]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/eventpoll.c
Merge remote-tracking branch 'torvalds/master' into perf/core
[mirror_ubuntu-hirsute-kernel.git] / fs / eventpoll.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
88 */
89
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
107 struct epoll_filefd {
108 struct file *file;
109 int fd;
110 } __packed;
111
112 /*
113 * Structure used to track possible nested calls, for too deep recursions
114 * and loop cycles.
115 */
116 struct nested_call_node {
117 struct list_head llink;
118 void *cookie;
119 void *ctx;
120 };
121
122 /*
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
125 */
126 struct nested_calls {
127 struct list_head tasks_call_list;
128 spinlock_t lock;
129 };
130
131 /*
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
136 */
137 struct epitem {
138 union {
139 /* RB tree node links this structure to the eventpoll RB tree */
140 struct rb_node rbn;
141 /* Used to free the struct epitem */
142 struct rcu_head rcu;
143 };
144
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink;
147
148 /*
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
151 */
152 struct epitem *next;
153
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd;
156
157 /* Number of active wait queue attached to poll operations */
158 int nwait;
159
160 /* List containing poll wait queues */
161 struct list_head pwqlist;
162
163 /* The "container" of this item */
164 struct eventpoll *ep;
165
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink;
168
169 /* wakeup_source used when EPOLLWAKEUP is set */
170 struct wakeup_source __rcu *ws;
171
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event;
174 };
175
176 /*
177 * This structure is stored inside the "private_data" member of the file
178 * structure and represents the main data structure for the eventpoll
179 * interface.
180 */
181 struct eventpoll {
182 /*
183 * This mutex is used to ensure that files are not removed
184 * while epoll is using them. This is held during the event
185 * collection loop, the file cleanup path, the epoll file exit
186 * code and the ctl operations.
187 */
188 struct mutex mtx;
189
190 /* Wait queue used by sys_epoll_wait() */
191 wait_queue_head_t wq;
192
193 /* Wait queue used by file->poll() */
194 wait_queue_head_t poll_wait;
195
196 /* List of ready file descriptors */
197 struct list_head rdllist;
198
199 /* Lock which protects rdllist and ovflist */
200 rwlock_t lock;
201
202 /* RB tree root used to store monitored fd structs */
203 struct rb_root_cached rbr;
204
205 /*
206 * This is a single linked list that chains all the "struct epitem" that
207 * happened while transferring ready events to userspace w/out
208 * holding ->lock.
209 */
210 struct epitem *ovflist;
211
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source *ws;
214
215 /* The user that created the eventpoll descriptor */
216 struct user_struct *user;
217
218 struct file *file;
219
220 /* used to optimize loop detection check */
221 u64 gen;
222
223 #ifdef CONFIG_NET_RX_BUSY_POLL
224 /* used to track busy poll napi_id */
225 unsigned int napi_id;
226 #endif
227
228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
229 /* tracks wakeup nests for lockdep validation */
230 u8 nests;
231 #endif
232 };
233
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry {
236 /* List header used to link this structure to the "struct epitem" */
237 struct list_head llink;
238
239 /* The "base" pointer is set to the container "struct epitem" */
240 struct epitem *base;
241
242 /*
243 * Wait queue item that will be linked to the target file wait
244 * queue head.
245 */
246 wait_queue_entry_t wait;
247
248 /* The wait queue head that linked the "wait" wait queue item */
249 wait_queue_head_t *whead;
250 };
251
252 /* Wrapper struct used by poll queueing */
253 struct ep_pqueue {
254 poll_table pt;
255 struct epitem *epi;
256 };
257
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data {
260 int maxevents;
261 struct epoll_event __user *events;
262 int res;
263 };
264
265 /*
266 * Configuration options available inside /proc/sys/fs/epoll/
267 */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270
271 /*
272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
273 */
274 static DEFINE_MUTEX(epmutex);
275
276 static u64 loop_check_gen = 0;
277
278 /* Used to check for epoll file descriptor inclusion loops */
279 static struct nested_calls poll_loop_ncalls;
280
281 /* Slab cache used to allocate "struct epitem" */
282 static struct kmem_cache *epi_cache __read_mostly;
283
284 /* Slab cache used to allocate "struct eppoll_entry" */
285 static struct kmem_cache *pwq_cache __read_mostly;
286
287 /*
288 * List of files with newly added links, where we may need to limit the number
289 * of emanating paths. Protected by the epmutex.
290 */
291 static LIST_HEAD(tfile_check_list);
292
293 #ifdef CONFIG_SYSCTL
294
295 #include <linux/sysctl.h>
296
297 static long long_zero;
298 static long long_max = LONG_MAX;
299
300 struct ctl_table epoll_table[] = {
301 {
302 .procname = "max_user_watches",
303 .data = &max_user_watches,
304 .maxlen = sizeof(max_user_watches),
305 .mode = 0644,
306 .proc_handler = proc_doulongvec_minmax,
307 .extra1 = &long_zero,
308 .extra2 = &long_max,
309 },
310 { }
311 };
312 #endif /* CONFIG_SYSCTL */
313
314 static const struct file_operations eventpoll_fops;
315
316 static inline int is_file_epoll(struct file *f)
317 {
318 return f->f_op == &eventpoll_fops;
319 }
320
321 /* Setup the structure that is used as key for the RB tree */
322 static inline void ep_set_ffd(struct epoll_filefd *ffd,
323 struct file *file, int fd)
324 {
325 ffd->file = file;
326 ffd->fd = fd;
327 }
328
329 /* Compare RB tree keys */
330 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
331 struct epoll_filefd *p2)
332 {
333 return (p1->file > p2->file ? +1:
334 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
335 }
336
337 /* Tells us if the item is currently linked */
338 static inline int ep_is_linked(struct epitem *epi)
339 {
340 return !list_empty(&epi->rdllink);
341 }
342
343 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
344 {
345 return container_of(p, struct eppoll_entry, wait);
346 }
347
348 /* Get the "struct epitem" from a wait queue pointer */
349 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
350 {
351 return container_of(p, struct eppoll_entry, wait)->base;
352 }
353
354 /* Get the "struct epitem" from an epoll queue wrapper */
355 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
356 {
357 return container_of(p, struct ep_pqueue, pt)->epi;
358 }
359
360 /* Initialize the poll safe wake up structure */
361 static void ep_nested_calls_init(struct nested_calls *ncalls)
362 {
363 INIT_LIST_HEAD(&ncalls->tasks_call_list);
364 spin_lock_init(&ncalls->lock);
365 }
366
367 /**
368 * ep_events_available - Checks if ready events might be available.
369 *
370 * @ep: Pointer to the eventpoll context.
371 *
372 * Returns: Returns a value different than zero if ready events are available,
373 * or zero otherwise.
374 */
375 static inline int ep_events_available(struct eventpoll *ep)
376 {
377 return !list_empty_careful(&ep->rdllist) ||
378 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
379 }
380
381 #ifdef CONFIG_NET_RX_BUSY_POLL
382 static bool ep_busy_loop_end(void *p, unsigned long start_time)
383 {
384 struct eventpoll *ep = p;
385
386 return ep_events_available(ep) || busy_loop_timeout(start_time);
387 }
388
389 /*
390 * Busy poll if globally on and supporting sockets found && no events,
391 * busy loop will return if need_resched or ep_events_available.
392 *
393 * we must do our busy polling with irqs enabled
394 */
395 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
396 {
397 unsigned int napi_id = READ_ONCE(ep->napi_id);
398
399 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
400 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
401 }
402
403 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
404 {
405 if (ep->napi_id)
406 ep->napi_id = 0;
407 }
408
409 /*
410 * Set epoll busy poll NAPI ID from sk.
411 */
412 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
413 {
414 struct eventpoll *ep;
415 unsigned int napi_id;
416 struct socket *sock;
417 struct sock *sk;
418 int err;
419
420 if (!net_busy_loop_on())
421 return;
422
423 sock = sock_from_file(epi->ffd.file, &err);
424 if (!sock)
425 return;
426
427 sk = sock->sk;
428 if (!sk)
429 return;
430
431 napi_id = READ_ONCE(sk->sk_napi_id);
432 ep = epi->ep;
433
434 /* Non-NAPI IDs can be rejected
435 * or
436 * Nothing to do if we already have this ID
437 */
438 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
439 return;
440
441 /* record NAPI ID for use in next busy poll */
442 ep->napi_id = napi_id;
443 }
444
445 #else
446
447 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
448 {
449 }
450
451 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
452 {
453 }
454
455 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
456 {
457 }
458
459 #endif /* CONFIG_NET_RX_BUSY_POLL */
460
461 /**
462 * ep_call_nested - Perform a bound (possibly) nested call, by checking
463 * that the recursion limit is not exceeded, and that
464 * the same nested call (by the meaning of same cookie) is
465 * no re-entered.
