *epi;
1624 struct epoll_event __user *uevent;
1625 struct wakeup_source *ws;
1626 poll_table pt;
1627
1628 init_poll_funcptr(&pt, NULL);
1629
1630 /*
1631 * We can loop without lock because we are passed a task private list.
1632 * Items cannot vanish during the loop because ep_scan_ready_list() is
1633 * holding "mtx" during this call.
1634 */
1635 for (esed->res = 0, uevent = esed->events;
1636 !list_empty(head) && esed->res < esed->maxevents;) {
1637 epi = list_first_entry(head, struct epitem, rdllink);
1638
1639 /*
1640 * Activate ep->ws before deactivating epi->ws to prevent
1641 * triggering auto-suspend here (in case we reactive epi->ws
1642 * below).
1643 *
1644 * This could be rearranged to delay the deactivation of epi->ws
1645 * instead, but then epi->ws would temporarily be out of sync
1646 * with ep_is_linked().
1647 */
1648 ws = ep_wakeup_source(epi);
1649 if (ws) {
1650 if (ws->active)
1651 __pm_stay_awake(ep->ws);
1652 __pm_relax(ws);
1653 }
1654
1655 list_del_init(&epi->rdllink);
1656
1657 revents = ep_item_poll(epi, &pt, 1);
1658
1659 /*
1660 * If the event mask intersect the caller-requested one,
1661 * deliver the event to userspace. Again, ep_scan_ready_list()
1662 * is holding "mtx", so no operations coming from userspace
1663 * can change the item.
1664 */
1665 if (revents) {
1666 if (__put_user(revents, &uevent->events) ||
1667 __put_user(epi->event.data, &uevent->data)) {
1668 list_add(&epi->rdllink, head);
1669 ep_pm_stay_awake(epi);
1670 if (!esed->res)
1671 esed->res = -EFAULT;
1672 return 0;
1673 }
1674 esed->res++;
1675 uevent++;
1676 if (epi->event.events & EPOLLONESHOT)
1677 epi->event.events &= EP_PRIVATE_BITS;
1678 else if (!(epi->event.events & EPOLLET)) {
1679 /*
1680 * If this file has been added with Level
1681 * Trigger mode, we need to insert back inside
1682 * the ready list, so that the next call to
1683 * epoll_wait() will check again the events
1684 * availability. At this point, no one can insert
1685 * into ep->rdllist besides us. The epoll_ctl()
1686 * callers are locked out by
1687 * ep_scan_ready_list() holding "mtx" and the
1688 * poll callback will queue them in ep->ovflist.
1689 */
1690 list_add_tail(&epi->rdllink, &ep->rdllist);
1691 ep_pm_stay_awake(epi);
1692 }
1693 }
1694 }
1695
1696 return 0;
1697 }
1698
1699 static int ep_send_events(struct eventpoll *ep,
1700 struct epoll_event __user *events, int maxevents)
1701 {
1702 struct ep_send_events_data esed;
1703
1704 esed.maxevents = maxevents;
1705 esed.events = events;
1706
1707 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1708 return esed.res;
1709 }
1710
1711 static inline struct timespec64 ep_set_mstimeout(long ms)
1712 {
1713 struct timespec64 now, ts = {
1714 .tv_sec = ms / MSEC_PER_SEC,
1715 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1716 };
1717
1718 ktime_get_ts64(&now);
1719 return timespec64_add_safe(now, ts);
1720 }
1721
1722 /**
1723 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1724 * event buffer.
1725 *
1726 * @ep: Pointer to the eventpoll context.
1727 * @events: Pointer to the userspace buffer where the ready events should be
1728 * stored.
1729 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1730 * @timeout: Maximum timeout for the ready events fetch operation, in
1731 * milliseconds. If the @timeout is zero, the function will not block,
1732 * while if the @timeout is less than zero, the function will block
1733 * until at least one event has been retrieved (or an error
1734 * occurred).
1735 *
1736 * Returns: Returns the number of ready events which have been fetched, or an
1737 * error code, in case of error.
1738 */
1739 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1740 int maxevents, long timeout)
1741 {
1742 int res = 0, eavail, timed_out = 0;
1743 unsigned long flags;
1744 u64 slack = 0;
1745 wait_queue_entry_t wait;
1746 ktime_t expires, *to = NULL;
1747
1748 if (timeout > 0) {
1749 struct timespec64 end_time = ep_set_mstimeout(timeout);
1750
1751 slack = select_estimate_accuracy(&end_time);
1752 to = &expires;
1753 *to = timespec64_to_ktime(end_time);
1754 } else if (timeout == 0) {
1755 /*
1756 * Avoid the unnecessary trip to the wait queue loop, if the
1757 * caller specified a non blocking operation.
