]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/eventpoll.c
Merge tag 'xfs-4.18-merge-10' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-hirsute-kernel.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46
47 /*
48 * LOCKING:
49 * There are three level of locking required by epoll :
50 *
51 * 1) epmutex (mutex)
52 * 2) ep->mtx (mutex)
53 * 3) ep->lock (spinlock)
54 *
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * and ep_free().
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
77 * going to.
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
86 * the lockdep subkey.
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
93 */
94
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97
98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
99
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111
112 struct epoll_filefd {
113 struct file *file;
114 int fd;
115 } __packed;
116
117 /*
118 * Structure used to track possible nested calls, for too deep recursions
119 * and loop cycles.
120 */
121 struct nested_call_node {
122 struct list_head llink;
123 void *cookie;
124 void *ctx;
125 };
126
127 /*
128 * This structure is used as collector for nested calls, to check for
129 * maximum recursion dept and loop cycles.
130 */
131 struct nested_calls {
132 struct list_head tasks_call_list;
133 spinlock_t lock;
134 };
135
136 /*
137 * Each file descriptor added to the eventpoll interface will
138 * have an entry of this type linked to the "rbr" RB tree.
139 * Avoid increasing the size of this struct, there can be many thousands
140 * of these on a server and we do not want this to take another cache line.
141 */
142 struct epitem {
143 union {
144 /* RB tree node links this structure to the eventpoll RB tree */
145 struct rb_node rbn;
146 /* Used to free the struct epitem */
147 struct rcu_head rcu;
148 };
149
150 /* List header used to link this structure to the eventpoll ready list */
151 struct list_head rdllink;
152
153 /*
154 * Works together "struct eventpoll"->ovflist in keeping the
155 * single linked chain of items.
156 */
157 struct epitem *next;
158
159 /* The file descriptor information this item refers to */
160 struct epoll_filefd ffd;
161
162 /* Number of active wait queue attached to poll operations */
163 int nwait;
164
165 /* List containing poll wait queues */
166 struct list_head pwqlist;
167
168 /* The "container" of this item */
169 struct eventpoll *ep;
170
171 /* List header used to link this item to the "struct file" items list */
172 struct list_head fllink;
173
174 /* wakeup_source used when EPOLLWAKEUP is set */
175 struct wakeup_source __rcu *ws;
176
177 /* The structure that describe the interested events and the source fd */
178 struct epoll_event event;
179 };
180
181 /*
182 * This structure is stored inside the "private_data" member of the file
183 * structure and represents the main data structure for the eventpoll
184 * interface.
185 */
186 struct eventpoll {
187 /* Protect the access to this structure */
188 spinlock_t lock;
189
190 /*
191 * This mutex is used to ensure that files are not removed
192 * while epoll is using them. This is held during the event
193 * collection loop, the file cleanup path, the epoll file exit
194 * code and the ctl operations.
195 */
196 struct mutex mtx;
197
198 /* Wait queue used by sys_epoll_wait() */
199 wait_queue_head_t wq;
200
201 /* Wait queue used by file->poll() */
202 wait_queue_head_t poll_wait;
203
204 /* List of ready file descriptors */
205 struct list_head rdllist;
206
207 /* RB tree root used to store monitored fd structs */
208 struct rb_root_cached rbr;
209
210 /*
211 * This is a single linked list that chains all the "struct epitem" that
212 * happened while transferring ready events to userspace w/out
213 * holding ->lock.
214 */
215 struct epitem *ovflist;
216
217 /* wakeup_source used when ep_scan_ready_list is running */
218 struct wakeup_source *ws;
219
220 /* The user that created the eventpoll descriptor */
221 struct user_struct *user;
222
223 struct file *file;
224
225 /* used to optimize loop detection check */
226 int visited;
227 struct list_head visited_list_link;
228
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 /* used to track busy poll napi_id */
231 unsigned int napi_id;
232 #endif
233 };
234
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 /* List header used to link this structure to the "struct epitem" */
238 struct list_head llink;
239
240 /* The "base" pointer is set to the container "struct epitem" */
241 struct epitem *base;
242
243 /*
244 * Wait queue item that will be linked to the target file wait
245 * queue head.
246 */
247 wait_queue_entry_t wait;
248
249 /* The wait queue head that linked the "wait" wait queue item */
250 wait_queue_head_t *whead;
251 };
252
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 poll_table pt;
256 struct epitem *epi;
257 };
258
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 int maxevents;
262 struct epoll_event __user *events;
263 int res;
264 };
265
266 /*
267 * Configuration options available inside /proc/sys/fs/epoll/
268 */
269 /* Maximum number of epoll watched descriptors, per user */
270 static long max_user_watches __read_mostly;
271
272 /*
273 * This mutex is used to serialize ep_free() and eventpoll_release_file().
274 */
275 static DEFINE_MUTEX(epmutex);
276
277 /* Used to check for epoll file descriptor inclusion loops */
278 static struct nested_calls poll_loop_ncalls;
279
280 /* Slab cache used to allocate "struct epitem" */
281 static struct kmem_cache *epi_cache __read_mostly;
282
283 /* Slab cache used to allocate "struct eppoll_entry" */
284 static struct kmem_cache *pwq_cache __read_mostly;
285
286 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
287 static LIST_HEAD(visited_list);
288
289 /*
290 * List of files with newly added links, where we may need to limit the number
291 * of emanating paths. Protected by the epmutex.
292 */
293 static LIST_HEAD(tfile_check_list);
294
295 #ifdef CONFIG_SYSCTL
296
297 #include <linux/sysctl.h>
298
299 static long zero;
300 static long long_max = LONG_MAX;
301
302 struct ctl_table epoll_table[] = {
303 {
304 .procname = "max_user_watches",
305 .data = &max_user_watches,
306 .maxlen = sizeof(max_user_watches),
307 .mode = 0644,
308 .proc_handler = proc_doulongvec_minmax,
309 .extra1 = &zero,
310 .extra2 = &long_max,
311 },
312 { }
313 };
314 #endif /* CONFIG_SYSCTL */
315
316 static const struct file_operations eventpoll_fops;
317
318 static inline int is_file_epoll(struct file *f)
319 {
320 return f->f_op == &eventpoll_fops;
321 }
322
323 /* Setup the structure that is used as key for the RB tree */
324 static inline void ep_set_ffd(struct epoll_filefd *ffd,
325 struct file *file, int fd)
326 {
327 ffd->file = file;
328 ffd->fd = fd;
329 }
330
331 /* Compare RB tree keys */
332 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
333 struct epoll_filefd *p2)
334 {
335 return (p1->file > p2->file ? +1:
336 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
337 }
338
339 /* Tells us if the item is currently linked */
340 static inline int ep_is_linked(struct list_head *p)
341 {
342 return !list_empty(p);
343 }
344
345 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
346 {
347 return container_of(p, struct eppoll_entry, wait);
348 }
349
350 /* Get the "struct epitem" from a wait queue pointer */
351 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
352 {
353 return container_of(p, struct eppoll_entry, wait)->base;
354 }
355
356 /* Get the "struct epitem" from an epoll queue wrapper */
357 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
358 {
359 return container_of(p, struct ep_pqueue, pt)->epi;
360 }
361
362 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
363 static inline int ep_op_has_event(int op)
364 {
365 return op != EPOLL_CTL_DEL;
366 }
367
368 /* Initialize the poll safe wake up structure */
369 static void ep_nested_calls_init(struct nested_calls *ncalls)
370 {
371 INIT_LIST_HEAD(&ncalls->tasks_call_list);
372 spin_lock_init(&ncalls->lock);
373 }
374
375 /**
376 * ep_events_available - Checks if ready events might be available.
377 *
378 * @ep: Pointer to the eventpoll context.
379 *
380 * Returns: Returns a value different than zero if ready events are available,
381 * or zero otherwise.
382 */
383 static inline int ep_events_available(struct eventpoll *ep)
384 {
385 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
386 }
387
388 #ifdef CONFIG_NET_RX_BUSY_POLL
389 static bool ep_busy_loop_end(void *p, unsigned long start_time)
390 {
391 struct eventpoll *ep = p;
392
393 return ep_events_available(ep) || busy_loop_timeout(start_time);
394 }
395 #endif /* CONFIG_NET_RX_BUSY_POLL */
396
397 /*
398 * Busy poll if globally on and supporting sockets found && no events,
399 * busy loop will return if need_resched or ep_events_available.