466 *
467 * @ncalls: Pointer to the nested_calls structure to be used for this call.
468 * @nproc: Nested call core function pointer.
469 * @priv: Opaque data to be passed to the @nproc callback.
470 * @cookie: Cookie to be used to identify this nested call.
471 * @ctx: This instance context.
472 *
473 * Returns: Returns the code returned by the @nproc callback, or -1 if
474 * the maximum recursion limit has been exceeded.
475 */
476 static int ep_call_nested(struct nested_calls *ncalls,
477 int (*nproc)(void *, void *, int), void *priv,
478 void *cookie, void *ctx)
479 {
480 int error, call_nests = 0;
481 unsigned long flags;
482 struct list_head *lsthead = &ncalls->tasks_call_list;
483 struct nested_call_node *tncur;
484 struct nested_call_node tnode;
485
486 spin_lock_irqsave(&ncalls->lock, flags);
487
488 /*
489 * Try to see if the current task is already inside this wakeup call.
490 * We use a list here, since the population inside this set is always
491 * very much limited.
492 */
493 list_for_each_entry(tncur, lsthead, llink) {
494 if (tncur->ctx == ctx &&
495 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
496 /*
497 * Ops ... loop detected or maximum nest level reached.
498 * We abort this wake by breaking the cycle itself.
499 */
500 error = -1;
501 goto out_unlock;
502 }
503 }
504
505 /* Add the current task and cookie to the list */
506 tnode.ctx = ctx;
507 tnode.cookie = cookie;
508 list_add(&tnode.llink, lsthead);
509
510 spin_unlock_irqrestore(&ncalls->lock, flags);
511
512 /* Call the nested function */
513 error = (*nproc)(priv, cookie, call_nests);
514
515 /* Remove the current task from the list */
516 spin_lock_irqsave(&ncalls->lock, flags);
517 list_del(&tnode.llink);
518 out_unlock:
519 spin_unlock_irqrestore(&ncalls->lock, flags);
520
521 return error;
522 }
523
524 /*
525 * As described in commit 0ccf831cb lockdep: annotate epoll
526 * the use of wait queues used by epoll is done in a very controlled
527 * manner. Wake ups can nest inside each other, but are never done
528 * with the same locking. For example:
529 *
530 * dfd = socket(...);
531 * efd1 = epoll_create();
532 * efd2 = epoll_create();
533 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
534 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
535 *
536 * When a packet arrives to the device underneath "dfd", the net code will
537 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
538 * callback wakeup entry on that queue, and the wake_up() performed by the
539 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
540 * (efd1) notices that it may have some event ready, so it needs to wake up
541 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
542 * that ends up in another wake_up(), after having checked about the
543 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
544 * avoid stack blasting.
545 *
546 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
547 * this special case of epoll.
548 */
549 #ifdef CONFIG_DEBUG_LOCK_ALLOC
550
551 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
552 {
553 struct eventpoll *ep_src;
554 unsigned long flags;
555 u8 nests = 0;
556
557 /*
558 * To set the subclass or nesting level for spin_lock_irqsave_nested()
559 * it might be natural to create a per-cpu nest count. However, since
560 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
561 * schedule() in the -rt kernel, the per-cpu variable are no longer
562 * protected. Thus, we are introducing a per eventpoll nest field.
563 * If we are not being call from ep_poll_callback(), epi is NULL and
564 * we are at the first level of nesting, 0. Otherwise, we are being
565 * called from ep_poll_callback() and if a previous wakeup source is
566 * not an epoll file itself, we are at depth 1 since the wakeup source
567 * is depth 0. If the wakeup source is a previous epoll file in the
568 * wakeup chain then we use its nests value and record ours as
569 * nests + 1. The previous epoll file nests value is stable since its
570 * already holding its own poll_wait.lock.
571 */
572 if (epi) {
573 if ((is_file_epoll(epi->ffd.file))) {
574 ep_src = epi->ffd.file->private_data;
575 nests = ep_src->nests;
576 } else {
577 nests = 1;
578 }
579 }
580 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
581 ep->nests = nests + 1;
582 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
583 ep->nests = 0;
584 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
585 }
586
587 #else
588
589 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
590 {
591 wake_up_poll(&ep->poll_wait, EPOLLIN);
592 }
593
594 #endif
595
596 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
597 {
598 wait_queue_head_t *whead;
599
600 rcu_read_lock();
601 /*
602 * If it is cleared by POLLFREE, it should be rcu-safe.
603 * If we read NULL we need a barrier paired with
604 * smp_store_release() in ep_poll_callback(), otherwise
605 * we rely on whead->lock.
606 */
607 whead = smp_load_acquire(&pwq->whead);
608 if (whead)
609 remove_wait_queue(whead, &pwq->wait);
610 rcu_read_unlock();
611 }
612
613 /*
614 * This function unregisters poll callbacks from the associated file
615 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
616 * ep_free).
617 */
618 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
619 {
620 struct list_head *lsthead = &epi->pwqlist;
621 struct eppoll_entry *pwq;
622
623 while (!list_empty(lsthead)) {
624 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
625
626 list_del(&pwq->llink);
627 ep_remove_wait_queue(pwq);
628 kmem_cache_free(pwq_cache, pwq);
629 }
630 }
631
632 /* call only when ep->mtx is held */
633 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
634 {
635 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
636 }
637
638 /* call only when ep->mtx is held */
639 static inline void ep_pm_stay_awake(struct epitem *epi)
640 {
641 struct wakeup_source *ws = ep_wakeup_source(epi);
642
643 if (ws)
644 __pm_stay_awake(ws);
645 }
646
647 static inline bool ep_has_wakeup_source(struct epitem *epi)
648 {
649 return rcu_access_pointer(epi->ws) ? true : false;
650 }
651
652 /* call when ep->mtx cannot be held (ep_poll_callback) */
653 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
654 {
655 struct wakeup_source *ws;
656
657 rcu_read_lock();
658 ws = rcu_dereference(epi->ws);
659 if (ws)
660 __pm_stay_awake(ws);
661 rcu_read_unlock();
662 }
663
664 /**
665 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
666 * the scan code, to call f_op->poll(). Also allows for
667 * O(NumReady) performance.
668 *
669 * @ep: Pointer to the epoll private data structure.
670 * @sproc: Pointer to the scan callback.
671 * @priv: Private opaque data passed to the @sproc callback.
672 * @depth: The current depth of recursive f_op->poll calls.
673 * @ep_locked: caller already holds ep->mtx
674 *
675 * Returns: The same integer error code returned by the @sproc callback.
676 */
677 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
678 __poll_t (*sproc)(struct eventpoll *,
679 struct list_head *, void *),
680 void *priv, int depth, bool ep_locked)
681 {
682 __poll_t res;
683 struct epitem *epi, *nepi;
684 LIST_HEAD(txlist);
685
686 lockdep_assert_irqs_enabled();
687
688 /*
689 * We need to lock this because we could be hit by
690 * eventpoll_release_file() and epoll_ctl().
691 */
692
693 if (!ep_locked)
694 mutex_lock_nested(&ep->mtx, depth);
695
696 /*
697 * Steal the ready list, and re-init the original one to the
698 * empty list. Also, set ep->ovflist to NULL so that events
699 * happening while looping w/out locks, are not lost. We cannot
700 * have the poll callback to queue directly on ep->rdllist,
701 * because we want the "sproc" callback to be able to do it
702 * in a lockless way.
703 */
704 write_lock_irq(&ep->lock);
705 list_splice_init(&ep->rdllist, &txlist);
706 WRITE_ONCE(ep->ovflist, NULL);
707 write_unlock_irq(&ep->lock);
708
709 /*
710 * Now call the callback function.
711 */
712 res = (*sproc)(ep, &txlist, priv);
713
714 write_lock_irq(&ep->lock);
715 /*
716 * During the time we spent inside the "sproc" callback, some
717 * other events might have been queued by the poll callback.
718 * We re-insert them inside the main ready-list here.
719 */
720 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
721 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
722 /*
723 * We need to check if the item is already in the list.
724 * During the "sproc" callback execution time, items are
725 * queued into ->ovflist but the "txlist" might already
726 * contain them, and the list_splice() below takes care of them.
727 */
728 if (!ep_is_linked(epi)) {
729 /*
730 * ->ovflist is LIFO, so we have to reverse it in order
731 * to keep in FIFO.
732 */
733 list_add(&epi->rdllink, &ep->rdllist);
734 ep_pm_stay_awake(epi);
735 }
736 }
737 /*
738 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
739 * releasing the lock, events will be queued in the normal way inside
740 * ep->rdllist.
741 */
742 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
743
744 /*
745 * Quickly re-inject items left on "txlist".
