]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/eventpoll.c
Merge branch 'bpftool: improve split BTF support'
[mirror_ubuntu-hirsute-kernel.git] / fs / eventpoll.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
88 */
89
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
107 struct epoll_filefd {
108 struct file *file;
109 int fd;
110 } __packed;
111
112 /*
113 * Structure used to track possible nested calls, for too deep recursions
114 * and loop cycles.
115 */
116 struct nested_call_node {
117 struct list_head llink;
118 void *cookie;
119 void *ctx;
120 };
121
122 /*
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
125 */
126 struct nested_calls {
127 struct list_head tasks_call_list;
128 spinlock_t lock;
129 };
130
131 /*
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
136 */
137 struct epitem {
138 union {
139 /* RB tree node links this structure to the eventpoll RB tree */
140 struct rb_node rbn;
141 /* Used to free the struct epitem */
142 struct rcu_head rcu;
143 };
144
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink;
147
148 /*
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
151 */
152 struct epitem *next;
153
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd;
156
157 /* Number of active wait queue attached to poll operations */
158 int nwait;
159
160 /* List containing poll wait queues */
161 struct list_head pwqlist;
162
163 /* The "container" of this item */
164 struct eventpoll *ep;
165
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink;
168
169 /* wakeup_source used when EPOLLWAKEUP is set */
170 struct wakeup_source __rcu *ws;
171
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event;
174 };
175
176 /*
177 * This structure is stored inside the "private_data" member of the file
178 * structure and represents the main data structure for the eventpoll
179 * interface.
180 */
181 struct eventpoll {
182 /*
183 * This mutex is used to ensure that files are not removed
184 * while epoll is using them. This is held during the event
185 * collection loop, the file cleanup path, the epoll file exit
186 * code and the ctl operations.
187 */
188 struct mutex mtx;
189
190 /* Wait queue used by sys_epoll_wait() */
191 wait_queue_head_t wq;
192
193 /* Wait queue used by file->poll() */
194 wait_queue_head_t poll_wait;
195
196 /* List of ready file descriptors */
197 struct list_head rdllist;
198
199 /* Lock which protects rdllist and ovflist */
200 rwlock_t lock;
201
202 /* RB tree root used to store monitored fd structs */
203 struct rb_root_cached rbr;
204
205 /*
206 * This is a single linked list that chains all the "struct epitem" that
207 * happened while transferring ready events to userspace w/out
208 * holding ->lock.
209 */
210 struct epitem *ovflist;
211
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source *ws;
214
215 /* The user that created the eventpoll descriptor */
216 struct user_struct *user;
217
218 struct file *file;
219
220 /* used to optimize loop detection check */
221 u64 gen;
222
223 #ifdef CONFIG_NET_RX_BUSY_POLL
224 /* used to track busy poll napi_id */
225 unsigned int napi_id;
226 #endif
227
228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
229 /* tracks wakeup nests for lockdep validation */
230 u8 nests;
231 #endif
232 };
233
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry {
236 /* List header used to link this structure to the "struct epitem" */
237 struct list_head llink;
238
239 /* The "base" pointer is set to the container "struct epitem" */
240 struct epitem *base;
241
242 /*
243 * Wait queue item that will be linked to the target file wait
244 * queue head.
245 */
246 wait_queue_entry_t wait;
247
248 /* The wait queue head that linked the "wait" wait queue item */
249 wait_queue_head_t *whead;
250 };
251
252 /* Wrapper struct used by poll queueing */
253 struct ep_pqueue {
254 poll_table pt;
255 struct epitem *epi;
256 };
257
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data {
260 int maxevents;
261 struct epoll_event __user *events;
262 int res;
263 };
264
265 /*
266 * Configuration options available inside /proc/sys/fs/epoll/
267 */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270
271 /*
272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
273 */
274 static DEFINE_MUTEX(epmutex);
275
276 static u64 loop_check_gen = 0;
277
278 /* Used to check for epoll file descriptor inclusion loops */
279 static struct nested_calls poll_loop_ncalls;
280
281 /* Slab cache used to allocate "struct epitem" */
282 static struct kmem_cache *epi_cache __read_mostly;
283
284 /* Slab cache used to allocate "struct eppoll_entry" */
285 static struct kmem_cache *pwq_cache __read_mostly;
286
287 /*
288 * List of files with newly added links, where we may need to limit the number
289 * of emanating paths. Protected by the epmutex.
290 */
291 static LIST_HEAD(tfile_check_list);
292
293 #ifdef CONFIG_SYSCTL
294
295 #include <linux/sysctl.h>
296
297 static long long_zero;
298 static long long_max = LONG_MAX;
299
300 struct ctl_table epoll_table[] = {
301 {
302 .procname = "max_user_watches",
303 .data = &max_user_watches,
304 .maxlen = sizeof(max_user_watches),
305 .mode = 0644,
306 .proc_handler = proc_doulongvec_minmax,
307 .extra1 = &long_zero,
308 .extra2 = &long_max,
309 },
310 { }
311 };
312 #endif /* CONFIG_SYSCTL */
313
314 static const struct file_operations eventpoll_fops;
315
316 static inline int is_file_epoll(struct file *f)
317 {
318 return f->f_op == &eventpoll_fops;
319 }
320
321 /* Setup the structure that is used as key for the RB tree */
322 static inline void ep_set_ffd(struct epoll_filefd *ffd,
323 struct file *file, int fd)
324 {
325 ffd->file = file;
326 ffd->fd = fd;
327 }
328
329 /* Compare RB tree keys */
330 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
331 struct epoll_filefd *p2)
332 {
333 return (p1->file > p2->file ? +1:
334 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
335 }
336
337 /* Tells us if the item is currently linked */
338 static inline int ep_is_linked(struct epitem *epi)
339 {
340 return !list_empty(&epi->rdllink);
341 }
342
343 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
344 {
345 return container_of(p, struct eppoll_entry, wait);
346 }
347
348 /* Get the "struct epitem" from a wait queue pointer */
349 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
350 {
351 return container_of(p, struct eppoll_entry, wait)->base;
352 }
353
354 /* Get the "struct epitem" from an epoll queue wrapper */
355 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
356 {
357 return container_of(p, struct ep_pqueue, pt)->epi;
358 }
359
360 /* Initialize the poll safe wake up structure */
361 static void ep_nested_calls_init(struct nested_calls *ncalls)
362 {
363 INIT_LIST_HEAD(&ncalls->tasks_call_list);
364 spin_lock_init(&ncalls->lock);
365 }
366
367 /**
368 * ep_events_available - Checks if ready events might be available.
369 *
370 * @ep: Pointer to the eventpoll context.
371 *
372 * Returns: Returns a value different than zero if ready events are available,
373 * or zero otherwise.
374 */
375 static inline int ep_events_available(struct eventpoll *ep)
376 {
377 return !list_empty_careful(&ep->rdllist) ||
378 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
379 }
380
381 #ifdef CONFIG_NET_RX_BUSY_POLL
382 static bool ep_busy_loop_end(void *p, unsigned long start_time)
383 {
384 struct eventpoll *ep = p;
385
386 return ep_events_available(ep) || busy_loop_timeout(start_time);
387 }
388
389 /*
390 * Busy poll if globally on and supporting sockets found && no events,
391 * busy loop will return if need_resched or ep_events_available.
392 *
393 * we must do our busy polling with irqs enabled
394 */
395 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
396 {
397 unsigned int napi_id = READ_ONCE(ep->napi_id);
398
399 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
400 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
401 BUSY_POLL_BUDGET);
402 }
403
404 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
405 {
406 if (ep->napi_id)
407 ep->napi_id = 0;
408 }
409
410 /*
411 * Set epoll busy poll NAPI ID from sk.
412 */
413 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
414 {
415 struct eventpoll *ep;
416 unsigned int napi_id;
417 struct socket *sock;
418 struct sock *sk;
419 int err;
420
421 if (!net_busy_loop_on())
422 return;
423
424 sock = sock_from_file(epi->ffd.file, &err);
425 if (!sock)
426 return;
427
428 sk = sock->sk;
429 if (!sk)
430 return;
431
432 napi_id = READ_ONCE(sk->sk_napi_id);
433 ep = epi->ep;
434
435 /* Non-NAPI IDs can be rejected
436 * or
437 * Nothing to do if we already have this ID
438 */
439 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
440 return;
441
442 /* record NAPI ID for use in next busy poll */
443 ep->napi_id = napi_id;
444 }
445
446 #else
447
448 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
449 {
450 }
451
452 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
453 {
454 }
455
456 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
457 {
458 }
459
460 #endif /* CONFIG_NET_RX_BUSY_POLL */
461
462 /**
463 * ep_call_nested - Perform a bound (possibly) nested call, by checking
464 * that the recursion limit is not exceeded, and that
465 * the same nested call (by the meaning of same cookie) is
466 * no re-entered.