400 *
401 * we must do our busy polling with irqs enabled
402 */
403 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
404 {
405 #ifdef CONFIG_NET_RX_BUSY_POLL
406 unsigned int napi_id = READ_ONCE(ep->napi_id);
407
408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
410 #endif
411 }
412
413 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
414 {
415 #ifdef CONFIG_NET_RX_BUSY_POLL
416 if (ep->napi_id)
417 ep->napi_id = 0;
418 #endif
419 }
420
421 /*
422 * Set epoll busy poll NAPI ID from sk.
423 */
424 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
425 {
426 #ifdef CONFIG_NET_RX_BUSY_POLL
427 struct eventpoll *ep;
428 unsigned int napi_id;
429 struct socket *sock;
430 struct sock *sk;
431 int err;
432
433 if (!net_busy_loop_on())
434 return;
435
436 sock = sock_from_file(epi->ffd.file, &err);
437 if (!sock)
438 return;
439
440 sk = sock->sk;
441 if (!sk)
442 return;
443
444 napi_id = READ_ONCE(sk->sk_napi_id);
445 ep = epi->ep;
446
447 /* Non-NAPI IDs can be rejected
448 * or
449 * Nothing to do if we already have this ID
450 */
451 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
452 return;
453
454 /* record NAPI ID for use in next busy poll */
455 ep->napi_id = napi_id;
456 #endif
457 }
458
459 /**
460 * ep_call_nested - Perform a bound (possibly) nested call, by checking
461 * that the recursion limit is not exceeded, and that
462 * the same nested call (by the meaning of same cookie) is
463 * no re-entered.
464 *
465 * @ncalls: Pointer to the nested_calls structure to be used for this call.
466 * @max_nests: Maximum number of allowed nesting calls.
467 * @nproc: Nested call core function pointer.
468 * @priv: Opaque data to be passed to the @nproc callback.
469 * @cookie: Cookie to be used to identify this nested call.
470 * @ctx: This instance context.
471 *
472 * Returns: Returns the code returned by the @nproc callback, or -1 if
473 * the maximum recursion limit has been exceeded.
474 */
475 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
476 int (*nproc)(void *, void *, int), void *priv,
477 void *cookie, void *ctx)
478 {
479 int error, call_nests = 0;
480 unsigned long flags;
481 struct list_head *lsthead = &ncalls->tasks_call_list;
482 struct nested_call_node *tncur;
483 struct nested_call_node tnode;
484
485 spin_lock_irqsave(&ncalls->lock, flags);
486
487 /*
488 * Try to see if the current task is already inside this wakeup call.
489 * We use a list here, since the population inside this set is always
490 * very much limited.
491 */
492 list_for_each_entry(tncur, lsthead, llink) {
493 if (tncur->ctx == ctx &&
494 (tncur->cookie == cookie || ++call_nests > max_nests)) {
495 /*
496 * Ops ... loop detected or maximum nest level reached.
497 * We abort this wake by breaking the cycle itself.
498 */
499 error = -1;
500 goto out_unlock;
501 }
502 }
503
504 /* Add the current task and cookie to the list */
505 tnode.ctx = ctx;
506 tnode.cookie = cookie;
507 list_add(&tnode.llink, lsthead);
508
509 spin_unlock_irqrestore(&ncalls->lock, flags);
510
511 /* Call the nested function */
512 error = (*nproc)(priv, cookie, call_nests);
513
514 /* Remove the current task from the list */
515 spin_lock_irqsave(&ncalls->lock, flags);
516 list_del(&tnode.llink);
517 out_unlock:
518 spin_unlock_irqrestore(&ncalls->lock, flags);
519
520 return error;
521 }
522
523 /*
524 * As described in commit 0ccf831cb lockdep: annotate epoll
525 * the use of wait queues used by epoll is done in a very controlled
526 * manner. Wake ups can nest inside each other, but are never done
527 * with the same locking. For example:
528 *
529 * dfd = socket(...);
530 * efd1 = epoll_create();
531 * efd2 = epoll_create();
532 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
533 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
534 *
535 * When a packet arrives to the device underneath "dfd", the net code will
536 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
537 * callback wakeup entry on that queue, and the wake_up() performed by the
538 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
539 * (efd1) notices that it may have some event ready, so it needs to wake up
540 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
541 * that ends up in another wake_up(), after having checked about the
542 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
543 * avoid stack blasting.
544 *
545 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
546 * this special case of epoll.
547 */
548 #ifdef CONFIG_DEBUG_LOCK_ALLOC
549
550 static struct nested_calls poll_safewake_ncalls;
551
552 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
553 {
554 unsigned long flags;
555 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
556
557 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
558 wake_up_locked_poll(wqueue, EPOLLIN);
559 spin_unlock_irqrestore(&wqueue->lock, flags);
560
561 return 0;
562 }
563
564 static void ep_poll_safewake(wait_queue_head_t *wq)
565 {
566 int this_cpu = get_cpu();
567
568 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
569 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
570
571 put_cpu();
572 }
573
574 #else
575
576 static void ep_poll_safewake(wait_queue_head_t *wq)
577 {
578 wake_up_poll(wq, EPOLLIN);
579 }
580
581 #endif
582
583 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
584 {
585 wait_queue_head_t *whead;
586
587 rcu_read_lock();
588 /*
589 * If it is cleared by POLLFREE, it should be rcu-safe.
590 * If we read NULL we need a barrier paired with
591 * smp_store_release() in ep_poll_callback(), otherwise
592 * we rely on whead->lock.
593 */
594 whead = smp_load_acquire(&pwq->whead);
595 if (whead)
596 remove_wait_queue(whead, &pwq->wait);
597 rcu_read_unlock();
598 }
599
600 /*
601 * This function unregisters poll callbacks from the associated file
602 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
603 * ep_free).
604 */
605 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
606 {
607 struct list_head *lsthead = &epi->pwqlist;
608 struct eppoll_entry *pwq;
609
610 while (!list_empty(lsthead)) {
611 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
612
613 list_del(&pwq->llink);
614 ep_remove_wait_queue(pwq);
615 kmem_cache_free(pwq_cache, pwq);
616 }
617 }
618
619 /* call only when ep->mtx is held */
620 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
621 {
622 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
623 }
624
625 /* call only when ep->mtx is held */
626 static inline void ep_pm_stay_awake(struct epitem *epi)
627 {
628 struct wakeup_source *ws = ep_wakeup_source(epi);
629
630 if (ws)
631 __pm_stay_awake(ws);
632 }
633
634 static inline bool ep_has_wakeup_source(struct epitem *epi)
635 {
636 return rcu_access_pointer(epi->ws) ? true : false;
637 }
638
639 /* call when ep->mtx cannot be held (ep_poll_callback) */
640 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
641 {
642 struct wakeup_source *ws;
643
644 rcu_read_lock();
645 ws = rcu_dereference(epi->ws);
646 if (ws)
647 __pm_stay_awake(ws);
648 rcu_read_unlock();
649 }
650
651 /**
652 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
653 * the scan code, to call f_op->poll(). Also allows for
654 * O(NumReady) performance.
655 *
656 * @ep: Pointer to the epoll private data structure.
657 * @sproc: Pointer to the scan callback.
658 * @priv: Private opaque data passed to the @sproc callback.
659 * @depth: The current depth of recursive f_op->poll calls.
660 * @ep_locked: caller already holds ep->mtx
661 *
662 * Returns: The same integer error code returned by the @sproc callback.
663 */
664 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
665 __poll_t (*sproc)(struct eventpoll *,
666 struct list_head *, void *),
667 void *priv, int depth, bool ep_locked)
668 {
669 __poll_t res;
670 int pwake = 0;
671 unsigned long flags;
672 struct epitem *epi, *nepi;
673 LIST_HEAD(txlist);
674
675 /*
676 * We need to lock this because we could be hit by
677 * eventpoll_release_file() and epoll_ctl().
678 */
679
680 if (!ep_locked)
681 mutex_lock_nested(&ep->mtx, depth);
682
683 /*
684 * Steal the ready list, and re-init the original one to the
685 * empty list. Also, set ep->ovflist to NULL so that events
686 * happening while looping w/out locks, are not lost. We cannot
687 * have the poll callback to queue directly on ep->rdllist,
688 * because we want the "sproc" callback to be able to do it
689 * in a lockless way.
690 */
691 spin_lock_irqsave(&ep->lock, flags);
692 list_splice_init(&ep->rdllist, &txlist);
693 ep->ovflist = NULL;
694 spin_unlock_irqrestore(&ep->lock, flags);
695
696 /*
697 * Now call the callback function.
698 */
699 res = (*sproc)(ep, &txlist, priv);
700
701 spin_lock_irqsave(&ep->lock, flags);
702 /*
703 * During the time we spent inside the "sproc" callback, some
704 * other events might have been queued by the poll callback.