746 */
747 list_splice(&txlist, &ep->rdllist);
748 __pm_relax(ep->ws);
749 write_unlock_irq(&ep->lock);
750
751 if (!ep_locked)
752 mutex_unlock(&ep->mtx);
753
754 return res;
755 }
756
757 static void epi_rcu_free(struct rcu_head *head)
758 {
759 struct epitem *epi = container_of(head, struct epitem, rcu);
760 kmem_cache_free(epi_cache, epi);
761 }
762
763 /*
764 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
765 * all the associated resources. Must be called with "mtx" held.
766 */
767 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
768 {
769 struct file *file = epi->ffd.file;
770
771 lockdep_assert_irqs_enabled();
772
773 /*
774 * Removes poll wait queue hooks.
775 */
776 ep_unregister_pollwait(ep, epi);
777
778 /* Remove the current item from the list of epoll hooks */
779 spin_lock(&file->f_lock);
780 list_del_rcu(&epi->fllink);
781 spin_unlock(&file->f_lock);
782
783 rb_erase_cached(&epi->rbn, &ep->rbr);
784
785 write_lock_irq(&ep->lock);
786 if (ep_is_linked(epi))
787 list_del_init(&epi->rdllink);
788 write_unlock_irq(&ep->lock);
789
790 wakeup_source_unregister(ep_wakeup_source(epi));
791 /*
792 * At this point it is safe to free the eventpoll item. Use the union
793 * field epi->rcu, since we are trying to minimize the size of
794 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
795 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
796 * use of the rbn field.
797 */
798 call_rcu(&epi->rcu, epi_rcu_free);
799
800 atomic_long_dec(&ep->user->epoll_watches);
801
802 return 0;
803 }
804
805 static void ep_free(struct eventpoll *ep)
806 {
807 struct rb_node *rbp;
808 struct epitem *epi;
809
810 /* We need to release all tasks waiting for these file */
811 if (waitqueue_active(&ep->poll_wait))
812 ep_poll_safewake(ep, NULL);
813
814 /*
815 * We need to lock this because we could be hit by
816 * eventpoll_release_file() while we're freeing the "struct eventpoll".
817 * We do not need to hold "ep->mtx" here because the epoll file
818 * is on the way to be removed and no one has references to it
819 * anymore. The only hit might come from eventpoll_release_file() but
820 * holding "epmutex" is sufficient here.
821 */
822 mutex_lock(&epmutex);
823
824 /*
825 * Walks through the whole tree by unregistering poll callbacks.
826 */
827 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
828 epi = rb_entry(rbp, struct epitem, rbn);
829
830 ep_unregister_pollwait(ep, epi);
831 cond_resched();
832 }
833
834 /*
835 * Walks through the whole tree by freeing each "struct epitem". At this
836 * point we are sure no poll callbacks will be lingering around, and also by
837 * holding "epmutex" we can be sure that no file cleanup code will hit
838 * us during this operation. So we can avoid the lock on "ep->lock".
839 * We do not need to lock ep->mtx, either, we only do it to prevent
840 * a lockdep warning.
841 */
842 mutex_lock(&ep->mtx);
843 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
844 epi = rb_entry(rbp, struct epitem, rbn);
845 ep_remove(ep, epi);
846 cond_resched();
847 }
848 mutex_unlock(&ep->mtx);
849
850 mutex_unlock(&epmutex);
851 mutex_destroy(&ep->mtx);
852 free_uid(ep->user);
853 wakeup_source_unregister(ep->ws);
854 kfree(ep);
855 }
856
857 static int ep_eventpoll_release(struct inode *inode, struct file *file)
858 {
859 struct eventpoll *ep = file->private_data;
860
861 if (ep)
862 ep_free(ep);
863
864 return 0;
865 }
866
867 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
868 void *priv);
869 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
870 poll_table *pt);
871
872 /*
873 * Differs from ep_eventpoll_poll() in that internal callers already have
874 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
875 * is correctly annotated.
876 */
877 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
878 int depth)
879 {
880 struct eventpoll *ep;
881 bool locked;
882
883 pt->_key = epi->event.events;
884 if (!is_file_epoll(epi->ffd.file))
885 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
886
887 ep = epi->ffd.file->private_data;
888 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
889 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
890
891 return ep_scan_ready_list(epi->ffd.file->private_data,
892 ep_read_events_proc, &depth, depth,
893 locked) & epi->event.events;
894 }
895
896 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
897 void *priv)
898 {
899 struct epitem *epi, *tmp;
900 poll_table pt;
901 int depth = *(int *)priv;
902
903 init_poll_funcptr(&pt, NULL);
904 depth++;
905
906 list_for_each_entry_safe(epi, tmp, head, rdllink) {
907 if (ep_item_poll(epi, &pt, depth)) {
908 return EPOLLIN | EPOLLRDNORM;
909 } else {
910 /*
911 * Item has been dropped into the ready list by the poll
912 * callback, but it's not actually ready, as far as
913 * caller requested events goes. We can remove it here.
914 */
915 __pm_relax(ep_wakeup_source(epi));
916 list_del_init(&epi->rdllink);
917 }
918 }
919
920 return 0;
921 }
922
923 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
924 {
925 struct eventpoll *ep = file->private_data;
926 int depth = 0;
927
928 /* Insert inside our poll wait queue */
929 poll_wait(file, &ep->poll_wait, wait);
930
931 /*
932 * Proceed to find out if wanted events are really available inside
933 * the ready list.
934 */
935 return ep_scan_ready_list(ep, ep_read_events_proc,
936 &depth, depth, false);
937 }
938
939 #ifdef CONFIG_PROC_FS
940 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
941 {
942 struct eventpoll *ep = f->private_data;
943 struct rb_node *rbp;
944
945 mutex_lock(&ep->mtx);
946 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
947 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
948 struct inode *inode = file_inode(epi->ffd.file);
949
950 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
951 " pos:%lli ino:%lx sdev:%x\n",
952 epi->ffd.fd, epi->event.events,
953 (long long)epi->event.data,
954 (long long)epi->ffd.file->f_pos,
955 inode->i_ino, inode->i_sb->s_dev);
956 if (seq_has_overflowed(m))
957 break;
958 }
959 mutex_unlock(&ep->mtx);
960 }
961 #endif
962
963 /* File callbacks that implement the eventpoll file behaviour */
964 static const struct file_operations eventpoll_fops = {
965 #ifdef CONFIG_PROC_FS
966 .show_fdinfo = ep_show_fdinfo,
967 #endif
968 .release = ep_eventpoll_release,
969 .poll = ep_eventpoll_poll,
970 .llseek = noop_llseek,
971 };
972
973 /*
974 * This is called from eventpoll_release() to unlink files from the eventpoll
975 * interface. We need to have this facility to cleanup correctly files that are
976 * closed without being removed from the eventpoll interface.
977 */
978 void eventpoll_release_file(struct file *file)
979 {
980 struct eventpoll *ep;
981 struct epitem *epi, *next;
982
983 /*
984 * We don't want to get "file->f_lock" because it is not
985 * necessary. It is not necessary because we're in the "struct file"
986 * cleanup path, and this means that no one is using this file anymore.
987 * So, for example, epoll_ctl() cannot hit here since if we reach this
988 * point, the file counter already went to zero and fget() would fail.
989 * The only hit might come from ep_free() but by holding the mutex
990 * will correctly serialize the operation. We do need to acquire
991 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
992 * from anywhere but ep_free().
993 *
994 * Besides, ep_remove() acquires the lock, so we can't hold it here.
995 */
996 mutex_lock(&epmutex);
997 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
998 ep = epi->ep;
999 mutex_lock_nested(&ep->mtx, 0);
1000 ep_remove(ep, epi);
1001 mutex_unlock(&ep->mtx);
1002 }
1003 mutex_unlock(&epmutex);
1004 }
1005
1006 static int ep_alloc(struct eventpoll **pep)
1007 {
1008 int error;
1009 struct user_struct *user;
1010 struct eventpoll *ep;
1011
1012 user = get_current_user();
1013 error = -ENOMEM;
1014 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1015 if (unlikely(!ep))
1016 goto free_uid;
1017
1018 mutex_init(&ep->mtx);
1019 rwlock_init(&ep->lock);
1020 init_waitqueue_head(&ep->wq);
1021 init_waitqueue_head(&ep->poll_wait);
1022 INIT_LIST_HEAD(&ep->rdllist);
1023 ep->rbr = RB_ROOT_CACHED;
1024 ep->ovflist = EP_UNACTIVE_PTR;
1025 ep->user = user;
1026
1027 *pep = ep;
1028
1029 return 0;
1030
1031 free_uid:
1032 free_uid(user);
1033 return error;
1034 }
1035
1036 /*
1037 * Search the file inside the eventpoll tree. The RB tree operations
1038 * are protected by the "mtx" mutex, and ep_find() must be called with
1039 * "mtx" held.