1758 */
1759 timed_out = 1;
1760 spin_lock_irqsave(&ep->lock, flags);
1761 goto check_events;
1762 }
1763
1764 fetch_events:
1765
1766 if (!ep_events_available(ep))
1767 ep_busy_loop(ep, timed_out);
1768
1769 spin_lock_irqsave(&ep->lock, flags);
1770
1771 if (!ep_events_available(ep)) {
1772 /*
1773 * Busy poll timed out. Drop NAPI ID for now, we can add
1774 * it back in when we have moved a socket with a valid NAPI
1775 * ID onto the ready list.
1776 */
1777 ep_reset_busy_poll_napi_id(ep);
1778
1779 /*
1780 * We don't have any available event to return to the caller.
1781 * We need to sleep here, and we will be wake up by
1782 * ep_poll_callback() when events will become available.
1783 */
1784 init_waitqueue_entry(&wait, current);
1785 __add_wait_queue_exclusive(&ep->wq, &wait);
1786
1787 for (;;) {
1788 /*
1789 * We don't want to sleep if the ep_poll_callback() sends us
1790 * a wakeup in between. That's why we set the task state
1791 * to TASK_INTERRUPTIBLE before doing the checks.
1792 */
1793 set_current_state(TASK_INTERRUPTIBLE);
1794 /*
1795 * Always short-circuit for fatal signals to allow
1796 * threads to make a timely exit without the chance of
1797 * finding more events available and fetching
1798 * repeatedly.
1799 */
1800 if (fatal_signal_pending(current)) {
1801 res = -EINTR;
1802 break;
1803 }
1804 if (ep_events_available(ep) || timed_out)
1805 break;
1806 if (signal_pending(current)) {
1807 res = -EINTR;
1808 break;
1809 }
1810
1811 spin_unlock_irqrestore(&ep->lock, flags);
1812 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1813 timed_out = 1;
1814
1815 spin_lock_irqsave(&ep->lock, flags);
1816 }
1817
1818 __remove_wait_queue(&ep->wq, &wait);
1819 __set_current_state(TASK_RUNNING);
1820 }
1821 check_events:
1822 /* Is it worth to try to dig for events ? */
1823 eavail = ep_events_available(ep);
1824
1825 spin_unlock_irqrestore(&ep->lock, flags);
1826
1827 /*
1828 * Try to transfer events to user space. In case we get 0 events and
1829 * there's still timeout left over, we go trying again in search of
1830 * more luck.
1831 */
1832 if (!res && eavail &&
1833 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1834 goto fetch_events;
1835
1836 return res;
1837 }
1838
1839 /**
1840 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1841 * API, to verify that adding an epoll file inside another
1842 * epoll structure, does not violate the constraints, in
1843 * terms of closed loops, or too deep chains (which can
1844 * result in excessive stack usage).
1845 *
1846 * @priv: Pointer to the epoll file to be currently checked.
1847 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1848 * data structure pointer.
1849 * @call_nests: Current dept of the @ep_call_nested() call stack.
1850 *
1851 * Returns: Returns zero if adding the epoll @file inside current epoll
1852 * structure @ep does not violate the constraints, or -1 otherwise.
1853 */
1854 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1855 {
1856 int error = 0;
1857 struct file *file = priv;
1858 struct eventpoll *ep = file->private_data;
1859 struct eventpoll *ep_tovisit;
1860 struct rb_node *rbp;
1861 struct epitem *epi;
1862
1863 mutex_lock_nested(&ep->mtx, call_nests + 1);
1864 ep->visited = 1;
1865 list_add(&ep->visited_list_link, &visited_list);
1866 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1867 epi = rb_entry(rbp, struct epitem, rbn);
1868 if (unlikely(is_file_epoll(epi->ffd.file))) {
1869 ep_tovisit = epi->ffd.file->private_data;
1870 if (ep_tovisit->visited)
1871 continue;
1872 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1873 ep_loop_check_proc, epi->ffd.file,
1874 ep_tovisit, current);
1875 if (error != 0)
1876 break;
1877 } else {
1878 /*
1879 * If we've reached a file that is not associated with
1880 * an ep, then we need to check if the newly added
1881 * links are going to add too many wakeup paths. We do
1882 * this by adding it to the tfile_check_list, if it's
1883 * not already there, and calling reverse_path_check()
1884 * during ep_insert().