705 * We re-insert them inside the main ready-list here.
706 */
707 for (nepi = ep->ovflist; (epi = nepi) != NULL;
708 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
709 /*
710 * We need to check if the item is already in the list.
711 * During the "sproc" callback execution time, items are
712 * queued into ->ovflist but the "txlist" might already
713 * contain them, and the list_splice() below takes care of them.
714 */
715 if (!ep_is_linked(&epi->rdllink)) {
716 list_add_tail(&epi->rdllink, &ep->rdllist);
717 ep_pm_stay_awake(epi);
718 }
719 }
720 /*
721 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
722 * releasing the lock, events will be queued in the normal way inside
723 * ep->rdllist.
724 */
725 ep->ovflist = EP_UNACTIVE_PTR;
726
727 /*
728 * Quickly re-inject items left on "txlist".
729 */
730 list_splice(&txlist, &ep->rdllist);
731 __pm_relax(ep->ws);
732
733 if (!list_empty(&ep->rdllist)) {
734 /*
735 * Wake up (if active) both the eventpoll wait list and
736 * the ->poll() wait list (delayed after we release the lock).
737 */
738 if (waitqueue_active(&ep->wq))
739 wake_up_locked(&ep->wq);
740 if (waitqueue_active(&ep->poll_wait))
741 pwake++;
742 }
743 spin_unlock_irqrestore(&ep->lock, flags);
744
745 if (!ep_locked)
746 mutex_unlock(&ep->mtx);
747
748 /* We have to call this outside the lock */
749 if (pwake)
750 ep_poll_safewake(&ep->poll_wait);
751
752 return res;
753 }
754
755 static void epi_rcu_free(struct rcu_head *head)
756 {
757 struct epitem *epi = container_of(head, struct epitem, rcu);
758 kmem_cache_free(epi_cache, epi);
759 }
760
761 /*
762 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
763 * all the associated resources. Must be called with "mtx" held.
764 */
765 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
766 {
767 unsigned long flags;
768 struct file *file = epi->ffd.file;
769
770 /*
771 * Removes poll wait queue hooks. We _have_ to do this without holding
772 * the "ep->lock" otherwise a deadlock might occur. This because of the
773 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
774 * queue head lock when unregistering the wait queue. The wakeup callback
775 * will run by holding the wait queue head lock and will call our callback
776 * that will try to get "ep->lock".
777 */
778 ep_unregister_pollwait(ep, epi);
779
780 /* Remove the current item from the list of epoll hooks */
781 spin_lock(&file->f_lock);
782 list_del_rcu(&epi->fllink);
783 spin_unlock(&file->f_lock);
784
785 rb_erase_cached(&epi->rbn, &ep->rbr);
786
787 spin_lock_irqsave(&ep->lock, flags);
788 if (ep_is_linked(&epi->rdllink))
789 list_del_init(&epi->rdllink);
790 spin_unlock_irqrestore(&ep->lock, flags);
791
792 wakeup_source_unregister(ep_wakeup_source(epi));
793 /*
794 * At this point it is safe to free the eventpoll item. Use the union
795 * field epi->rcu, since we are trying to minimize the size of
796 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
797 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
798 * use of the rbn field.
799 */
800 call_rcu(&epi->rcu, epi_rcu_free);
801
802 atomic_long_dec(&ep->user->epoll_watches);
803
804 return 0;
805 }
806
807 static void ep_free(struct eventpoll *ep)
808 {
809 struct rb_node *rbp;
810 struct epitem *epi;
811
812 /* We need to release all tasks waiting for these file */
813 if (waitqueue_active(&ep->poll_wait))
814 ep_poll_safewake(&ep->poll_wait);
815
816 /*
817 * We need to lock this because we could be hit by
818 * eventpoll_release_file() while we're freeing the "struct eventpoll".
819 * We do not need to hold "ep->mtx" here because the epoll file
820 * is on the way to be removed and no one has references to it
821 * anymore. The only hit might come from eventpoll_release_file() but
822 * holding "epmutex" is sufficient here.
823 */
824 mutex_lock(&epmutex);
825
826 /*
827 * Walks through the whole tree by unregistering poll callbacks.
828 */
829 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
830 epi = rb_entry(rbp, struct epitem, rbn);
831
832 ep_unregister_pollwait(ep, epi);
833 cond_resched();
834 }
835
836 /*
837 * Walks through the whole tree by freeing each "struct epitem". At this
838 * point we are sure no poll callbacks will be lingering around, and also by
839 * holding "epmutex" we can be sure that no file cleanup code will hit
840 * us during this operation. So we can avoid the lock on "ep->lock".
841 * We do not need to lock ep->mtx, either, we only do it to prevent
842 * a lockdep warning.
843 */
844 mutex_lock(&ep->mtx);
845 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
846 epi = rb_entry(rbp, struct epitem, rbn);
847 ep_remove(ep, epi);
848 cond_resched();
849 }
850 mutex_unlock(&ep->mtx);
851
852 mutex_unlock(&epmutex);
853 mutex_destroy(&ep->mtx);
854 free_uid(ep->user);
855 wakeup_source_unregister(ep->ws);
856 kfree(ep);
857 }
858
859 static int ep_eventpoll_release(struct inode *inode, struct file *file)
860 {
861 struct eventpoll *ep = file->private_data;
862
863 if (ep)
864 ep_free(ep);
865
866 return 0;
867 }
868
869 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
870 void *priv);
871 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
872 poll_table *pt);
873
874 /*
875 * Differs from ep_eventpoll_poll() in that internal callers already have
876 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
877 * is correctly annotated.
878 */
879 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
880 int depth)
881 {
882 struct eventpoll *ep;
883 bool locked;
884
885 pt->_key = epi->event.events;
886 if (!is_file_epoll(epi->ffd.file))
887 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
888
889 ep = epi->ffd.file->private_data;
890 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
891 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
892
893 return ep_scan_ready_list(epi->ffd.file->private_data,
894 ep_read_events_proc, &depth, depth,
895 locked) & epi->event.events;
896 }
897
898 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
899 void *priv)
900 {
901 struct epitem *epi, *tmp;
902 poll_table pt;
903 int depth = *(int *)priv;
904
905 init_poll_funcptr(&pt, NULL);
906 depth++;
907
908 list_for_each_entry_safe(epi, tmp, head, rdllink) {
909 if (ep_item_poll(epi, &pt, depth)) {
910 return EPOLLIN | EPOLLRDNORM;
911 } else {
912 /*
913 * Item has been dropped into the ready list by the poll
914 * callback, but it's not actually ready, as far as
915 * caller requested events goes. We can remove it here.
916 */
917 __pm_relax(ep_wakeup_source(epi));
918 list_del_init(&epi->rdllink);
919 }
920 }
921
922 return 0;
923 }
924
925 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
926 {
927 struct eventpoll *ep = file->private_data;
928 int depth = 0;
929
930 /* Insert inside our poll wait queue */
931 poll_wait(file, &ep->poll_wait, wait);
932
933 /*
934 * Proceed to find out if wanted events are really available inside
935 * the ready list.
936 */
937 return ep_scan_ready_list(ep, ep_read_events_proc,
938 &depth, depth, false);
939 }
940
941 #ifdef CONFIG_PROC_FS
942 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
943 {
944 struct eventpoll *ep = f->private_data;
945 struct rb_node *rbp;
946
947 mutex_lock(&ep->mtx);
948 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
949 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
950 struct inode *inode = file_inode(epi->ffd.file);
951
952 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
953 " pos:%lli ino:%lx sdev:%x\n",
954 epi->ffd.fd, epi->event.events,
955 (long long)epi->event.data,
956 (long long)epi->ffd.file->f_pos,
957 inode->i_ino, inode->i_sb->s_dev);
958 if (seq_has_overflowed(m))
959 break;
960 }
961 mutex_unlock(&ep->mtx);
962 }
963 #endif
964
965 /* File callbacks that implement the eventpoll file behaviour */
966 static const struct file_operations eventpoll_fops = {
967 #ifdef CONFIG_PROC_FS
968 .show_fdinfo = ep_show_fdinfo,
969 #endif
970 .release = ep_eventpoll_release,
971 .poll = ep_eventpoll_poll,
972 .llseek = noop_llseek,
973 };
974
975 /*
976 * This is called from eventpoll_release() to unlink files from the eventpoll
977 * interface. We need to have this facility to cleanup correctly files that are
978 * closed without being removed from the eventpoll interface.
979 */
980 void eventpoll_release_file(struct file *file)
981 {
982 struct eventpoll *ep;
983 struct epitem *epi, *next;
984
985 /*
986 * We don't want to get "file->f_lock" because it is not
987 * necessary. It is not necessary because we're in the "struct file"
988 * cleanup path, and this means that no one is using this file anymore.