467 *
468 * @ncalls: Pointer to the nested_calls structure to be used for this call.
469 * @nproc: Nested call core function pointer.
470 * @priv: Opaque data to be passed to the @nproc callback.
471 * @cookie: Cookie to be used to identify this nested call.
472 * @ctx: This instance context.
473 *
474 * Returns: Returns the code returned by the @nproc callback, or -1 if
475 * the maximum recursion limit has been exceeded.
476 */
477 static int ep_call_nested(struct nested_calls *ncalls,
478 int (*nproc)(void *, void *, int), void *priv,
479 void *cookie, void *ctx)
480 {
481 int error, call_nests = 0;
482 unsigned long flags;
483 struct list_head *lsthead = &ncalls->tasks_call_list;
484 struct nested_call_node *tncur;
485 struct nested_call_node tnode;
486
487 spin_lock_irqsave(&ncalls->lock, flags);
488
489 /*
490 * Try to see if the current task is already inside this wakeup call.
491 * We use a list here, since the population inside this set is always
492 * very much limited.
493 */
494 list_for_each_entry(tncur, lsthead, llink) {
495 if (tncur->ctx == ctx &&
496 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
497 /*
498 * Ops ... loop detected or maximum nest level reached.
499 * We abort this wake by breaking the cycle itself.
500 */
501 error = -1;
502 goto out_unlock;
503 }
504 }
505
506 /* Add the current task and cookie to the list */
507 tnode.ctx = ctx;
508 tnode.cookie = cookie;
509 list_add(&tnode.llink, lsthead);
510
511 spin_unlock_irqrestore(&ncalls->lock, flags);
512
513 /* Call the nested function */
514 error = (*nproc)(priv, cookie, call_nests);
515
516 /* Remove the current task from the list */
517 spin_lock_irqsave(&ncalls->lock, flags);
518 list_del(&tnode.llink);
519 out_unlock:
520 spin_unlock_irqrestore(&ncalls->lock, flags);
521
522 return error;
523 }
524
525 /*
526 * As described in commit 0ccf831cb lockdep: annotate epoll
527 * the use of wait queues used by epoll is done in a very controlled
528 * manner. Wake ups can nest inside each other, but are never done
529 * with the same locking. For example:
530 *
531 * dfd = socket(...);
532 * efd1 = epoll_create();
533 * efd2 = epoll_create();
534 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
535 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
536 *
537 * When a packet arrives to the device underneath "dfd", the net code will
538 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
539 * callback wakeup entry on that queue, and the wake_up() performed by the
540 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
541 * (efd1) notices that it may have some event ready, so it needs to wake up
542 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
543 * that ends up in another wake_up(), after having checked about the
544 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
545 * avoid stack blasting.
546 *
547 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
548 * this special case of epoll.
549 */
550 #ifdef CONFIG_DEBUG_LOCK_ALLOC
551
552 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
553 {
554 struct eventpoll *ep_src;
555 unsigned long flags;
556 u8 nests = 0;
557
558 /*
559 * To set the subclass or nesting level for spin_lock_irqsave_nested()
560 * it might be natural to create a per-cpu nest count. However, since
561 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
562 * schedule() in the -rt kernel, the per-cpu variable are no longer
563 * protected. Thus, we are introducing a per eventpoll nest field.
564 * If we are not being call from ep_poll_callback(), epi is NULL and
565 * we are at the first level of nesting, 0. Otherwise, we are being
566 * called from ep_poll_callback() and if a previous wakeup source is
567 * not an epoll file itself, we are at depth 1 since the wakeup source
568 * is depth 0. If the wakeup source is a previous epoll file in the
569 * wakeup chain then we use its nests value and record ours as
570 * nests + 1. The previous epoll file nests value is stable since its
571 * already holding its own poll_wait.lock.
572 */
573 if (epi) {
574 if ((is_file_epoll(epi->ffd.file))) {
575 ep_src = epi->ffd.file->private_data;
576 nests = ep_src->nests;
577 } else {
578 nests = 1;
579 }
580 }
581 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
582 ep->nests = nests + 1;
583 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
584 ep->nests = 0;
585 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
586 }
587
588 #else
589
590 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
591 {
592 wake_up_poll(&ep->poll_wait, EPOLLIN);
593 }
594
595 #endif
596
597 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
598 {
599 wait_queue_head_t *whead;
600
601 rcu_read_lock();
602 /*
603 * If it is cleared by POLLFREE, it should be rcu-safe.
604 * If we read NULL we need a barrier paired with
605 * smp_store_release() in ep_poll_callback(), otherwise
606 * we rely on whead->lock.
607 */
608 whead = smp_load_acquire(&pwq->whead);
609 if (whead)
610 remove_wait_queue(whead, &pwq->wait);
611 rcu_read_unlock();
612 }
613
614 /*
615 * This function unregisters poll callbacks from the associated file
616 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
617 * ep_free).
618 */
619 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
620 {
621 struct list_head *lsthead = &epi->pwqlist;
622 struct eppoll_entry *pwq;
623
624 while (!list_empty(lsthead)) {
625 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
626
627 list_del(&pwq->llink);
628 ep_remove_wait_queue(pwq);
629 kmem_cache_free(pwq_cache, pwq);
630 }
631 }
632
633 /* call only when ep->mtx is held */
634 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
635 {
636 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
637 }
638
639 /* call only when ep->mtx is held */
640 static inline void ep_pm_stay_awake(struct epitem *epi)
641 {
642 struct wakeup_source *ws = ep_wakeup_source(epi);
643
644 if (ws)
645 __pm_stay_awake(ws);
646 }
647
648 static inline bool ep_has_wakeup_source(struct epitem *epi)
649 {
650 return rcu_access_pointer(epi->ws) ? true : false;
651 }
652
653 /* call when ep->mtx cannot be held (ep_poll_callback) */
654 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
655 {
656 struct wakeup_source *ws;
657
658 rcu_read_lock();
659 ws = rcu_dereference(epi->ws);
660 if (ws)
661 __pm_stay_awake(ws);
662 rcu_read_unlock();
663 }
664
665 /**
666 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
667 * the scan code, to call f_op->poll(). Also allows for
668 * O(NumReady) performance.
669 *
670 * @ep: Pointer to the epoll private data structure.
671 * @sproc: Pointer to the scan callback.
672 * @priv: Private opaque data passed to the @sproc callback.
673 * @depth: The current depth of recursive f_op->poll calls.
674 * @ep_locked: caller already holds ep->mtx
675 *
676 * Returns: The same integer error code returned by the @sproc callback.
677 */
678 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
679 __poll_t (*sproc)(struct eventpoll *,
680 struct list_head *, void *),
681 void *priv, int depth, bool ep_locked)
682 {
683 __poll_t res;
684 struct epitem *epi, *nepi;
685 LIST_HEAD(txlist);
686
687 lockdep_assert_irqs_enabled();
688
689 /*
690 * We need to lock this because we could be hit by
691 * eventpoll_release_file() and epoll_ctl().
692 */
693
694 if (!ep_locked)
695 mutex_lock_nested(&ep->mtx, depth);
696
697 /*
698 * Steal the ready list, and re-init the original one to the
699 * empty list. Also, set ep->ovflist to NULL so that events
700 * happening while looping w/out locks, are not lost. We cannot
701 * have the poll callback to queue directly on ep->rdllist,
702 * because we want the "sproc" callback to be able to do it
703 * in a lockless way.
704 */
705 write_lock_irq(&ep->lock);
706 list_splice_init(&ep->rdllist, &txlist);
707 WRITE_ONCE(ep->ovflist, NULL);
708 write_unlock_irq(&ep->lock);
709
710 /*
711 * Now call the callback function.
712 */
713 res = (*sproc)(ep, &txlist, priv);
714
715 write_lock_irq(&ep->lock);
716 /*
717 * During the time we spent inside the "sproc" callback, some
718 * other events might have been queued by the poll callback.
719 * We re-insert them inside the main ready-list here.
720 */
721 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
722 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
723 /*
724 * We need to check if the item is already in the list.
725 * During the "sproc" callback execution time, items are
726 * queued into ->ovflist but the "txlist" might already
727 * contain them, and the list_splice() below takes care of them.
728 */
729 if (!ep_is_linked(epi)) {
730 /*
731 * ->ovflist is LIFO, so we have to reverse it in order
732 * to keep in FIFO.
733 */
734 list_add(&epi->rdllink, &ep->rdllist);
735 ep_pm_stay_awake(epi);
736 }
737 }
738 /*
739 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
740 * releasing the lock, events will be queued in the normal way inside
741 * ep->rdllist.
742 */
743 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
744
745 /*
746 * Quickly re-inject items left on "txlist".
