]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/eventpoll.c
poll: add poll_requested_events() and poll_does_not_wait() functions
[mirror_ubuntu-zesty-kernel.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
88 */
89
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
92
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101
102 struct epoll_filefd {
103 struct file *file;
104 int fd;
105 };
106
107 /*
108 * Structure used to track possible nested calls, for too deep recursions
109 * and loop cycles.
110 */
111 struct nested_call_node {
112 struct list_head llink;
113 void *cookie;
114 void *ctx;
115 };
116
117 /*
118 * This structure is used as collector for nested calls, to check for
119 * maximum recursion dept and loop cycles.
120 */
121 struct nested_calls {
122 struct list_head tasks_call_list;
123 spinlock_t lock;
124 };
125
126 /*
127 * Each file descriptor added to the eventpoll interface will
128 * have an entry of this type linked to the "rbr" RB tree.
129 */
130 struct epitem {
131 /* RB tree node used to link this structure to the eventpoll RB tree */
132 struct rb_node rbn;
133
134 /* List header used to link this structure to the eventpoll ready list */
135 struct list_head rdllink;
136
137 /*
138 * Works together "struct eventpoll"->ovflist in keeping the
139 * single linked chain of items.
140 */
141 struct epitem *next;
142
143 /* The file descriptor information this item refers to */
144 struct epoll_filefd ffd;
145
146 /* Number of active wait queue attached to poll operations */
147 int nwait;
148
149 /* List containing poll wait queues */
150 struct list_head pwqlist;
151
152 /* The "container" of this item */
153 struct eventpoll *ep;
154
155 /* List header used to link this item to the "struct file" items list */
156 struct list_head fllink;
157
158 /* The structure that describe the interested events and the source fd */
159 struct epoll_event event;
160 };
161
162 /*
163 * This structure is stored inside the "private_data" member of the file
164 * structure and represents the main data structure for the eventpoll
165 * interface.
166 */
167 struct eventpoll {
168 /* Protect the access to this structure */
169 spinlock_t lock;
170
171 /*
172 * This mutex is used to ensure that files are not removed
173 * while epoll is using them. This is held during the event
174 * collection loop, the file cleanup path, the epoll file exit
175 * code and the ctl operations.
176 */
177 struct mutex mtx;
178
179 /* Wait queue used by sys_epoll_wait() */
180 wait_queue_head_t wq;
181
182 /* Wait queue used by file->poll() */
183 wait_queue_head_t poll_wait;
184
185 /* List of ready file descriptors */
186 struct list_head rdllist;
187
188 /* RB tree root used to store monitored fd structs */
189 struct rb_root rbr;
190
191 /*
192 * This is a single linked list that chains all the "struct epitem" that
193 * happened while transferring ready events to userspace w/out
194 * holding ->lock.
195 */
196 struct epitem *ovflist;
197
198 /* The user that created the eventpoll descriptor */
199 struct user_struct *user;
200
201 struct file *file;
202
203 /* used to optimize loop detection check */
204 int visited;
205 struct list_head visited_list_link;
206 };
207
208 /* Wait structure used by the poll hooks */
209 struct eppoll_entry {
210 /* List header used to link this structure to the "struct epitem" */
211 struct list_head llink;
212
213 /* The "base" pointer is set to the container "struct epitem" */
214 struct epitem *base;
215
216 /*
217 * Wait queue item that will be linked to the target file wait
218 * queue head.
219 */
220 wait_queue_t wait;
221
222 /* The wait queue head that linked the "wait" wait queue item */
223 wait_queue_head_t *whead;
224 };
225
226 /* Wrapper struct used by poll queueing */
227 struct ep_pqueue {
228 poll_table pt;
229 struct epitem *epi;
230 };
231
232 /* Used by the ep_send_events() function as callback private data */
233 struct ep_send_events_data {
234 int maxevents;
235 struct epoll_event __user *events;
236 };
237
238 /*
239 * Configuration options available inside /proc/sys/fs/epoll/
240 */
241 /* Maximum number of epoll watched descriptors, per user */
242 static long max_user_watches __read_mostly;
243
244 /*
245 * This mutex is used to serialize ep_free() and eventpoll_release_file().
246 */
247 static DEFINE_MUTEX(epmutex);
248
249 /* Used to check for epoll file descriptor inclusion loops */
250 static struct nested_calls poll_loop_ncalls;
251
252 /* Used for safe wake up implementation */
253 static struct nested_calls poll_safewake_ncalls;
254
255 /* Used to call file's f_op->poll() under the nested calls boundaries */
256 static struct nested_calls poll_readywalk_ncalls;
257
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
260
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
263
264 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
265 static LIST_HEAD(visited_list);
266
267 /*
268 * List of files with newly added links, where we may need to limit the number
269 * of emanating paths. Protected by the epmutex.
270 */
271 static LIST_HEAD(tfile_check_list);
272
273 #ifdef CONFIG_SYSCTL
274
275 #include <linux/sysctl.h>
276
277 static long zero;
278 static long long_max = LONG_MAX;
279
280 ctl_table epoll_table[] = {
281 {
282 .procname = "max_user_watches",
283 .data = &max_user_watches,
284 .maxlen = sizeof(max_user_watches),
285 .mode = 0644,
286 .proc_handler = proc_doulongvec_minmax,
287 .extra1 = &zero,
288 .extra2 = &long_max,
289 },
290 { }
291 };
292 #endif /* CONFIG_SYSCTL */
293
294 static const struct file_operations eventpoll_fops;
295
296 static inline int is_file_epoll(struct file *f)
297 {
298 return f->f_op == &eventpoll_fops;
299 }
300
301 /* Setup the structure that is used as key for the RB tree */
302 static inline void ep_set_ffd(struct epoll_filefd *ffd,
303 struct file *file, int fd)
304 {
305 ffd->file = file;
306 ffd->fd = fd;
307 }
308
309 /* Compare RB tree keys */
310 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
311 struct epoll_filefd *p2)
312 {
313 return (p1->file > p2->file ? +1:
314 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
315 }
316
317 /* Tells us if the item is currently linked */
318 static inline int ep_is_linked(struct list_head *p)
319 {
320 return !list_empty(p);
321 }
322
323 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
324 {
325 return container_of(p, struct eppoll_entry, wait);
326 }
327
328 /* Get the "struct epitem" from a wait queue pointer */
329 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
330 {
331 return container_of(p, struct eppoll_entry, wait)->base;
332 }
333
334 /* Get the "struct epitem" from an epoll queue wrapper */
335 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
336 {
337 return container_of(p, struct ep_pqueue, pt)->epi;
338 }
339
340 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
341 static inline int ep_op_has_event(int op)
342 {
343 return op != EPOLL_CTL_DEL;
344 }
345
346 /* Initialize the poll safe wake up structure */
347 static void ep_nested_calls_init(struct nested_calls *ncalls)
348 {
349 INIT_LIST_HEAD(&ncalls->tasks_call_list);
350 spin_lock_init(&ncalls->lock);
351 }
352
353 /**
354 * ep_events_available - Checks if ready events might be available.