989 * So, for example, epoll_ctl() cannot hit here since if we reach this
990 * point, the file counter already went to zero and fget() would fail.
991 * The only hit might come from ep_free() but by holding the mutex
992 * will correctly serialize the operation. We do need to acquire
993 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
994 * from anywhere but ep_free().
995 *
996 * Besides, ep_remove() acquires the lock, so we can't hold it here.
997 */
998 mutex_lock(&epmutex);
999 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1000 ep = epi->ep;
1001 mutex_lock_nested(&ep->mtx, 0);
1002 ep_remove(ep, epi);
1003 mutex_unlock(&ep->mtx);
1004 }
1005 mutex_unlock(&epmutex);
1006 }
1007
1008 static int ep_alloc(struct eventpoll **pep)
1009 {
1010 int error;
1011 struct user_struct *user;
1012 struct eventpoll *ep;
1013
1014 user = get_current_user();
1015 error = -ENOMEM;
1016 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1017 if (unlikely(!ep))
1018 goto free_uid;
1019
1020 spin_lock_init(&ep->lock);
1021 mutex_init(&ep->mtx);
1022 init_waitqueue_head(&ep->wq);
1023 init_waitqueue_head(&ep->poll_wait);
1024 INIT_LIST_HEAD(&ep->rdllist);
1025 ep->rbr = RB_ROOT_CACHED;
1026 ep->ovflist = EP_UNACTIVE_PTR;
1027 ep->user = user;
1028
1029 *pep = ep;
1030
1031 return 0;
1032
1033 free_uid:
1034 free_uid(user);
1035 return error;
1036 }
1037
1038 /*
1039 * Search the file inside the eventpoll tree. The RB tree operations
1040 * are protected by the "mtx" mutex, and ep_find() must be called with
1041 * "mtx" held.
1042 */
1043 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1044 {
1045 int kcmp;
1046 struct rb_node *rbp;
1047 struct epitem *epi, *epir = NULL;
1048 struct epoll_filefd ffd;
1049
1050 ep_set_ffd(&ffd, file, fd);
1051 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1052 epi = rb_entry(rbp, struct epitem, rbn);
1053 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1054 if (kcmp > 0)
1055 rbp = rbp->rb_right;
1056 else if (kcmp < 0)
1057 rbp = rbp->rb_left;
1058 else {
1059 epir = epi;
1060 break;
1061 }
1062 }
1063
1064 return epir;
1065 }
1066
1067 #ifdef CONFIG_CHECKPOINT_RESTORE
1068 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1069 {
1070 struct rb_node *rbp;
1071 struct epitem *epi;
1072
1073 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1074 epi = rb_entry(rbp, struct epitem, rbn);
1075 if (epi->ffd.fd == tfd) {
1076 if (toff == 0)
1077 return epi;
1078 else
1079 toff--;
1080 }
1081 cond_resched();
1082 }
1083
1084 return NULL;
1085 }
1086
1087 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1088 unsigned long toff)
1089 {
1090 struct file *file_raw;
1091 struct eventpoll *ep;
1092 struct epitem *epi;
1093
1094 if (!is_file_epoll(file))
1095 return ERR_PTR(-EINVAL);
1096
1097 ep = file->private_data;
1098
1099 mutex_lock(&ep->mtx);
1100 epi = ep_find_tfd(ep, tfd, toff);
1101 if (epi)
1102 file_raw = epi->ffd.file;
1103 else
1104 file_raw = ERR_PTR(-ENOENT);
1105 mutex_unlock(&ep->mtx);
1106
1107 return file_raw;
1108 }
1109 #endif /* CONFIG_CHECKPOINT_RESTORE */
1110
1111 /*
1112 * This is the callback that is passed to the wait queue wakeup
1113 * mechanism. It is called by the stored file descriptors when they
1114 * have events to report.
1115 */
1116 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1117 {
1118 int pwake = 0;
1119 unsigned long flags;
1120 struct epitem *epi = ep_item_from_wait(wait);
1121 struct eventpoll *ep = epi->ep;
1122 __poll_t pollflags = key_to_poll(key);
1123 int ewake = 0;
1124
1125 spin_lock_irqsave(&ep->lock, flags);
1126
1127 ep_set_busy_poll_napi_id(epi);
1128
1129 /*
1130 * If the event mask does not contain any poll(2) event, we consider the
1131 * descriptor to be disabled. This condition is likely the effect of the
1132 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1133 * until the next EPOLL_CTL_MOD will be issued.
1134 */
1135 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1136 goto out_unlock;
1137
1138 /*
1139 * Check the events coming with the callback. At this stage, not
1140 * every device reports the events in the "key" parameter of the
1141 * callback. We need to be able to handle both cases here, hence the
1142 * test for "key" != NULL before the event match test.
1143 */
1144 if (pollflags && !(pollflags & epi->event.events))
1145 goto out_unlock;
1146
1147 /*
1148 * If we are transferring events to userspace, we can hold no locks
1149 * (because we're accessing user memory, and because of linux f_op->poll()
1150 * semantics). All the events that happen during that period of time are
1151 * chained in ep->ovflist and requeued later on.
1152 */
1153 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1154 if (epi->next == EP_UNACTIVE_PTR) {
1155 epi->next = ep->ovflist;
1156 ep->ovflist = epi;
1157 if (epi->ws) {
1158 /*
1159 * Activate ep->ws since epi->ws may get
1160 * deactivated at any time.
1161 */
1162 __pm_stay_awake(ep->ws);
1163 }
1164
1165 }
1166 goto out_unlock;
1167 }
1168
1169 /* If this file is already in the ready list we exit soon */
1170 if (!ep_is_linked(&epi->rdllink)) {
1171 list_add_tail(&epi->rdllink, &ep->rdllist);
1172 ep_pm_stay_awake_rcu(epi);
1173 }
1174
1175 /*
1176 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1177 * wait list.
1178 */
1179 if (waitqueue_active(&ep->wq)) {
1180 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1181 !(pollflags & POLLFREE)) {
1182 switch (pollflags & EPOLLINOUT_BITS) {
1183 case EPOLLIN:
1184 if (epi->event.events & EPOLLIN)
1185 ewake = 1;
1186 break;
1187 case EPOLLOUT:
1188 if (epi->event.events & EPOLLOUT)
1189 ewake = 1;
1190 break;
1191 case 0:
1192 ewake = 1;
1193 break;
1194 }
1195 }
1196 wake_up_locked(&ep->wq);
1197 }
1198 if (waitqueue_active(&ep->poll_wait))
1199 pwake++;
1200
1201 out_unlock:
1202 spin_unlock_irqrestore(&ep->lock, flags);
1203
1204 /* We have to call this outside the lock */
1205 if (pwake)
1206 ep_poll_safewake(&ep->poll_wait);
1207
1208 if (!(epi->event.events & EPOLLEXCLUSIVE))
1209 ewake = 1;
1210
1211 if (pollflags & POLLFREE) {
1212 /*
1213 * If we race with ep_remove_wait_queue() it can miss
1214 * ->whead = NULL and do another remove_wait_queue() after
1215 * us, so we can't use __remove_wait_queue().
1216 */
1217 list_del_init(&wait->entry);
1218 /*
1219 * ->whead != NULL protects us from the race with ep_free()
1220 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1221 * held by the caller. Once we nullify it, nothing protects
1222 * ep/epi or even wait.
1223 */
1224 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1225 }
1226
1227 return ewake;
1228 }
1229
1230 /*
1231 * This is the callback that is used to add our wait queue to the
1232 * target file wakeup lists.
1233 */
1234 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1235 poll_table *pt)
1236 {
1237 struct epitem *epi = ep_item_from_epqueue(pt);
1238 struct eppoll_entry *pwq;
1239
1240 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1241 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1242 pwq->whead = whead;
1243 pwq->base = epi;
1244 if (epi->event.events & EPOLLEXCLUSIVE)
1245 add_wait_queue_exclusive(whead, &pwq->wait);
1246 else
1247 add_wait_queue(whead, &pwq->wait);
1248 list_add_tail(&pwq->llink, &epi->pwqlist);
1249 epi->nwait++;
1250 } else {
1251 /* We have to signal that an error occurred */
1252 epi->nwait = -1;
1253 }
1254 }
1255
1256 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1257 {
1258 int kcmp;
1259 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1260 struct epitem *epic;
1261 bool leftmost = true;
1262
1263 while (*p) {
1264 parent = *p;
1265 epic = rb_entry(parent, struct epitem, rbn);
1266 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1267 if (kcmp > 0) {
1268 p = &parent->rb_right;
1269 leftmost = false;
1270 } else
1271 p = &parent->rb_left;
1272 }
1273 rb_link_node(&epi->rbn, parent, p);
1274 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1275 }
1276
1277
1278
1279 #define PATH_ARR_SIZE 5
1280 /*
1281 * These are the number paths of length 1 to 5, that we are allowing to emanate
1282 * from a single file of interest. For example, we allow 1000 paths of length
1283 * 1, to emanate from each file of interest. This essentially represents the
1284 * potential wakeup paths, which need to be limited in order to avoid massive
1285 * uncontrolled wakeup storms. The common use case should be a single ep which
1286 * is connected to n file sources. In this case each file source has 1 path
1287 * of length 1. Thus, the numbers below should be more than sufficient. These
1288 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1289 * and delete can't add additional paths. Protected by the epmutex.