747 */
748 list_splice(&txlist, &ep->rdllist);
749 __pm_relax(ep->ws);
750 write_unlock_irq(&ep->lock);
751
752 if (!ep_locked)
753 mutex_unlock(&ep->mtx);
754
755 return res;
756 }
757
758 static void epi_rcu_free(struct rcu_head *head)
759 {
760 struct epitem *epi = container_of(head, struct epitem, rcu);
761 kmem_cache_free(epi_cache, epi);
762 }
763
764 /*
765 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
766 * all the associated resources. Must be called with "mtx" held.
767 */
768 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
769 {
770 struct file *file = epi->ffd.file;
771
772 lockdep_assert_irqs_enabled();
773
774 /*
775 * Removes poll wait queue hooks.
776 */
777 ep_unregister_pollwait(ep, epi);
778
779 /* Remove the current item from the list of epoll hooks */
780 spin_lock(&file->f_lock);
781 list_del_rcu(&epi->fllink);
782 spin_unlock(&file->f_lock);
783
784 rb_erase_cached(&epi->rbn, &ep->rbr);
785
786 write_lock_irq(&ep->lock);
787 if (ep_is_linked(epi))
788 list_del_init(&epi->rdllink);
789 write_unlock_irq(&ep->lock);
790
791 wakeup_source_unregister(ep_wakeup_source(epi));
792 /*
793 * At this point it is safe to free the eventpoll item. Use the union
794 * field epi->rcu, since we are trying to minimize the size of
795 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
796 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
797 * use of the rbn field.
798 */
799 call_rcu(&epi->rcu, epi_rcu_free);
800
801 atomic_long_dec(&ep->user->epoll_watches);
802
803 return 0;
804 }
805
806 static void ep_free(struct eventpoll *ep)
807 {
808 struct rb_node *rbp;
809 struct epitem *epi;
810
811 /* We need to release all tasks waiting for these file */
812 if (waitqueue_active(&ep->poll_wait))
813 ep_poll_safewake(ep, NULL);
814
815 /*
816 * We need to lock this because we could be hit by
817 * eventpoll_release_file() while we're freeing the "struct eventpoll".
818 * We do not need to hold "ep->mtx" here because the epoll file
819 * is on the way to be removed and no one has references to it
820 * anymore. The only hit might come from eventpoll_release_file() but
821 * holding "epmutex" is sufficient here.
822 */
823 mutex_lock(&epmutex);
824
825 /*
826 * Walks through the whole tree by unregistering poll callbacks.
827 */
828 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
829 epi = rb_entry(rbp, struct epitem, rbn);
830
831 ep_unregister_pollwait(ep, epi);
832 cond_resched();
833 }
834
835 /*
836 * Walks through the whole tree by freeing each "struct epitem". At this
837 * point we are sure no poll callbacks will be lingering around, and also by
838 * holding "epmutex" we can be sure that no file cleanup code will hit
839 * us during this operation. So we can avoid the lock on "ep->lock".
840 * We do not need to lock ep->mtx, either, we only do it to prevent
841 * a lockdep warning.
842 */
843 mutex_lock(&ep->mtx);
844 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
845 epi = rb_entry(rbp, struct epitem, rbn);
846 ep_remove(ep, epi);
847 cond_resched();
848 }
849 mutex_unlock(&ep->mtx);
850
851 mutex_unlock(&epmutex);
852 mutex_destroy(&ep->mtx);
853 free_uid(ep->user);
854 wakeup_source_unregister(ep->ws);
855 kfree(ep);
856 }
857
858 static int ep_eventpoll_release(struct inode *inode, struct file *file)
859 {
860 struct eventpoll *ep = file->private_data;
861
862 if (ep)
863 ep_free(ep);
864
865 return 0;
866 }
867
868 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
869 void *priv);
870 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
871 poll_table *pt);
872
873 /*
874 * Differs from ep_eventpoll_poll() in that internal callers already have
875 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
876 * is correctly annotated.
877 */
878 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
879 int depth)
880 {
881 struct eventpoll *ep;
882 bool locked;
883
884 pt->_key = epi->event.events;
885 if (!is_file_epoll(epi->ffd.file))
886 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
887
888 ep = epi->ffd.file->private_data;
889 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
890 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
891
892 return ep_scan_ready_list(epi->ffd.file->private_data,
893 ep_read_events_proc, &depth, depth,
894 locked) & epi->event.events;
895 }
896
897 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
898 void *priv)
899 {
900 struct epitem *epi, *tmp;
901 poll_table pt;
902 int depth = *(int *)priv;
903
904 init_poll_funcptr(&pt, NULL);
905 depth++;
906
907 list_for_each_entry_safe(epi, tmp, head, rdllink) {
908 if (ep_item_poll(epi, &pt, depth)) {
909 return EPOLLIN | EPOLLRDNORM;
910 } else {
911 /*
912 * Item has been dropped into the ready list by the poll
913 * callback, but it's not actually ready, as far as
914 * caller requested events goes. We can remove it here.
915 */
916 __pm_relax(ep_wakeup_source(epi));
917 list_del_init(&epi->rdllink);
918 }
919 }
920
921 return 0;
922 }
923
924 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
925 {
926 struct eventpoll *ep = file->private_data;
927 int depth = 0;
928
929 /* Insert inside our poll wait queue */
930 poll_wait(file, &ep->poll_wait, wait);
931
932 /*
933 * Proceed to find out if wanted events are really available inside
934 * the ready list.
935 */
936 return ep_scan_ready_list(ep, ep_read_events_proc,
937 &depth, depth, false);
938 }
939
940 #ifdef CONFIG_PROC_FS
941 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
942 {
943 struct eventpoll *ep = f->private_data;
944 struct rb_node *rbp;
945
946 mutex_lock(&ep->mtx);
947 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
948 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
949 struct inode *inode = file_inode(epi->ffd.file);
950
951 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
952 " pos:%lli ino:%lx sdev:%x\n",
953 epi->ffd.fd, epi->event.events,
954 (long long)epi->event.data,
955 (long long)epi->ffd.file->f_pos,
956 inode->i_ino, inode->i_sb->s_dev);
957 if (seq_has_overflowed(m))
958 break;
959 }
960 mutex_unlock(&ep->mtx);
961 }
962 #endif
963
964 /* File callbacks that implement the eventpoll file behaviour */
965 static const struct file_operations eventpoll_fops = {
966 #ifdef CONFIG_PROC_FS
967 .show_fdinfo = ep_show_fdinfo,
968 #endif
969 .release = ep_eventpoll_release,
970 .poll = ep_eventpoll_poll,
971 .llseek = noop_llseek,
972 };
973
974 /*
975 * This is called from eventpoll_release() to unlink files from the eventpoll
976 * interface. We need to have this facility to cleanup correctly files that are
977 * closed without being removed from the eventpoll interface.
978 */
979 void eventpoll_release_file(struct file *file)
980 {
981 struct eventpoll *ep;
982 struct epitem *epi, *next;
983
984 /*
985 * We don't want to get "file->f_lock" because it is not
986 * necessary. It is not necessary because we're in the "struct file"
987 * cleanup path, and this means that no one is using this file anymore.
988 * So, for example, epoll_ctl() cannot hit here since if we reach this
989 * point, the file counter already went to zero and fget() would fail.
990 * The only hit might come from ep_free() but by holding the mutex
991 * will correctly serialize the operation. We do need to acquire
992 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
993 * from anywhere but ep_free().
994 *
995 * Besides, ep_remove() acquires the lock, so we can't hold it here.
996 */
997 mutex_lock(&epmutex);
998 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
999 ep = epi->ep;
1000 mutex_lock_nested(&ep->mtx, 0);
1001 ep_remove(ep, epi);
1002 mutex_unlock(&ep->mtx);
1003 }
1004 mutex_unlock(&epmutex);
1005 }
1006
1007 static int ep_alloc(struct eventpoll **pep)
1008 {
1009 int error;
1010 struct user_struct *user;
1011 struct eventpoll *ep;
1012
1013 user = get_current_user();
1014 error = -ENOMEM;
1015 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1016 if (unlikely(!ep))
1017 goto free_uid;
1018
1019 mutex_init(&ep->mtx);
1020 rwlock_init(&ep->lock);
1021 init_waitqueue_head(&ep->wq);
1022 init_waitqueue_head(&ep->poll_wait);
1023 INIT_LIST_HEAD(&ep->rdllist);
1024 ep->rbr = RB_ROOT_CACHED;
1025 ep->ovflist = EP_UNACTIVE_PTR;
1026 ep->user = user;
1027
1028 *pep = ep;
1029
1030 return 0;
1031
1032 free_uid:
1033 free_uid(user);
1034 return error;
1035 }
1036
1037 /*
1038 * Search the file inside the eventpoll tree. The RB tree operations
1039 * are protected by the "mtx" mutex, and ep_find() must be called with
1040 * "mtx" held.