355 *
356 * @ep: Pointer to the eventpoll context.
357 *
358 * Returns: Returns a value different than zero if ready events are available,
359 * or zero otherwise.
360 */
361 static inline int ep_events_available(struct eventpoll *ep)
362 {
363 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
364 }
365
366 /**
367 * ep_call_nested - Perform a bound (possibly) nested call, by checking
368 * that the recursion limit is not exceeded, and that
369 * the same nested call (by the meaning of same cookie) is
370 * no re-entered.
371 *
372 * @ncalls: Pointer to the nested_calls structure to be used for this call.
373 * @max_nests: Maximum number of allowed nesting calls.
374 * @nproc: Nested call core function pointer.
375 * @priv: Opaque data to be passed to the @nproc callback.
376 * @cookie: Cookie to be used to identify this nested call.
377 * @ctx: This instance context.
378 *
379 * Returns: Returns the code returned by the @nproc callback, or -1 if
380 * the maximum recursion limit has been exceeded.
381 */
382 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
383 int (*nproc)(void *, void *, int), void *priv,
384 void *cookie, void *ctx)
385 {
386 int error, call_nests = 0;
387 unsigned long flags;
388 struct list_head *lsthead = &ncalls->tasks_call_list;
389 struct nested_call_node *tncur;
390 struct nested_call_node tnode;
391
392 spin_lock_irqsave(&ncalls->lock, flags);
393
394 /*
395 * Try to see if the current task is already inside this wakeup call.
396 * We use a list here, since the population inside this set is always
397 * very much limited.
398 */
399 list_for_each_entry(tncur, lsthead, llink) {
400 if (tncur->ctx == ctx &&
401 (tncur->cookie == cookie || ++call_nests > max_nests)) {
402 /*
403 * Ops ... loop detected or maximum nest level reached.
404 * We abort this wake by breaking the cycle itself.
405 */
406 error = -1;
407 goto out_unlock;
408 }
409 }
410
411 /* Add the current task and cookie to the list */
412 tnode.ctx = ctx;
413 tnode.cookie = cookie;
414 list_add(&tnode.llink, lsthead);
415
416 spin_unlock_irqrestore(&ncalls->lock, flags);
417
418 /* Call the nested function */
419 error = (*nproc)(priv, cookie, call_nests);
420
421 /* Remove the current task from the list */
422 spin_lock_irqsave(&ncalls->lock, flags);
423 list_del(&tnode.llink);
424 out_unlock:
425 spin_unlock_irqrestore(&ncalls->lock, flags);
426
427 return error;
428 }
429
430 #ifdef CONFIG_DEBUG_LOCK_ALLOC
431 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
432 unsigned long events, int subclass)
433 {
434 unsigned long flags;
435
436 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
437 wake_up_locked_poll(wqueue, events);
438 spin_unlock_irqrestore(&wqueue->lock, flags);
439 }
440 #else
441 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
442 unsigned long events, int subclass)
443 {
444 wake_up_poll(wqueue, events);
445 }
446 #endif
447
448 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
449 {
450 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
451 1 + call_nests);
452 return 0;
453 }
454
455 /*
456 * Perform a safe wake up of the poll wait list. The problem is that
457 * with the new callback'd wake up system, it is possible that the
458 * poll callback is reentered from inside the call to wake_up() done
459 * on the poll wait queue head. The rule is that we cannot reenter the
460 * wake up code from the same task more than EP_MAX_NESTS times,
461 * and we cannot reenter the same wait queue head at all. This will
462 * enable to have a hierarchy of epoll file descriptor of no more than
463 * EP_MAX_NESTS deep.
464 */
465 static void ep_poll_safewake(wait_queue_head_t *wq)
466 {
467 int this_cpu = get_cpu();
468
469 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
470 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
471
472 put_cpu();
473 }
474
475 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
476 {
477 wait_queue_head_t *whead;
478
479 rcu_read_lock();
480 /* If it is cleared by POLLFREE, it should be rcu-safe */
481 whead = rcu_dereference(pwq->whead);
482 if (whead)
483 remove_wait_queue(whead, &pwq->wait);
484 rcu_read_unlock();
485 }
486
487 /*
488 * This function unregisters poll callbacks from the associated file
489 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
490 * ep_free).
491 */
492 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
493 {
494 struct list_head *lsthead = &epi->pwqlist;
495 struct eppoll_entry *pwq;
496
497 while (!list_empty(lsthead)) {
498 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
499
500 list_del(&pwq->llink);
501 ep_remove_wait_queue(pwq);
502 kmem_cache_free(pwq_cache, pwq);
503 }
504 }
505
506 /**
507 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
508 * the scan code, to call f_op->poll(). Also allows for
509 * O(NumReady) performance.
510 *
511 * @ep: Pointer to the epoll private data structure.
512 * @sproc: Pointer to the scan callback.
513 * @priv: Private opaque data passed to the @sproc callback.
514 * @depth: The current depth of recursive f_op->poll calls.
515 *
516 * Returns: The same integer error code returned by the @sproc callback.
517 */
518 static int ep_scan_ready_list(struct eventpoll *ep,
519 int (*sproc)(struct eventpoll *,
520 struct list_head *, void *),
521 void *priv,
522 int depth)
523 {
524 int error, pwake = 0;
525 unsigned long flags;
526 struct epitem *epi, *nepi;
527 LIST_HEAD(txlist);
528
529 /*
530 * We need to lock this because we could be hit by
531 * eventpoll_release_file() and epoll_ctl().
532 */
533 mutex_lock_nested(&ep->mtx, depth);
534
535 /*
536 * Steal the ready list, and re-init the original one to the
537 * empty list. Also, set ep->ovflist to NULL so that events
538 * happening while looping w/out locks, are not lost. We cannot
539 * have the poll callback to queue directly on ep->rdllist,
540 * because we want the "sproc" callback to be able to do it
541 * in a lockless way.
542 */
543 spin_lock_irqsave(&ep->lock, flags);
544 list_splice_init(&ep->rdllist, &txlist);
545 ep->ovflist = NULL;
546 spin_unlock_irqrestore(&ep->lock, flags);
547
548 /*
549 * Now call the callback function.
550 */
551 error = (*sproc)(ep, &txlist, priv);
552
553 spin_lock_irqsave(&ep->lock, flags);
554 /*
555 * During the time we spent inside the "sproc" callback, some
556 * other events might have been queued by the poll callback.
