]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/eventpoll.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46
47 /*
48 * LOCKING:
49 * There are three level of locking required by epoll :
50 *
51 * 1) epmutex (mutex)
52 * 2) ep->mtx (mutex)
53 * 3) ep->lock (spinlock)
54 *
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * and ep_free().
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
77 * going to.
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
86 * the lockdep subkey.
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
93 */
94
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97
98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111
112 struct epoll_filefd {
113 struct file *file;
114 int fd;
115 } __packed;
116
117 /*
118 * Structure used to track possible nested calls, for too deep recursions
119 * and loop cycles.
120 */
121 struct nested_call_node {
122 struct list_head llink;
123 void *cookie;
124 void *ctx;
125 };
126
127 /*
128 * This structure is used as collector for nested calls, to check for
129 * maximum recursion dept and loop cycles.
130 */
131 struct nested_calls {
132 struct list_head tasks_call_list;
133 spinlock_t lock;
134 };
135
136 /*
137 * Each file descriptor added to the eventpoll interface will
138 * have an entry of this type linked to the "rbr" RB tree.
139 * Avoid increasing the size of this struct, there can be many thousands
140 * of these on a server and we do not want this to take another cache line.
141 */
142 struct epitem {
143 union {
144 /* RB tree node links this structure to the eventpoll RB tree */
145 struct rb_node rbn;
146 /* Used to free the struct epitem */
147 struct rcu_head rcu;
148 };
149
150 /* List header used to link this structure to the eventpoll ready list */
151 struct list_head rdllink;
152
153 /*
154 * Works together "struct eventpoll"->ovflist in keeping the
155 * single linked chain of items.
156 */
157 struct epitem *next;
158
159 /* The file descriptor information this item refers to */
160 struct epoll_filefd ffd;
161
162 /* Number of active wait queue attached to poll operations */
163 int nwait;
164
165 /* List containing poll wait queues */
166 struct list_head pwqlist;
167
168 /* The "container" of this item */
169 struct eventpoll *ep;
170
171 /* List header used to link this item to the "struct file" items list */
172 struct list_head fllink;
173
174 /* wakeup_source used when EPOLLWAKEUP is set */
175 struct wakeup_source __rcu *ws;
176
177 /* The structure that describe the interested events and the source fd */
178 struct epoll_event event;
179 };
180
181 /*
182 * This structure is stored inside the "private_data" member of the file
183 * structure and represents the main data structure for the eventpoll
184 * interface.
185 */
186 struct eventpoll {
187 /* Protect the access to this structure */
188 spinlock_t lock;
189
190 /*
191 * This mutex is used to ensure that files are not removed
192 * while epoll is using them. This is held during the event
193 * collection loop, the file cleanup path, the epoll file exit
194 * code and the ctl operations.
195 */
196 struct mutex mtx;
197
198 /* Wait queue used by sys_epoll_wait() */
199 wait_queue_head_t wq;
200
201 /* Wait queue used by file->poll() */
202 wait_queue_head_t poll_wait;
203
204 /* List of ready file descriptors */
205 struct list_head rdllist;
206
207 /* RB tree root used to store monitored fd structs */
208 struct rb_root rbr;
209
210 /*
211 * This is a single linked list that chains all the "struct epitem" that
212 * happened while transferring ready events to userspace w/out
213 * holding ->lock.
214 */
215 struct epitem *ovflist;
216
217 /* wakeup_source used when ep_scan_ready_list is running */
218 struct wakeup_source *ws;
219
220 /* The user that created the eventpoll descriptor */
221 struct user_struct *user;
222
223 struct file *file;
224
225 /* used to optimize loop detection check */
226 int visited;
227 struct list_head visited_list_link;
228
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 /* used to track busy poll napi_id */
231 unsigned int napi_id;
232 #endif
233 };
234
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 /* List header used to link this structure to the "struct epitem" */
238 struct list_head llink;
239
240 /* The "base" pointer is set to the container "struct epitem" */
241 struct epitem *base;
242
243 /*
244 * Wait queue item that will be linked to the target file wait
245 * queue head.
246 */
247 wait_queue_entry_t wait;
248
249 /* The wait queue head that linked the "wait" wait queue item */
250 wait_queue_head_t *whead;
251 };
252
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 poll_table pt;
256 struct epitem *epi;
257 };
258
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 int maxevents;
262 struct epoll_event __user *events;
263 };
264
265 /*
266 * Configuration options available inside /proc/sys/fs/epoll/
267 */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270
271 /*
272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
273 */
274 static DEFINE_MUTEX(epmutex);
275
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls;
278
279 /* Used for safe wake up implementation */
280 static struct nested_calls poll_safewake_ncalls;
281
282 /* Used to call file's f_op->poll() under the nested calls boundaries */
283 static struct nested_calls poll_readywalk_ncalls;
284
285 /* Slab cache used to allocate "struct epitem" */
286 static struct kmem_cache *epi_cache __read_mostly;
287
288 /* Slab cache used to allocate "struct eppoll_entry" */
289 static struct kmem_cache *pwq_cache __read_mostly;
290
291 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
292 static LIST_HEAD(visited_list);
293
294 /*
295 * List of files with newly added links, where we may need to limit the number
296 * of emanating paths. Protected by the epmutex.
297 */
298 static LIST_HEAD(tfile_check_list);
299
300 #ifdef CONFIG_SYSCTL
301
302 #include <linux/sysctl.h>
303
304 static long zero;
305 static long long_max = LONG_MAX;
306
307 struct ctl_table epoll_table[] = {
308 {
309 .procname = "max_user_watches",
310 .data = &max_user_watches,
311 .maxlen = sizeof(max_user_watches),
312 .mode = 0644,
313 .proc_handler = proc_doulongvec_minmax,
314 .extra1 = &zero,
315 .extra2 = &long_max,
316 },
317 { }
318 };
319 #endif /* CONFIG_SYSCTL */
320
321 static const struct file_operations eventpoll_fops;
322
323 static inline int is_file_epoll(struct file *f)
324 {
325 return f->f_op == &eventpoll_fops;
326 }
327
328 /* Setup the structure that is used as key for the RB tree */
329 static inline void ep_set_ffd(struct epoll_filefd *ffd,
330 struct file *file, int fd)
331 {
332 ffd->file = file;
333 ffd->fd = fd;
334 }
335
336 /* Compare RB tree keys */
337 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
338 struct epoll_filefd *p2)
339 {
340 return (p1->file > p2->file ? +1:
341 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
342 }
343
344 /* Tells us if the item is currently linked */
345 static inline int ep_is_linked(struct list_head *p)
346 {
347 return !list_empty(p);
348 }
349
350 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
351 {
352 return container_of(p, struct eppoll_entry, wait);
353 }
354
355 /* Get the "struct epitem" from a wait queue pointer */
356 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
357 {
358 return container_of(p, struct eppoll_entry, wait)->base;
359 }
360
361 /* Get the "struct epitem" from an epoll queue wrapper */
362 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
363 {
364 return container_of(p, struct ep_pqueue, pt)->epi;
365 }
366
367 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
368 static inline int ep_op_has_event(int op)
369 {
370 return op != EPOLL_CTL_DEL;
371 }
372
373 /* Initialize the poll safe wake up structure */
374 static void ep_nested_calls_init(struct nested_calls *ncalls)
375 {
376 INIT_LIST_HEAD(&ncalls->tasks_call_list);
377 spin_lock_init(&ncalls->lock);
378 }
379
380 /**
381 * ep_events_available - Checks if ready events might be available.
382 *
383 * @ep: Pointer to the eventpoll context.
384 *
385 * Returns: Returns a value different than zero if ready events are available,
386 * or zero otherwise.
387 */
388 static inline int ep_events_available(struct eventpoll *ep)
389 {
390 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
391 }
392
393 #ifdef CONFIG_NET_RX_BUSY_POLL
394 static bool ep_busy_loop_end(void *p, unsigned long start_time)
395 {
396 struct eventpoll *ep = p;
397
398 return ep_events_available(ep) || busy_loop_timeout(start_time);
399 }
400 #endif /* CONFIG_NET_RX_BUSY_POLL */
401
402 /*
403 * Busy poll if globally on and supporting sockets found && no events,
404 * busy loop will return if need_resched or ep_events_available.