1040 */
1041 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1042 {
1043 int kcmp;
1044 struct rb_node *rbp;
1045 struct epitem *epi, *epir = NULL;
1046 struct epoll_filefd ffd;
1047
1048 ep_set_ffd(&ffd, file, fd);
1049 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1050 epi = rb_entry(rbp, struct epitem, rbn);
1051 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1052 if (kcmp > 0)
1053 rbp = rbp->rb_right;
1054 else if (kcmp < 0)
1055 rbp = rbp->rb_left;
1056 else {
1057 epir = epi;
1058 break;
1059 }
1060 }
1061
1062 return epir;
1063 }
1064
1065 #ifdef CONFIG_CHECKPOINT_RESTORE
1066 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1067 {
1068 struct rb_node *rbp;
1069 struct epitem *epi;
1070
1071 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1072 epi = rb_entry(rbp, struct epitem, rbn);
1073 if (epi->ffd.fd == tfd) {
1074 if (toff == 0)
1075 return epi;
1076 else
1077 toff--;
1078 }
1079 cond_resched();
1080 }
1081
1082 return NULL;
1083 }
1084
1085 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1086 unsigned long toff)
1087 {
1088 struct file *file_raw;
1089 struct eventpoll *ep;
1090 struct epitem *epi;
1091
1092 if (!is_file_epoll(file))
1093 return ERR_PTR(-EINVAL);
1094
1095 ep = file->private_data;
1096
1097 mutex_lock(&ep->mtx);
1098 epi = ep_find_tfd(ep, tfd, toff);
1099 if (epi)
1100 file_raw = epi->ffd.file;
1101 else
1102 file_raw = ERR_PTR(-ENOENT);
1103 mutex_unlock(&ep->mtx);
1104
1105 return file_raw;
1106 }
1107 #endif /* CONFIG_CHECKPOINT_RESTORE */
1108
1109 /**
1110 * Adds a new entry to the tail of the list in a lockless way, i.e.
1111 * multiple CPUs are allowed to call this function concurrently.
1112 *
1113 * Beware: it is necessary to prevent any other modifications of the
1114 * existing list until all changes are completed, in other words
1115 * concurrent list_add_tail_lockless() calls should be protected
1116 * with a read lock, where write lock acts as a barrier which
1117 * makes sure all list_add_tail_lockless() calls are fully
1118 * completed.
1119 *
1120 * Also an element can be locklessly added to the list only in one
1121 * direction i.e. either to the tail either to the head, otherwise
1122 * concurrent access will corrupt the list.
1123 *
1124 * Returns %false if element has been already added to the list, %true
1125 * otherwise.
1126 */
1127 static inline bool list_add_tail_lockless(struct list_head *new,
1128 struct list_head *head)
1129 {
1130 struct list_head *prev;
1131
1132 /*
1133 * This is simple 'new->next = head' operation, but cmpxchg()
1134 * is used in order to detect that same element has been just
1135 * added to the list from another CPU: the winner observes
1136 * new->next == new.
1137 */
1138 if (cmpxchg(&new->next, new, head) != new)
1139 return false;
1140
1141 /*
1142 * Initially ->next of a new element must be updated with the head
1143 * (we are inserting to the tail) and only then pointers are atomically
1144 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1145 * updated before pointers are actually swapped and pointers are
1146 * swapped before prev->next is updated.
1147 */
1148
1149 prev = xchg(&head->prev, new);
1150
1151 /*
1152 * It is safe to modify prev->next and new->prev, because a new element
1153 * is added only to the tail and new->next is updated before XCHG.
1154 */
1155
1156 prev->next = new;
1157 new->prev = prev;
1158
1159 return true;
1160 }
1161
1162 /**
1163 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1164 * i.e. multiple CPUs are allowed to call this function concurrently.
1165 *
1166 * Returns %false if epi element has been already chained, %true otherwise.
1167 */
1168 static inline bool chain_epi_lockless(struct epitem *epi)
1169 {
1170 struct eventpoll *ep = epi->ep;
1171
1172 /* Fast preliminary check */
1173 if (epi->next != EP_UNACTIVE_PTR)
1174 return false;
1175
1176 /* Check that the same epi has not been just chained from another CPU */
1177 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1178 return false;
1179
1180 /* Atomically exchange tail */
1181 epi->next = xchg(&ep->ovflist, epi);
1182
1183 return true;
1184 }
1185
1186 /*
1187 * This is the callback that is passed to the wait queue wakeup
1188 * mechanism. It is called by the stored file descriptors when they
1189 * have events to report.
1190 *
1191 * This callback takes a read lock in order not to content with concurrent
1192 * events from another file descriptors, thus all modifications to ->rdllist
1193 * or ->ovflist are lockless. Read lock is paired with the write lock from
1194 * ep_scan_ready_list(), which stops all list modifications and guarantees
1195 * that lists state is seen correctly.
1196 *
1197 * Another thing worth to mention is that ep_poll_callback() can be called
1198 * concurrently for the same @epi from different CPUs if poll table was inited
1199 * with several wait queues entries. Plural wakeup from different CPUs of a
1200 * single wait queue is serialized by wq.lock, but the case when multiple wait
1201 * queues are used should be detected accordingly. This is detected using
1202 * cmpxchg() operation.
1203 */
1204 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1205 {
1206 int pwake = 0;
1207 struct epitem *epi = ep_item_from_wait(wait);
1208 struct eventpoll *ep = epi->ep;
1209 __poll_t pollflags = key_to_poll(key);
1210 unsigned long flags;
1211 int ewake = 0;
1212
1213 read_lock_irqsave(&ep->lock, flags);
1214
1215 ep_set_busy_poll_napi_id(epi);
1216
1217 /*
1218 * If the event mask does not contain any poll(2) event, we consider the
1219 * descriptor to be disabled. This condition is likely the effect of the
1220 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1221 * until the next EPOLL_CTL_MOD will be issued.
1222 */
1223 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1224 goto out_unlock;
1225
1226 /*
1227 * Check the events coming with the callback. At this stage, not
1228 * every device reports the events in the "key" parameter of the
1229 * callback. We need to be able to handle both cases here, hence the
1230 * test for "key" != NULL before the event match test.
1231 */
1232 if (pollflags && !(pollflags & epi->event.events))
1233 goto out_unlock;
1234
1235 /*
1236 * If we are transferring events to userspace, we can hold no locks
1237 * (because we're accessing user memory, and because of linux f_op->poll()
1238 * semantics). All the events that happen during that period of time are
1239 * chained in ep->ovflist and requeued later on.
1240 */
1241 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1242 if (chain_epi_lockless(epi))
1243 ep_pm_stay_awake_rcu(epi);
1244 } else if (!ep_is_linked(epi)) {
1245 /* In the usual case, add event to ready list. */
1246 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1247 ep_pm_stay_awake_rcu(epi);
1248 }
1249
1250 /*
1251 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1252 * wait list.
1253 */
1254 if (waitqueue_active(&ep->wq)) {
1255 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1256 !(pollflags & POLLFREE)) {
1257 switch (pollflags & EPOLLINOUT_BITS) {
1258 case EPOLLIN:
1259 if (epi->event.events & EPOLLIN)
1260 ewake = 1;
1261 break;
1262 case EPOLLOUT:
1263 if (epi->event.events & EPOLLOUT)
1264 ewake = 1;
1265 break;
1266 case 0:
1267 ewake = 1;
1268 break;
1269 }
1270 }
1271 wake_up(&ep->wq);
1272 }
1273 if (waitqueue_active(&ep->poll_wait))
1274 pwake++;
1275
1276 out_unlock:
1277 read_unlock_irqrestore(&ep->lock, flags);
1278
1279 /* We have to call this outside the lock */
1280 if (pwake)
1281 ep_poll_safewake(ep, epi);
1282
1283 if (!(epi->event.events & EPOLLEXCLUSIVE))
1284 ewake = 1;
1285
1286 if (pollflags & POLLFREE) {
1287 /*
1288 * If we race with ep_remove_wait_queue() it can miss
1289 * ->whead = NULL and do another remove_wait_queue() after
1290 * us, so we can't use __remove_wait_queue().
1291 */
1292 list_del_init(&wait->entry);
1293 /*
1294 * ->whead != NULL protects us from the race with ep_free()
1295 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1296 * held by the caller. Once we nullify it, nothing protects
1297 * ep/epi or even wait.
1298 */
1299 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1300 }
1301
1302 return ewake;
1303 }
1304
1305 /*
1306 * This is the callback that is used to add our wait queue to the
1307 * target file wakeup lists.