1290 */
1291 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1292 static int path_count[PATH_ARR_SIZE];
1293
1294 static int path_count_inc(int nests)
1295 {
1296 /* Allow an arbitrary number of depth 1 paths */
1297 if (nests == 0)
1298 return 0;
1299
1300 if (++path_count[nests] > path_limits[nests])
1301 return -1;
1302 return 0;
1303 }
1304
1305 static void path_count_init(void)
1306 {
1307 int i;
1308
1309 for (i = 0; i < PATH_ARR_SIZE; i++)
1310 path_count[i] = 0;
1311 }
1312
1313 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1314 {
1315 int error = 0;
1316 struct file *file = priv;
1317 struct file *child_file;
1318 struct epitem *epi;
1319
1320 /* CTL_DEL can remove links here, but that can't increase our count */
1321 rcu_read_lock();
1322 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1323 child_file = epi->ep->file;
1324 if (is_file_epoll(child_file)) {
1325 if (list_empty(&child_file->f_ep_links)) {
1326 if (path_count_inc(call_nests)) {
1327 error = -1;
1328 break;
1329 }
1330 } else {
1331 error = ep_call_nested(&poll_loop_ncalls,
1332 EP_MAX_NESTS,
1333 reverse_path_check_proc,
1334 child_file, child_file,
1335 current);
1336 }
1337 if (error != 0)
1338 break;
1339 } else {
1340 printk(KERN_ERR "reverse_path_check_proc: "
1341 "file is not an ep!\n");
1342 }
1343 }
1344 rcu_read_unlock();
1345 return error;
1346 }
1347
1348 /**
1349 * reverse_path_check - The tfile_check_list is list of file *, which have
1350 * links that are proposed to be newly added. We need to
1351 * make sure that those added links don't add too many
1352 * paths such that we will spend all our time waking up
1353 * eventpoll objects.
1354 *
1355 * Returns: Returns zero if the proposed links don't create too many paths,
1356 * -1 otherwise.
1357 */
1358 static int reverse_path_check(void)
1359 {
1360 int error = 0;
1361 struct file *current_file;
1362
1363 /* let's call this for all tfiles */
1364 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1365 path_count_init();
1366 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1367 reverse_path_check_proc, current_file,
1368 current_file, current);
1369 if (error)
1370 break;
1371 }
1372 return error;
1373 }
1374
1375 static int ep_create_wakeup_source(struct epitem *epi)
1376 {
1377 const char *name;
1378 struct wakeup_source *ws;
1379
1380 if (!epi->ep->ws) {
1381 epi->ep->ws = wakeup_source_register("eventpoll");
1382 if (!epi->ep->ws)
1383 return -ENOMEM;
1384 }
1385
1386 name = epi->ffd.file->f_path.dentry->d_name.name;
1387 ws = wakeup_source_register(name);
1388
1389 if (!ws)
1390 return -ENOMEM;
1391 rcu_assign_pointer(epi->ws, ws);
1392
1393 return 0;
1394 }
1395
1396 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1397 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1398 {
1399 struct wakeup_source *ws = ep_wakeup_source(epi);
1400
1401 RCU_INIT_POINTER(epi->ws, NULL);
1402
1403 /*
1404 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1405 * used internally by wakeup_source_remove, too (called by
1406 * wakeup_source_unregister), so we cannot use call_rcu
1407 */
1408 synchronize_rcu();
1409 wakeup_source_unregister(ws);
1410 }
1411
1412 /*
1413 * Must be called with "mtx" held.
1414 */
1415 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1416 struct file *tfile, int fd, int full_check)
1417 {
1418 int error, pwake = 0;
1419 __poll_t revents;
1420 unsigned long flags;
1421 long user_watches;
1422 struct epitem *epi;
1423 struct ep_pqueue epq;
1424
1425 user_watches = atomic_long_read(&ep->user->epoll_watches);
1426 if (unlikely(user_watches >= max_user_watches))
1427 return -ENOSPC;
1428 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1429 return -ENOMEM;
1430
1431 /* Item initialization follow here ... */
1432 INIT_LIST_HEAD(&epi->rdllink);
1433 INIT_LIST_HEAD(&epi->fllink);
1434 INIT_LIST_HEAD(&epi->pwqlist);
1435 epi->ep = ep;
1436 ep_set_ffd(&epi->ffd, tfile, fd);
1437 epi->event = *event;
1438 epi->nwait = 0;
1439 epi->next = EP_UNACTIVE_PTR;
1440 if (epi->event.events & EPOLLWAKEUP) {
1441 error = ep_create_wakeup_source(epi);
1442 if (error)
1443 goto error_create_wakeup_source;
1444 } else {
1445 RCU_INIT_POINTER(epi->ws, NULL);
1446 }
1447
1448 /* Initialize the poll table using the queue callback */
1449 epq.epi = epi;
1450 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1451
1452 /*
1453 * Attach the item to the poll hooks and get current event bits.
1454 * We can safely use the file* here because its usage count has
1455 * been increased by the caller of this function. Note that after
1456 * this operation completes, the poll callback can start hitting
1457 * the new item.
1458 */
1459 revents = ep_item_poll(epi, &epq.pt, 1);
1460
1461 /*
1462 * We have to check if something went wrong during the poll wait queue
1463 * install process. Namely an allocation for a wait queue failed due
1464 * high memory pressure.
1465 */
1466 error = -ENOMEM;
1467 if (epi->nwait < 0)
1468 goto error_unregister;
1469
1470 /* Add the current item to the list of active epoll hook for this file */
1471 spin_lock(&tfile->f_lock);
1472 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1473 spin_unlock(&tfile->f_lock);
1474
1475 /*
1476 * Add the current item to the RB tree. All RB tree operations are
1477 * protected by "mtx", and ep_insert() is called with "mtx" held.
1478 */
1479 ep_rbtree_insert(ep, epi);
1480
1481 /* now check if we've created too many backpaths */
1482 error = -EINVAL;
1483 if (full_check && reverse_path_check())
1484 goto error_remove_epi;
1485
1486 /* We have to drop the new item inside our item list to keep track of it */
1487 spin_lock_irqsave(&ep->lock, flags);
1488
1489 /* record NAPI ID of new item if present */
1490 ep_set_busy_poll_napi_id(epi);
1491
1492 /* If the file is already "ready" we drop it inside the ready list */
1493 if (revents && !ep_is_linked(&epi->rdllink)) {
1494 list_add_tail(&epi->rdllink, &ep->rdllist);
1495 ep_pm_stay_awake(epi);
1496
1497 /* Notify waiting tasks that events are available */
1498 if (waitqueue_active(&ep->wq))
1499 wake_up_locked(&ep->wq);
1500 if (waitqueue_active(&ep->poll_wait))
1501 pwake++;
1502 }
1503
1504 spin_unlock_irqrestore(&ep->lock, flags);
1505
1506 atomic_long_inc(&ep->user->epoll_watches);
1507
1508 /* We have to call this outside the lock */
1509 if (pwake)
1510 ep_poll_safewake(&ep->poll_wait);
1511
1512 return 0;
1513
1514 error_remove_epi:
1515 spin_lock(&tfile->f_lock);
1516 list_del_rcu(&epi->fllink);
1517 spin_unlock(&tfile->f_lock);
1518
1519 rb_erase_cached(&epi->rbn, &ep->rbr);
1520
1521 error_unregister:
1522 ep_unregister_pollwait(ep, epi);
1523
1524 /*
1525 * We need to do this because an event could have been arrived on some
1526 * allocated wait queue. Note that we don't care about the ep->ovflist
1527 * list, since that is used/cleaned only inside a section bound by "mtx".
1528 * And ep_insert() is called with "mtx" held.