405 *
406 * we must do our busy polling with irqs enabled
407 */
408 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
409 {
410 #ifdef CONFIG_NET_RX_BUSY_POLL
411 unsigned int napi_id = READ_ONCE(ep->napi_id);
412
413 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
414 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
415 #endif
416 }
417
418 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
419 {
420 #ifdef CONFIG_NET_RX_BUSY_POLL
421 if (ep->napi_id)
422 ep->napi_id = 0;
423 #endif
424 }
425
426 /*
427 * Set epoll busy poll NAPI ID from sk.
428 */
429 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
430 {
431 #ifdef CONFIG_NET_RX_BUSY_POLL
432 struct eventpoll *ep;
433 unsigned int napi_id;
434 struct socket *sock;
435 struct sock *sk;
436 int err;
437
438 if (!net_busy_loop_on())
439 return;
440
441 sock = sock_from_file(epi->ffd.file, &err);
442 if (!sock)
443 return;
444
445 sk = sock->sk;
446 if (!sk)
447 return;
448
449 napi_id = READ_ONCE(sk->sk_napi_id);
450 ep = epi->ep;
451
452 /* Non-NAPI IDs can be rejected
453 * or
454 * Nothing to do if we already have this ID
455 */
456 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
457 return;
458
459 /* record NAPI ID for use in next busy poll */
460 ep->napi_id = napi_id;
461 #endif
462 }
463
464 /**
465 * ep_call_nested - Perform a bound (possibly) nested call, by checking
466 * that the recursion limit is not exceeded, and that
467 * the same nested call (by the meaning of same cookie) is
468 * no re-entered.
469 *
470 * @ncalls: Pointer to the nested_calls structure to be used for this call.
471 * @max_nests: Maximum number of allowed nesting calls.
472 * @nproc: Nested call core function pointer.
473 * @priv: Opaque data to be passed to the @nproc callback.
474 * @cookie: Cookie to be used to identify this nested call.
475 * @ctx: This instance context.
476 *
477 * Returns: Returns the code returned by the @nproc callback, or -1 if
478 * the maximum recursion limit has been exceeded.
479 */
480 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
481 int (*nproc)(void *, void *, int), void *priv,
482 void *cookie, void *ctx)
483 {
484 int error, call_nests = 0;
485 unsigned long flags;
486 struct list_head *lsthead = &ncalls->tasks_call_list;
487 struct nested_call_node *tncur;
488 struct nested_call_node tnode;
489
490 spin_lock_irqsave(&ncalls->lock, flags);
491
492 /*
493 * Try to see if the current task is already inside this wakeup call.
494 * We use a list here, since the population inside this set is always
495 * very much limited.
496 */
497 list_for_each_entry(tncur, lsthead, llink) {
498 if (tncur->ctx == ctx &&
499 (tncur->cookie == cookie || ++call_nests > max_nests)) {
500 /*
501 * Ops ... loop detected or maximum nest level reached.
502 * We abort this wake by breaking the cycle itself.
503 */
504 error = -1;
505 goto out_unlock;
506 }
507 }
508
509 /* Add the current task and cookie to the list */
510 tnode.ctx = ctx;
511 tnode.cookie = cookie;
512 list_add(&tnode.llink, lsthead);
513
514 spin_unlock_irqrestore(&ncalls->lock, flags);
515
516 /* Call the nested function */
517 error = (*nproc)(priv, cookie, call_nests);
518
519 /* Remove the current task from the list */
520 spin_lock_irqsave(&ncalls->lock, flags);
521 list_del(&tnode.llink);
522 out_unlock:
523 spin_unlock_irqrestore(&ncalls->lock, flags);
524
525 return error;
526 }
527
528 /*
529 * As described in commit 0ccf831cb lockdep: annotate epoll
530 * the use of wait queues used by epoll is done in a very controlled
531 * manner. Wake ups can nest inside each other, but are never done
532 * with the same locking. For example:
533 *
534 * dfd = socket(...);
535 * efd1 = epoll_create();
536 * efd2 = epoll_create();
537 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
538 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
539 *
540 * When a packet arrives to the device underneath "dfd", the net code will
541 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
542 * callback wakeup entry on that queue, and the wake_up() performed by the
543 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
544 * (efd1) notices that it may have some event ready, so it needs to wake up
545 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
546 * that ends up in another wake_up(), after having checked about the
547 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
548 * avoid stack blasting.
549 *
550 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
551 * this special case of epoll.
552 */
553 #ifdef CONFIG_DEBUG_LOCK_ALLOC
554 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
555 unsigned long events, int subclass)
556 {
557 unsigned long flags;
558
559 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
560 wake_up_locked_poll(wqueue, events);
561 spin_unlock_irqrestore(&wqueue->lock, flags);
562 }
563 #else
564 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
565 unsigned long events, int subclass)
566 {
567 wake_up_poll(wqueue, events);
568 }
569 #endif
570
571 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
572 {
573 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
574 1 + call_nests);
575 return 0;
576 }
577
578 /*
579 * Perform a safe wake up of the poll wait list. The problem is that
580 * with the new callback'd wake up system, it is possible that the
581 * poll callback is reentered from inside the call to wake_up() done
582 * on the poll wait queue head. The rule is that we cannot reenter the
583 * wake up code from the same task more than EP_MAX_NESTS times,
584 * and we cannot reenter the same wait queue head at all. This will
585 * enable to have a hierarchy of epoll file descriptor of no more than
586 * EP_MAX_NESTS deep.
587 */
588 static void ep_poll_safewake(wait_queue_head_t *wq)
589 {
590 int this_cpu = get_cpu();
591
592 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
593 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
594
595 put_cpu();
596 }
597
598 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
599 {
600 wait_queue_head_t *whead;
601
602 rcu_read_lock();
603 /* If it is cleared by POLLFREE, it should be rcu-safe */
604 whead = rcu_dereference(pwq->whead);
605 if (whead)
606 remove_wait_queue(whead, &pwq->wait);
607 rcu_read_unlock();
608 }
609
610 /*
611 * This function unregisters poll callbacks from the associated file
612 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
613 * ep_free).
614 */
615 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
616 {
617 struct list_head *lsthead = &epi->pwqlist;
618 struct eppoll_entry *pwq;
619
620 while (!list_empty(lsthead)) {
621 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
622
623 list_del(&pwq->llink);
624 ep_remove_wait_queue(pwq);
625 kmem_cache_free(pwq_cache, pwq);
626 }
627 }
628
629 /* call only when ep->mtx is held */
630 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
631 {
632 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
633 }
634
635 /* call only when ep->mtx is held */
636 static inline void ep_pm_stay_awake(struct epitem *epi)
637 {
638 struct wakeup_source *ws = ep_wakeup_source(epi);
639
640 if (ws)
641 __pm_stay_awake(ws);
642 }
643
644 static inline bool ep_has_wakeup_source(struct epitem *epi)
645 {
646 return rcu_access_pointer(epi->ws) ? true : false;
647 }
648
649 /* call when ep->mtx cannot be held (ep_poll_callback) */
650 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
651 {
652 struct wakeup_source *ws;
653
654 rcu_read_lock();
655 ws = rcu_dereference(epi->ws);
656 if (ws)
657 __pm_stay_awake(ws);
658 rcu_read_unlock();
659 }
660
661 /**
662 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
663 * the scan code, to call f_op->poll(). Also allows for
664 * O(NumReady) performance.
665 *
666 * @ep: Pointer to the epoll private data structure.
667 * @sproc: Pointer to the scan callback.
668 * @priv: Private opaque data passed to the @sproc callback.
669 * @depth: The current depth of recursive f_op->poll calls.
670 * @ep_locked: caller already holds ep->mtx
671 *
672 * Returns: The same integer error code returned by the @sproc callback.
673 */
674 static int ep_scan_ready_list(struct eventpoll *ep,
675 int (*sproc)(struct eventpoll *,
676 struct list_head *, void *),
677 void *priv, int depth, bool ep_locked)
678 {
679 int error, pwake = 0;
680 unsigned long flags;
681 struct epitem *epi, *nepi;
682 LIST_HEAD(txlist);
683
684 /*
685 * We need to lock this because we could be hit by
686 * eventpoll_release_file() and epoll_ctl().
687 */
688
689 if (!ep_locked)
690 mutex_lock_nested(&ep->mtx, depth);
691
692 /*
693 * Steal the ready list, and re-init the original one to the
694 * empty list. Also, set ep->ovflist to NULL so that events
695 * happening while looping w/out locks, are not lost. We cannot
696 * have the poll callback to queue directly on ep->rdllist,
697 * because we want the "sproc" callback to be able to do it
698 * in a lockless way.