557 * We re-insert them inside the main ready-list here.
558 */
559 for (nepi = ep->ovflist; (epi = nepi) != NULL;
560 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
561 /*
562 * We need to check if the item is already in the list.
563 * During the "sproc" callback execution time, items are
564 * queued into ->ovflist but the "txlist" might already
565 * contain them, and the list_splice() below takes care of them.
566 */
567 if (!ep_is_linked(&epi->rdllink))
568 list_add_tail(&epi->rdllink, &ep->rdllist);
569 }
570 /*
571 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
572 * releasing the lock, events will be queued in the normal way inside
573 * ep->rdllist.
574 */
575 ep->ovflist = EP_UNACTIVE_PTR;
576
577 /*
578 * Quickly re-inject items left on "txlist".
579 */
580 list_splice(&txlist, &ep->rdllist);
581
582 if (!list_empty(&ep->rdllist)) {
583 /*
584 * Wake up (if active) both the eventpoll wait list and
585 * the ->poll() wait list (delayed after we release the lock).
586 */
587 if (waitqueue_active(&ep->wq))
588 wake_up_locked(&ep->wq);
589 if (waitqueue_active(&ep->poll_wait))
590 pwake++;
591 }
592 spin_unlock_irqrestore(&ep->lock, flags);
593
594 mutex_unlock(&ep->mtx);
595
596 /* We have to call this outside the lock */
597 if (pwake)
598 ep_poll_safewake(&ep->poll_wait);
599
600 return error;
601 }
602
603 /*
604 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
605 * all the associated resources. Must be called with "mtx" held.
606 */
607 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
608 {
609 unsigned long flags;
610 struct file *file = epi->ffd.file;
611
612 /*
613 * Removes poll wait queue hooks. We _have_ to do this without holding
614 * the "ep->lock" otherwise a deadlock might occur. This because of the
615 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
616 * queue head lock when unregistering the wait queue. The wakeup callback
617 * will run by holding the wait queue head lock and will call our callback
618 * that will try to get "ep->lock".
619 */
620 ep_unregister_pollwait(ep, epi);
621
622 /* Remove the current item from the list of epoll hooks */
623 spin_lock(&file->f_lock);
624 if (ep_is_linked(&epi->fllink))
625 list_del_init(&epi->fllink);
626 spin_unlock(&file->f_lock);
627
628 rb_erase(&epi->rbn, &ep->rbr);
629
630 spin_lock_irqsave(&ep->lock, flags);
631 if (ep_is_linked(&epi->rdllink))
632 list_del_init(&epi->rdllink);
633 spin_unlock_irqrestore(&ep->lock, flags);
634
635 /* At this point it is safe to free the eventpoll item */
636 kmem_cache_free(epi_cache, epi);
637
638 atomic_long_dec(&ep->user->epoll_watches);
639
640 return 0;
641 }
642
643 static void ep_free(struct eventpoll *ep)
644 {
645 struct rb_node *rbp;
646 struct epitem *epi;
647
648 /* We need to release all tasks waiting for these file */
649 if (waitqueue_active(&ep->poll_wait))
650 ep_poll_safewake(&ep->poll_wait);
651
652 /*
653 * We need to lock this because we could be hit by
654 * eventpoll_release_file() while we're freeing the "struct eventpoll".
655 * We do not need to hold "ep->mtx" here because the epoll file
656 * is on the way to be removed and no one has references to it
657 * anymore. The only hit might come from eventpoll_release_file() but
658 * holding "epmutex" is sufficient here.
659 */
660 mutex_lock(&epmutex);
661
662 /*
663 * Walks through the whole tree by unregistering poll callbacks.
664 */
665 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
666 epi = rb_entry(rbp, struct epitem, rbn);
667
668 ep_unregister_pollwait(ep, epi);
669 }
670
671 /*
672 * Walks through the whole tree by freeing each "struct epitem". At this
673 * point we are sure no poll callbacks will be lingering around, and also by
674 * holding "epmutex" we can be sure that no file cleanup code will hit
675 * us during this operation. So we can avoid the lock on "ep->lock".
676 */
677 while ((rbp = rb_first(&ep->rbr)) != NULL) {
678 epi = rb_entry(rbp, struct epitem, rbn);
679 ep_remove(ep, epi);
680 }
681
682 mutex_unlock(&epmutex);
683 mutex_destroy(&ep->mtx);
684 free_uid(ep->user);
685 kfree(ep);
686 }
687
688 static int ep_eventpoll_release(struct inode *inode, struct file *file)
689 {
690 struct eventpoll *ep = file->private_data;
691
692 if (ep)
693 ep_free(ep);
694
695 return 0;
696 }
697
698 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
699 void *priv)
700 {
701 struct epitem *epi, *tmp;
702 poll_table pt;
703
704 init_poll_funcptr(&pt, NULL);
705 list_for_each_entry_safe(epi, tmp, head, rdllink) {
706 pt._key = epi->event.events;
707 if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
708 epi->event.events)
709 return POLLIN | POLLRDNORM;
710 else {
711 /*
712 * Item has been dropped into the ready list by the poll
713 * callback, but it's not actually ready, as far as
714 * caller requested events goes. We can remove it here.
715 */
716 list_del_init(&epi->rdllink);
717 }
718 }
719
720 return 0;
721 }
722
723 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
724 {
725 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
726 }
727
728 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
729 {
730 int pollflags;
731 struct eventpoll *ep = file->private_data;
732
733 /* Insert inside our poll wait queue */
734 poll_wait(file, &ep->poll_wait, wait);
735
736 /*
737 * Proceed to find out if wanted events are really available inside
738 * the ready list. This need to be done under ep_call_nested()
739 * supervision, since the call to f_op->poll() done on listed files
740 * could re-enter here.
741 */
742 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
743 ep_poll_readyevents_proc, ep, ep, current);
744
745 return pollflags != -1 ? pollflags : 0;
746 }
747
748 /* File callbacks that implement the eventpoll file behaviour */
749 static const struct file_operations eventpoll_fops = {
750 .release = ep_eventpoll_release,
751 .poll = ep_eventpoll_poll,
752 .llseek = noop_llseek,
753 };
754
755 /*
756 * This is called from eventpoll_release() to unlink files from the eventpoll
757 * interface. We need to have this facility to cleanup correctly files that are
758 * closed without being removed from the eventpoll interface.
759 */
760 void eventpoll_release_file(struct file *file)
761 {
762 struct list_head *lsthead = &file->f_ep_links;
763 struct eventpoll *ep;
764 struct epitem *epi;
765
766 /*
767 * We don't want to get "file->f_lock" because it is not
768 * necessary. It is not necessary because we're in the "struct file"
769 * cleanup path, and this means that no one is using this file anymore.