1885 */
1886 if (list_empty(&epi->ffd.file->f_tfile_llink))
1887 list_add(&epi->ffd.file->f_tfile_llink,
1888 &tfile_check_list);
1889 }
1890 }
1891 mutex_unlock(&ep->mtx);
1892
1893 return error;
1894 }
1895
1896 /**
1897 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1898 * another epoll file (represented by @ep) does not create
1899 * closed loops or too deep chains.
1900 *
1901 * @ep: Pointer to the epoll private data structure.
1902 * @file: Pointer to the epoll file to be checked.
1903 *
1904 * Returns: Returns zero if adding the epoll @file inside current epoll
1905 * structure @ep does not violate the constraints, or -1 otherwise.
1906 */
1907 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1908 {
1909 int ret;
1910 struct eventpoll *ep_cur, *ep_next;
1911
1912 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1913 ep_loop_check_proc, file, ep, current);
1914 /* clear visited list */
1915 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1916 visited_list_link) {
1917 ep_cur->visited = 0;
1918 list_del(&ep_cur->visited_list_link);
1919 }
1920 return ret;
1921 }
1922
1923 static void clear_tfile_check_list(void)
1924 {
1925 struct file *file;
1926
1927 /* first clear the tfile_check_list */
1928 while (!list_empty(&tfile_check_list)) {
1929 file = list_first_entry(&tfile_check_list, struct file,
1930 f_tfile_llink);
1931 list_del_init(&file->f_tfile_llink);
1932 }
1933 INIT_LIST_HEAD(&tfile_check_list);
1934 }
1935
1936 /*
1937 * Open an eventpoll file descriptor.
1938 */
1939 SYSCALL_DEFINE1(epoll_create1, int, flags)
1940 {
1941 int error, fd;
1942 struct eventpoll *ep = NULL;
1943 struct file *file;
1944
1945 /* Check the EPOLL_* constant for consistency. */
1946 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1947
1948 if (flags & ~EPOLL_CLOEXEC)
1949 return -EINVAL;
1950 /*
1951 * Create the internal data structure ("struct eventpoll").
1952 */
1953 error = ep_alloc(&ep);
1954 if (error < 0)
1955 return error;
1956 /*
1957 * Creates all the items needed to setup an eventpoll file. That is,
1958 * a file structure and a free file descriptor.
1959 */
1960 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1961 if (fd < 0) {
1962 error = fd;
1963 goto out_free_ep;
1964 }
1965 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1966 O_RDWR | (flags & O_CLOEXEC));
1967 if (IS_ERR(file)) {
1968 error = PTR_ERR(file);
1969 goto out_free_fd;
1970 }
1971 ep->file = file;
1972 fd_install(fd, file);
1973 return fd;
1974
1975 out_free_fd:
1976 put_unused_fd(fd);
1977 out_free_ep:
1978 ep_free(ep);
1979 return error;
1980 }
1981
1982 SYSCALL_DEFINE1(epoll_create, int, size)
1983 {
1984 if (size <= 0)
1985 return -EINVAL;
1986
1987 return sys_epoll_create1(0);
1988 }
1989
1990 /*
1991 * The following function implements the controller interface for
1992 * the eventpoll file that enables the insertion/removal/change of
1993 * file descriptors inside the interest set.
1994 */
1995 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1996 struct epoll_event __user *, event)
1997 {
1998 int error;
1999 int full_check = 0;
2000 struct fd f, tf;
2001 struct eventpoll *ep;
2002 struct epitem *epi;
2003 struct epoll_event epds;
2004 struct eventpoll *tep = NULL;
2005
2006 error = -EFAULT;
2007 if (ep_op_has_event(op) &&
2008 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2009 goto error_return;
2010
2011 error = -EBADF;
2012 f = fdget(epfd);
2013 if (!f.file)
2014 goto error_return;
2015
2016 /* Get the "struct file *" for the target file */
2017 tf = fdget(fd);
2018 if (!tf.file)
2019 goto error_fput;
2020
2021 /* The target file descriptor must support poll */
2022 error = -EPERM;
2023 if (!tf.file->f_op->poll)
2024 goto error_tgt_fput;
2025
2026 /* Check if EPOLLWAKEUP is allowed */
2027 if (ep_op_has_event(op))
2028 ep_take_care_of_epollwakeup(&epds);
2029
2030 /*
2031 * We have to check that the file structure underneath the file descriptor
2032 * the user passed to us _is_ an eventpoll file. And also we do not permit
2033 * adding an epoll file descriptor inside itself.