1041 */
1042 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1043 {
1044 int kcmp;
1045 struct rb_node *rbp;
1046 struct epitem *epi, *epir = NULL;
1047 struct epoll_filefd ffd;
1048
1049 ep_set_ffd(&ffd, file, fd);
1050 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1051 epi = rb_entry(rbp, struct epitem, rbn);
1052 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1053 if (kcmp > 0)
1054 rbp = rbp->rb_right;
1055 else if (kcmp < 0)
1056 rbp = rbp->rb_left;
1057 else {
1058 epir = epi;
1059 break;
1060 }
1061 }
1062
1063 return epir;
1064 }
1065
1066 #ifdef CONFIG_CHECKPOINT_RESTORE
1067 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1068 {
1069 struct rb_node *rbp;
1070 struct epitem *epi;
1071
1072 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1073 epi = rb_entry(rbp, struct epitem, rbn);
1074 if (epi->ffd.fd == tfd) {
1075 if (toff == 0)
1076 return epi;
1077 else
1078 toff--;
1079 }
1080 cond_resched();
1081 }
1082
1083 return NULL;
1084 }
1085
1086 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1087 unsigned long toff)
1088 {
1089 struct file *file_raw;
1090 struct eventpoll *ep;
1091 struct epitem *epi;
1092
1093 if (!is_file_epoll(file))
1094 return ERR_PTR(-EINVAL);
1095
1096 ep = file->private_data;
1097
1098 mutex_lock(&ep->mtx);
1099 epi = ep_find_tfd(ep, tfd, toff);
1100 if (epi)
1101 file_raw = epi->ffd.file;
1102 else
1103 file_raw = ERR_PTR(-ENOENT);
1104 mutex_unlock(&ep->mtx);
1105
1106 return file_raw;
1107 }
1108 #endif /* CONFIG_CHECKPOINT_RESTORE */
1109
1110 /**
1111 * Adds a new entry to the tail of the list in a lockless way, i.e.
1112 * multiple CPUs are allowed to call this function concurrently.
1113 *
1114 * Beware: it is necessary to prevent any other modifications of the
1115 * existing list until all changes are completed, in other words
1116 * concurrent list_add_tail_lockless() calls should be protected
1117 * with a read lock, where write lock acts as a barrier which
1118 * makes sure all list_add_tail_lockless() calls are fully
1119 * completed.
1120 *
1121 * Also an element can be locklessly added to the list only in one
1122 * direction i.e. either to the tail either to the head, otherwise
1123 * concurrent access will corrupt the list.
1124 *
1125 * Returns %false if element has been already added to the list, %true
1126 * otherwise.
1127 */
1128 static inline bool list_add_tail_lockless(struct list_head *new,
1129 struct list_head *head)
1130 {
1131 struct list_head *prev;
1132
1133 /*
1134 * This is simple 'new->next = head' operation, but cmpxchg()
1135 * is used in order to detect that same element has been just
1136 * added to the list from another CPU: the winner observes
1137 * new->next == new.
1138 */
1139 if (cmpxchg(&new->next, new, head) != new)
1140 return false;
1141
1142 /*
1143 * Initially ->next of a new element must be updated with the head
1144 * (we are inserting to the tail) and only then pointers are atomically
1145 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1146 * updated before pointers are actually swapped and pointers are
1147 * swapped before prev->next is updated.
1148 */
1149
1150 prev = xchg(&head->prev, new);
1151
1152 /*
1153 * It is safe to modify prev->next and new->prev, because a new element
1154 * is added only to the tail and new->next is updated before XCHG.
1155 */
1156
1157 prev->next = new;
1158 new->prev = prev;
1159
1160 return true;
1161 }
1162
1163 /**
1164 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1165 * i.e. multiple CPUs are allowed to call this function concurrently.
1166 *
1167 * Returns %false if epi element has been already chained, %true otherwise.
1168 */
1169 static inline bool chain_epi_lockless(struct epitem *epi)
1170 {
1171 struct eventpoll *ep = epi->ep;
1172
1173 /* Fast preliminary check */
1174 if (epi->next != EP_UNACTIVE_PTR)
1175 return false;
1176
1177 /* Check that the same epi has not been just chained from another CPU */
1178 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1179 return false;
1180
1181 /* Atomically exchange tail */
1182 epi->next = xchg(&ep->ovflist, epi);
1183
1184 return true;
1185 }
1186
1187 /*
1188 * This is the callback that is passed to the wait queue wakeup
1189 * mechanism. It is called by the stored file descriptors when they
1190 * have events to report.
1191 *
1192 * This callback takes a read lock in order not to content with concurrent
1193 * events from another file descriptors, thus all modifications to ->rdllist
1194 * or ->ovflist are lockless. Read lock is paired with the write lock from
1195 * ep_scan_ready_list(), which stops all list modifications and guarantees
1196 * that lists state is seen correctly.
1197 *
1198 * Another thing worth to mention is that ep_poll_callback() can be called
1199 * concurrently for the same @epi from different CPUs if poll table was inited
1200 * with several wait queues entries. Plural wakeup from different CPUs of a
1201 * single wait queue is serialized by wq.lock, but the case when multiple wait
1202 * queues are used should be detected accordingly. This is detected using
1203 * cmpxchg() operation.
1204 */
1205 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1206 {
1207 int pwake = 0;
1208 struct epitem *epi = ep_item_from_wait(wait);
1209 struct eventpoll *ep = epi->ep;
1210 __poll_t pollflags = key_to_poll(key);
1211 unsigned long flags;
1212 int ewake = 0;
1213
1214 read_lock_irqsave(&ep->lock, flags);
1215
1216 ep_set_busy_poll_napi_id(epi);
1217
1218 /*
1219 * If the event mask does not contain any poll(2) event, we consider the
1220 * descriptor to be disabled. This condition is likely the effect of the
1221 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1222 * until the next EPOLL_CTL_MOD will be issued.
1223 */
1224 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1225 goto out_unlock;
1226
1227 /*
1228 * Check the events coming with the callback. At this stage, not
1229 * every device reports the events in the "key" parameter of the
1230 * callback. We need to be able to handle both cases here, hence the
1231 * test for "key" != NULL before the event match test.
1232 */
1233 if (pollflags && !(pollflags & epi->event.events))
1234 goto out_unlock;
1235
1236 /*
1237 * If we are transferring events to userspace, we can hold no locks
1238 * (because we're accessing user memory, and because of linux f_op->poll()
1239 * semantics). All the events that happen during that period of time are
1240 * chained in ep->ovflist and requeued later on.
1241 */
1242 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1243 if (chain_epi_lockless(epi))
1244 ep_pm_stay_awake_rcu(epi);
1245 } else if (!ep_is_linked(epi)) {
1246 /* In the usual case, add event to ready list. */
1247 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1248 ep_pm_stay_awake_rcu(epi);
1249 }
1250
1251 /*
1252 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1253 * wait list.
1254 */
1255 if (waitqueue_active(&ep->wq)) {
1256 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1257 !(pollflags & POLLFREE)) {
1258 switch (pollflags & EPOLLINOUT_BITS) {
1259 case EPOLLIN:
1260 if (epi->event.events & EPOLLIN)
1261 ewake = 1;
1262 break;
1263 case EPOLLOUT:
1264 if (epi->event.events & EPOLLOUT)
1265 ewake = 1;
1266 break;
1267 case 0:
1268 ewake = 1;
1269 break;
1270 }
1271 }
1272 wake_up(&ep->wq);
1273 }
1274 if (waitqueue_active(&ep->poll_wait))
1275 pwake++;
1276
1277 out_unlock:
1278 read_unlock_irqrestore(&ep->lock, flags);
1279
1280 /* We have to call this outside the lock */
1281 if (pwake)
1282 ep_poll_safewake(ep, epi);
1283
1284 if (!(epi->event.events & EPOLLEXCLUSIVE))
1285 ewake = 1;
1286
1287 if (pollflags & POLLFREE) {
1288 /*
1289 * If we race with ep_remove_wait_queue() it can miss
1290 * ->whead = NULL and do another remove_wait_queue() after
1291 * us, so we can't use __remove_wait_queue().
1292 */
1293 list_del_init(&wait->entry);
1294 /*
1295 * ->whead != NULL protects us from the race with ep_free()
1296 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1297 * held by the caller. Once we nullify it, nothing protects
1298 * ep/epi or even wait.
1299 */
1300 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1301 }
1302
1303 return ewake;
1304 }
1305
1306 /*
1307 * This is the callback that is used to add our wait queue to the
1308 * target file wakeup lists.