770 * So, for example, epoll_ctl() cannot hit here since if we reach this
771 * point, the file counter already went to zero and fget() would fail.
772 * The only hit might come from ep_free() but by holding the mutex
773 * will correctly serialize the operation. We do need to acquire
774 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
775 * from anywhere but ep_free().
776 *
777 * Besides, ep_remove() acquires the lock, so we can't hold it here.
778 */
779 mutex_lock(&epmutex);
780
781 while (!list_empty(lsthead)) {
782 epi = list_first_entry(lsthead, struct epitem, fllink);
783
784 ep = epi->ep;
785 list_del_init(&epi->fllink);
786 mutex_lock_nested(&ep->mtx, 0);
787 ep_remove(ep, epi);
788 mutex_unlock(&ep->mtx);
789 }
790
791 mutex_unlock(&epmutex);
792 }
793
794 static int ep_alloc(struct eventpoll **pep)
795 {
796 int error;
797 struct user_struct *user;
798 struct eventpoll *ep;
799
800 user = get_current_user();
801 error = -ENOMEM;
802 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
803 if (unlikely(!ep))
804 goto free_uid;
805
806 spin_lock_init(&ep->lock);
807 mutex_init(&ep->mtx);
808 init_waitqueue_head(&ep->wq);
809 init_waitqueue_head(&ep->poll_wait);
810 INIT_LIST_HEAD(&ep->rdllist);
811 ep->rbr = RB_ROOT;
812 ep->ovflist = EP_UNACTIVE_PTR;
813 ep->user = user;
814
815 *pep = ep;
816
817 return 0;
818
819 free_uid:
820 free_uid(user);
821 return error;
822 }
823
824 /*
825 * Search the file inside the eventpoll tree. The RB tree operations
826 * are protected by the "mtx" mutex, and ep_find() must be called with
827 * "mtx" held.
828 */
829 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
830 {
831 int kcmp;
832 struct rb_node *rbp;
833 struct epitem *epi, *epir = NULL;
834 struct epoll_filefd ffd;
835
836 ep_set_ffd(&ffd, file, fd);
837 for (rbp = ep->rbr.rb_node; rbp; ) {
838 epi = rb_entry(rbp, struct epitem, rbn);
839 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
840 if (kcmp > 0)
841 rbp = rbp->rb_right;
842 else if (kcmp < 0)
843 rbp = rbp->rb_left;
844 else {
845 epir = epi;
846 break;
847 }
848 }
849
850 return epir;
851 }
852
853 /*
854 * This is the callback that is passed to the wait queue wakeup
855 * mechanism. It is called by the stored file descriptors when they
856 * have events to report.
857 */
858 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
859 {
860 int pwake = 0;
861 unsigned long flags;
862 struct epitem *epi = ep_item_from_wait(wait);
863 struct eventpoll *ep = epi->ep;
864
865 if ((unsigned long)key & POLLFREE) {
866 ep_pwq_from_wait(wait)->whead = NULL;
867 /*
868 * whead = NULL above can race with ep_remove_wait_queue()
869 * which can do another remove_wait_queue() after us, so we
870 * can't use __remove_wait_queue(). whead->lock is held by
871 * the caller.
872 */
873 list_del_init(&wait->task_list);
874 }
875
876 spin_lock_irqsave(&ep->lock, flags);
877
878 /*
879 * If the event mask does not contain any poll(2) event, we consider the
880 * descriptor to be disabled. This condition is likely the effect of the
881 * EPOLLONESHOT bit that disables the descriptor when an event is received,
882 * until the next EPOLL_CTL_MOD will be issued.
883 */
884 if (!(epi->event.events & ~EP_PRIVATE_BITS))
885 goto out_unlock;
886
887 /*
888 * Check the events coming with the callback. At this stage, not
889 * every device reports the events in the "key" parameter of the
890 * callback. We need to be able to handle both cases here, hence the
891 * test for "key" != NULL before the event match test.
892 */
893 if (key && !((unsigned long) key & epi->event.events))
894 goto out_unlock;
895
896 /*
897 * If we are transferring events to userspace, we can hold no locks
898 * (because we're accessing user memory, and because of linux f_op->poll()
899 * semantics). All the events that happen during that period of time are
900 * chained in ep->ovflist and requeued later on.
901 */
902 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
903 if (epi->next == EP_UNACTIVE_PTR) {
904 epi->next = ep->ovflist;
905 ep->ovflist = epi;
906 }
907 goto out_unlock;
908 }
909
910 /* If this file is already in the ready list we exit soon */
911 if (!ep_is_linked(&epi->rdllink))
912 list_add_tail(&epi->rdllink, &ep->rdllist);
913
914 /*
915 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
916 * wait list.
917 */
918 if (waitqueue_active(&ep->wq))
919 wake_up_locked(&ep->wq);
920 if (waitqueue_active(&ep->poll_wait))
921 pwake++;
922
923 out_unlock:
924 spin_unlock_irqrestore(&ep->lock, flags);
925
926 /* We have to call this outside the lock */
927 if (pwake)
928 ep_poll_safewake(&ep->poll_wait);
929
930 return 1;
931 }
932
933 /*
934 * This is the callback that is used to add our wait queue to the
935 * target file wakeup lists.
936 */
937 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
938 poll_table *pt)
939 {
940 struct epitem *epi = ep_item_from_epqueue(pt);
941 struct eppoll_entry *pwq;
942
943 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
944 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
945 pwq->whead = whead;
946 pwq->base = epi;
947 add_wait_queue(whead, &pwq->wait);
948 list_add_tail(&pwq->llink, &epi->pwqlist);
949 epi->nwait++;
950 } else {
951 /* We have to signal that an error occurred */
952 epi->nwait = -1;
953 }
954 }
955
956 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
957 {
958 int kcmp;
959 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
960 struct epitem *epic;
961
962 while (*p) {
963 parent = *p;
964 epic = rb_entry(parent, struct epitem, rbn);
965 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
966 if (kcmp > 0)
967 p = &parent->rb_right;
968 else
969 p = &parent->rb_left;
970 }
971 rb_link_node(&epi->rbn, parent, p);
972 rb_insert_color(&epi->rbn, &ep->rbr);
973 }
974
975
976
977 #define PATH_ARR_SIZE 5
978 /*
979 * These are the number paths of length 1 to 5, that we are allowing to emanate
980 * from a single file of interest. For example, we allow 1000 paths of length
981 * 1, to emanate from each file of interest. This essentially represents the
982 * potential wakeup paths, which need to be limited in order to avoid massive
983 * uncontrolled wakeup storms. The common use case should be a single ep which
984 * is connected to n file sources. In this case each file source has 1 path
985 * of length 1. Thus, the numbers below should be more than sufficient. These
986 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
987 * and delete can't add additional paths. Protected by the epmutex.