1308 */
1309 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1310 poll_table *pt)
1311 {
1312 struct epitem *epi = ep_item_from_epqueue(pt);
1313 struct eppoll_entry *pwq;
1314
1315 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1316 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1317 pwq->whead = whead;
1318 pwq->base = epi;
1319 if (epi->event.events & EPOLLEXCLUSIVE)
1320 add_wait_queue_exclusive(whead, &pwq->wait);
1321 else
1322 add_wait_queue(whead, &pwq->wait);
1323 list_add_tail(&pwq->llink, &epi->pwqlist);
1324 epi->nwait++;
1325 } else {
1326 /* We have to signal that an error occurred */
1327 epi->nwait = -1;
1328 }
1329 }
1330
1331 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1332 {
1333 int kcmp;
1334 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1335 struct epitem *epic;
1336 bool leftmost = true;
1337
1338 while (*p) {
1339 parent = *p;
1340 epic = rb_entry(parent, struct epitem, rbn);
1341 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1342 if (kcmp > 0) {
1343 p = &parent->rb_right;
1344 leftmost = false;
1345 } else
1346 p = &parent->rb_left;
1347 }
1348 rb_link_node(&epi->rbn, parent, p);
1349 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1350 }
1351
1352
1353
1354 #define PATH_ARR_SIZE 5
1355 /*
1356 * These are the number paths of length 1 to 5, that we are allowing to emanate
1357 * from a single file of interest. For example, we allow 1000 paths of length
1358 * 1, to emanate from each file of interest. This essentially represents the
1359 * potential wakeup paths, which need to be limited in order to avoid massive
1360 * uncontrolled wakeup storms. The common use case should be a single ep which
1361 * is connected to n file sources. In this case each file source has 1 path
1362 * of length 1. Thus, the numbers below should be more than sufficient. These
1363 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1364 * and delete can't add additional paths. Protected by the epmutex.
1365 */
1366 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1367 static int path_count[PATH_ARR_SIZE];
1368
1369 static int path_count_inc(int nests)
1370 {
1371 /* Allow an arbitrary number of depth 1 paths */
1372 if (nests == 0)
1373 return 0;
1374
1375 if (++path_count[nests] > path_limits[nests])
1376 return -1;
1377 return 0;
1378 }
1379
1380 static void path_count_init(void)
1381 {
1382 int i;
1383
1384 for (i = 0; i < PATH_ARR_SIZE; i++)
1385 path_count[i] = 0;
1386 }
1387
1388 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1389 {
1390 int error = 0;
1391 struct file *file = priv;
1392 struct file *child_file;
1393 struct epitem *epi;
1394
1395 /* CTL_DEL can remove links here, but that can't increase our count */
1396 rcu_read_lock();
1397 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1398 child_file = epi->ep->file;
1399 if (is_file_epoll(child_file)) {
1400 if (list_empty(&child_file->f_ep_links)) {
1401 if (path_count_inc(call_nests)) {
1402 error = -1;
1403 break;
1404 }
1405 } else {
1406 error = ep_call_nested(&poll_loop_ncalls,
1407 reverse_path_check_proc,
1408 child_file, child_file,
1409 current);
1410 }
1411 if (error != 0)
1412 break;
1413 } else {
1414 printk(KERN_ERR "reverse_path_check_proc: "
1415 "file is not an ep!\n");
1416 }
1417 }
1418 rcu_read_unlock();
1419 return error;
1420 }
1421
1422 /**
1423 * reverse_path_check - The tfile_check_list is list of file *, which have
1424 * links that are proposed to be newly added. We need to
1425 * make sure that those added links don't add too many
1426 * paths such that we will spend all our time waking up
1427 * eventpoll objects.
1428 *
1429 * Returns: Returns zero if the proposed links don't create too many paths,
1430 * -1 otherwise.
1431 */
1432 static int reverse_path_check(void)
1433 {
1434 int error = 0;
1435 struct file *current_file;
1436
1437 /* let's call this for all tfiles */
1438 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1439 path_count_init();
1440 error = ep_call_nested(&poll_loop_ncalls,
1441 reverse_path_check_proc, current_file,
1442 current_file, current);
1443 if (error)
1444 break;
1445 }
1446 return error;
1447 }
1448
1449 static int ep_create_wakeup_source(struct epitem *epi)
1450 {
1451 struct name_snapshot n;
1452 struct wakeup_source *ws;
1453
1454 if (!epi->ep->ws) {
1455 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1456 if (!epi->ep->ws)
1457 return -ENOMEM;
1458 }
1459
1460 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1461 ws = wakeup_source_register(NULL, n.name.name);
1462 release_dentry_name_snapshot(&n);
1463
1464 if (!ws)
1465 return -ENOMEM;
1466 rcu_assign_pointer(epi->ws, ws);
1467
1468 return 0;
1469 }
1470
1471 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1472 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1473 {
1474 struct wakeup_source *ws = ep_wakeup_source(epi);
1475
1476 RCU_INIT_POINTER(epi->ws, NULL);
1477
1478 /*
1479 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1480 * used internally by wakeup_source_remove, too (called by
1481 * wakeup_source_unregister), so we cannot use call_rcu
1482 */
1483 synchronize_rcu();
1484 wakeup_source_unregister(ws);
1485 }
1486
1487 /*
1488 * Must be called with "mtx" held.
1489 */
1490 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1491 struct file *tfile, int fd, int full_check)
1492 {
1493 int error, pwake = 0;
1494 __poll_t revents;
1495 long user_watches;
1496 struct epitem *epi;
1497 struct ep_pqueue epq;
1498
1499 lockdep_assert_irqs_enabled();
1500
1501 user_watches = atomic_long_read(&ep->user->epoll_watches);
1502 if (unlikely(user_watches >= max_user_watches))
1503 return -ENOSPC;
1504 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1505 return -ENOMEM;
1506
1507 /* Item initialization follow here ... */
1508 INIT_LIST_HEAD(&epi->rdllink);
1509 INIT_LIST_HEAD(&epi->fllink);
1510 INIT_LIST_HEAD(&epi->pwqlist);
1511 epi->ep = ep;
1512 ep_set_ffd(&epi->ffd, tfile, fd);
1513 epi->event = *event;
1514 epi->nwait = 0;
1515 epi->next = EP_UNACTIVE_PTR;
1516 if (epi->event.events & EPOLLWAKEUP) {
1517 error = ep_create_wakeup_source(epi);
1518 if (error)
1519 goto error_create_wakeup_source;
1520 } else {
1521 RCU_INIT_POINTER(epi->ws, NULL);
1522 }
1523
1524 /* Add the current item to the list of active epoll hook for this file */
1525 spin_lock(&tfile->f_lock);
1526 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1527 spin_unlock(&tfile->f_lock);
1528
1529 /*
1530 * Add the current item to the RB tree. All RB tree operations are
1531 * protected by "mtx", and ep_insert() is called with "mtx" held.
1532 */
1533 ep_rbtree_insert(ep, epi);
1534
1535 /* now check if we've created too many backpaths */
1536 error = -EINVAL;
1537 if (full_check && reverse_path_check())
1538 goto error_remove_epi;
1539
1540 /* Initialize the poll table using the queue callback */
1541 epq.epi = epi;
1542 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1543
1544 /*
1545 * Attach the item to the poll hooks and get current event bits.
1546 * We can safely use the file* here because its usage count has
1547 * been increased by the caller of this function. Note that after
1548 * this operation completes, the poll callback can start hitting
1549 * the new item.
1550 */
1551 revents = ep_item_poll(epi, &epq.pt, 1);
1552
1553 /*
1554 * We have to check if something went wrong during the poll wait queue
1555 * install process. Namely an allocation for a wait queue failed due
1556 * high memory pressure.
1557 */
1558 error = -ENOMEM;
1559 if (epi->nwait < 0)
1560 goto error_unregister;
1561
1562 /* We have to drop the new item inside our item list to keep track of it */
1563 write_lock_irq(&ep->lock);
1564
1565 /* record NAPI ID of new item if present */
1566 ep_set_busy_poll_napi_id(epi);
1567
1568 /* If the file is already "ready" we drop it inside the ready list */
1569 if (revents && !ep_is_linked(epi)) {
1570 list_add_tail(&epi->rdllink, &ep->rdllist);
1571 ep_pm_stay_awake(epi);
1572
1573 /* Notify waiting tasks that events are available */
1574 if (waitqueue_active(&ep->wq))
1575 wake_up(&ep->wq);
1576 if (waitqueue_active(&ep->poll_wait))
1577 pwake++;
1578 }
1579
1580 write_unlock_irq(&ep->lock);
1581
1582 atomic_long_inc(&ep->user->epoll_watches);
1583
1584 /* We have to call this outside the lock */
1585 if (pwake)
1586 ep_poll_safewake(ep, NULL);
1587
1588 return 0;
1589
1590 error_unregister:
1591 ep_unregister_pollwait(ep, epi);
1592 error_remove_epi:
1593 spin_lock(&tfile->f_lock);
1594 list_del_rcu(&epi->fllink);
1595 spin_unlock(&tfile->f_lock);
1596
1597 rb_erase_cached(&epi->rbn, &ep->rbr);
1598
1599 /*
1600 * We need to do this because an event could have been arrived on some
1601 * allocated wait queue. Note that we don't care about the ep->ovflist
1602 * list, since that is used/cleaned only inside a section bound by "mtx".