699 */
700 spin_lock_irqsave(&ep->lock, flags);
701 list_splice_init(&ep->rdllist, &txlist);
702 ep->ovflist = NULL;
703 spin_unlock_irqrestore(&ep->lock, flags);
704
705 /*
706 * Now call the callback function.
707 */
708 error = (*sproc)(ep, &txlist, priv);
709
710 spin_lock_irqsave(&ep->lock, flags);
711 /*
712 * During the time we spent inside the "sproc" callback, some
713 * other events might have been queued by the poll callback.
714 * We re-insert them inside the main ready-list here.
715 */
716 for (nepi = ep->ovflist; (epi = nepi) != NULL;
717 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
718 /*
719 * We need to check if the item is already in the list.
720 * During the "sproc" callback execution time, items are
721 * queued into ->ovflist but the "txlist" might already
722 * contain them, and the list_splice() below takes care of them.
723 */
724 if (!ep_is_linked(&epi->rdllink)) {
725 list_add_tail(&epi->rdllink, &ep->rdllist);
726 ep_pm_stay_awake(epi);
727 }
728 }
729 /*
730 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
731 * releasing the lock, events will be queued in the normal way inside
732 * ep->rdllist.
733 */
734 ep->ovflist = EP_UNACTIVE_PTR;
735
736 /*
737 * Quickly re-inject items left on "txlist".
738 */
739 list_splice(&txlist, &ep->rdllist);
740 __pm_relax(ep->ws);
741
742 if (!list_empty(&ep->rdllist)) {
743 /*
744 * Wake up (if active) both the eventpoll wait list and
745 * the ->poll() wait list (delayed after we release the lock).
746 */
747 if (waitqueue_active(&ep->wq))
748 wake_up_locked(&ep->wq);
749 if (waitqueue_active(&ep->poll_wait))
750 pwake++;
751 }
752 spin_unlock_irqrestore(&ep->lock, flags);
753
754 if (!ep_locked)
755 mutex_unlock(&ep->mtx);
756
757 /* We have to call this outside the lock */
758 if (pwake)
759 ep_poll_safewake(&ep->poll_wait);
760
761 return error;
762 }
763
764 static void epi_rcu_free(struct rcu_head *head)
765 {
766 struct epitem *epi = container_of(head, struct epitem, rcu);
767 kmem_cache_free(epi_cache, epi);
768 }
769
770 /*
771 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
772 * all the associated resources. Must be called with "mtx" held.
773 */
774 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
775 {
776 unsigned long flags;
777 struct file *file = epi->ffd.file;
778
779 /*
780 * Removes poll wait queue hooks. We _have_ to do this without holding
781 * the "ep->lock" otherwise a deadlock might occur. This because of the
782 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
783 * queue head lock when unregistering the wait queue. The wakeup callback
784 * will run by holding the wait queue head lock and will call our callback
785 * that will try to get "ep->lock".
786 */
787 ep_unregister_pollwait(ep, epi);
788
789 /* Remove the current item from the list of epoll hooks */
790 spin_lock(&file->f_lock);
791 list_del_rcu(&epi->fllink);
792 spin_unlock(&file->f_lock);
793
794 rb_erase(&epi->rbn, &ep->rbr);
795
796 spin_lock_irqsave(&ep->lock, flags);
797 if (ep_is_linked(&epi->rdllink))
798 list_del_init(&epi->rdllink);
799 spin_unlock_irqrestore(&ep->lock, flags);
800
801 wakeup_source_unregister(ep_wakeup_source(epi));
802 /*
803 * At this point it is safe to free the eventpoll item. Use the union
804 * field epi->rcu, since we are trying to minimize the size of
805 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
806 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
807 * use of the rbn field.
808 */
809 call_rcu(&epi->rcu, epi_rcu_free);
810
811 atomic_long_dec(&ep->user->epoll_watches);
812
813 return 0;
814 }
815
816 static void ep_free(struct eventpoll *ep)
817 {
818 struct rb_node *rbp;
819 struct epitem *epi;
820
821 /* We need to release all tasks waiting for these file */
822 if (waitqueue_active(&ep->poll_wait))
823 ep_poll_safewake(&ep->poll_wait);
824
825 /*
826 * We need to lock this because we could be hit by
827 * eventpoll_release_file() while we're freeing the "struct eventpoll".
828 * We do not need to hold "ep->mtx" here because the epoll file
829 * is on the way to be removed and no one has references to it
830 * anymore. The only hit might come from eventpoll_release_file() but
831 * holding "epmutex" is sufficient here.
832 */
833 mutex_lock(&epmutex);
834
835 /*
836 * Walks through the whole tree by unregistering poll callbacks.
837 */
838 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
839 epi = rb_entry(rbp, struct epitem, rbn);
840
841 ep_unregister_pollwait(ep, epi);
842 cond_resched();
843 }
844
845 /*
846 * Walks through the whole tree by freeing each "struct epitem". At this
847 * point we are sure no poll callbacks will be lingering around, and also by
848 * holding "epmutex" we can be sure that no file cleanup code will hit
849 * us during this operation. So we can avoid the lock on "ep->lock".
850 * We do not need to lock ep->mtx, either, we only do it to prevent
851 * a lockdep warning.
852 */
853 mutex_lock(&ep->mtx);
854 while ((rbp = rb_first(&ep->rbr)) != NULL) {
855 epi = rb_entry(rbp, struct epitem, rbn);
856 ep_remove(ep, epi);
857 cond_resched();
858 }
859 mutex_unlock(&ep->mtx);
860
861 mutex_unlock(&epmutex);
862 mutex_destroy(&ep->mtx);
863 free_uid(ep->user);
864 wakeup_source_unregister(ep->ws);
865 kfree(ep);
866 }
867
868 static int ep_eventpoll_release(struct inode *inode, struct file *file)
869 {
870 struct eventpoll *ep = file->private_data;
871
872 if (ep)
873 ep_free(ep);
874
875 return 0;
876 }
877
878 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
879 {
880 pt->_key = epi->event.events;
881
882 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
883 }
884
885 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
886 void *priv)
887 {
888 struct epitem *epi, *tmp;
889 poll_table pt;
890
891 init_poll_funcptr(&pt, NULL);
892
893 list_for_each_entry_safe(epi, tmp, head, rdllink) {
894 if (ep_item_poll(epi, &pt))
895 return POLLIN | POLLRDNORM;
896 else {
897 /*
898 * Item has been dropped into the ready list by the poll
899 * callback, but it's not actually ready, as far as
900 * caller requested events goes. We can remove it here.
901 */
902 __pm_relax(ep_wakeup_source(epi));
903 list_del_init(&epi->rdllink);
904 }
905 }
906
907 return 0;
908 }
909
910 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
911 poll_table *pt);
912
913 struct readyevents_arg {
914 struct eventpoll *ep;
915 bool locked;
916 };
917
918 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
919 {
920 struct readyevents_arg *arg = priv;
921
922 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
923 call_nests + 1, arg->locked);
924 }
925
926 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
927 {
928 int pollflags;
929 struct eventpoll *ep = file->private_data;
930 struct readyevents_arg arg;
931
932 /*
933 * During ep_insert() we already hold the ep->mtx for the tfile.
934 * Prevent re-aquisition.
935 */
936 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
937 arg.ep = ep;
938
939 /* Insert inside our poll wait queue */
940 poll_wait(file, &ep->poll_wait, wait);
941
942 /*
943 * Proceed to find out if wanted events are really available inside
944 * the ready list. This need to be done under ep_call_nested()
945 * supervision, since the call to f_op->poll() done on listed files
946 * could re-enter here.
947 */
948 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
949 ep_poll_readyevents_proc, &arg, ep, current);
950
951 return pollflags != -1 ? pollflags : 0;
952 }
953
954 #ifdef CONFIG_PROC_FS
955 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
956 {
957 struct eventpoll *ep = f->private_data;
958 struct rb_node *rbp;
959
960 mutex_lock(&ep->mtx);
961 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
962 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
963
964 seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
965 epi->ffd.fd, epi->event.events,
966 (long long)epi->event.data);
967 if (seq_has_overflowed(m))
968 break;
969 }
970 mutex_unlock(&ep->mtx);
971 }
972 #endif
973
974 /* File callbacks that implement the eventpoll file behaviour */
975 static const struct file_operations eventpoll_fops = {
976 #ifdef CONFIG_PROC_FS
977 .show_fdinfo = ep_show_fdinfo,
978 #endif
979 .release = ep_eventpoll_release,
980 .poll = ep_eventpoll_poll,
981 .llseek = noop_llseek,
982 };
983
984 /*
985 * This is called from eventpoll_release() to unlink files from the eventpoll
986 * interface. We need to have this facility to cleanup correctly files that are
987 * closed without being removed from the eventpoll interface.