988 */
989 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
990 static int path_count[PATH_ARR_SIZE];
991
992 static int path_count_inc(int nests)
993 {
994 /* Allow an arbitrary number of depth 1 paths */
995 if (nests == 0)
996 return 0;
997
998 if (++path_count[nests] > path_limits[nests])
999 return -1;
1000 return 0;
1001 }
1002
1003 static void path_count_init(void)
1004 {
1005 int i;
1006
1007 for (i = 0; i < PATH_ARR_SIZE; i++)
1008 path_count[i] = 0;
1009 }
1010
1011 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1012 {
1013 int error = 0;
1014 struct file *file = priv;
1015 struct file *child_file;
1016 struct epitem *epi;
1017
1018 list_for_each_entry(epi, &file->f_ep_links, fllink) {
1019 child_file = epi->ep->file;
1020 if (is_file_epoll(child_file)) {
1021 if (list_empty(&child_file->f_ep_links)) {
1022 if (path_count_inc(call_nests)) {
1023 error = -1;
1024 break;
1025 }
1026 } else {
1027 error = ep_call_nested(&poll_loop_ncalls,
1028 EP_MAX_NESTS,
1029 reverse_path_check_proc,
1030 child_file, child_file,
1031 current);
1032 }
1033 if (error != 0)
1034 break;
1035 } else {
1036 printk(KERN_ERR "reverse_path_check_proc: "
1037 "file is not an ep!\n");
1038 }
1039 }
1040 return error;
1041 }
1042
1043 /**
1044 * reverse_path_check - The tfile_check_list is list of file *, which have
1045 * links that are proposed to be newly added. We need to
1046 * make sure that those added links don't add too many
1047 * paths such that we will spend all our time waking up
1048 * eventpoll objects.
1049 *
1050 * Returns: Returns zero if the proposed links don't create too many paths,
1051 * -1 otherwise.
1052 */
1053 static int reverse_path_check(void)
1054 {
1055 int length = 0;
1056 int error = 0;
1057 struct file *current_file;
1058
1059 /* let's call this for all tfiles */
1060 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1061 length++;
1062 path_count_init();
1063 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1064 reverse_path_check_proc, current_file,
1065 current_file, current);
1066 if (error)
1067 break;
1068 }
1069 return error;
1070 }
1071
1072 /*
1073 * Must be called with "mtx" held.
1074 */
1075 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1076 struct file *tfile, int fd)
1077 {
1078 int error, revents, pwake = 0;
1079 unsigned long flags;
1080 long user_watches;
1081 struct epitem *epi;
1082 struct ep_pqueue epq;
1083
1084 user_watches = atomic_long_read(&ep->user->epoll_watches);
1085 if (unlikely(user_watches >= max_user_watches))
1086 return -ENOSPC;
1087 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1088 return -ENOMEM;
1089
1090 /* Item initialization follow here ... */
1091 INIT_LIST_HEAD(&epi->rdllink);
1092 INIT_LIST_HEAD(&epi->fllink);
1093 INIT_LIST_HEAD(&epi->pwqlist);
1094 epi->ep = ep;
1095 ep_set_ffd(&epi->ffd, tfile, fd);
1096 epi->event = *event;
1097 epi->nwait = 0;
1098 epi->next = EP_UNACTIVE_PTR;
1099
1100 /* Initialize the poll table using the queue callback */
1101 epq.epi = epi;
1102 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1103 epq.pt._key = event->events;
1104
1105 /*
1106 * Attach the item to the poll hooks and get current event bits.
1107 * We can safely use the file* here because its usage count has
1108 * been increased by the caller of this function. Note that after
1109 * this operation completes, the poll callback can start hitting
1110 * the new item.
1111 */
1112 revents = tfile->f_op->poll(tfile, &epq.pt);
1113
1114 /*
1115 * We have to check if something went wrong during the poll wait queue
1116 * install process. Namely an allocation for a wait queue failed due
1117 * high memory pressure.
1118 */
1119 error = -ENOMEM;
1120 if (epi->nwait < 0)
1121 goto error_unregister;
1122
1123 /* Add the current item to the list of active epoll hook for this file */
1124 spin_lock(&tfile->f_lock);
1125 list_add_tail(&epi->fllink, &tfile->f_ep_links);
1126 spin_unlock(&tfile->f_lock);
1127
1128 /*
1129 * Add the current item to the RB tree. All RB tree operations are
1130 * protected by "mtx", and ep_insert() is called with "mtx" held.
1131 */
1132 ep_rbtree_insert(ep, epi);
1133
1134 /* now check if we've created too many backpaths */
1135 error = -EINVAL;
1136 if (reverse_path_check())
1137 goto error_remove_epi;
1138
1139 /* We have to drop the new item inside our item list to keep track of it */
1140 spin_lock_irqsave(&ep->lock, flags);
1141
1142 /* If the file is already "ready" we drop it inside the ready list */
1143 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1144 list_add_tail(&epi->rdllink, &ep->rdllist);
1145
1146 /* Notify waiting tasks that events are available */
1147 if (waitqueue_active(&ep->wq))
1148 wake_up_locked(&ep->wq);
1149 if (waitqueue_active(&ep->poll_wait))
1150 pwake++;
1151 }
1152
1153 spin_unlock_irqrestore(&ep->lock, flags);
1154
1155 atomic_long_inc(&ep->user->epoll_watches);
1156
1157 /* We have to call this outside the lock */
1158 if (pwake)
1159 ep_poll_safewake(&ep->poll_wait);
1160
1161 return 0;
1162
1163 error_remove_epi:
1164 spin_lock(&tfile->f_lock);
1165 if (ep_is_linked(&epi->fllink))
1166 list_del_init(&epi->fllink);
1167 spin_unlock(&tfile->f_lock);
1168
1169 rb_erase(&epi->rbn, &ep->rbr);
1170
1171 error_unregister:
1172 ep_unregister_pollwait(ep, epi);
1173
1174 /*
1175 * We need to do this because an event could have been arrived on some
1176 * allocated wait queue. Note that we don't care about the ep->ovflist
1177 * list, since that is used/cleaned only inside a section bound by "mtx".
1178 * And ep_insert() is called with "mtx" held.
1179 */
1180 spin_lock_irqsave(&ep->lock, flags);
1181 if (ep_is_linked(&epi->rdllink))
1182 list_del_init(&epi->rdllink);
1183 spin_unlock_irqrestore(&ep->lock, flags);
1184
1185 kmem_cache_free(epi_cache, epi);
1186
1187 return error;
1188 }
1189
1190 /*
1191 * Modify the interest event mask by dropping an event if the new mask
1192 * has a match in the current file status. Must be called with "mtx" held.