1309 */
1310 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1311 poll_table *pt)
1312 {
1313 struct epitem *epi = ep_item_from_epqueue(pt);
1314 struct eppoll_entry *pwq;
1315
1316 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1317 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1318 pwq->whead = whead;
1319 pwq->base = epi;
1320 if (epi->event.events & EPOLLEXCLUSIVE)
1321 add_wait_queue_exclusive(whead, &pwq->wait);
1322 else
1323 add_wait_queue(whead, &pwq->wait);
1324 list_add_tail(&pwq->llink, &epi->pwqlist);
1325 epi->nwait++;
1326 } else {
1327 /* We have to signal that an error occurred */
1328 epi->nwait = -1;
1329 }
1330 }
1331
1332 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1333 {
1334 int kcmp;
1335 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1336 struct epitem *epic;
1337 bool leftmost = true;
1338
1339 while (*p) {
1340 parent = *p;
1341 epic = rb_entry(parent, struct epitem, rbn);
1342 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1343 if (kcmp > 0) {
1344 p = &parent->rb_right;
1345 leftmost = false;
1346 } else
1347 p = &parent->rb_left;
1348 }
1349 rb_link_node(&epi->rbn, parent, p);
1350 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1351 }
1352
1353
1354
1355 #define PATH_ARR_SIZE 5
1356 /*
1357 * These are the number paths of length 1 to 5, that we are allowing to emanate
1358 * from a single file of interest. For example, we allow 1000 paths of length
1359 * 1, to emanate from each file of interest. This essentially represents the
1360 * potential wakeup paths, which need to be limited in order to avoid massive
1361 * uncontrolled wakeup storms. The common use case should be a single ep which
1362 * is connected to n file sources. In this case each file source has 1 path
1363 * of length 1. Thus, the numbers below should be more than sufficient. These
1364 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1365 * and delete can't add additional paths. Protected by the epmutex.
1366 */
1367 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1368 static int path_count[PATH_ARR_SIZE];
1369
1370 static int path_count_inc(int nests)
1371 {
1372 /* Allow an arbitrary number of depth 1 paths */
1373 if (nests == 0)
1374 return 0;
1375
1376 if (++path_count[nests] > path_limits[nests])
1377 return -1;
1378 return 0;
1379 }
1380
1381 static void path_count_init(void)
1382 {
1383 int i;
1384
1385 for (i = 0; i < PATH_ARR_SIZE; i++)
1386 path_count[i] = 0;
1387 }
1388
1389 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1390 {
1391 int error = 0;
1392 struct file *file = priv;
1393 struct file *child_file;
1394 struct epitem *epi;
1395
1396 /* CTL_DEL can remove links here, but that can't increase our count */
1397 rcu_read_lock();
1398 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1399 child_file = epi->ep->file;
1400 if (is_file_epoll(child_file)) {
1401 if (list_empty(&child_file->f_ep_links)) {
1402 if (path_count_inc(call_nests)) {
1403 error = -1;
1404 break;
1405 }
1406 } else {
1407 error = ep_call_nested(&poll_loop_ncalls,
1408 reverse_path_check_proc,
1409 child_file, child_file,
1410 current);
1411 }
1412 if (error != 0)
1413 break;
1414 } else {
1415 printk(KERN_ERR "reverse_path_check_proc: "
1416 "file is not an ep!\n");
1417 }
1418 }
1419 rcu_read_unlock();
1420 return error;
1421 }
1422
1423 /**
1424 * reverse_path_check - The tfile_check_list is list of file *, which have
1425 * links that are proposed to be newly added. We need to
1426 * make sure that those added links don't add too many
1427 * paths such that we will spend all our time waking up
1428 * eventpoll objects.
1429 *
1430 * Returns: Returns zero if the proposed links don't create too many paths,
1431 * -1 otherwise.
1432 */
1433 static int reverse_path_check(void)
1434 {
1435 int error = 0;
1436 struct file *current_file;
1437
1438 /* let's call this for all tfiles */
1439 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1440 path_count_init();
1441 error = ep_call_nested(&poll_loop_ncalls,
1442 reverse_path_check_proc, current_file,
1443 current_file, current);
1444 if (error)
1445 break;
1446 }
1447 return error;
1448 }
1449
1450 static int ep_create_wakeup_source(struct epitem *epi)
1451 {
1452 struct name_snapshot n;
1453 struct wakeup_source *ws;
1454
1455 if (!epi->ep->ws) {
1456 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1457 if (!epi->ep->ws)
1458 return -ENOMEM;
1459 }
1460
1461 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1462 ws = wakeup_source_register(NULL, n.name.name);
1463 release_dentry_name_snapshot(&n);
1464
1465 if (!ws)
1466 return -ENOMEM;
1467 rcu_assign_pointer(epi->ws, ws);
1468
1469 return 0;
1470 }
1471
1472 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1473 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1474 {
1475 struct wakeup_source *ws = ep_wakeup_source(epi);
1476
1477 RCU_INIT_POINTER(epi->ws, NULL);
1478
1479 /*
1480 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1481 * used internally by wakeup_source_remove, too (called by
1482 * wakeup_source_unregister), so we cannot use call_rcu
1483 */
1484 synchronize_rcu();
1485 wakeup_source_unregister(ws);
1486 }
1487
1488 /*
1489 * Must be called with "mtx" held.
1490 */
1491 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1492 struct file *tfile, int fd, int full_check)
1493 {
1494 int error, pwake = 0;
1495 __poll_t revents;
1496 long user_watches;
1497 struct epitem *epi;
1498 struct ep_pqueue epq;
1499
1500 lockdep_assert_irqs_enabled();
1501
1502 user_watches = atomic_long_read(&ep->user->epoll_watches);
1503 if (unlikely(user_watches >= max_user_watches))
1504 return -ENOSPC;
1505 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1506 return -ENOMEM;
1507
1508 /* Item initialization follow here ... */
1509 INIT_LIST_HEAD(&epi->rdllink);
1510 INIT_LIST_HEAD(&epi->fllink);
1511 INIT_LIST_HEAD(&epi->pwqlist);
1512 epi->ep = ep;
1513 ep_set_ffd(&epi->ffd, tfile, fd);
1514 epi->event = *event;
1515 epi->nwait = 0;
1516 epi->next = EP_UNACTIVE_PTR;
1517 if (epi->event.events & EPOLLWAKEUP) {
1518 error = ep_create_wakeup_source(epi);
1519 if (error)
1520 goto error_create_wakeup_source;
1521 } else {
1522 RCU_INIT_POINTER(epi->ws, NULL);
1523 }
1524
1525 /* Add the current item to the list of active epoll hook for this file */
1526 spin_lock(&tfile->f_lock);
1527 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1528 spin_unlock(&tfile->f_lock);
1529
1530 /*
1531 * Add the current item to the RB tree. All RB tree operations are
1532 * protected by "mtx", and ep_insert() is called with "mtx" held.
1533 */
1534 ep_rbtree_insert(ep, epi);
1535
1536 /* now check if we've created too many backpaths */
1537 error = -EINVAL;
1538 if (full_check && reverse_path_check())
1539 goto error_remove_epi;
1540
1541 /* Initialize the poll table using the queue callback */
1542 epq.epi = epi;
1543 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1544
1545 /*
1546 * Attach the item to the poll hooks and get current event bits.
1547 * We can safely use the file* here because its usage count has
1548 * been increased by the caller of this function. Note that after
1549 * this operation completes, the poll callback can start hitting
1550 * the new item.
1551 */
1552 revents = ep_item_poll(epi, &epq.pt, 1);
1553
1554 /*
1555 * We have to check if something went wrong during the poll wait queue
1556 * install process. Namely an allocation for a wait queue failed due
1557 * high memory pressure.
1558 */
1559 error = -ENOMEM;
1560 if (epi->nwait < 0)
1561 goto error_unregister;
1562
1563 /* We have to drop the new item inside our item list to keep track of it */
1564 write_lock_irq(&ep->lock);
1565
1566 /* record NAPI ID of new item if present */
1567 ep_set_busy_poll_napi_id(epi);
1568
1569 /* If the file is already "ready" we drop it inside the ready list */
1570 if (revents && !ep_is_linked(epi)) {
1571 list_add_tail(&epi->rdllink, &ep->rdllist);
1572 ep_pm_stay_awake(epi);
1573
1574 /* Notify waiting tasks that events are available */
1575 if (waitqueue_active(&ep->wq))
1576 wake_up(&ep->wq);
1577 if (waitqueue_active(&ep->poll_wait))
1578 pwake++;
1579 }
1580
1581 write_unlock_irq(&ep->lock);
1582
1583 atomic_long_inc(&ep->user->epoll_watches);
1584
1585 /* We have to call this outside the lock */
1586 if (pwake)
1587 ep_poll_safewake(ep, NULL);
1588
1589 return 0;
1590
1591 error_unregister:
1592 ep_unregister_pollwait(ep, epi);
1593 error_remove_epi:
1594 spin_lock(&tfile->f_lock);
1595 list_del_rcu(&epi->fllink);
1596 spin_unlock(&tfile->f_lock);
1597
1598 rb_erase_cached(&epi->rbn, &ep->rbr);
1599
1600 /*
1601 * We need to do this because an event could have been arrived on some
1602 * allocated wait queue. Note that we don't care about the ep->ovflist
1603 * list, since that is used/cleaned only inside a section bound by "mtx".