1529 */
1530 spin_lock_irqsave(&ep->lock, flags);
1531 if (ep_is_linked(&epi->rdllink))
1532 list_del_init(&epi->rdllink);
1533 spin_unlock_irqrestore(&ep->lock, flags);
1534
1535 wakeup_source_unregister(ep_wakeup_source(epi));
1536
1537 error_create_wakeup_source:
1538 kmem_cache_free(epi_cache, epi);
1539
1540 return error;
1541 }
1542
1543 /*
1544 * Modify the interest event mask by dropping an event if the new mask
1545 * has a match in the current file status. Must be called with "mtx" held.
1546 */
1547 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1548 const struct epoll_event *event)
1549 {
1550 int pwake = 0;
1551 poll_table pt;
1552
1553 init_poll_funcptr(&pt, NULL);
1554
1555 /*
1556 * Set the new event interest mask before calling f_op->poll();
1557 * otherwise we might miss an event that happens between the
1558 * f_op->poll() call and the new event set registering.
1559 */
1560 epi->event.events = event->events; /* need barrier below */
1561 epi->event.data = event->data; /* protected by mtx */
1562 if (epi->event.events & EPOLLWAKEUP) {
1563 if (!ep_has_wakeup_source(epi))
1564 ep_create_wakeup_source(epi);
1565 } else if (ep_has_wakeup_source(epi)) {
1566 ep_destroy_wakeup_source(epi);
1567 }
1568
1569 /*
1570 * The following barrier has two effects:
1571 *
1572 * 1) Flush epi changes above to other CPUs. This ensures
1573 * we do not miss events from ep_poll_callback if an
1574 * event occurs immediately after we call f_op->poll().
1575 * We need this because we did not take ep->lock while
1576 * changing epi above (but ep_poll_callback does take
1577 * ep->lock).
1578 *
1579 * 2) We also need to ensure we do not miss _past_ events
1580 * when calling f_op->poll(). This barrier also
1581 * pairs with the barrier in wq_has_sleeper (see
1582 * comments for wq_has_sleeper).
1583 *
1584 * This barrier will now guarantee ep_poll_callback or f_op->poll
1585 * (or both) will notice the readiness of an item.
1586 */
1587 smp_mb();
1588
1589 /*
1590 * Get current event bits. We can safely use the file* here because
1591 * its usage count has been increased by the caller of this function.
1592 * If the item is "hot" and it is not registered inside the ready
1593 * list, push it inside.
1594 */
1595 if (ep_item_poll(epi, &pt, 1)) {
1596 spin_lock_irq(&ep->lock);
1597 if (!ep_is_linked(&epi->rdllink)) {
1598 list_add_tail(&epi->rdllink, &ep->rdllist);
1599 ep_pm_stay_awake(epi);
1600
1601 /* Notify waiting tasks that events are available */
1602 if (waitqueue_active(&ep->wq))
1603 wake_up_locked(&ep->wq);
1604 if (waitqueue_active(&ep->poll_wait))
1605 pwake++;
1606 }
1607 spin_unlock_irq(&ep->lock);
1608 }
1609
1610 /* We have to call this outside the lock */
1611 if (pwake)
1612 ep_poll_safewake(&ep->poll_wait);
1613
1614 return 0;
1615 }
1616
1617 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1618 void *priv)
1619 {
1620 struct ep_send_events_data *esed = priv;
1621 __poll_t revents;
1622 struct epitem *epi;
1623 struct epoll_event __user *uevent;
1624 struct wakeup_source *ws;
1625 poll_table pt;
1626
1627 init_poll_funcptr(&pt, NULL);
1628
1629 /*
1630 * We can loop without lock because we are passed a task private list.
1631 * Items cannot vanish during the loop because ep_scan_ready_list() is
1632 * holding "mtx" during this call.
1633 */
1634 for (esed->res = 0, uevent = esed->events;
1635 !list_empty(head) && esed->res < esed->maxevents;) {
1636 epi = list_first_entry(head, struct epitem, rdllink);
1637
1638 /*
1639 * Activate ep->ws before deactivating epi->ws to prevent
1640 * triggering auto-suspend here (in case we reactive epi->ws
1641 * below).
1642 *
1643 * This could be rearranged to delay the deactivation of epi->ws
1644 * instead, but then epi->ws would temporarily be out of sync
1645 * with ep_is_linked().
1646 */
1647 ws = ep_wakeup_source(epi);
1648 if (ws) {
1649 if (ws->active)
1650 __pm_stay_awake(ep->ws);
1651 __pm_relax(ws);
1652 }
1653
1654 list_del_init(&epi->rdllink);
1655
1656 revents = ep_item_poll(epi, &pt, 1);
1657
1658 /*
1659 * If the event mask intersect the caller-requested one,
1660 * deliver the event to userspace. Again, ep_scan_ready_list()
1661 * is holding "mtx", so no operations coming from userspace
1662 * can change the item.
1663 */
1664 if (revents) {
1665 if (__put_user(revents, &uevent->events) ||
1666 __put_user(epi->event.data, &uevent->data)) {
1667 list_add(&epi->rdllink, head);
1668 ep_pm_stay_awake(epi);
1669 if (!esed->res)
1670 esed->res = -EFAULT;
1671 return 0;
1672 }
1673 esed->res++;
1674 uevent++;
1675 if (epi->event.events & EPOLLONESHOT)
1676 epi->event.events &= EP_PRIVATE_BITS;
1677 else if (!(epi->event.events & EPOLLET)) {
1678 /*
1679 * If this file has been added with Level
1680 * Trigger mode, we need to insert back inside
1681 * the ready list, so that the next call to
1682 * epoll_wait() will check again the events
1683 * availability. At this point, no one can insert
1684 * into ep->rdllist besides us. The epoll_ctl()
1685 * callers are locked out by
1686 * ep_scan_ready_list() holding "mtx" and the
1687 * poll callback will queue them in ep->ovflist.
1688 */
1689 list_add_tail(&epi->rdllink, &ep->rdllist);
1690 ep_pm_stay_awake(epi);
1691 }
1692 }
1693 }
1694
1695 return 0;
1696 }
1697
1698 static int ep_send_events(struct eventpoll *ep,
1699 struct epoll_event __user *events, int maxevents)
1700 {
1701 struct ep_send_events_data esed;
1702
1703 esed.maxevents = maxevents;
1704 esed.events = events;
1705
1706 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1707 return esed.res;
1708 }
1709
1710 static inline struct timespec64 ep_set_mstimeout(long ms)
1711 {
1712 struct timespec64 now, ts = {
1713 .tv_sec = ms / MSEC_PER_SEC,
1714 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1715 };
1716
1717 ktime_get_ts64(&now);
1718 return timespec64_add_safe(now, ts);
1719 }
1720
1721 /**
1722 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1723 * event buffer.
1724 *
1725 * @ep: Pointer to the eventpoll context.
1726 * @events: Pointer to the userspace buffer where the ready events should be
1727 * stored.
1728 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1729 * @timeout: Maximum timeout for the ready events fetch operation, in
1730 * milliseconds. If the @timeout is zero, the function will not block,
1731 * while if the @timeout is less than zero, the function will block
1732 * until at least one event has been retrieved (or an error
1733 * occurred).
1734 *
1735 * Returns: Returns the number of ready events which have been fetched, or an
1736 * error code, in case of error.
1737 */
1738 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1739 int maxevents, long timeout)
1740 {
1741 int res = 0, eavail, timed_out = 0;
1742 unsigned long flags;
1743 u64 slack = 0;
1744 wait_queue_entry_t wait;
1745 ktime_t expires, *to = NULL;
1746
1747 if (timeout > 0) {
1748 struct timespec64 end_time = ep_set_mstimeout(timeout);
1749
1750 slack = select_estimate_accuracy(&end_time);
1751 to = &expires;
1752 *to = timespec64_to_ktime(end_time);
1753 } else if (timeout == 0) {
1754 /*
1755 * Avoid the unnecessary trip to the wait queue loop, if the
1756 * caller specified a non blocking operation.
1757 */
1758 timed_out = 1;
1759 spin_lock_irqsave(&ep->lock, flags);
1760 goto check_events;
1761 }
1762
1763 fetch_events:
1764
1765 if (!ep_events_available(ep))
1766 ep_busy_loop(ep, timed_out);
1767
1768 spin_lock_irqsave(&ep->lock, flags);
1769
1770 if (!ep_events_available(ep)) {
1771 /*
1772 * Busy poll timed out. Drop NAPI ID for now, we can add
1773 * it back in when we have moved a socket with a valid NAPI
1774 * ID onto the ready list.