1193 */
1194 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1195 {
1196 int pwake = 0;
1197 unsigned int revents;
1198 poll_table pt;
1199
1200 init_poll_funcptr(&pt, NULL);
1201
1202 /*
1203 * Set the new event interest mask before calling f_op->poll();
1204 * otherwise we might miss an event that happens between the
1205 * f_op->poll() call and the new event set registering.
1206 */
1207 epi->event.events = event->events;
1208 pt._key = event->events;
1209 epi->event.data = event->data; /* protected by mtx */
1210
1211 /*
1212 * Get current event bits. We can safely use the file* here because
1213 * its usage count has been increased by the caller of this function.
1214 */
1215 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt);
1216
1217 /*
1218 * If the item is "hot" and it is not registered inside the ready
1219 * list, push it inside.
1220 */
1221 if (revents & event->events) {
1222 spin_lock_irq(&ep->lock);
1223 if (!ep_is_linked(&epi->rdllink)) {
1224 list_add_tail(&epi->rdllink, &ep->rdllist);
1225
1226 /* Notify waiting tasks that events are available */
1227 if (waitqueue_active(&ep->wq))
1228 wake_up_locked(&ep->wq);
1229 if (waitqueue_active(&ep->poll_wait))
1230 pwake++;
1231 }
1232 spin_unlock_irq(&ep->lock);
1233 }
1234
1235 /* We have to call this outside the lock */
1236 if (pwake)
1237 ep_poll_safewake(&ep->poll_wait);
1238
1239 return 0;
1240 }
1241
1242 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1243 void *priv)
1244 {
1245 struct ep_send_events_data *esed = priv;
1246 int eventcnt;
1247 unsigned int revents;
1248 struct epitem *epi;
1249 struct epoll_event __user *uevent;
1250 poll_table pt;
1251
1252 init_poll_funcptr(&pt, NULL);
1253
1254 /*
1255 * We can loop without lock because we are passed a task private list.
1256 * Items cannot vanish during the loop because ep_scan_ready_list() is
1257 * holding "mtx" during this call.
1258 */
1259 for (eventcnt = 0, uevent = esed->events;
1260 !list_empty(head) && eventcnt < esed->maxevents;) {
1261 epi = list_first_entry(head, struct epitem, rdllink);
1262
1263 list_del_init(&epi->rdllink);
1264
1265 pt._key = epi->event.events;
1266 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
1267 epi->event.events;
1268
1269 /*
1270 * If the event mask intersect the caller-requested one,
1271 * deliver the event to userspace. Again, ep_scan_ready_list()
1272 * is holding "mtx", so no operations coming from userspace
1273 * can change the item.
1274 */
1275 if (revents) {
1276 if (__put_user(revents, &uevent->events) ||
1277 __put_user(epi->event.data, &uevent->data)) {
1278 list_add(&epi->rdllink, head);
1279 return eventcnt ? eventcnt : -EFAULT;
1280 }
1281 eventcnt++;
1282 uevent++;
1283 if (epi->event.events & EPOLLONESHOT)
1284 epi->event.events &= EP_PRIVATE_BITS;
1285 else if (!(epi->event.events & EPOLLET)) {
1286 /*
1287 * If this file has been added with Level
1288 * Trigger mode, we need to insert back inside
1289 * the ready list, so that the next call to
1290 * epoll_wait() will check again the events
1291 * availability. At this point, no one can insert
1292 * into ep->rdllist besides us. The epoll_ctl()
1293 * callers are locked out by
1294 * ep_scan_ready_list() holding "mtx" and the
1295 * poll callback will queue them in ep->ovflist.
1296 */
1297 list_add_tail(&epi->rdllink, &ep->rdllist);
1298 }
1299 }
1300 }
1301
1302 return eventcnt;
1303 }
1304
1305 static int ep_send_events(struct eventpoll *ep,
1306 struct epoll_event __user *events, int maxevents)
1307 {
1308 struct ep_send_events_data esed;
1309
1310 esed.maxevents = maxevents;
1311 esed.events = events;
1312
1313 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1314 }
1315
1316 static inline struct timespec ep_set_mstimeout(long ms)
1317 {
1318 struct timespec now, ts = {
1319 .tv_sec = ms / MSEC_PER_SEC,
1320 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1321 };
1322
1323 ktime_get_ts(&now);
1324 return timespec_add_safe(now, ts);
1325 }
1326
1327 /**
1328 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1329 * event buffer.
1330 *
1331 * @ep: Pointer to the eventpoll context.
1332 * @events: Pointer to the userspace buffer where the ready events should be
1333 * stored.
1334 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1335 * @timeout: Maximum timeout for the ready events fetch operation, in
1336 * milliseconds. If the @timeout is zero, the function will not block,
1337 * while if the @timeout is less than zero, the function will block
1338 * until at least one event has been retrieved (or an error
1339 * occurred).
1340 *
1341 * Returns: Returns the number of ready events which have been fetched, or an
1342 * error code, in case of error.
1343 */
1344 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1345 int maxevents, long timeout)
1346 {
1347 int res = 0, eavail, timed_out = 0;
1348 unsigned long flags;
1349 long slack = 0;
1350 wait_queue_t wait;
1351 ktime_t expires, *to = NULL;
1352
1353 if (timeout > 0) {
1354 struct timespec end_time = ep_set_mstimeout(timeout);
1355
1356 slack = select_estimate_accuracy(&end_time);
1357 to = &expires;
1358 *to = timespec_to_ktime(end_time);
1359 } else if (timeout == 0) {
1360 /*
1361 * Avoid the unnecessary trip to the wait queue loop, if the
1362 * caller specified a non blocking operation.
1363 */
1364 timed_out = 1;
1365 spin_lock_irqsave(&ep->lock, flags);
1366 goto check_events;
1367 }
1368
1369 fetch_events:
1370 spin_lock_irqsave(&ep->lock, flags);
1371
1372 if (!ep_events_available(ep)) {
1373 /*
1374 * We don't have any available event to return to the caller.
1375 * We need to sleep here, and we will be wake up by
1376 * ep_poll_callback() when events will become available.
1377 */
1378 init_waitqueue_entry(&wait, current);
1379 __add_wait_queue_exclusive(&ep->wq, &wait);
1380
1381 for (;;) {
1382 /*
1383 * We don't want to sleep if the ep_poll_callback() sends us
1384 * a wakeup in between. That's why we set the task state
1385 * to TASK_INTERRUPTIBLE before doing the checks.