1604 * And ep_insert() is called with "mtx" held.
1605 */
1606 write_lock_irq(&ep->lock);
1607 if (ep_is_linked(epi))
1608 list_del_init(&epi->rdllink);
1609 write_unlock_irq(&ep->lock);
1610
1611 wakeup_source_unregister(ep_wakeup_source(epi));
1612
1613 error_create_wakeup_source:
1614 kmem_cache_free(epi_cache, epi);
1615
1616 return error;
1617 }
1618
1619 /*
1620 * Modify the interest event mask by dropping an event if the new mask
1621 * has a match in the current file status. Must be called with "mtx" held.
1622 */
1623 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1624 const struct epoll_event *event)
1625 {
1626 int pwake = 0;
1627 poll_table pt;
1628
1629 lockdep_assert_irqs_enabled();
1630
1631 init_poll_funcptr(&pt, NULL);
1632
1633 /*
1634 * Set the new event interest mask before calling f_op->poll();
1635 * otherwise we might miss an event that happens between the
1636 * f_op->poll() call and the new event set registering.
1637 */
1638 epi->event.events = event->events; /* need barrier below */
1639 epi->event.data = event->data; /* protected by mtx */
1640 if (epi->event.events & EPOLLWAKEUP) {
1641 if (!ep_has_wakeup_source(epi))
1642 ep_create_wakeup_source(epi);
1643 } else if (ep_has_wakeup_source(epi)) {
1644 ep_destroy_wakeup_source(epi);
1645 }
1646
1647 /*
1648 * The following barrier has two effects:
1649 *
1650 * 1) Flush epi changes above to other CPUs. This ensures
1651 * we do not miss events from ep_poll_callback if an
1652 * event occurs immediately after we call f_op->poll().
1653 * We need this because we did not take ep->lock while
1654 * changing epi above (but ep_poll_callback does take
1655 * ep->lock).
1656 *
1657 * 2) We also need to ensure we do not miss _past_ events
1658 * when calling f_op->poll(). This barrier also
1659 * pairs with the barrier in wq_has_sleeper (see
1660 * comments for wq_has_sleeper).
1661 *
1662 * This barrier will now guarantee ep_poll_callback or f_op->poll
1663 * (or both) will notice the readiness of an item.
1664 */
1665 smp_mb();
1666
1667 /*
1668 * Get current event bits. We can safely use the file* here because
1669 * its usage count has been increased by the caller of this function.
1670 * If the item is "hot" and it is not registered inside the ready
1671 * list, push it inside.
1672 */
1673 if (ep_item_poll(epi, &pt, 1)) {
1674 write_lock_irq(&ep->lock);
1675 if (!ep_is_linked(epi)) {
1676 list_add_tail(&epi->rdllink, &ep->rdllist);
1677 ep_pm_stay_awake(epi);
1678
1679 /* Notify waiting tasks that events are available */
1680 if (waitqueue_active(&ep->wq))
1681 wake_up(&ep->wq);
1682 if (waitqueue_active(&ep->poll_wait))
1683 pwake++;
1684 }
1685 write_unlock_irq(&ep->lock);
1686 }
1687
1688 /* We have to call this outside the lock */
1689 if (pwake)
1690 ep_poll_safewake(ep, NULL);
1691
1692 return 0;
1693 }
1694
1695 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1696 void *priv)
1697 {
1698 struct ep_send_events_data *esed = priv;
1699 __poll_t revents;
1700 struct epitem *epi, *tmp;
1701 struct epoll_event __user *uevent = esed->events;
1702 struct wakeup_source *ws;
1703 poll_table pt;
1704
1705 init_poll_funcptr(&pt, NULL);
1706 esed->res = 0;
1707
1708 /*
1709 * We can loop without lock because we are passed a task private list.
1710 * Items cannot vanish during the loop because ep_scan_ready_list() is
1711 * holding "mtx" during this call.
1712 */
1713 lockdep_assert_held(&ep->mtx);
1714
1715 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1716 if (esed->res >= esed->maxevents)
1717 break;
1718
1719 /*
1720 * Activate ep->ws before deactivating epi->ws to prevent
1721 * triggering auto-suspend here (in case we reactive epi->ws
1722 * below).
1723 *
1724 * This could be rearranged to delay the deactivation of epi->ws
1725 * instead, but then epi->ws would temporarily be out of sync
1726 * with ep_is_linked().
1727 */
1728 ws = ep_wakeup_source(epi);
1729 if (ws) {
1730 if (ws->active)
1731 __pm_stay_awake(ep->ws);
1732 __pm_relax(ws);
1733 }
1734
1735 list_del_init(&epi->rdllink);
1736
1737 /*
1738 * If the event mask intersect the caller-requested one,
1739 * deliver the event to userspace. Again, ep_scan_ready_list()
1740 * is holding ep->mtx, so no operations coming from userspace
1741 * can change the item.
1742 */
1743 revents = ep_item_poll(epi, &pt, 1);
1744 if (!revents)
1745 continue;
1746
1747 if (__put_user(revents, &uevent->events) ||
1748 __put_user(epi->event.data, &uevent->data)) {
1749 list_add(&epi->rdllink, head);
1750 ep_pm_stay_awake(epi);
1751 if (!esed->res)
1752 esed->res = -EFAULT;
1753 return 0;
1754 }
1755 esed->res++;
1756 uevent++;
1757 if (epi->event.events & EPOLLONESHOT)
1758 epi->event.events &= EP_PRIVATE_BITS;
1759 else if (!(epi->event.events & EPOLLET)) {
1760 /*
1761 * If this file has been added with Level
1762 * Trigger mode, we need to insert back inside
1763 * the ready list, so that the next call to
1764 * epoll_wait() will check again the events
1765 * availability. At this point, no one can insert
1766 * into ep->rdllist besides us. The epoll_ctl()
1767 * callers are locked out by
1768 * ep_scan_ready_list() holding "mtx" and the
1769 * poll callback will queue them in ep->ovflist.
1770 */
1771 list_add_tail(&epi->rdllink, &ep->rdllist);
1772 ep_pm_stay_awake(epi);
1773 }
1774 }
1775
1776 return 0;
1777 }
1778
1779 static int ep_send_events(struct eventpoll *ep,
1780 struct epoll_event __user *events, int maxevents)
1781 {
1782 struct ep_send_events_data esed;
1783
1784 esed.maxevents = maxevents;
1785 esed.events = events;
1786
1787 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1788 return esed.res;
1789 }
1790
1791 static inline struct timespec64 ep_set_mstimeout(long ms)
1792 {
1793 struct timespec64 now, ts = {
1794 .tv_sec = ms / MSEC_PER_SEC,
1795 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1796 };
1797
1798 ktime_get_ts64(&now);
1799 return timespec64_add_safe(now, ts);
1800 }
1801
1802 /**
1803 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1804 * event buffer.
1805 *
1806 * @ep: Pointer to the eventpoll context.
1807 * @events: Pointer to the userspace buffer where the ready events should be
1808 * stored.
1809 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1810 * @timeout: Maximum timeout for the ready events fetch operation, in
1811 * milliseconds. If the @timeout is zero, the function will not block,
1812 * while if the @timeout is less than zero, the function will block
1813 * until at least one event has been retrieved (or an error
1814 * occurred).
1815 *
1816 * Returns: Returns the number of ready events which have been fetched, or an
1817 * error code, in case of error.
1818 */
1819 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1820 int maxevents, long timeout)
1821 {
1822 int res = 0, eavail, timed_out = 0;
1823 u64 slack = 0;
1824 wait_queue_entry_t wait;
1825 ktime_t expires, *to = NULL;
1826
1827 lockdep_assert_irqs_enabled();
1828
1829 if (timeout > 0) {
1830 struct timespec64 end_time = ep_set_mstimeout(timeout);
1831
1832 slack = select_estimate_accuracy(&end_time);
1833 to = &expires;
1834 *to = timespec64_to_ktime(end_time);
1835 } else if (timeout == 0) {
1836 /*
1837 * Avoid the unnecessary trip to the wait queue loop, if the
1838 * caller specified a non blocking operation. We still need
1839 * lock because we could race and not see an epi being added
1840 * to the ready list while in irq callback. Thus incorrectly
1841 * returning 0 back to userspace.