2034 */
2035 error = -EINVAL;
2036 if (f.file == tf.file || !is_file_epoll(f.file))
2037 goto error_tgt_fput;
2038
2039 /*
2040 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2041 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2042 * Also, we do not currently supported nested exclusive wakeups.
2043 */
2044 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2045 if (op == EPOLL_CTL_MOD)
2046 goto error_tgt_fput;
2047 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2048 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2049 goto error_tgt_fput;
2050 }
2051
2052 /*
2053 * At this point it is safe to assume that the "private_data" contains
2054 * our own data structure.
2055 */
2056 ep = f.file->private_data;
2057
2058 /*
2059 * When we insert an epoll file descriptor, inside another epoll file
2060 * descriptor, there is the change of creating closed loops, which are
2061 * better be handled here, than in more critical paths. While we are
2062 * checking for loops we also determine the list of files reachable
2063 * and hang them on the tfile_check_list, so we can check that we
2064 * haven't created too many possible wakeup paths.
2065 *
2066 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2067 * the epoll file descriptor is attaching directly to a wakeup source,
2068 * unless the epoll file descriptor is nested. The purpose of taking the
2069 * 'epmutex' on add is to prevent complex toplogies such as loops and
2070 * deep wakeup paths from forming in parallel through multiple
2071 * EPOLL_CTL_ADD operations.
2072 */
2073 mutex_lock_nested(&ep->mtx, 0);
2074 if (op == EPOLL_CTL_ADD) {
2075 if (!list_empty(&f.file->f_ep_links) ||
2076 is_file_epoll(tf.file)) {
2077 full_check = 1;
2078 mutex_unlock(&ep->mtx);
2079 mutex_lock(&epmutex);
2080 if (is_file_epoll(tf.file)) {
2081 error = -ELOOP;
2082 if (ep_loop_check(ep, tf.file) != 0) {
2083 clear_tfile_check_list();
2084 goto error_tgt_fput;
2085 }
2086 } else
2087 list_add(&tf.file->f_tfile_llink,
2088 &tfile_check_list);
2089 mutex_lock_nested(&ep->mtx, 0);
2090 if (is_file_epoll(tf.file)) {
2091 tep = tf.file->private_data;
2092 mutex_lock_nested(&tep->mtx, 1);
2093 }
2094 }
2095 }
2096
2097 /*
2098 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2099 * above, we can be sure to be able to use the item looked up by
2100 * ep_find() till we release the mutex.
2101 */
2102 epi = ep_find(ep, tf.file, fd);
2103
2104 error = -EINVAL;
2105 switch (op) {
2106 case EPOLL_CTL_ADD:
2107 if (!epi) {
2108 epds.events |= EPOLLERR | EPOLLHUP;
2109 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2110 } else
2111 error = -EEXIST;
2112 if (full_check)
2113 clear_tfile_check_list();
2114 break;
2115 case EPOLL_CTL_DEL:
2116 if (epi)
2117 error = ep_remove(ep, epi);
2118 else
2119 error = -ENOENT;
2120 break;
2121 case EPOLL_CTL_MOD:
2122 if (epi) {
2123 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2124 epds.events |= EPOLLERR | EPOLLHUP;
2125 error = ep_modify(ep, epi, &epds);
2126 }
2127 } else
2128 error = -ENOENT;
2129 break;
2130 }
2131 if (tep != NULL)
2132 mutex_unlock(&tep->mtx);
2133 mutex_unlock(&ep->mtx);
2134
2135 error_tgt_fput:
2136 if (full_check)
2137 mutex_unlock(&epmutex);
2138
2139 fdput(tf);
2140 error_fput:
2141 fdput(f);
2142 error_return:
2143
2144 return error;
2145 }
2146
2147 /*
2148 * Implement the event wait interface for the eventpoll file. It is the kernel
2149 * part of the user space epoll_wait(2).
2150 */
2151 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2152 int, maxevents, int, timeout)
2153 {
2154 int error;
2155 struct fd f;
2156 struct eventpoll *ep;
2157
2158 /* The maximum number of event must be greater than zero */
2159 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2160 return -EINVAL;
2161
2162 /* Verify that the area passed by the user is writeable */
2163 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2164 return -EFAULT;
2165
2166 /* Get the "struct file *" for the eventpoll file */
2167 f = fdget(epfd);
2168 if (!f.file)
2169 return -EBADF;
2170
2171 /*
2172 * We have to check that the file structure underneath the fd
2173 * the user passed to us _is_ an eventpoll file.