1386 */
1387 set_current_state(TASK_INTERRUPTIBLE);
1388 if (ep_events_available(ep) || timed_out)
1389 break;
1390 if (signal_pending(current)) {
1391 res = -EINTR;
1392 break;
1393 }
1394
1395 spin_unlock_irqrestore(&ep->lock, flags);
1396 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1397 timed_out = 1;
1398
1399 spin_lock_irqsave(&ep->lock, flags);
1400 }
1401 __remove_wait_queue(&ep->wq, &wait);
1402
1403 set_current_state(TASK_RUNNING);
1404 }
1405 check_events:
1406 /* Is it worth to try to dig for events ? */
1407 eavail = ep_events_available(ep);
1408
1409 spin_unlock_irqrestore(&ep->lock, flags);
1410
1411 /*
1412 * Try to transfer events to user space. In case we get 0 events and
1413 * there's still timeout left over, we go trying again in search of
1414 * more luck.
1415 */
1416 if (!res && eavail &&
1417 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1418 goto fetch_events;
1419
1420 return res;
1421 }
1422
1423 /**
1424 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1425 * API, to verify that adding an epoll file inside another
1426 * epoll structure, does not violate the constraints, in
1427 * terms of closed loops, or too deep chains (which can
1428 * result in excessive stack usage).
1429 *
1430 * @priv: Pointer to the epoll file to be currently checked.
1431 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1432 * data structure pointer.
1433 * @call_nests: Current dept of the @ep_call_nested() call stack.
1434 *
1435 * Returns: Returns zero if adding the epoll @file inside current epoll
1436 * structure @ep does not violate the constraints, or -1 otherwise.
1437 */
1438 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1439 {
1440 int error = 0;
1441 struct file *file = priv;
1442 struct eventpoll *ep = file->private_data;
1443 struct eventpoll *ep_tovisit;
1444 struct rb_node *rbp;
1445 struct epitem *epi;
1446
1447 mutex_lock_nested(&ep->mtx, call_nests + 1);
1448 ep->visited = 1;
1449 list_add(&ep->visited_list_link, &visited_list);
1450 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1451 epi = rb_entry(rbp, struct epitem, rbn);
1452 if (unlikely(is_file_epoll(epi->ffd.file))) {
1453 ep_tovisit = epi->ffd.file->private_data;
1454 if (ep_tovisit->visited)
1455 continue;
1456 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1457 ep_loop_check_proc, epi->ffd.file,
1458 ep_tovisit, current);
1459 if (error != 0)
1460 break;
1461 } else {
1462 /*
1463 * If we've reached a file that is not associated with
1464 * an ep, then we need to check if the newly added
1465 * links are going to add too many wakeup paths. We do
1466 * this by adding it to the tfile_check_list, if it's
1467 * not already there, and calling reverse_path_check()
1468 * during ep_insert().
1469 */
1470 if (list_empty(&epi->ffd.file->f_tfile_llink))
1471 list_add(&epi->ffd.file->f_tfile_llink,
1472 &tfile_check_list);
1473 }
1474 }
1475 mutex_unlock(&ep->mtx);
1476
1477 return error;
1478 }
1479
1480 /**
1481 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1482 * another epoll file (represented by @ep) does not create
1483 * closed loops or too deep chains.
1484 *
1485 * @ep: Pointer to the epoll private data structure.
1486 * @file: Pointer to the epoll file to be checked.
1487 *
1488 * Returns: Returns zero if adding the epoll @file inside current epoll
1489 * structure @ep does not violate the constraints, or -1 otherwise.
1490 */
1491 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1492 {
1493 int ret;
1494 struct eventpoll *ep_cur, *ep_next;
1495
1496 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1497 ep_loop_check_proc, file, ep, current);
1498 /* clear visited list */
1499 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1500 visited_list_link) {
1501 ep_cur->visited = 0;
1502 list_del(&ep_cur->visited_list_link);
1503 }
1504 return ret;
1505 }
1506
1507 static void clear_tfile_check_list(void)
1508 {
1509 struct file *file;
1510
1511 /* first clear the tfile_check_list */
1512 while (!list_empty(&tfile_check_list)) {
1513 file = list_first_entry(&tfile_check_list, struct file,
1514 f_tfile_llink);
1515 list_del_init(&file->f_tfile_llink);
1516 }
1517 INIT_LIST_HEAD(&tfile_check_list);
1518 }
1519
1520 /*
1521 * Open an eventpoll file descriptor.
1522 */
1523 SYSCALL_DEFINE1(epoll_create1, int, flags)
1524 {
1525 int error, fd;
1526 struct eventpoll *ep = NULL;
1527 struct file *file;
1528
1529 /* Check the EPOLL_* constant for consistency. */
1530 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1531
1532 if (flags & ~EPOLL_CLOEXEC)
1533 return -EINVAL;
1534 /*
1535 * Create the internal data structure ("struct eventpoll").
1536 */
1537 error = ep_alloc(&ep);
1538 if (error < 0)
1539 return error;
1540 /*
1541 * Creates all the items needed to setup an eventpoll file. That is,
1542 * a file structure and a free file descriptor.
1543 */
1544 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1545 if (fd < 0) {
1546 error = fd;
1547 goto out_free_ep;
1548 }
1549 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1550 O_RDWR | (flags & O_CLOEXEC));
1551 if (IS_ERR(file)) {
1552 error = PTR_ERR(file);
1553 goto out_free_fd;
1554 }
1555 fd_install(fd, file);
1556 ep->file = file;
1557 return fd;
1558
1559 out_free_fd:
1560 put_unused_fd(fd);
1561 out_free_ep:
1562 ep_free(ep);
1563 return error;
1564 }
1565
1566 SYSCALL_DEFINE1(epoll_create, int, size)
1567 {
1568 if (size <= 0)
1569 return -EINVAL;
1570
1571 return sys_epoll_create1(0);
1572 }
1573
1574 /*
1575 * The following function implements the controller interface for
1576 * the eventpoll file that enables the insertion/removal/change of
1577 * file descriptors inside the interest set.
1578 */
1579 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1580 struct epoll_event __user *, event)
1581 {
1582 int error;
1583 int did_lock_epmutex = 0;
1584 struct file *file, *tfile;
1585 struct eventpoll *ep;
1586 struct epitem *epi;
1587 struct epoll_event epds;
1588
1589 error = -EFAULT;
1590 if (ep_op_has_event(op) &&
1591 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1592 goto error_return;
1593
1594 /* Get the "struct file *" for the eventpoll file */
1595 error = -EBADF;
1596 file = fget(epfd);
1597 if (!file)
1598 goto error_return;
1599
1600 /* Get the "struct file *" for the target file */
1601 tfile = fget(fd);
1602 if (!tfile)
1603 goto error_fput;
1604
1605 /* The target file descriptor must support poll */
1606 error = -EPERM;
1607 if (!tfile->f_op || !tfile->f_op->poll)
1608 goto error_tgt_fput;
1609
1610 /*
1611 * We have to check that the file structure underneath the file descriptor
1612 * the user passed to us _is_ an eventpoll file. And also we do not permit
1613 * adding an epoll file descriptor inside itself.