1842 */
1843 timed_out = 1;
1844
1845 write_lock_irq(&ep->lock);
1846 eavail = ep_events_available(ep);
1847 write_unlock_irq(&ep->lock);
1848
1849 goto send_events;
1850 }
1851
1852 fetch_events:
1853
1854 if (!ep_events_available(ep))
1855 ep_busy_loop(ep, timed_out);
1856
1857 eavail = ep_events_available(ep);
1858 if (eavail)
1859 goto send_events;
1860
1861 /*
1862 * Busy poll timed out. Drop NAPI ID for now, we can add
1863 * it back in when we have moved a socket with a valid NAPI
1864 * ID onto the ready list.
1865 */
1866 ep_reset_busy_poll_napi_id(ep);
1867
1868 do {
1869 /*
1870 * Internally init_wait() uses autoremove_wake_function(),
1871 * thus wait entry is removed from the wait queue on each
1872 * wakeup. Why it is important? In case of several waiters
1873 * each new wakeup will hit the next waiter, giving it the
1874 * chance to harvest new event. Otherwise wakeup can be
1875 * lost. This is also good performance-wise, because on
1876 * normal wakeup path no need to call __remove_wait_queue()
1877 * explicitly, thus ep->lock is not taken, which halts the
1878 * event delivery.
1879 */
1880 init_wait(&wait);
1881
1882 write_lock_irq(&ep->lock);
1883 /*
1884 * Barrierless variant, waitqueue_active() is called under
1885 * the same lock on wakeup ep_poll_callback() side, so it
1886 * is safe to avoid an explicit barrier.
1887 */
1888 __set_current_state(TASK_INTERRUPTIBLE);
1889
1890 /*
1891 * Do the final check under the lock. ep_scan_ready_list()
1892 * plays with two lists (->rdllist and ->ovflist) and there
1893 * is always a race when both lists are empty for short
1894 * period of time although events are pending, so lock is
1895 * important.
1896 */
1897 eavail = ep_events_available(ep);
1898 if (!eavail) {
1899 if (signal_pending(current))
1900 res = -EINTR;
1901 else
1902 __add_wait_queue_exclusive(&ep->wq, &wait);
1903 }
1904 write_unlock_irq(&ep->lock);
1905
1906 if (eavail || res)
1907 break;
1908
1909 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1910 timed_out = 1;
1911 break;
1912 }
1913
1914 /* We were woken up, thus go and try to harvest some events */
1915 eavail = 1;
1916
1917 } while (0);
1918
1919 __set_current_state(TASK_RUNNING);
1920
1921 if (!list_empty_careful(&wait.entry)) {
1922 write_lock_irq(&ep->lock);
1923 __remove_wait_queue(&ep->wq, &wait);
1924 write_unlock_irq(&ep->lock);
1925 }
1926
1927 send_events:
1928 if (fatal_signal_pending(current)) {
1929 /*
1930 * Always short-circuit for fatal signals to allow
1931 * threads to make a timely exit without the chance of
1932 * finding more events available and fetching
1933 * repeatedly.
1934 */
1935 res = -EINTR;
1936 }
1937 /*
1938 * Try to transfer events to user space. In case we get 0 events and
1939 * there's still timeout left over, we go trying again in search of
1940 * more luck.
1941 */
1942 if (!res && eavail &&
1943 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1944 goto fetch_events;
1945
1946 return res;
1947 }
1948
1949 /**
1950 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1951 * API, to verify that adding an epoll file inside another
1952 * epoll structure, does not violate the constraints, in
1953 * terms of closed loops, or too deep chains (which can
1954 * result in excessive stack usage).
1955 *
1956 * @priv: Pointer to the epoll file to be currently checked.
1957 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1958 * data structure pointer.
1959 * @call_nests: Current dept of the @ep_call_nested() call stack.
1960 *
1961 * Returns: Returns zero if adding the epoll @file inside current epoll
1962 * structure @ep does not violate the constraints, or -1 otherwise.
1963 */
1964 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1965 {
1966 int error = 0;
1967 struct file *file = priv;
1968 struct eventpoll *ep = file->private_data;
1969 struct eventpoll *ep_tovisit;
1970 struct rb_node *rbp;
1971 struct epitem *epi;
1972
1973 mutex_lock_nested(&ep->mtx, call_nests + 1);
1974 ep->gen = loop_check_gen;
1975 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1976 epi = rb_entry(rbp, struct epitem, rbn);
1977 if (unlikely(is_file_epoll(epi->ffd.file))) {
1978 ep_tovisit = epi->ffd.file->private_data;
1979 if (ep_tovisit->gen == loop_check_gen)
1980 continue;
1981 error = ep_call_nested(&poll_loop_ncalls,
1982 ep_loop_check_proc, epi->ffd.file,
1983 ep_tovisit, current);
1984 if (error != 0)
1985 break;
1986 } else {
1987 /*
1988 * If we've reached a file that is not associated with
1989 * an ep, then we need to check if the newly added
1990 * links are going to add too many wakeup paths. We do
1991 * this by adding it to the tfile_check_list, if it's
1992 * not already there, and calling reverse_path_check()
1993 * during ep_insert().
1994 */
1995 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1996 if (get_file_rcu(epi->ffd.file))
1997 list_add(&epi->ffd.file->f_tfile_llink,
1998 &tfile_check_list);
1999 }
2000 }
2001 }
2002 mutex_unlock(&ep->mtx);
2003
2004 return error;
2005 }
2006
2007 /**
2008 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2009 * another epoll file (represented by @ep) does not create
2010 * closed loops or too deep chains.
2011 *
2012 * @ep: Pointer to the epoll private data structure.
2013 * @file: Pointer to the epoll file to be checked.
2014 *
2015 * Returns: Returns zero if adding the epoll @file inside current epoll
2016 * structure @ep does not violate the constraints, or -1 otherwise.
2017 */
2018 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2019 {
2020 return ep_call_nested(&poll_loop_ncalls,
2021 ep_loop_check_proc, file, ep, current);
2022 }
2023
2024 static void clear_tfile_check_list(void)
2025 {
2026 struct file *file;
2027
2028 /* first clear the tfile_check_list */
2029 while (!list_empty(&tfile_check_list)) {
2030 file = list_first_entry(&tfile_check_list, struct file,
2031 f_tfile_llink);
2032 list_del_init(&file->f_tfile_llink);
2033 fput(file);
2034 }
2035 INIT_LIST_HEAD(&tfile_check_list);
2036 }
2037
2038 /*
2039 * Open an eventpoll file descriptor.
2040 */
2041 static int do_epoll_create(int flags)
2042 {
2043 int error, fd;
2044 struct eventpoll *ep = NULL;
2045 struct file *file;
2046
2047 /* Check the EPOLL_* constant for consistency. */
2048 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2049
2050 if (flags & ~EPOLL_CLOEXEC)
2051 return -EINVAL;
2052 /*
2053 * Create the internal data structure ("struct eventpoll").
2054 */
2055 error = ep_alloc(&ep);
2056 if (error < 0)
2057 return error;
2058 /*
2059 * Creates all the items needed to setup an eventpoll file. That is,
2060 * a file structure and a free file descriptor.
2061 */
2062 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2063 if (fd < 0) {
2064 error = fd;
2065 goto out_free_ep;
2066 }
2067 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2068 O_RDWR | (flags & O_CLOEXEC));
2069 if (IS_ERR(file)) {
2070 error = PTR_ERR(file);
2071 goto out_free_fd;
2072 }
2073 ep->file = file;
2074 fd_install(fd, file);
2075 return fd;
2076
2077 out_free_fd:
2078 put_unused_fd(fd);
2079 out_free_ep:
2080 ep_free(ep);
2081 return error;
2082 }
2083
2084 SYSCALL_DEFINE1(epoll_create1, int, flags)
2085 {
2086 return do_epoll_create(flags);
2087 }
2088
2089 SYSCALL_DEFINE1(epoll_create, int, size)
2090 {
2091 if (size <= 0)
2092 return -EINVAL;
2093
2094 return do_epoll_create(0);
2095 }
2096
2097 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2098 bool nonblock)
2099 {
2100 if (!nonblock) {
2101 mutex_lock_nested(mutex, depth);
2102 return 0;
2103 }
2104 if (mutex_trylock(mutex))
2105 return 0;
2106 return -EAGAIN;
2107 }
2108
2109 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2110 bool nonblock)
2111 {
2112 int error;
2113 int full_check = 0;
2114 struct fd f, tf;
2115 struct eventpoll *ep;
2116 struct epitem *epi;
2117 struct eventpoll *tep = NULL;
2118
2119 error = -EBADF;
2120 f = fdget(epfd);
2121 if (!f.file)
2122 goto error_return;
2123
2124 /* Get the "struct file *" for the target file */
2125 tf = fdget(fd);
2126 if (!tf.file)
2127 goto error_fput;
2128
2129 /* The target file descriptor must support poll */
2130 error = -EPERM;
2131 if (!file_can_poll(tf.file))
2132 goto error_tgt_fput;
2133
2134 /* Check if EPOLLWAKEUP is allowed */
2135 if (ep_op_has_event(op))
2136 ep_take_care_of_epollwakeup(epds);
2137
2138 /*
2139 * We have to check that the file structure underneath the file descriptor
2140 * the user passed to us _is_ an eventpoll file. And also we do not permit
2141 * adding an epoll file descriptor inside itself.