1603 * And ep_insert() is called with "mtx" held.
1604 */
1605 write_lock_irq(&ep->lock);
1606 if (ep_is_linked(epi))
1607 list_del_init(&epi->rdllink);
1608 write_unlock_irq(&ep->lock);
1609
1610 wakeup_source_unregister(ep_wakeup_source(epi));
1611
1612 error_create_wakeup_source:
1613 kmem_cache_free(epi_cache, epi);
1614
1615 return error;
1616 }
1617
1618 /*
1619 * Modify the interest event mask by dropping an event if the new mask
1620 * has a match in the current file status. Must be called with "mtx" held.
1621 */
1622 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1623 const struct epoll_event *event)
1624 {
1625 int pwake = 0;
1626 poll_table pt;
1627
1628 lockdep_assert_irqs_enabled();
1629
1630 init_poll_funcptr(&pt, NULL);
1631
1632 /*
1633 * Set the new event interest mask before calling f_op->poll();
1634 * otherwise we might miss an event that happens between the
1635 * f_op->poll() call and the new event set registering.
1636 */
1637 epi->event.events = event->events; /* need barrier below */
1638 epi->event.data = event->data; /* protected by mtx */
1639 if (epi->event.events & EPOLLWAKEUP) {
1640 if (!ep_has_wakeup_source(epi))
1641 ep_create_wakeup_source(epi);
1642 } else if (ep_has_wakeup_source(epi)) {
1643 ep_destroy_wakeup_source(epi);
1644 }
1645
1646 /*
1647 * The following barrier has two effects:
1648 *
1649 * 1) Flush epi changes above to other CPUs. This ensures
1650 * we do not miss events from ep_poll_callback if an
1651 * event occurs immediately after we call f_op->poll().
1652 * We need this because we did not take ep->lock while
1653 * changing epi above (but ep_poll_callback does take
1654 * ep->lock).
1655 *
1656 * 2) We also need to ensure we do not miss _past_ events
1657 * when calling f_op->poll(). This barrier also
1658 * pairs with the barrier in wq_has_sleeper (see
1659 * comments for wq_has_sleeper).
1660 *
1661 * This barrier will now guarantee ep_poll_callback or f_op->poll
1662 * (or both) will notice the readiness of an item.
1663 */
1664 smp_mb();
1665
1666 /*
1667 * Get current event bits. We can safely use the file* here because
1668 * its usage count has been increased by the caller of this function.
1669 * If the item is "hot" and it is not registered inside the ready
1670 * list, push it inside.
1671 */
1672 if (ep_item_poll(epi, &pt, 1)) {
1673 write_lock_irq(&ep->lock);
1674 if (!ep_is_linked(epi)) {
1675 list_add_tail(&epi->rdllink, &ep->rdllist);
1676 ep_pm_stay_awake(epi);
1677
1678 /* Notify waiting tasks that events are available */
1679 if (waitqueue_active(&ep->wq))
1680 wake_up(&ep->wq);
1681 if (waitqueue_active(&ep->poll_wait))
1682 pwake++;
1683 }
1684 write_unlock_irq(&ep->lock);
1685 }
1686
1687 /* We have to call this outside the lock */
1688 if (pwake)
1689 ep_poll_safewake(ep, NULL);
1690
1691 return 0;
1692 }
1693
1694 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1695 void *priv)
1696 {
1697 struct ep_send_events_data *esed = priv;
1698 __poll_t revents;
1699 struct epitem *epi, *tmp;
1700 struct epoll_event __user *uevent = esed->events;
1701 struct wakeup_source *ws;
1702 poll_table pt;
1703
1704 init_poll_funcptr(&pt, NULL);
1705 esed->res = 0;
1706
1707 /*
1708 * We can loop without lock because we are passed a task private list.
1709 * Items cannot vanish during the loop because ep_scan_ready_list() is
1710 * holding "mtx" during this call.
1711 */
1712 lockdep_assert_held(&ep->mtx);
1713
1714 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1715 if (esed->res >= esed->maxevents)
1716 break;
1717
1718 /*
1719 * Activate ep->ws before deactivating epi->ws to prevent
1720 * triggering auto-suspend here (in case we reactive epi->ws
1721 * below).
1722 *
1723 * This could be rearranged to delay the deactivation of epi->ws
1724 * instead, but then epi->ws would temporarily be out of sync
1725 * with ep_is_linked().
1726 */
1727 ws = ep_wakeup_source(epi);
1728 if (ws) {
1729 if (ws->active)
1730 __pm_stay_awake(ep->ws);
1731 __pm_relax(ws);
1732 }
1733
1734 list_del_init(&epi->rdllink);
1735
1736 /*
1737 * If the event mask intersect the caller-requested one,
1738 * deliver the event to userspace. Again, ep_scan_ready_list()
1739 * is holding ep->mtx, so no operations coming from userspace
1740 * can change the item.
1741 */
1742 revents = ep_item_poll(epi, &pt, 1);
1743 if (!revents)
1744 continue;
1745
1746 if (__put_user(revents, &uevent->events) ||
1747 __put_user(epi->event.data, &uevent->data)) {
1748 list_add(&epi->rdllink, head);
1749 ep_pm_stay_awake(epi);
1750 if (!esed->res)
1751 esed->res = -EFAULT;
1752 return 0;
1753 }
1754 esed->res++;
1755 uevent++;
1756 if (epi->event.events & EPOLLONESHOT)
1757 epi->event.events &= EP_PRIVATE_BITS;
1758 else if (!(epi->event.events & EPOLLET)) {
1759 /*
1760 * If this file has been added with Level
1761 * Trigger mode, we need to insert back inside
1762 * the ready list, so that the next call to
1763 * epoll_wait() will check again the events
1764 * availability. At this point, no one can insert
1765 * into ep->rdllist besides us. The epoll_ctl()
1766 * callers are locked out by
1767 * ep_scan_ready_list() holding "mtx" and the
1768 * poll callback will queue them in ep->ovflist.
1769 */
1770 list_add_tail(&epi->rdllink, &ep->rdllist);
1771 ep_pm_stay_awake(epi);
1772 }
1773 }
1774
1775 return 0;
1776 }
1777
1778 static int ep_send_events(struct eventpoll *ep,
1779 struct epoll_event __user *events, int maxevents)
1780 {
1781 struct ep_send_events_data esed;
1782
1783 esed.maxevents = maxevents;
1784 esed.events = events;
1785
1786 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1787 return esed.res;
1788 }
1789
1790 static inline struct timespec64 ep_set_mstimeout(long ms)
1791 {
1792 struct timespec64 now, ts = {
1793 .tv_sec = ms / MSEC_PER_SEC,
1794 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1795 };
1796
1797 ktime_get_ts64(&now);
1798 return timespec64_add_safe(now, ts);
1799 }
1800
1801 /**
1802 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1803 * event buffer.
1804 *
1805 * @ep: Pointer to the eventpoll context.
1806 * @events: Pointer to the userspace buffer where the ready events should be
1807 * stored.
1808 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1809 * @timeout: Maximum timeout for the ready events fetch operation, in
1810 * milliseconds. If the @timeout is zero, the function will not block,
1811 * while if the @timeout is less than zero, the function will block
1812 * until at least one event has been retrieved (or an error
1813 * occurred).
1814 *
1815 * Returns: Returns the number of ready events which have been fetched, or an
1816 * error code, in case of error.
1817 */
1818 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1819 int maxevents, long timeout)
1820 {
1821 int res = 0, eavail, timed_out = 0;
1822 u64 slack = 0;
1823 wait_queue_entry_t wait;
1824 ktime_t expires, *to = NULL;
1825
1826 lockdep_assert_irqs_enabled();
1827
1828 if (timeout > 0) {
1829 struct timespec64 end_time = ep_set_mstimeout(timeout);
1830
1831 slack = select_estimate_accuracy(&end_time);
1832 to = &expires;
1833 *to = timespec64_to_ktime(end_time);
1834 } else if (timeout == 0) {
1835 /*
1836 * Avoid the unnecessary trip to the wait queue loop, if the
1837 * caller specified a non blocking operation. We still need
1838 * lock because we could race and not see an epi being added
1839 * to the ready list while in irq callback. Thus incorrectly
1840 * returning 0 back to userspace.