1614 */
1615 error = -EINVAL;
1616 if (file == tfile || !is_file_epoll(file))
1617 goto error_tgt_fput;
1618
1619 /*
1620 * At this point it is safe to assume that the "private_data" contains
1621 * our own data structure.
1622 */
1623 ep = file->private_data;
1624
1625 /*
1626 * When we insert an epoll file descriptor, inside another epoll file
1627 * descriptor, there is the change of creating closed loops, which are
1628 * better be handled here, than in more critical paths. While we are
1629 * checking for loops we also determine the list of files reachable
1630 * and hang them on the tfile_check_list, so we can check that we
1631 * haven't created too many possible wakeup paths.
1632 *
1633 * We need to hold the epmutex across both ep_insert and ep_remove
1634 * b/c we want to make sure we are looking at a coherent view of
1635 * epoll network.
1636 */
1637 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1638 mutex_lock(&epmutex);
1639 did_lock_epmutex = 1;
1640 }
1641 if (op == EPOLL_CTL_ADD) {
1642 if (is_file_epoll(tfile)) {
1643 error = -ELOOP;
1644 if (ep_loop_check(ep, tfile) != 0)
1645 goto error_tgt_fput;
1646 } else
1647 list_add(&tfile->f_tfile_llink, &tfile_check_list);
1648 }
1649
1650 mutex_lock_nested(&ep->mtx, 0);
1651
1652 /*
1653 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1654 * above, we can be sure to be able to use the item looked up by
1655 * ep_find() till we release the mutex.
1656 */
1657 epi = ep_find(ep, tfile, fd);
1658
1659 error = -EINVAL;
1660 switch (op) {
1661 case EPOLL_CTL_ADD:
1662 if (!epi) {
1663 epds.events |= POLLERR | POLLHUP;
1664 error = ep_insert(ep, &epds, tfile, fd);
1665 } else
1666 error = -EEXIST;
1667 clear_tfile_check_list();
1668 break;
1669 case EPOLL_CTL_DEL:
1670 if (epi)
1671 error = ep_remove(ep, epi);
1672 else
1673 error = -ENOENT;
1674 break;
1675 case EPOLL_CTL_MOD:
1676 if (epi) {
1677 epds.events |= POLLERR | POLLHUP;
1678 error = ep_modify(ep, epi, &epds);
1679 } else
1680 error = -ENOENT;
1681 break;
1682 }
1683 mutex_unlock(&ep->mtx);
1684
1685 error_tgt_fput:
1686 if (did_lock_epmutex)
1687 mutex_unlock(&epmutex);
1688
1689 fput(tfile);
1690 error_fput:
1691 fput(file);
1692 error_return:
1693
1694 return error;
1695 }
1696
1697 /*
1698 * Implement the event wait interface for the eventpoll file. It is the kernel
1699 * part of the user space epoll_wait(2).
1700 */
1701 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1702 int, maxevents, int, timeout)
1703 {
1704 int error;
1705 struct file *file;
1706 struct eventpoll *ep;
1707
1708 /* The maximum number of event must be greater than zero */
1709 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1710 return -EINVAL;
1711
1712 /* Verify that the area passed by the user is writeable */
1713 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1714 error = -EFAULT;
1715 goto error_return;
1716 }
1717
1718 /* Get the "struct file *" for the eventpoll file */
1719 error = -EBADF;
1720 file = fget(epfd);
1721 if (!file)
1722 goto error_return;
1723
1724 /*
1725 * We have to check that the file structure underneath the fd
1726 * the user passed to us _is_ an eventpoll file.
1727 */
1728 error = -EINVAL;
1729 if (!is_file_epoll(file))
1730 goto error_fput;
1731
1732 /*
1733 * At this point it is safe to assume that the "private_data" contains
1734 * our own data structure.
1735 */
1736 ep = file->private_data;
1737
1738 /* Time to fish for events ... */
1739 error = ep_poll(ep, events, maxevents, timeout);
1740
1741 error_fput:
1742 fput(file);
1743 error_return:
1744
1745 return error;
1746 }
1747
1748 #ifdef HAVE_SET_RESTORE_SIGMASK
1749
1750 /*
1751 * Implement the event wait interface for the eventpoll file. It is the kernel
1752 * part of the user space epoll_pwait(2).
1753 */
1754 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1755 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1756 size_t, sigsetsize)
1757 {
1758 int error;
1759 sigset_t ksigmask, sigsaved;
1760
1761 /*
1762 * If the caller wants a certain signal mask to be set during the wait,
1763 * we apply it here.
1764 */
1765 if (sigmask) {
1766 if (sigsetsize != sizeof(sigset_t))
1767 return -EINVAL;
1768 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1769 return -EFAULT;
1770 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1771 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1772 }
1773
1774 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1775
1776 /*
1777 * If we changed the signal mask, we need to restore the original one.
1778 * In case we've got a signal while waiting, we do not restore the
1779 * signal mask yet, and we allow do_signal() to deliver the signal on
1780 * the way back to userspace, before the signal mask is restored.
1781 */
1782 if (sigmask) {
1783 if (error == -EINTR) {
1784 memcpy(&current->saved_sigmask, &sigsaved,
1785 sizeof(sigsaved));
1786 set_restore_sigmask();
1787 } else
1788 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1789 }
1790
1791 return error;
1792 }
1793
1794 #endif /* HAVE_SET_RESTORE_SIGMASK */
1795
1796 static int __init eventpoll_init(void)
1797 {
1798 struct sysinfo si;
1799
1800 si_meminfo(&si);
1801 /*
1802 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1803 */
1804 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1805 EP_ITEM_COST;
1806 BUG_ON(max_user_watches < 0);
1807
1808 /*
1809 * Initialize the structure used to perform epoll file descriptor
1810 * inclusion loops checks.
1811 */
1812 ep_nested_calls_init(&poll_loop_ncalls);
1813
1814 /* Initialize the structure used to perform safe poll wait head wake ups */
1815 ep_nested_calls_init(&poll_safewake_ncalls);
1816
1817 /* Initialize the structure used to perform file's f_op->poll() calls */
1818 ep_nested_calls_init(&poll_readywalk_ncalls);
1819
1820 /* Allocates slab cache used to allocate "struct epitem" items */
1821 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1822 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1823
1824 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1825 pwq_cache = kmem_cache_create("eventpoll_pwq",
1826 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1827
1828 return 0;
1829 }
1830 fs_initcall(eventpoll_init);