988 */
989 void eventpoll_release_file(struct file *file)
990 {
991 struct eventpoll *ep;
992 struct epitem *epi, *next;
993
994 /*
995 * We don't want to get "file->f_lock" because it is not
996 * necessary. It is not necessary because we're in the "struct file"
997 * cleanup path, and this means that no one is using this file anymore.
998 * So, for example, epoll_ctl() cannot hit here since if we reach this
999 * point, the file counter already went to zero and fget() would fail.
1000 * The only hit might come from ep_free() but by holding the mutex
1001 * will correctly serialize the operation. We do need to acquire
1002 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1003 * from anywhere but ep_free().
1004 *
1005 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1006 */
1007 mutex_lock(&epmutex);
1008 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1009 ep = epi->ep;
1010 mutex_lock_nested(&ep->mtx, 0);
1011 ep_remove(ep, epi);
1012 mutex_unlock(&ep->mtx);
1013 }
1014 mutex_unlock(&epmutex);
1015 }
1016
1017 static int ep_alloc(struct eventpoll **pep)
1018 {
1019 int error;
1020 struct user_struct *user;
1021 struct eventpoll *ep;
1022
1023 user = get_current_user();
1024 error = -ENOMEM;
1025 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1026 if (unlikely(!ep))
1027 goto free_uid;
1028
1029 spin_lock_init(&ep->lock);
1030 mutex_init(&ep->mtx);
1031 init_waitqueue_head(&ep->wq);
1032 init_waitqueue_head(&ep->poll_wait);
1033 INIT_LIST_HEAD(&ep->rdllist);
1034 ep->rbr = RB_ROOT;
1035 ep->ovflist = EP_UNACTIVE_PTR;
1036 ep->user = user;
1037
1038 *pep = ep;
1039
1040 return 0;
1041
1042 free_uid:
1043 free_uid(user);
1044 return error;
1045 }
1046
1047 /*
1048 * Search the file inside the eventpoll tree. The RB tree operations
1049 * are protected by the "mtx" mutex, and ep_find() must be called with
1050 * "mtx" held.
1051 */
1052 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1053 {
1054 int kcmp;
1055 struct rb_node *rbp;
1056 struct epitem *epi, *epir = NULL;
1057 struct epoll_filefd ffd;
1058
1059 ep_set_ffd(&ffd, file, fd);
1060 for (rbp = ep->rbr.rb_node; rbp; ) {
1061 epi = rb_entry(rbp, struct epitem, rbn);
1062 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1063 if (kcmp > 0)
1064 rbp = rbp->rb_right;
1065 else if (kcmp < 0)
1066 rbp = rbp->rb_left;
1067 else {
1068 epir = epi;
1069 break;
1070 }
1071 }
1072
1073 return epir;
1074 }
1075
1076 /*
1077 * This is the callback that is passed to the wait queue wakeup
1078 * mechanism. It is called by the stored file descriptors when they
1079 * have events to report.
1080 */
1081 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1082 {
1083 int pwake = 0;
1084 unsigned long flags;
1085 struct epitem *epi = ep_item_from_wait(wait);
1086 struct eventpoll *ep = epi->ep;
1087 int ewake = 0;
1088
1089 if ((unsigned long)key & POLLFREE) {
1090 ep_pwq_from_wait(wait)->whead = NULL;
1091 /*
1092 * whead = NULL above can race with ep_remove_wait_queue()
1093 * which can do another remove_wait_queue() after us, so we
1094 * can't use __remove_wait_queue(). whead->lock is held by
1095 * the caller.
1096 */
1097 list_del_init(&wait->entry);
1098 }
1099
1100 spin_lock_irqsave(&ep->lock, flags);
1101
1102 ep_set_busy_poll_napi_id(epi);
1103
1104 /*
1105 * If the event mask does not contain any poll(2) event, we consider the
1106 * descriptor to be disabled. This condition is likely the effect of the
1107 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1108 * until the next EPOLL_CTL_MOD will be issued.
1109 */
1110 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1111 goto out_unlock;
1112
1113 /*
1114 * Check the events coming with the callback. At this stage, not
1115 * every device reports the events in the "key" parameter of the
1116 * callback. We need to be able to handle both cases here, hence the
1117 * test for "key" != NULL before the event match test.
1118 */
1119 if (key && !((unsigned long) key & epi->event.events))
1120 goto out_unlock;
1121
1122 /*
1123 * If we are transferring events to userspace, we can hold no locks
1124 * (because we're accessing user memory, and because of linux f_op->poll()
1125 * semantics). All the events that happen during that period of time are
1126 * chained in ep->ovflist and requeued later on.
1127 */
1128 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1129 if (epi->next == EP_UNACTIVE_PTR) {
1130 epi->next = ep->ovflist;
1131 ep->ovflist = epi;
1132 if (epi->ws) {
1133 /*
1134 * Activate ep->ws since epi->ws may get
1135 * deactivated at any time.
1136 */
1137 __pm_stay_awake(ep->ws);
1138 }
1139
1140 }
1141 goto out_unlock;
1142 }
1143
1144 /* If this file is already in the ready list we exit soon */
1145 if (!ep_is_linked(&epi->rdllink)) {
1146 list_add_tail(&epi->rdllink, &ep->rdllist);
1147 ep_pm_stay_awake_rcu(epi);
1148 }
1149
1150 /*
1151 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1152 * wait list.
1153 */
1154 if (waitqueue_active(&ep->wq)) {
1155 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1156 !((unsigned long)key & POLLFREE)) {
1157 switch ((unsigned long)key & EPOLLINOUT_BITS) {
1158 case POLLIN:
1159 if (epi->event.events & POLLIN)
1160 ewake = 1;
1161 break;
1162 case POLLOUT:
1163 if (epi->event.events & POLLOUT)
1164 ewake = 1;
1165 break;
1166 case 0:
1167 ewake = 1;
1168 break;
1169 }
1170 }
1171 wake_up_locked(&ep->wq);
1172 }
1173 if (waitqueue_active(&ep->poll_wait))
1174 pwake++;
1175
1176 out_unlock:
1177 spin_unlock_irqrestore(&ep->lock, flags);
1178
1179 /* We have to call this outside the lock */
1180 if (pwake)
1181 ep_poll_safewake(&ep->poll_wait);
1182
1183 if (epi->event.events & EPOLLEXCLUSIVE)
1184 return ewake;
1185
1186 return 1;
1187 }
1188
1189 /*
1190 * This is the callback that is used to add our wait queue to the
1191 * target file wakeup lists.
1192 */
1193 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1194 poll_table *pt)
1195 {
1196 struct epitem *epi = ep_item_from_epqueue(pt);
1197 struct eppoll_entry *pwq;
1198
1199 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1200 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1201 pwq->whead = whead;
1202 pwq->base = epi;
1203 if (epi->event.events & EPOLLEXCLUSIVE)
1204 add_wait_queue_exclusive(whead, &pwq->wait);
1205 else
1206 add_wait_queue(whead, &pwq->wait);
1207 list_add_tail(&pwq->llink, &epi->pwqlist);
1208 epi->nwait++;
1209 } else {
1210 /* We have to signal that an error occurred */
1211 epi->nwait = -1;
1212 }
1213 }
1214
1215 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1216 {
1217 int kcmp;
1218 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1219 struct epitem *epic;
1220
1221 while (*p) {
1222 parent = *p;
1223 epic = rb_entry(parent, struct epitem, rbn);
1224 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1225 if (kcmp > 0)
1226 p = &parent->rb_right;
1227 else
1228 p = &parent->rb_left;
1229 }
1230 rb_link_node(&epi->rbn, parent, p);
1231 rb_insert_color(&epi->rbn, &ep->rbr);
1232 }
1233
1234
1235
1236 #define PATH_ARR_SIZE 5
1237 /*
1238 * These are the number paths of length 1 to 5, that we are allowing to emanate
1239 * from a single file of interest. For example, we allow 1000 paths of length
1240 * 1, to emanate from each file of interest. This essentially represents the
1241 * potential wakeup paths, which need to be limited in order to avoid massive
1242 * uncontrolled wakeup storms. The common use case should be a single ep which
1243 * is connected to n file sources. In this case each file source has 1 path
1244 * of length 1. Thus, the numbers below should be more than sufficient. These
1245 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1246 * and delete can't add additional paths. Protected by the epmutex.