1841 */
1842 timed_out = 1;
1843
1844 write_lock_irq(&ep->lock);
1845 eavail = ep_events_available(ep);
1846 write_unlock_irq(&ep->lock);
1847
1848 goto send_events;
1849 }
1850
1851 fetch_events:
1852
1853 if (!ep_events_available(ep))
1854 ep_busy_loop(ep, timed_out);
1855
1856 eavail = ep_events_available(ep);
1857 if (eavail)
1858 goto send_events;
1859
1860 /*
1861 * Busy poll timed out. Drop NAPI ID for now, we can add
1862 * it back in when we have moved a socket with a valid NAPI
1863 * ID onto the ready list.
1864 */
1865 ep_reset_busy_poll_napi_id(ep);
1866
1867 do {
1868 /*
1869 * Internally init_wait() uses autoremove_wake_function(),
1870 * thus wait entry is removed from the wait queue on each
1871 * wakeup. Why it is important? In case of several waiters
1872 * each new wakeup will hit the next waiter, giving it the
1873 * chance to harvest new event. Otherwise wakeup can be
1874 * lost. This is also good performance-wise, because on
1875 * normal wakeup path no need to call __remove_wait_queue()
1876 * explicitly, thus ep->lock is not taken, which halts the
1877 * event delivery.
1878 */
1879 init_wait(&wait);
1880
1881 write_lock_irq(&ep->lock);
1882 /*
1883 * Barrierless variant, waitqueue_active() is called under
1884 * the same lock on wakeup ep_poll_callback() side, so it
1885 * is safe to avoid an explicit barrier.
1886 */
1887 __set_current_state(TASK_INTERRUPTIBLE);
1888
1889 /*
1890 * Do the final check under the lock. ep_scan_ready_list()
1891 * plays with two lists (->rdllist and ->ovflist) and there
1892 * is always a race when both lists are empty for short
1893 * period of time although events are pending, so lock is
1894 * important.
1895 */
1896 eavail = ep_events_available(ep);
1897 if (!eavail) {
1898 if (signal_pending(current))
1899 res = -EINTR;
1900 else
1901 __add_wait_queue_exclusive(&ep->wq, &wait);
1902 }
1903 write_unlock_irq(&ep->lock);
1904
1905 if (eavail || res)
1906 break;
1907
1908 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1909 timed_out = 1;
1910 break;
1911 }
1912
1913 /* We were woken up, thus go and try to harvest some events */
1914 eavail = 1;
1915
1916 } while (0);
1917
1918 __set_current_state(TASK_RUNNING);
1919
1920 if (!list_empty_careful(&wait.entry)) {
1921 write_lock_irq(&ep->lock);
1922 __remove_wait_queue(&ep->wq, &wait);
1923 write_unlock_irq(&ep->lock);
1924 }
1925
1926 send_events:
1927 if (fatal_signal_pending(current)) {
1928 /*
1929 * Always short-circuit for fatal signals to allow
1930 * threads to make a timely exit without the chance of
1931 * finding more events available and fetching
1932 * repeatedly.
1933 */
1934 res = -EINTR;
1935 }
1936 /*
1937 * Try to transfer events to user space. In case we get 0 events and
1938 * there's still timeout left over, we go trying again in search of
1939 * more luck.
1940 */
1941 if (!res && eavail &&
1942 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1943 goto fetch_events;
1944
1945 return res;
1946 }
1947
1948 /**
1949 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1950 * API, to verify that adding an epoll file inside another
1951 * epoll structure, does not violate the constraints, in
1952 * terms of closed loops, or too deep chains (which can
1953 * result in excessive stack usage).
1954 *
1955 * @priv: Pointer to the epoll file to be currently checked.
1956 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1957 * data structure pointer.
1958 * @call_nests: Current dept of the @ep_call_nested() call stack.
1959 *
1960 * Returns: Returns zero if adding the epoll @file inside current epoll
1961 * structure @ep does not violate the constraints, or -1 otherwise.
1962 */
1963 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1964 {
1965 int error = 0;
1966 struct file *file = priv;
1967 struct eventpoll *ep = file->private_data;
1968 struct eventpoll *ep_tovisit;
1969 struct rb_node *rbp;
1970 struct epitem *epi;
1971
1972 mutex_lock_nested(&ep->mtx, call_nests + 1);
1973 ep->gen = loop_check_gen;
1974 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1975 epi = rb_entry(rbp, struct epitem, rbn);
1976 if (unlikely(is_file_epoll(epi->ffd.file))) {
1977 ep_tovisit = epi->ffd.file->private_data;
1978 if (ep_tovisit->gen == loop_check_gen)
1979 continue;
1980 error = ep_call_nested(&poll_loop_ncalls,
1981 ep_loop_check_proc, epi->ffd.file,
1982 ep_tovisit, current);
1983 if (error != 0)
1984 break;
1985 } else {
1986 /*
1987 * If we've reached a file that is not associated with
1988 * an ep, then we need to check if the newly added
1989 * links are going to add too many wakeup paths. We do
1990 * this by adding it to the tfile_check_list, if it's
1991 * not already there, and calling reverse_path_check()
1992 * during ep_insert().
1993 */
1994 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1995 if (get_file_rcu(epi->ffd.file))
1996 list_add(&epi->ffd.file->f_tfile_llink,
1997 &tfile_check_list);
1998 }
1999 }
2000 }
2001 mutex_unlock(&ep->mtx);
2002
2003 return error;
2004 }
2005
2006 /**
2007 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2008 * another epoll file (represented by @ep) does not create
2009 * closed loops or too deep chains.
2010 *
2011 * @ep: Pointer to the epoll private data structure.
2012 * @file: Pointer to the epoll file to be checked.
2013 *
2014 * Returns: Returns zero if adding the epoll @file inside current epoll
2015 * structure @ep does not violate the constraints, or -1 otherwise.
2016 */
2017 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2018 {
2019 return ep_call_nested(&poll_loop_ncalls,
2020 ep_loop_check_proc, file, ep, current);
2021 }
2022
2023 static void clear_tfile_check_list(void)
2024 {
2025 struct file *file;
2026
2027 /* first clear the tfile_check_list */
2028 while (!list_empty(&tfile_check_list)) {
2029 file = list_first_entry(&tfile_check_list, struct file,
2030 f_tfile_llink);
2031 list_del_init(&file->f_tfile_llink);
2032 fput(file);
2033 }
2034 INIT_LIST_HEAD(&tfile_check_list);
2035 }
2036
2037 /*
2038 * Open an eventpoll file descriptor.
2039 */
2040 static int do_epoll_create(int flags)
2041 {
2042 int error, fd;
2043 struct eventpoll *ep = NULL;
2044 struct file *file;
2045
2046 /* Check the EPOLL_* constant for consistency. */
2047 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2048
2049 if (flags & ~EPOLL_CLOEXEC)
2050 return -EINVAL;
2051 /*
2052 * Create the internal data structure ("struct eventpoll").
2053 */
2054 error = ep_alloc(&ep);
2055 if (error < 0)
2056 return error;
2057 /*
2058 * Creates all the items needed to setup an eventpoll file. That is,
2059 * a file structure and a free file descriptor.
2060 */
2061 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2062 if (fd < 0) {
2063 error = fd;
2064 goto out_free_ep;
2065 }
2066 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2067 O_RDWR | (flags & O_CLOEXEC));
2068 if (IS_ERR(file)) {
2069 error = PTR_ERR(file);
2070 goto out_free_fd;
2071 }
2072 ep->file = file;
2073 fd_install(fd, file);
2074 return fd;
2075
2076 out_free_fd:
2077 put_unused_fd(fd);
2078 out_free_ep:
2079 ep_free(ep);
2080 return error;
2081 }
2082
2083 SYSCALL_DEFINE1(epoll_create1, int, flags)
2084 {
2085 return do_epoll_create(flags);
2086 }
2087
2088 SYSCALL_DEFINE1(epoll_create, int, size)
2089 {
2090 if (size <= 0)
2091 return -EINVAL;
2092
2093 return do_epoll_create(0);
2094 }
2095
2096 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2097 bool nonblock)
2098 {
2099 if (!nonblock) {
2100 mutex_lock_nested(mutex, depth);
2101 return 0;
2102 }
2103 if (mutex_trylock(mutex))
2104 return 0;
2105 return -EAGAIN;
2106 }
2107
2108 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2109 bool nonblock)
2110 {
2111 int error;
2112 int full_check = 0;
2113 struct fd f, tf;
2114 struct eventpoll *ep;
2115 struct epitem *epi;
2116 struct eventpoll *tep = NULL;
2117
2118 error = -EBADF;
2119 f = fdget(epfd);
2120 if (!f.file)
2121 goto error_return;
2122
2123 /* Get the "struct file *" for the target file */
2124 tf = fdget(fd);
2125 if (!tf.file)
2126 goto error_fput;
2127
2128 /* The target file descriptor must support poll */
2129 error = -EPERM;
2130 if (!file_can_poll(tf.file))
2131 goto error_tgt_fput;
2132
2133 /* Check if EPOLLWAKEUP is allowed */
2134 if (ep_op_has_event(op))
2135 ep_take_care_of_epollwakeup(epds);
2136
2137 /*
2138 * We have to check that the file structure underneath the file descriptor
2139 * the user passed to us _is_ an eventpoll file. And also we do not permit
2140 * adding an epoll file descriptor inside itself.