2174 */
2175 error = -EINVAL;
2176 if (!is_file_epoll(f.file))
2177 goto error_fput;
2178
2179 /*
2180 * At this point it is safe to assume that the "private_data" contains
2181 * our own data structure.
2182 */
2183 ep = f.file->private_data;
2184
2185 /* Time to fish for events ... */
2186 error = ep_poll(ep, events, maxevents, timeout);
2187
2188 error_fput:
2189 fdput(f);
2190 return error;
2191 }
2192
2193 /*
2194 * Implement the event wait interface for the eventpoll file. It is the kernel
2195 * part of the user space epoll_pwait(2).
2196 */
2197 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2198 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2199 size_t, sigsetsize)
2200 {
2201 int error;
2202 sigset_t ksigmask, sigsaved;
2203
2204 /*
2205 * If the caller wants a certain signal mask to be set during the wait,
2206 * we apply it here.
2207 */
2208 if (sigmask) {
2209 if (sigsetsize != sizeof(sigset_t))
2210 return -EINVAL;
2211 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2212 return -EFAULT;
2213 sigsaved = current->blocked;
2214 set_current_blocked(&ksigmask);
2215 }
2216
2217 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2218
2219 /*
2220 * If we changed the signal mask, we need to restore the original one.
2221 * In case we've got a signal while waiting, we do not restore the
2222 * signal mask yet, and we allow do_signal() to deliver the signal on
2223 * the way back to userspace, before the signal mask is restored.
2224 */
2225 if (sigmask) {
2226 if (error == -EINTR) {
2227 memcpy(&current->saved_sigmask, &sigsaved,
2228 sizeof(sigsaved));
2229 set_restore_sigmask();
2230 } else
2231 set_current_blocked(&sigsaved);
2232 }
2233
2234 return error;
2235 }
2236
2237 #ifdef CONFIG_COMPAT
2238 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2239 struct epoll_event __user *, events,
2240 int, maxevents, int, timeout,
2241 const compat_sigset_t __user *, sigmask,
2242 compat_size_t, sigsetsize)
2243 {
2244 long err;
2245 sigset_t ksigmask, sigsaved;
2246
2247 /*
2248 * If the caller wants a certain signal mask to be set during the wait,
2249 * we apply it here.
2250 */
2251 if (sigmask) {
2252 if (sigsetsize != sizeof(compat_sigset_t))
2253 return -EINVAL;
2254 if (get_compat_sigset(&ksigmask, sigmask))
2255 return -EFAULT;
2256 sigsaved = current->blocked;
2257 set_current_blocked(&ksigmask);
2258 }
2259
2260 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2261
2262 /*
2263 * If we changed the signal mask, we need to restore the original one.
2264 * In case we've got a signal while waiting, we do not restore the
2265 * signal mask yet, and we allow do_signal() to deliver the signal on
2266 * the way back to userspace, before the signal mask is restored.
2267 */
2268 if (sigmask) {
2269 if (err == -EINTR) {
2270 memcpy(&current->saved_sigmask, &sigsaved,
2271 sizeof(sigsaved));
2272 set_restore_sigmask();
2273 } else
2274 set_current_blocked(&sigsaved);
2275 }
2276
2277 return err;
2278 }
2279 #endif
2280
2281 static int __init eventpoll_init(void)
2282 {
2283 struct sysinfo si;
2284
2285 si_meminfo(&si);
2286 /*
2287 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2288 */
2289 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2290 EP_ITEM_COST;
2291 BUG_ON(max_user_watches < 0);
2292
2293 /*
2294 * Initialize the structure used to perform epoll file descriptor
2295 * inclusion loops checks.
2296 */
2297 ep_nested_calls_init(&poll_loop_ncalls);
2298
2299 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2300 /* Initialize the structure used to perform safe poll wait head wake ups */
2301 ep_nested_calls_init(&poll_safewake_ncalls);
2302 #endif
2303
2304 /*
2305 * We can have many thousands of epitems, so prevent this from
2306 * using an extra cache line on 64-bit (and smaller) CPUs
2307 */
2308 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2309
2310 /* Allocates slab cache used to allocate "struct epitem" items */
2311 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2312 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2313
2314 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2315 pwq_cache = kmem_cache_create("eventpoll_pwq",
2316 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2317
2318 return 0;
2319 }
2320 fs_initcall(eventpoll_init);