1247 */
1248 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1249 static int path_count[PATH_ARR_SIZE];
1250
1251 static int path_count_inc(int nests)
1252 {
1253 /* Allow an arbitrary number of depth 1 paths */
1254 if (nests == 0)
1255 return 0;
1256
1257 if (++path_count[nests] > path_limits[nests])
1258 return -1;
1259 return 0;
1260 }
1261
1262 static void path_count_init(void)
1263 {
1264 int i;
1265
1266 for (i = 0; i < PATH_ARR_SIZE; i++)
1267 path_count[i] = 0;
1268 }
1269
1270 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1271 {
1272 int error = 0;
1273 struct file *file = priv;
1274 struct file *child_file;
1275 struct epitem *epi;
1276
1277 /* CTL_DEL can remove links here, but that can't increase our count */
1278 rcu_read_lock();
1279 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1280 child_file = epi->ep->file;
1281 if (is_file_epoll(child_file)) {
1282 if (list_empty(&child_file->f_ep_links)) {
1283 if (path_count_inc(call_nests)) {
1284 error = -1;
1285 break;
1286 }
1287 } else {
1288 error = ep_call_nested(&poll_loop_ncalls,
1289 EP_MAX_NESTS,
1290 reverse_path_check_proc,
1291 child_file, child_file,
1292 current);
1293 }
1294 if (error != 0)
1295 break;
1296 } else {
1297 printk(KERN_ERR "reverse_path_check_proc: "
1298 "file is not an ep!\n");
1299 }
1300 }
1301 rcu_read_unlock();
1302 return error;
1303 }
1304
1305 /**
1306 * reverse_path_check - The tfile_check_list is list of file *, which have
1307 * links that are proposed to be newly added. We need to
1308 * make sure that those added links don't add too many
1309 * paths such that we will spend all our time waking up
1310 * eventpoll objects.
1311 *
1312 * Returns: Returns zero if the proposed links don't create too many paths,
1313 * -1 otherwise.
1314 */
1315 static int reverse_path_check(void)
1316 {
1317 int error = 0;
1318 struct file *current_file;
1319
1320 /* let's call this for all tfiles */
1321 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1322 path_count_init();
1323 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1324 reverse_path_check_proc, current_file,
1325 current_file, current);
1326 if (error)
1327 break;
1328 }
1329 return error;
1330 }
1331
1332 static int ep_create_wakeup_source(struct epitem *epi)
1333 {
1334 const char *name;
1335 struct wakeup_source *ws;
1336
1337 if (!epi->ep->ws) {
1338 epi->ep->ws = wakeup_source_register("eventpoll");
1339 if (!epi->ep->ws)
1340 return -ENOMEM;
1341 }
1342
1343 name = epi->ffd.file->f_path.dentry->d_name.name;
1344 ws = wakeup_source_register(name);
1345
1346 if (!ws)
1347 return -ENOMEM;
1348 rcu_assign_pointer(epi->ws, ws);
1349
1350 return 0;
1351 }
1352
1353 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1354 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1355 {
1356 struct wakeup_source *ws = ep_wakeup_source(epi);
1357
1358 RCU_INIT_POINTER(epi->ws, NULL);
1359
1360 /*
1361 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1362 * used internally by wakeup_source_remove, too (called by
1363 * wakeup_source_unregister), so we cannot use call_rcu
1364 */
1365 synchronize_rcu();
1366 wakeup_source_unregister(ws);
1367 }
1368
1369 /*
1370 * Must be called with "mtx" held.
1371 */
1372 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1373 struct file *tfile, int fd, int full_check)
1374 {
1375 int error, revents, pwake = 0;
1376 unsigned long flags;
1377 long user_watches;
1378 struct epitem *epi;
1379 struct ep_pqueue epq;
1380
1381 user_watches = atomic_long_read(&ep->user->epoll_watches);
1382 if (unlikely(user_watches >= max_user_watches))
1383 return -ENOSPC;
1384 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1385 return -ENOMEM;
1386
1387 /* Item initialization follow here ... */
1388 INIT_LIST_HEAD(&epi->rdllink);
1389 INIT_LIST_HEAD(&epi->fllink);
1390 INIT_LIST_HEAD(&epi->pwqlist);
1391 epi->ep = ep;
1392 ep_set_ffd(&epi->ffd, tfile, fd);
1393 epi->event = *event;
1394 epi->nwait = 0;
1395 epi->next = EP_UNACTIVE_PTR;
1396 if (epi->event.events & EPOLLWAKEUP) {
1397 error = ep_create_wakeup_source(epi);
1398 if (error)
1399 goto error_create_wakeup_source;
1400 } else {
1401 RCU_INIT_POINTER(epi->ws, NULL);
1402 }
1403
1404 /* Initialize the poll table using the queue callback */
1405 epq.epi = epi;
1406 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1407
1408 /*
1409 * Attach the item to the poll hooks and get current event bits.
1410 * We can safely use the file* here because its usage count has
1411 * been increased by the caller of this function. Note that after
1412 * this operation completes, the poll callback can start hitting
1413 * the new item.
1414 */
1415 revents = ep_item_poll(epi, &epq.pt);
1416
1417 /*
1418 * We have to check if something went wrong during the poll wait queue
1419 * install process. Namely an allocation for a wait queue failed due
1420 * high memory pressure.
1421 */
1422 error = -ENOMEM;
1423 if (epi->nwait < 0)
1424 goto error_unregister;
1425
1426 /* Add the current item to the list of active epoll hook for this file */
1427 spin_lock(&tfile->f_lock);
1428 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1429 spin_unlock(&tfile->f_lock);
1430
1431 /*
1432 * Add the current item to the RB tree. All RB tree operations are
1433 * protected by "mtx", and ep_insert() is called with "mtx" held.
1434 */
1435 ep_rbtree_insert(ep, epi);
1436
1437 /* now check if we've created too many backpaths */
1438 error = -EINVAL;
1439 if (full_check && reverse_path_check())
1440 goto error_remove_epi;
1441
1442 /* We have to drop the new item inside our item list to keep track of it */
1443 spin_lock_irqsave(&ep->lock, flags);
1444
1445 /* record NAPI ID of new item if present */
1446 ep_set_busy_poll_napi_id(epi);
1447
1448 /* If the file is already "ready" we drop it inside the ready list */
1449 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1450 list_add_tail(&epi->rdllink, &ep->rdllist);
1451 ep_pm_stay_awake(epi);
1452
1453 /* Notify waiting tasks that events are available */
1454 if (waitqueue_active(&ep->wq))
1455 wake_up_locked(&ep->wq);
1456 if (waitqueue_active(&ep->poll_wait))
1457 pwake++;
1458 }
1459
1460 spin_unlock_irqrestore(&ep->lock, flags);
1461
1462 atomic_long_inc(&ep->user->epoll_watches);
1463
1464 /* We have to call this outside the lock */
1465 if (pwake)
1466 ep_poll_safewake(&ep->poll_wait);
1467
1468 return 0;
1469
1470 error_remove_epi:
1471 spin_lock(&tfile->f_lock);
1472 list_del_rcu(&epi->fllink);
1473 spin_unlock(&tfile->f_lock);
1474
1475 rb_erase(&epi->rbn, &ep->rbr);
1476
1477 error_unregister:
1478 ep_unregister_pollwait(ep, epi);
1479
1480 /*
1481 * We need to do this because an event could have been arrived on some
1482 * allocated wait queue. Note that we don't care about the ep->ovflist
1483 * list, since that is used/cleaned only inside a section bound by "mtx".
1484 * And ep_insert() is called with "mtx" held.
1485 */
1486 spin_lock_irqsave(&ep->lock, flags);
1487 if (ep_is_linked(&epi->rdllink))
1488 list_del_init(&epi->rdllink);
1489 spin_unlock_irqrestore(&ep->lock, flags);
1490
1491 wakeup_source_unregister(ep_wakeup_source(epi));
1492
1493 error_create_wakeup_source:
1494 kmem_cache_free(epi_cache, epi);
1495
1496 return error;
1497 }
1498
1499 /*
1500 * Modify the interest event mask by dropping an event if the new mask
1501 * has a match in the current file status. Must be called with "mtx" held.