1775 */
1776 ep_reset_busy_poll_napi_id(ep);
1777
1778 /*
1779 * We don't have any available event to return to the caller.
1780 * We need to sleep here, and we will be wake up by
1781 * ep_poll_callback() when events will become available.
1782 */
1783 init_waitqueue_entry(&wait, current);
1784 __add_wait_queue_exclusive(&ep->wq, &wait);
1785
1786 for (;;) {
1787 /*
1788 * We don't want to sleep if the ep_poll_callback() sends us
1789 * a wakeup in between. That's why we set the task state
1790 * to TASK_INTERRUPTIBLE before doing the checks.
1791 */
1792 set_current_state(TASK_INTERRUPTIBLE);
1793 /*
1794 * Always short-circuit for fatal signals to allow
1795 * threads to make a timely exit without the chance of
1796 * finding more events available and fetching
1797 * repeatedly.
1798 */
1799 if (fatal_signal_pending(current)) {
1800 res = -EINTR;
1801 break;
1802 }
1803 if (ep_events_available(ep) || timed_out)
1804 break;
1805 if (signal_pending(current)) {
1806 res = -EINTR;
1807 break;
1808 }
1809
1810 spin_unlock_irqrestore(&ep->lock, flags);
1811 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1812 timed_out = 1;
1813
1814 spin_lock_irqsave(&ep->lock, flags);
1815 }
1816
1817 __remove_wait_queue(&ep->wq, &wait);
1818 __set_current_state(TASK_RUNNING);
1819 }
1820 check_events:
1821 /* Is it worth to try to dig for events ? */
1822 eavail = ep_events_available(ep);
1823
1824 spin_unlock_irqrestore(&ep->lock, flags);
1825
1826 /*
1827 * Try to transfer events to user space. In case we get 0 events and
1828 * there's still timeout left over, we go trying again in search of
1829 * more luck.
1830 */
1831 if (!res && eavail &&
1832 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1833 goto fetch_events;
1834
1835 return res;
1836 }
1837
1838 /**
1839 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1840 * API, to verify that adding an epoll file inside another
1841 * epoll structure, does not violate the constraints, in
1842 * terms of closed loops, or too deep chains (which can
1843 * result in excessive stack usage).
1844 *
1845 * @priv: Pointer to the epoll file to be currently checked.
1846 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1847 * data structure pointer.
1848 * @call_nests: Current dept of the @ep_call_nested() call stack.
1849 *
1850 * Returns: Returns zero if adding the epoll @file inside current epoll
1851 * structure @ep does not violate the constraints, or -1 otherwise.
1852 */
1853 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1854 {
1855 int error = 0;
1856 struct file *file = priv;
1857 struct eventpoll *ep = file->private_data;
1858 struct eventpoll *ep_tovisit;
1859 struct rb_node *rbp;
1860 struct epitem *epi;
1861
1862 mutex_lock_nested(&ep->mtx, call_nests + 1);
1863 ep->visited = 1;
1864 list_add(&ep->visited_list_link, &visited_list);
1865 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1866 epi = rb_entry(rbp, struct epitem, rbn);
1867 if (unlikely(is_file_epoll(epi->ffd.file))) {
1868 ep_tovisit = epi->ffd.file->private_data;
1869 if (ep_tovisit->visited)
1870 continue;
1871 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1872 ep_loop_check_proc, epi->ffd.file,
1873 ep_tovisit, current);
1874 if (error != 0)
1875 break;
1876 } else {
1877 /*
1878 * If we've reached a file that is not associated with
1879 * an ep, then we need to check if the newly added
1880 * links are going to add too many wakeup paths. We do
1881 * this by adding it to the tfile_check_list, if it's
1882 * not already there, and calling reverse_path_check()
1883 * during ep_insert().
1884 */
1885 if (list_empty(&epi->ffd.file->f_tfile_llink))
1886 list_add(&epi->ffd.file->f_tfile_llink,
1887 &tfile_check_list);
1888 }
1889 }
1890 mutex_unlock(&ep->mtx);
1891
1892 return error;
1893 }
1894
1895 /**
1896 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1897 * another epoll file (represented by @ep) does not create
1898 * closed loops or too deep chains.
1899 *
1900 * @ep: Pointer to the epoll private data structure.
1901 * @file: Pointer to the epoll file to be checked.
1902 *
1903 * Returns: Returns zero if adding the epoll @file inside current epoll
1904 * structure @ep does not violate the constraints, or -1 otherwise.
1905 */
1906 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1907 {
1908 int ret;
1909 struct eventpoll *ep_cur, *ep_next;
1910
1911 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1912 ep_loop_check_proc, file, ep, current);
1913 /* clear visited list */
1914 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1915 visited_list_link) {
1916 ep_cur->visited = 0;
1917 list_del(&ep_cur->visited_list_link);
1918 }
1919 return ret;
1920 }
1921
1922 static void clear_tfile_check_list(void)
1923 {
1924 struct file *file;
1925
1926 /* first clear the tfile_check_list */
1927 while (!list_empty(&tfile_check_list)) {
1928 file = list_first_entry(&tfile_check_list, struct file,
1929 f_tfile_llink);
1930 list_del_init(&file->f_tfile_llink);
1931 }
1932 INIT_LIST_HEAD(&tfile_check_list);
1933 }
1934
1935 /*
1936 * Open an eventpoll file descriptor.
1937 */
1938 static int do_epoll_create(int flags)
1939 {
1940 int error, fd;
1941 struct eventpoll *ep = NULL;
1942 struct file *file;
1943
1944 /* Check the EPOLL_* constant for consistency. */
1945 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1946
1947 if (flags & ~EPOLL_CLOEXEC)
1948 return -EINVAL;
1949 /*
1950 * Create the internal data structure ("struct eventpoll").
1951 */
1952 error = ep_alloc(&ep);
1953 if (error < 0)
1954 return error;
1955 /*
1956 * Creates all the items needed to setup an eventpoll file. That is,
1957 * a file structure and a free file descriptor.
1958 */
1959 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1960 if (fd < 0) {
1961 error = fd;
1962 goto out_free_ep;
1963 }
1964 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1965 O_RDWR | (flags & O_CLOEXEC));
1966 if (IS_ERR(file)) {
1967 error = PTR_ERR(file);
1968 goto out_free_fd;
1969 }
1970 ep->file = file;
1971 fd_install(fd, file);
1972 return fd;
1973
1974 out_free_fd:
1975 put_unused_fd(fd);
1976 out_free_ep:
1977 ep_free(ep);
1978 return error;
1979 }
1980
1981 SYSCALL_DEFINE1(epoll_create1, int, flags)
1982 {
1983 return do_epoll_create(flags);
1984 }
1985
1986 SYSCALL_DEFINE1(epoll_create, int, size)
1987 {
1988 if (size <= 0)
1989 return -EINVAL;
1990
1991 return do_epoll_create(0);
1992 }
1993
1994 /*
1995 * The following function implements the controller interface for
1996 * the eventpoll file that enables the insertion/removal/change of
1997 * file descriptors inside the interest set.
1998 */
1999 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2000 struct epoll_event __user *, event)
2001 {
2002 int error;
2003 int full_check = 0;
2004 struct fd f, tf;
2005 struct eventpoll *ep;
2006 struct epitem *epi;
2007 struct epoll_event epds;
2008 struct eventpoll *tep = NULL;
2009
2010 error = -EFAULT;
2011 if (ep_op_has_event(op) &&
2012 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2013 goto error_return;
2014
2015 error = -EBADF;
2016 f = fdget(epfd);
2017 if (!f.file)
2018 goto error_return;
2019
2020 /* Get the "struct file *" for the target file */
2021 tf = fdget(fd);
2022 if (!tf.file)
2023 goto error_fput;
2024
2025 /* The target file descriptor must support poll */
2026 error = -EPERM;
2027 if (!file_can_poll(tf.file))
2028 goto error_tgt_fput;
2029
2030 /* Check if EPOLLWAKEUP is allowed */
2031 if (ep_op_has_event(op))
2032 ep_take_care_of_epollwakeup(&epds);
2033
2034 /*
2035 * We have to check that the file structure underneath the file descriptor
2036 * the user passed to us _is_ an eventpoll file. And also we do not permit
2037 * adding an epoll file descriptor inside itself.
2038 */
2039 error = -EINVAL;
2040 if (f.file == tf.file || !is_file_epoll(f.file))
2041 goto error_tgt_fput;
2042
2043 /*
2044 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2045 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2046 * Also, we do not currently supported nested exclusive wakeups.