2141 */
2142 error = -EINVAL;
2143 if (f.file == tf.file || !is_file_epoll(f.file))
2144 goto error_tgt_fput;
2145
2146 /*
2147 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2148 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2149 * Also, we do not currently supported nested exclusive wakeups.
2150 */
2151 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2152 if (op == EPOLL_CTL_MOD)
2153 goto error_tgt_fput;
2154 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2155 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2156 goto error_tgt_fput;
2157 }
2158
2159 /*
2160 * At this point it is safe to assume that the "private_data" contains
2161 * our own data structure.
2162 */
2163 ep = f.file->private_data;
2164
2165 /*
2166 * When we insert an epoll file descriptor, inside another epoll file
2167 * descriptor, there is the change of creating closed loops, which are
2168 * better be handled here, than in more critical paths. While we are
2169 * checking for loops we also determine the list of files reachable
2170 * and hang them on the tfile_check_list, so we can check that we
2171 * haven't created too many possible wakeup paths.
2172 *
2173 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2174 * the epoll file descriptor is attaching directly to a wakeup source,
2175 * unless the epoll file descriptor is nested. The purpose of taking the
2176 * 'epmutex' on add is to prevent complex toplogies such as loops and
2177 * deep wakeup paths from forming in parallel through multiple
2178 * EPOLL_CTL_ADD operations.
2179 */
2180 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2181 if (error)
2182 goto error_tgt_fput;
2183 if (op == EPOLL_CTL_ADD) {
2184 if (!list_empty(&f.file->f_ep_links) ||
2185 ep->gen == loop_check_gen ||
2186 is_file_epoll(tf.file)) {
2187 mutex_unlock(&ep->mtx);
2188 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2189 if (error)
2190 goto error_tgt_fput;
2191 loop_check_gen++;
2192 full_check = 1;
2193 if (is_file_epoll(tf.file)) {
2194 error = -ELOOP;
2195 if (ep_loop_check(ep, tf.file) != 0)
2196 goto error_tgt_fput;
2197 } else {
2198 get_file(tf.file);
2199 list_add(&tf.file->f_tfile_llink,
2200 &tfile_check_list);
2201 }
2202 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2203 if (error)
2204 goto error_tgt_fput;
2205 if (is_file_epoll(tf.file)) {
2206 tep = tf.file->private_data;
2207 error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2208 if (error) {
2209 mutex_unlock(&ep->mtx);
2210 goto error_tgt_fput;
2211 }
2212 }
2213 }
2214 }
2215
2216 /*
2217 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2218 * above, we can be sure to be able to use the item looked up by
2219 * ep_find() till we release the mutex.
2220 */
2221 epi = ep_find(ep, tf.file, fd);
2222
2223 error = -EINVAL;
2224 switch (op) {
2225 case EPOLL_CTL_ADD:
2226 if (!epi) {
2227 epds->events |= EPOLLERR | EPOLLHUP;
2228 error = ep_insert(ep, epds, tf.file, fd, full_check);
2229 } else
2230 error = -EEXIST;
2231 break;
2232 case EPOLL_CTL_DEL:
2233 if (epi)
2234 error = ep_remove(ep, epi);
2235 else
2236 error = -ENOENT;
2237 break;
2238 case EPOLL_CTL_MOD:
2239 if (epi) {
2240 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2241 epds->events |= EPOLLERR | EPOLLHUP;
2242 error = ep_modify(ep, epi, epds);
2243 }
2244 } else
2245 error = -ENOENT;
2246 break;
2247 }
2248 if (tep != NULL)
2249 mutex_unlock(&tep->mtx);
2250 mutex_unlock(&ep->mtx);
2251
2252 error_tgt_fput:
2253 if (full_check) {
2254 clear_tfile_check_list();
2255 loop_check_gen++;
2256 mutex_unlock(&epmutex);
2257 }
2258
2259 fdput(tf);
2260 error_fput:
2261 fdput(f);
2262 error_return:
2263
2264 return error;
2265 }
2266
2267 /*
2268 * The following function implements the controller interface for
2269 * the eventpoll file that enables the insertion/removal/change of
2270 * file descriptors inside the interest set.
2271 */
2272 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2273 struct epoll_event __user *, event)
2274 {
2275 struct epoll_event epds;
2276
2277 if (ep_op_has_event(op) &&
2278 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2279 return -EFAULT;
2280
2281 return do_epoll_ctl(epfd, op, fd, &epds, false);
2282 }
2283
2284 /*
2285 * Implement the event wait interface for the eventpoll file. It is the kernel
2286 * part of the user space epoll_wait(2).
2287 */
2288 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2289 int maxevents, int timeout)
2290 {
2291 int error;
2292 struct fd f;
2293 struct eventpoll *ep;
2294
2295 /* The maximum number of event must be greater than zero */
2296 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2297 return -EINVAL;
2298
2299 /* Verify that the area passed by the user is writeable */
2300 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2301 return -EFAULT;
2302
2303 /* Get the "struct file *" for the eventpoll file */
2304 f = fdget(epfd);
2305 if (!f.file)
2306 return -EBADF;
2307
2308 /*
2309 * We have to check that the file structure underneath the fd
2310 * the user passed to us _is_ an eventpoll file.
2311 */
2312 error = -EINVAL;
2313 if (!is_file_epoll(f.file))
2314 goto error_fput;
2315
2316 /*
2317 * At this point it is safe to assume that the "private_data" contains
2318 * our own data structure.
2319 */
2320 ep = f.file->private_data;
2321
2322 /* Time to fish for events ... */
2323 error = ep_poll(ep, events, maxevents, timeout);
2324
2325 error_fput:
2326 fdput(f);
2327 return error;
2328 }
2329
2330 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2331 int, maxevents, int, timeout)
2332 {
2333 return do_epoll_wait(epfd, events, maxevents, timeout);
2334 }
2335
2336 /*
2337 * Implement the event wait interface for the eventpoll file. It is the kernel
2338 * part of the user space epoll_pwait(2).
2339 */
2340 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2341 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2342 size_t, sigsetsize)
2343 {
2344 int error;
2345
2346 /*
2347 * If the caller wants a certain signal mask to be set during the wait,
2348 * we apply it here.
2349 */
2350 error = set_user_sigmask(sigmask, sigsetsize);
2351 if (error)
2352 return error;
2353
2354 error = do_epoll_wait(epfd, events, maxevents, timeout);
2355 restore_saved_sigmask_unless(error == -EINTR);
2356
2357 return error;
2358 }
2359
2360 #ifdef CONFIG_COMPAT
2361 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2362 struct epoll_event __user *, events,
2363 int, maxevents, int, timeout,
2364 const compat_sigset_t __user *, sigmask,
2365 compat_size_t, sigsetsize)
2366 {
2367 long err;
2368
2369 /*
2370 * If the caller wants a certain signal mask to be set during the wait,
2371 * we apply it here.
2372 */
2373 err = set_compat_user_sigmask(sigmask, sigsetsize);
2374 if (err)
2375 return err;
2376
2377 err = do_epoll_wait(epfd, events, maxevents, timeout);
2378 restore_saved_sigmask_unless(err == -EINTR);
2379
2380 return err;
2381 }
2382 #endif
2383
2384 static int __init eventpoll_init(void)
2385 {
2386 struct sysinfo si;
2387
2388 si_meminfo(&si);
2389 /*
2390 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2391 */
2392 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2393 EP_ITEM_COST;
2394 BUG_ON(max_user_watches < 0);
2395
2396 /*
2397 * Initialize the structure used to perform epoll file descriptor
2398 * inclusion loops checks.
2399 */
2400 ep_nested_calls_init(&poll_loop_ncalls);
2401
2402 /*
2403 * We can have many thousands of epitems, so prevent this from
2404 * using an extra cache line on 64-bit (and smaller) CPUs
2405 */
2406 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2407
2408 /* Allocates slab cache used to allocate "struct epitem" items */
2409 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2410 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2411
2412 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2413 pwq_cache = kmem_cache_create("eventpoll_pwq",
2414 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2415
2416 return 0;
2417 }
2418 fs_initcall(eventpoll_init);