2142 */
2143 error = -EINVAL;
2144 if (f.file == tf.file || !is_file_epoll(f.file))
2145 goto error_tgt_fput;
2146
2147 /*
2148 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2149 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2150 * Also, we do not currently supported nested exclusive wakeups.
2151 */
2152 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2153 if (op == EPOLL_CTL_MOD)
2154 goto error_tgt_fput;
2155 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2156 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2157 goto error_tgt_fput;
2158 }
2159
2160 /*
2161 * At this point it is safe to assume that the "private_data" contains
2162 * our own data structure.
2163 */
2164 ep = f.file->private_data;
2165
2166 /*
2167 * When we insert an epoll file descriptor, inside another epoll file
2168 * descriptor, there is the change of creating closed loops, which are
2169 * better be handled here, than in more critical paths. While we are
2170 * checking for loops we also determine the list of files reachable
2171 * and hang them on the tfile_check_list, so we can check that we
2172 * haven't created too many possible wakeup paths.
2173 *
2174 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2175 * the epoll file descriptor is attaching directly to a wakeup source,
2176 * unless the epoll file descriptor is nested. The purpose of taking the
2177 * 'epmutex' on add is to prevent complex toplogies such as loops and
2178 * deep wakeup paths from forming in parallel through multiple
2179 * EPOLL_CTL_ADD operations.
2180 */
2181 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2182 if (error)
2183 goto error_tgt_fput;
2184 if (op == EPOLL_CTL_ADD) {
2185 if (!list_empty(&f.file->f_ep_links) ||
2186 ep->gen == loop_check_gen ||
2187 is_file_epoll(tf.file)) {
2188 mutex_unlock(&ep->mtx);
2189 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2190 if (error)
2191 goto error_tgt_fput;
2192 loop_check_gen++;
2193 full_check = 1;
2194 if (is_file_epoll(tf.file)) {
2195 error = -ELOOP;
2196 if (ep_loop_check(ep, tf.file) != 0)
2197 goto error_tgt_fput;
2198 } else {
2199 get_file(tf.file);
2200 list_add(&tf.file->f_tfile_llink,
2201 &tfile_check_list);
2202 }
2203 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2204 if (error)
2205 goto error_tgt_fput;
2206 if (is_file_epoll(tf.file)) {
2207 tep = tf.file->private_data;
2208 error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2209 if (error) {
2210 mutex_unlock(&ep->mtx);
2211 goto error_tgt_fput;
2212 }
2213 }
2214 }
2215 }
2216
2217 /*
2218 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2219 * above, we can be sure to be able to use the item looked up by
2220 * ep_find() till we release the mutex.
2221 */
2222 epi = ep_find(ep, tf.file, fd);
2223
2224 error = -EINVAL;
2225 switch (op) {
2226 case EPOLL_CTL_ADD:
2227 if (!epi) {
2228 epds->events |= EPOLLERR | EPOLLHUP;
2229 error = ep_insert(ep, epds, tf.file, fd, full_check);
2230 } else
2231 error = -EEXIST;
2232 break;
2233 case EPOLL_CTL_DEL:
2234 if (epi)
2235 error = ep_remove(ep, epi);
2236 else
2237 error = -ENOENT;
2238 break;
2239 case EPOLL_CTL_MOD:
2240 if (epi) {
2241 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2242 epds->events |= EPOLLERR | EPOLLHUP;
2243 error = ep_modify(ep, epi, epds);
2244 }
2245 } else
2246 error = -ENOENT;
2247 break;
2248 }
2249 if (tep != NULL)
2250 mutex_unlock(&tep->mtx);
2251 mutex_unlock(&ep->mtx);
2252
2253 error_tgt_fput:
2254 if (full_check) {
2255 clear_tfile_check_list();
2256 loop_check_gen++;
2257 mutex_unlock(&epmutex);
2258 }
2259
2260 fdput(tf);
2261 error_fput:
2262 fdput(f);
2263 error_return:
2264
2265 return error;
2266 }
2267
2268 /*
2269 * The following function implements the controller interface for
2270 * the eventpoll file that enables the insertion/removal/change of
2271 * file descriptors inside the interest set.
2272 */
2273 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2274 struct epoll_event __user *, event)
2275 {
2276 struct epoll_event epds;
2277
2278 if (ep_op_has_event(op) &&
2279 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2280 return -EFAULT;
2281
2282 return do_epoll_ctl(epfd, op, fd, &epds, false);
2283 }
2284
2285 /*
2286 * Implement the event wait interface for the eventpoll file. It is the kernel
2287 * part of the user space epoll_wait(2).
2288 */
2289 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2290 int maxevents, int timeout)
2291 {
2292 int error;
2293 struct fd f;
2294 struct eventpoll *ep;
2295
2296 /* The maximum number of event must be greater than zero */
2297 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2298 return -EINVAL;
2299
2300 /* Verify that the area passed by the user is writeable */
2301 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2302 return -EFAULT;
2303
2304 /* Get the "struct file *" for the eventpoll file */
2305 f = fdget(epfd);
2306 if (!f.file)
2307 return -EBADF;
2308
2309 /*
2310 * We have to check that the file structure underneath the fd
2311 * the user passed to us _is_ an eventpoll file.
2312 */
2313 error = -EINVAL;
2314 if (!is_file_epoll(f.file))
2315 goto error_fput;
2316
2317 /*
2318 * At this point it is safe to assume that the "private_data" contains
2319 * our own data structure.
2320 */
2321 ep = f.file->private_data;
2322
2323 /* Time to fish for events ... */
2324 error = ep_poll(ep, events, maxevents, timeout);
2325
2326 error_fput:
2327 fdput(f);
2328 return error;
2329 }
2330
2331 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2332 int, maxevents, int, timeout)
2333 {
2334 return do_epoll_wait(epfd, events, maxevents, timeout);
2335 }
2336
2337 /*
2338 * Implement the event wait interface for the eventpoll file. It is the kernel
2339 * part of the user space epoll_pwait(2).
2340 */
2341 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2342 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2343 size_t, sigsetsize)
2344 {
2345 int error;
2346
2347 /*
2348 * If the caller wants a certain signal mask to be set during the wait,
2349 * we apply it here.
2350 */
2351 error = set_user_sigmask(sigmask, sigsetsize);
2352 if (error)
2353 return error;
2354
2355 error = do_epoll_wait(epfd, events, maxevents, timeout);
2356 restore_saved_sigmask_unless(error == -EINTR);
2357
2358 return error;
2359 }
2360
2361 #ifdef CONFIG_COMPAT
2362 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2363 struct epoll_event __user *, events,
2364 int, maxevents, int, timeout,
2365 const compat_sigset_t __user *, sigmask,
2366 compat_size_t, sigsetsize)
2367 {
2368 long err;
2369
2370 /*
2371 * If the caller wants a certain signal mask to be set during the wait,
2372 * we apply it here.
2373 */
2374 err = set_compat_user_sigmask(sigmask, sigsetsize);
2375 if (err)
2376 return err;
2377
2378 err = do_epoll_wait(epfd, events, maxevents, timeout);
2379 restore_saved_sigmask_unless(err == -EINTR);
2380
2381 return err;
2382 }
2383 #endif
2384
2385 static int __init eventpoll_init(void)
2386 {
2387 struct sysinfo si;
2388
2389 si_meminfo(&si);
2390 /*
2391 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2392 */
2393 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2394 EP_ITEM_COST;
2395 BUG_ON(max_user_watches < 0);
2396
2397 /*
2398 * Initialize the structure used to perform epoll file descriptor
2399 * inclusion loops checks.
2400 */
2401 ep_nested_calls_init(&poll_loop_ncalls);
2402
2403 /*
2404 * We can have many thousands of epitems, so prevent this from
2405 * using an extra cache line on 64-bit (and smaller) CPUs
2406 */
2407 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2408
2409 /* Allocates slab cache used to allocate "struct epitem" items */
2410 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2411 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2412
2413 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2414 pwq_cache = kmem_cache_create("eventpoll_pwq",
2415 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2416
2417 return 0;
2418 }
2419 fs_initcall(eventpoll_init);