1502 */
1503 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1504 {
1505 int pwake = 0;
1506 unsigned int revents;
1507 poll_table pt;
1508
1509 init_poll_funcptr(&pt, NULL);
1510
1511 /*
1512 * Set the new event interest mask before calling f_op->poll();
1513 * otherwise we might miss an event that happens between the
1514 * f_op->poll() call and the new event set registering.
1515 */
1516 epi->event.events = event->events; /* need barrier below */
1517 epi->event.data = event->data; /* protected by mtx */
1518 if (epi->event.events & EPOLLWAKEUP) {
1519 if (!ep_has_wakeup_source(epi))
1520 ep_create_wakeup_source(epi);
1521 } else if (ep_has_wakeup_source(epi)) {
1522 ep_destroy_wakeup_source(epi);
1523 }
1524
1525 /*
1526 * The following barrier has two effects:
1527 *
1528 * 1) Flush epi changes above to other CPUs. This ensures
1529 * we do not miss events from ep_poll_callback if an
1530 * event occurs immediately after we call f_op->poll().
1531 * We need this because we did not take ep->lock while
1532 * changing epi above (but ep_poll_callback does take
1533 * ep->lock).
1534 *
1535 * 2) We also need to ensure we do not miss _past_ events
1536 * when calling f_op->poll(). This barrier also
1537 * pairs with the barrier in wq_has_sleeper (see
1538 * comments for wq_has_sleeper).
1539 *
1540 * This barrier will now guarantee ep_poll_callback or f_op->poll
1541 * (or both) will notice the readiness of an item.
1542 */
1543 smp_mb();
1544
1545 /*
1546 * Get current event bits. We can safely use the file* here because
1547 * its usage count has been increased by the caller of this function.
1548 */
1549 revents = ep_item_poll(epi, &pt);
1550
1551 /*
1552 * If the item is "hot" and it is not registered inside the ready
1553 * list, push it inside.
1554 */
1555 if (revents & event->events) {
1556 spin_lock_irq(&ep->lock);
1557 if (!ep_is_linked(&epi->rdllink)) {
1558 list_add_tail(&epi->rdllink, &ep->rdllist);
1559 ep_pm_stay_awake(epi);
1560
1561 /* Notify waiting tasks that events are available */
1562 if (waitqueue_active(&ep->wq))
1563 wake_up_locked(&ep->wq);
1564 if (waitqueue_active(&ep->poll_wait))
1565 pwake++;
1566 }
1567 spin_unlock_irq(&ep->lock);
1568 }
1569
1570 /* We have to call this outside the lock */
1571 if (pwake)
1572 ep_poll_safewake(&ep->poll_wait);
1573
1574 return 0;
1575 }
1576
1577 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1578 void *priv)
1579 {
1580 struct ep_send_events_data *esed = priv;
1581 int eventcnt;
1582 unsigned int revents;
1583 struct epitem *epi;
1584 struct epoll_event __user *uevent;
1585 struct wakeup_source *ws;
1586 poll_table pt;
1587
1588 init_poll_funcptr(&pt, NULL);
1589
1590 /*
1591 * We can loop without lock because we are passed a task private list.
1592 * Items cannot vanish during the loop because ep_scan_ready_list() is
1593 * holding "mtx" during this call.
1594 */
1595 for (eventcnt = 0, uevent = esed->events;
1596 !list_empty(head) && eventcnt < esed->maxevents;) {
1597 epi = list_first_entry(head, struct epitem, rdllink);
1598
1599 /*
1600 * Activate ep->ws before deactivating epi->ws to prevent
1601 * triggering auto-suspend here (in case we reactive epi->ws
1602 * below).
1603 *
1604 * This could be rearranged to delay the deactivation of epi->ws
1605 * instead, but then epi->ws would temporarily be out of sync
1606 * with ep_is_linked().
1607 */
1608 ws = ep_wakeup_source(epi);
1609 if (ws) {
1610 if (ws->active)
1611 __pm_stay_awake(ep->ws);
1612 __pm_relax(ws);
1613 }
1614
1615 list_del_init(&epi->rdllink);
1616
1617 revents = ep_item_poll(epi, &pt);
1618
1619 /*
1620 * If the event mask intersect the caller-requested one,
1621 * deliver the event to userspace. Again, ep_scan_ready_list()
1622 * is holding "mtx", so no operations coming from userspace
1623 * can change the item.
1624 */
1625 if (revents) {
1626 if (__put_user(revents, &uevent->events) ||
1627 __put_user(epi->event.data, &uevent->data)) {
1628 list_add(&epi->rdllink, head);
1629 ep_pm_stay_awake(epi);
1630 return eventcnt ? eventcnt : -EFAULT;
1631 }
1632 eventcnt++;
1633 uevent++;
1634 if (epi->event.events & EPOLLONESHOT)
1635 epi->event.events &= EP_PRIVATE_BITS;
1636 else if (!(epi->event.events & EPOLLET)) {
1637 /*
1638 * If this file has been added with Level
1639 * Trigger mode, we need to insert back inside
1640 * the ready list, so that the next call to
1641 * epoll_wait() will check again the events
1642 * availability. At this point, no one can insert
1643 * into ep->rdllist besides us. The epoll_ctl()
1644 * callers are locked out by
1645 * ep_scan_ready_list() holding "mtx" and the
1646 * poll callback will queue them in ep->ovflist.
1647 */
1648 list_add_tail(&epi->rdllink, &ep->rdllist);
1649 ep_pm_stay_awake(epi);
1650 }
1651 }
1652 }
1653
1654 return eventcnt;
1655 }
1656
1657 static int ep_send_events(struct eventpoll *ep,
1658 struct epoll_event __user *events, int maxevents)
1659 {
1660 struct ep_send_events_data esed;
1661
1662 esed.maxevents = maxevents;
1663 esed.events = events;
1664
1665 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1666 }
1667
1668 static inline struct timespec64 ep_set_mstimeout(long ms)
1669 {
1670 struct timespec64 now, ts = {
1671 .tv_sec = ms / MSEC_PER_SEC,
1672 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1673 };
1674
1675 ktime_get_ts64(&now);
1676 return timespec64_add_safe(now, ts);
1677 }
1678
1679 /**
1680 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1681 * event buffer.
1682 *
1683 * @ep: Pointer to the eventpoll context.
1684 * @events: Pointer to the userspace buffer where the ready events should be
1685 * stored.
1686 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1687 * @timeout: Maximum timeout for the ready events fetch operation, in
1688 * milliseconds. If the @timeout is zero, the function will not block,
1689 * while if the @timeout is less than zero, the function will block
1690 * until at least one event has been retrieved (or an error
1691 * occurred).
1692 *
1693 * Returns: Returns the number of ready events which have been fetched, or an
1694 * error code, in case of error.
1695 */
1696 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1697 int maxevents, long timeout)
1698 {
1699 int res = 0, eavail, timed_out = 0;
1700 unsigned long flags;
1701 u64 slack = 0;
1702 wait_queue_entry_t wait;
1703 ktime_t expires, *to = NULL;
1704
1705 if (timeout > 0) {
1706 struct timespec64 end_time = ep_set_mstimeout(timeout);
1707
1708 slack = select_estimate_accuracy(&end_time);
1709 to = &expires;
1710 *to = timespec64_to_ktime(end_time);
1711 } else if (timeout == 0) {
1712 /*
1713 * Avoid the unnecessary trip to the wait queue loop, if the
1714 * caller specified a non blocking operation.
1715 */
1716 timed_out = 1;
1717 spin_lock_irqsave(&ep->lock, flags);
1718 goto check_events;
1719 }
1720
1721 fetch_events:
1722
1723 if (!ep_events_available(ep))
1724 ep_busy_loop(ep, timed_out);
1725
1726 spin_lock_irqsave(&ep->lock, flags);
1727
1728 if (!ep_events_available(ep)) {
1729 /*
1730 * Busy poll timed out. Drop NAPI ID for now, we can add
1731 * it back in when we have moved a socket with a valid NAPI
1732 * ID onto the ready list.
1733 */
1734 ep_reset_busy_poll_napi_id(ep);
1735
1736 /*
1737 * We don't have any available event to return to the caller.
1738 * We need to sleep here, and we will be wake up by
1739 * ep_poll_callback() when events will become available.