2047 */
2048 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2049 if (op == EPOLL_CTL_MOD)
2050 goto error_tgt_fput;
2051 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2052 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2053 goto error_tgt_fput;
2054 }
2055
2056 /*
2057 * At this point it is safe to assume that the "private_data" contains
2058 * our own data structure.
2059 */
2060 ep = f.file->private_data;
2061
2062 /*
2063 * When we insert an epoll file descriptor, inside another epoll file
2064 * descriptor, there is the change of creating closed loops, which are
2065 * better be handled here, than in more critical paths. While we are
2066 * checking for loops we also determine the list of files reachable
2067 * and hang them on the tfile_check_list, so we can check that we
2068 * haven't created too many possible wakeup paths.
2069 *
2070 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2071 * the epoll file descriptor is attaching directly to a wakeup source,
2072 * unless the epoll file descriptor is nested. The purpose of taking the
2073 * 'epmutex' on add is to prevent complex toplogies such as loops and
2074 * deep wakeup paths from forming in parallel through multiple
2075 * EPOLL_CTL_ADD operations.
2076 */
2077 mutex_lock_nested(&ep->mtx, 0);
2078 if (op == EPOLL_CTL_ADD) {
2079 if (!list_empty(&f.file->f_ep_links) ||
2080 is_file_epoll(tf.file)) {
2081 full_check = 1;
2082 mutex_unlock(&ep->mtx);
2083 mutex_lock(&epmutex);
2084 if (is_file_epoll(tf.file)) {
2085 error = -ELOOP;
2086 if (ep_loop_check(ep, tf.file) != 0) {
2087 clear_tfile_check_list();
2088 goto error_tgt_fput;
2089 }
2090 } else
2091 list_add(&tf.file->f_tfile_llink,
2092 &tfile_check_list);
2093 mutex_lock_nested(&ep->mtx, 0);
2094 if (is_file_epoll(tf.file)) {
2095 tep = tf.file->private_data;
2096 mutex_lock_nested(&tep->mtx, 1);
2097 }
2098 }
2099 }
2100
2101 /*
2102 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2103 * above, we can be sure to be able to use the item looked up by
2104 * ep_find() till we release the mutex.
2105 */
2106 epi = ep_find(ep, tf.file, fd);
2107
2108 error = -EINVAL;
2109 switch (op) {
2110 case EPOLL_CTL_ADD:
2111 if (!epi) {
2112 epds.events |= EPOLLERR | EPOLLHUP;
2113 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2114 } else
2115 error = -EEXIST;
2116 if (full_check)
2117 clear_tfile_check_list();
2118 break;
2119 case EPOLL_CTL_DEL:
2120 if (epi)
2121 error = ep_remove(ep, epi);
2122 else
2123 error = -ENOENT;
2124 break;
2125 case EPOLL_CTL_MOD:
2126 if (epi) {
2127 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2128 epds.events |= EPOLLERR | EPOLLHUP;
2129 error = ep_modify(ep, epi, &epds);
2130 }
2131 } else
2132 error = -ENOENT;
2133 break;
2134 }
2135 if (tep != NULL)
2136 mutex_unlock(&tep->mtx);
2137 mutex_unlock(&ep->mtx);
2138
2139 error_tgt_fput:
2140 if (full_check)
2141 mutex_unlock(&epmutex);
2142
2143 fdput(tf);
2144 error_fput:
2145 fdput(f);
2146 error_return:
2147
2148 return error;
2149 }
2150
2151 /*
2152 * Implement the event wait interface for the eventpoll file. It is the kernel
2153 * part of the user space epoll_wait(2).
2154 */
2155 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2156 int maxevents, int timeout)
2157 {
2158 int error;
2159 struct fd f;
2160 struct eventpoll *ep;
2161
2162 /* The maximum number of event must be greater than zero */
2163 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2164 return -EINVAL;
2165
2166 /* Verify that the area passed by the user is writeable */
2167 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2168 return -EFAULT;
2169
2170 /* Get the "struct file *" for the eventpoll file */
2171 f = fdget(epfd);
2172 if (!f.file)
2173 return -EBADF;
2174
2175 /*
2176 * We have to check that the file structure underneath the fd
2177 * the user passed to us _is_ an eventpoll file.
2178 */
2179 error = -EINVAL;
2180 if (!is_file_epoll(f.file))
2181 goto error_fput;
2182
2183 /*
2184 * At this point it is safe to assume that the "private_data" contains
2185 * our own data structure.
2186 */
2187 ep = f.file->private_data;
2188
2189 /* Time to fish for events ... */
2190 error = ep_poll(ep, events, maxevents, timeout);
2191
2192 error_fput:
2193 fdput(f);
2194 return error;
2195 }
2196
2197 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2198 int, maxevents, int, timeout)
2199 {
2200 return do_epoll_wait(epfd, events, maxevents, timeout);
2201 }
2202
2203 /*
2204 * Implement the event wait interface for the eventpoll file. It is the kernel
2205 * part of the user space epoll_pwait(2).
2206 */
2207 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2208 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2209 size_t, sigsetsize)
2210 {
2211 int error;
2212 sigset_t ksigmask, sigsaved;
2213
2214 /*
2215 * If the caller wants a certain signal mask to be set during the wait,
2216 * we apply it here.
2217 */
2218 if (sigmask) {
2219 if (sigsetsize != sizeof(sigset_t))
2220 return -EINVAL;
2221 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2222 return -EFAULT;
2223 sigsaved = current->blocked;
2224 set_current_blocked(&ksigmask);
2225 }
2226
2227 error = do_epoll_wait(epfd, events, maxevents, timeout);
2228
2229 /*
2230 * If we changed the signal mask, we need to restore the original one.
2231 * In case we've got a signal while waiting, we do not restore the
2232 * signal mask yet, and we allow do_signal() to deliver the signal on
2233 * the way back to userspace, before the signal mask is restored.
2234 */
2235 if (sigmask) {
2236 if (error == -EINTR) {
2237 memcpy(&current->saved_sigmask, &sigsaved,
2238 sizeof(sigsaved));
2239 set_restore_sigmask();
2240 } else
2241 set_current_blocked(&sigsaved);
2242 }
2243
2244 return error;
2245 }
2246
2247 #ifdef CONFIG_COMPAT
2248 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2249 struct epoll_event __user *, events,
2250 int, maxevents, int, timeout,
2251 const compat_sigset_t __user *, sigmask,
2252 compat_size_t, sigsetsize)
2253 {
2254 long err;
2255 sigset_t ksigmask, sigsaved;
2256
2257 /*
2258 * If the caller wants a certain signal mask to be set during the wait,
2259 * we apply it here.
2260 */
2261 if (sigmask) {
2262 if (sigsetsize != sizeof(compat_sigset_t))
2263 return -EINVAL;
2264 if (get_compat_sigset(&ksigmask, sigmask))
2265 return -EFAULT;
2266 sigsaved = current->blocked;
2267 set_current_blocked(&ksigmask);
2268 }
2269
2270 err = do_epoll_wait(epfd, events, maxevents, timeout);
2271
2272 /*
2273 * If we changed the signal mask, we need to restore the original one.
2274 * In case we've got a signal while waiting, we do not restore the
2275 * signal mask yet, and we allow do_signal() to deliver the signal on
2276 * the way back to userspace, before the signal mask is restored.
2277 */
2278 if (sigmask) {
2279 if (err == -EINTR) {
2280 memcpy(&current->saved_sigmask, &sigsaved,
2281 sizeof(sigsaved));
2282 set_restore_sigmask();
2283 } else
2284 set_current_blocked(&sigsaved);
2285 }
2286
2287 return err;
2288 }
2289 #endif
2290
2291 static int __init eventpoll_init(void)
2292 {
2293 struct sysinfo si;
2294
2295 si_meminfo(&si);
2296 /*
2297 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2298 */
2299 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2300 EP_ITEM_COST;
2301 BUG_ON(max_user_watches < 0);
2302
2303 /*
2304 * Initialize the structure used to perform epoll file descriptor
2305 * inclusion loops checks.
2306 */
2307 ep_nested_calls_init(&poll_loop_ncalls);
2308
2309 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2310 /* Initialize the structure used to perform safe poll wait head wake ups */
2311 ep_nested_calls_init(&poll_safewake_ncalls);
2312 #endif
2313
2314 /*
2315 * We can have many thousands of epitems, so prevent this from
2316 * using an extra cache line on 64-bit (and smaller) CPUs
2317 */
2318 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2319
2320 /* Allocates slab cache used to allocate "struct epitem" items */
2321 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2322 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2323
2324 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2325 pwq_cache = kmem_cache_create("eventpoll_pwq",
2326 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2327
2328 return 0;
2329 }
2330 fs_initcall(eventpoll_init);