1740 */
1741 init_waitqueue_entry(&wait, current);
1742 __add_wait_queue_exclusive(&ep->wq, &wait);
1743
1744 for (;;) {
1745 /*
1746 * We don't want to sleep if the ep_poll_callback() sends us
1747 * a wakeup in between. That's why we set the task state
1748 * to TASK_INTERRUPTIBLE before doing the checks.
1749 */
1750 set_current_state(TASK_INTERRUPTIBLE);
1751 /*
1752 * Always short-circuit for fatal signals to allow
1753 * threads to make a timely exit without the chance of
1754 * finding more events available and fetching
1755 * repeatedly.
1756 */
1757 if (fatal_signal_pending(current)) {
1758 res = -EINTR;
1759 break;
1760 }
1761 if (ep_events_available(ep) || timed_out)
1762 break;
1763 if (signal_pending(current)) {
1764 res = -EINTR;
1765 break;
1766 }
1767
1768 spin_unlock_irqrestore(&ep->lock, flags);
1769 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1770 timed_out = 1;
1771
1772 spin_lock_irqsave(&ep->lock, flags);
1773 }
1774
1775 __remove_wait_queue(&ep->wq, &wait);
1776 __set_current_state(TASK_RUNNING);
1777 }
1778 check_events:
1779 /* Is it worth to try to dig for events ? */
1780 eavail = ep_events_available(ep);
1781
1782 spin_unlock_irqrestore(&ep->lock, flags);
1783
1784 /*
1785 * Try to transfer events to user space. In case we get 0 events and
1786 * there's still timeout left over, we go trying again in search of
1787 * more luck.
1788 */
1789 if (!res && eavail &&
1790 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1791 goto fetch_events;
1792
1793 return res;
1794 }
1795
1796 /**
1797 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1798 * API, to verify that adding an epoll file inside another
1799 * epoll structure, does not violate the constraints, in
1800 * terms of closed loops, or too deep chains (which can
1801 * result in excessive stack usage).
1802 *
1803 * @priv: Pointer to the epoll file to be currently checked.
1804 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1805 * data structure pointer.
1806 * @call_nests: Current dept of the @ep_call_nested() call stack.
1807 *
1808 * Returns: Returns zero if adding the epoll @file inside current epoll
1809 * structure @ep does not violate the constraints, or -1 otherwise.
1810 */
1811 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1812 {
1813 int error = 0;
1814 struct file *file = priv;
1815 struct eventpoll *ep = file->private_data;
1816 struct eventpoll *ep_tovisit;
1817 struct rb_node *rbp;
1818 struct epitem *epi;
1819
1820 mutex_lock_nested(&ep->mtx, call_nests + 1);
1821 ep->visited = 1;
1822 list_add(&ep->visited_list_link, &visited_list);
1823 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1824 epi = rb_entry(rbp, struct epitem, rbn);
1825 if (unlikely(is_file_epoll(epi->ffd.file))) {
1826 ep_tovisit = epi->ffd.file->private_data;
1827 if (ep_tovisit->visited)
1828 continue;
1829 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1830 ep_loop_check_proc, epi->ffd.file,
1831 ep_tovisit, current);
1832 if (error != 0)
1833 break;
1834 } else {
1835 /*
1836 * If we've reached a file that is not associated with
1837 * an ep, then we need to check if the newly added
1838 * links are going to add too many wakeup paths. We do
1839 * this by adding it to the tfile_check_list, if it's
1840 * not already there, and calling reverse_path_check()
1841 * during ep_insert().
1842 */
1843 if (list_empty(&epi->ffd.file->f_tfile_llink))
1844 list_add(&epi->ffd.file->f_tfile_llink,
1845 &tfile_check_list);
1846 }
1847 }
1848 mutex_unlock(&ep->mtx);
1849
1850 return error;
1851 }
1852
1853 /**
1854 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1855 * another epoll file (represented by @ep) does not create
1856 * closed loops or too deep chains.
1857 *
1858 * @ep: Pointer to the epoll private data structure.
1859 * @file: Pointer to the epoll file to be checked.
1860 *
1861 * Returns: Returns zero if adding the epoll @file inside current epoll
1862 * structure @ep does not violate the constraints, or -1 otherwise.
1863 */
1864 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1865 {
1866 int ret;
1867 struct eventpoll *ep_cur, *ep_next;
1868
1869 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1870 ep_loop_check_proc, file, ep, current);
1871 /* clear visited list */
1872 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1873 visited_list_link) {
1874 ep_cur->visited = 0;
1875 list_del(&ep_cur->visited_list_link);
1876 }
1877 return ret;
1878 }
1879
1880 static void clear_tfile_check_list(void)
1881 {
1882 struct file *file;
1883
1884 /* first clear the tfile_check_list */
1885 while (!list_empty(&tfile_check_list)) {
1886 file = list_first_entry(&tfile_check_list, struct file,
1887 f_tfile_llink);
1888 list_del_init(&file->f_tfile_llink);
1889 }
1890 INIT_LIST_HEAD(&tfile_check_list);
1891 }
1892
1893 /*
1894 * Open an eventpoll file descriptor.
1895 */
1896 SYSCALL_DEFINE1(epoll_create1, int, flags)
1897 {
1898 int error, fd;
1899 struct eventpoll *ep = NULL;
1900 struct file *file;
1901
1902 /* Check the EPOLL_* constant for consistency. */
1903 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1904
1905 if (flags & ~EPOLL_CLOEXEC)
1906 return -EINVAL;
1907 /*
1908 * Create the internal data structure ("struct eventpoll").
1909 */
1910 error = ep_alloc(&ep);
1911 if (error < 0)
1912 return error;
1913 /*
1914 * Creates all the items needed to setup an eventpoll file. That is,
1915 * a file structure and a free file descriptor.
1916 */
1917 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1918 if (fd < 0) {
1919 error = fd;
1920 goto out_free_ep;
1921 }
1922 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1923 O_RDWR | (flags & O_CLOEXEC));
1924 if (IS_ERR(file)) {
1925 error = PTR_ERR(file);
1926 goto out_free_fd;
1927 }
1928 ep->file = file;
1929 fd_install(fd, file);
1930 return fd;
1931
1932 out_free_fd:
1933 put_unused_fd(fd);
1934 out_free_ep:
1935 ep_free(ep);
1936 return error;
1937 }
1938
1939 SYSCALL_DEFINE1(epoll_create, int, size)
1940 {
1941 if (size <= 0)
1942 return -EINVAL;
1943
1944 return sys_epoll_create1(0);
1945 }
1946
1947 /*
1948 * The following function implements the controller interface for
1949 * the eventpoll file that enables the insertion/removal/change of
1950 * file descriptors inside the interest set.
1951 */
1952 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1953 struct epoll_event __user *, event)
1954 {
1955 int error;
1956 int full_check = 0;
1957 struct fd f, tf;
1958 struct eventpoll *ep;
1959 struct epitem *epi;
1960 struct epoll_event epds;
1961 struct eventpoll *tep = NULL;
1962
1963 error = -EFAULT;
1964 if (ep_op_has_event(op) &&
1965 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1966 goto error_return;
1967
1968 error = -EBADF;
1969 f = fdget(epfd);
1970 if (!f.file)
1971 goto error_return;
1972
1973 /* Get the "struct file *" for the target file */
1974 tf = fdget(fd);
1975 if (!tf.file)
1976 goto error_fput;
1977
1978 /* The target file descriptor must support poll */
1979 error = -EPERM;
1980 if (!tf.file->f_op->poll)
1981 goto error_tgt_fput;
1982
1983 /* Check if EPOLLWAKEUP is allowed */
1984 if (ep_op_has_event(op))
1985 ep_take_care_of_epollwakeup(&epds);
1986
1987 /*
1988 * We have to check that the file structure underneath the file descriptor
1989 * the user passed to us _is_ an eventpoll file. And also we do not permit
1990 * adding an epoll file descriptor inside itself.
1991 */
1992 error = -EINVAL;
1993 if (f.file == tf.file || !is_file_epoll(f.file))
1994 goto error_tgt_fput;
1995
1996 /*
1997 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
1998 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
1999 * Also, we do not currently supported nested exclusive wakeups.
2000 */
2001 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2002 if (op == EPOLL_CTL_MOD)
2003 goto error_tgt_fput;
2004 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2005 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2006 goto error_tgt_fput;
2007 }
2008
2009 /*
2010 * At this point it is safe to assume that the "private_data" contains
2011 * our own data structure.
2012 */
2013 ep = f.file->private_data;
2014
2015 /*
2016 * When we insert an epoll file descriptor, inside another epoll file
2017 * descriptor, there is the change of creating closed loops, which are
2018 * better be handled here, than in more critical paths. While we are
2019 * checking for loops we also determine the list of files reachable
2020 * and hang them on the tfile_check_list, so we can check that we
2021 * haven't created too many possible wakeup paths.
2022 *
2023 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2024 * the epoll file descriptor is attaching directly to a wakeup source,
2025 * unless the epoll file descriptor is nested. The purpose of taking the
2026 * 'epmutex' on add is to prevent complex toplogies such as loops and
2027 * deep wakeup paths from forming in parallel through multiple
2028 * EPOLL_CTL_ADD operations.
2029 */
2030 mutex_lock_nested(&ep->mtx, 0);
2031 if (op == EPOLL_CTL_ADD) {
2032 if (!list_empty(&f.file->f_ep_links) ||
2033 is_file_epoll(tf.file)) {
2034 full_check = 1;
2035 mutex_unlock(&ep->mtx);
2036 mutex_lock(&epmutex);
2037 if (is_file_epoll(tf.file)) {
2038 error = -ELOOP;
2039 if (ep_loop_check(ep, tf.file) != 0) {
2040 clear_tfile_check_list();
2041 goto error_tgt_fput;
2042 }
2043 } else
2044 list_add(&tf.file->f_tfile_llink,
2045 &tfile_check_list);
2046 mutex_lock_nested(&ep->mtx, 0);
2047 if (is_file_epoll(tf.file)) {
2048 tep = tf.file->private_data;
2049 mutex_lock_nested(&tep->mtx, 1);
2050 }
2051 }
2052 }
2053
2054 /*
2055 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2056 * above, we can be sure to be able to use the item looked up by
2057 * ep_find() till we release the mutex.
2058 */
2059 epi = ep_find(ep, tf.file, fd);
2060
2061 error = -EINVAL;
2062 switch (op) {
2063 case EPOLL_CTL_ADD:
2064 if (!epi) {
2065 epds.events |= POLLERR | POLLHUP;
2066 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2067 } else
2068 error = -EEXIST;
2069 if (full_check)
2070 clear_tfile_check_list();
2071 break;
2072 case EPOLL_CTL_DEL:
2073 if (epi)
2074 error = ep_remove(ep, epi);
2075 else
2076 error = -ENOENT;
2077 break;
2078 case EPOLL_CTL_MOD:
2079 if (epi) {
2080 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2081 epds.events |= POLLERR | POLLHUP;
2082 error = ep_modify(ep, epi, &epds);
2083 }
2084 } else
2085 error = -ENOENT;
2086 break;
2087 }
2088 if (tep != NULL)
2089 mutex_unlock(&tep->mtx);
2090 mutex_unlock(&ep->mtx);
2091
2092 error_tgt_fput:
2093 if (full_check)
2094 mutex_unlock(&epmutex);
2095
2096 fdput(tf);
2097 error_fput:
2098 fdput(f);
2099 error_return:
2100
2101 return error;
2102 }
2103
2104 /*
2105 * Implement the event wait interface for the eventpoll file. It is the kernel
2106 * part of the user space epoll_wait(2).
2107 */
2108 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2109 int, maxevents, int, timeout)
2110 {
2111 int error;
2112 struct fd f;
2113 struct eventpoll *ep;
2114
2115 /* The maximum number of event must be greater than zero */
2116 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2117 return -EINVAL;
2118
2119 /* Verify that the area passed by the user is writeable */
2120 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2121 return -EFAULT;
2122
2123 /* Get the "struct file *" for the eventpoll file */
2124 f = fdget(epfd);
2125 if (!f.file)
2126 return -EBADF;
2127
2128 /*
2129 * We have to check that the file structure underneath the fd
2130 * the user passed to us _is_ an eventpoll file.
2131 */
2132 error = -EINVAL;
2133 if (!is_file_epoll(f.file))
2134 goto error_fput;
2135
2136 /*
2137 * At this point it is safe to assume that the "private_data" contains
2138 * our own data structure.
2139 */
2140 ep = f.file->private_data;
2141
2142 /* Time to fish for events ... */
2143 error = ep_poll(ep, events, maxevents, timeout);
2144
2145 error_fput:
2146 fdput(f);
2147 return error;
2148 }
2149
2150 /*
2151 * Implement the event wait interface for the eventpoll file. It is the kernel
2152 * part of the user space epoll_pwait(2).
2153 */
2154 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2155 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2156 size_t, sigsetsize)
2157 {
2158 int error;
2159 sigset_t ksigmask, sigsaved;
2160
2161 /*
2162 * If the caller wants a certain signal mask to be set during the wait,
2163 * we apply it here.
2164 */
2165 if (sigmask) {
2166 if (sigsetsize != sizeof(sigset_t))
2167 return -EINVAL;
2168 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2169 return -EFAULT;
2170 sigsaved = current->blocked;
2171 set_current_blocked(&ksigmask);
2172 }
2173
2174 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2175
2176 /*
2177 * If we changed the signal mask, we need to restore the original one.
2178 * In case we've got a signal while waiting, we do not restore the
2179 * signal mask yet, and we allow do_signal() to deliver the signal on
2180 * the way back to userspace, before the signal mask is restored.
2181 */
2182 if (sigmask) {
2183 if (error == -EINTR) {
2184 memcpy(&current->saved_sigmask, &sigsaved,
2185 sizeof(sigsaved));
2186 set_restore_sigmask();
2187 } else
2188 set_current_blocked(&sigsaved);
2189 }
2190
2191 return error;
2192 }
2193
2194 #ifdef CONFIG_COMPAT
2195 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2196 struct epoll_event __user *, events,
2197 int, maxevents, int, timeout,
2198 const compat_sigset_t __user *, sigmask,
2199 compat_size_t, sigsetsize)
2200 {
2201 long err;
2202 compat_sigset_t csigmask;
2203 sigset_t ksigmask, sigsaved;
2204
2205 /*
2206 * If the caller wants a certain signal mask to be set during the wait,
2207 * we apply it here.
2208 */
2209 if (sigmask) {
2210 if (sigsetsize != sizeof(compat_sigset_t))
2211 return -EINVAL;
2212 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2213 return -EFAULT;
2214 sigset_from_compat(&ksigmask, &csigmask);
2215 sigsaved = current->blocked;
2216 set_current_blocked(&ksigmask);
2217 }
2218
2219 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2220
2221 /*
2222 * If we changed the signal mask, we need to restore the original one.
2223 * In case we've got a signal while waiting, we do not restore the
2224 * signal mask yet, and we allow do_signal() to deliver the signal on
2225 * the way back to userspace, before the signal mask is restored.
2226 */
2227 if (sigmask) {
2228 if (err == -EINTR) {
2229 memcpy(&current->saved_sigmask, &sigsaved,
2230 sizeof(sigsaved));
2231 set_restore_sigmask();
2232 } else
2233 set_current_blocked(&sigsaved);
2234 }
2235
2236 return err;
2237 }
2238 #endif
2239
2240 static int __init eventpoll_init(void)
2241 {
2242 struct sysinfo si;
2243
2244 si_meminfo(&si);
2245 /*
2246 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2247 */
2248 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2249 EP_ITEM_COST;
2250 BUG_ON(max_user_watches < 0);
2251
2252 /*
2253 * Initialize the structure used to perform epoll file descriptor
2254 * inclusion loops checks.
2255 */
2256 ep_nested_calls_init(&poll_loop_ncalls);
2257
2258 /* Initialize the structure used to perform safe poll wait head wake ups */
2259 ep_nested_calls_init(&poll_safewake_ncalls);
2260
2261 /* Initialize the structure used to perform file's f_op->poll() calls */
2262 ep_nested_calls_init(&poll_readywalk_ncalls);
2263
2264 /*
2265 * We can have many thousands of epitems, so prevent this from
2266 * using an extra cache line on 64-bit (and smaller) CPUs
2267 */
2268 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2269
2270 /* Allocates slab cache used to allocate "struct epitem" items */
2271 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2272 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2273
2274 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2275 pwq_cache = kmem_cache_create("eventpoll_pwq",
2276 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2277
2278 return 0;
2279 }
2280 fs_initcall(eventpoll_init);