]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/eventpoll.c
epoll: optimize EPOLL_CTL_DEL using rcu
[mirror_ubuntu-artful-kernel.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45
46 /*
47 * LOCKING:
48 * There are three level of locking required by epoll :
49 *
50 * 1) epmutex (mutex)
51 * 2) ep->mtx (mutex)
52 * 3) ep->lock (spinlock)
53 *
54 * The acquire order is the one listed above, from 1 to 3.
55 * We need a spinlock (ep->lock) because we manipulate objects
56 * from inside the poll callback, that might be triggered from
57 * a wake_up() that in turn might be called from IRQ context.
58 * So we can't sleep inside the poll callback and hence we need
59 * a spinlock. During the event transfer loop (from kernel to
60 * user space) we could end up sleeping due a copy_to_user(), so
61 * we need a lock that will allow us to sleep. This lock is a
62 * mutex (ep->mtx). It is acquired during the event transfer loop,
63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64 * Then we also need a global mutex to serialize eventpoll_release_file()
65 * and ep_free().
66 * This mutex is acquired by ep_free() during the epoll file
67 * cleanup path and it is also acquired by eventpoll_release_file()
68 * if a file has been pushed inside an epoll set and it is then
69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70 * It is also acquired when inserting an epoll fd onto another epoll
71 * fd. We do this so that we walk the epoll tree and ensure that this
72 * insertion does not create a cycle of epoll file descriptors, which
73 * could lead to deadlock. We need a global mutex to prevent two
74 * simultaneous inserts (A into B and B into A) from racing and
75 * constructing a cycle without either insert observing that it is
76 * going to.
77 * It is necessary to acquire multiple "ep->mtx"es at once in the
78 * case when one epoll fd is added to another. In this case, we
79 * always acquire the locks in the order of nesting (i.e. after
80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81 * before e2->mtx). Since we disallow cycles of epoll file
82 * descriptors, this ensures that the mutexes are well-ordered. In
83 * order to communicate this nesting to lockdep, when walking a tree
84 * of epoll file descriptors, we use the current recursion depth as
85 * the lockdep subkey.
86 * It is possible to drop the "ep->mtx" and to use the global
87 * mutex "epmutex" (together with "ep->lock") to have it working,
88 * but having "ep->mtx" will make the interface more scalable.
89 * Events that require holding "epmutex" are very rare, while for
90 * normal operations the epoll private "ep->mtx" will guarantee
91 * a better scalability.
92 */
93
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
96
97 /* Maximum number of nesting allowed inside epoll sets */
98 #define EP_MAX_NESTS 4
99
100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
101
102 #define EP_UNACTIVE_PTR ((void *) -1L)
103
104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
105
106 struct epoll_filefd {
107 struct file *file;
108 int fd;
109 } __packed;
110
111 /*
112 * Structure used to track possible nested calls, for too deep recursions
113 * and loop cycles.
114 */
115 struct nested_call_node {
116 struct list_head llink;
117 void *cookie;
118 void *ctx;
119 };
120
121 /*
122 * This structure is used as collector for nested calls, to check for
123 * maximum recursion dept and loop cycles.
124 */
125 struct nested_calls {
126 struct list_head tasks_call_list;
127 spinlock_t lock;
128 };
129
130 /*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
135 */
136 struct epitem {
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
156 /* Number of active wait queue attached to poll operations */
157 int nwait;
158
159 /* List containing poll wait queues */
160 struct list_head pwqlist;
161
162 /* The "container" of this item */
163 struct eventpoll *ep;
164
165 /* List header used to link this item to the "struct file" items list */
166 struct list_head fllink;
167
168 /* wakeup_source used when EPOLLWAKEUP is set */
169 struct wakeup_source __rcu *ws;
170
171 /* The structure that describe the interested events and the source fd */
172 struct epoll_event event;
173 };
174
175 /*
176 * This structure is stored inside the "private_data" member of the file
177 * structure and represents the main data structure for the eventpoll
178 * interface.
179 */
180 struct eventpoll {
181 /* Protect the access to this structure */
182 spinlock_t lock;
183
184 /*
185 * This mutex is used to ensure that files are not removed
186 * while epoll is using them. This is held during the event
187 * collection loop, the file cleanup path, the epoll file exit
188 * code and the ctl operations.
189 */
190 struct mutex mtx;
191
192 /* Wait queue used by sys_epoll_wait() */
193 wait_queue_head_t wq;
194
195 /* Wait queue used by file->poll() */
196 wait_queue_head_t poll_wait;
197
198 /* List of ready file descriptors */
199 struct list_head rdllist;
200
201 /* RB tree root used to store monitored fd structs */
202 struct rb_root rbr;
203
204 /*
205 * This is a single linked list that chains all the "struct epitem" that
206 * happened while transferring ready events to userspace w/out
207 * holding ->lock.
208 */
209 struct epitem *ovflist;
210
211 /* wakeup_source used when ep_scan_ready_list is running */
212 struct wakeup_source *ws;
213
214 /* The user that created the eventpoll descriptor */
215 struct user_struct *user;
216
217 struct file *file;
218
219 /* used to optimize loop detection check */
220 int visited;
221 struct list_head visited_list_link;
222 };
223
224 /* Wait structure used by the poll hooks */
225 struct eppoll_entry {
226 /* List header used to link this structure to the "struct epitem" */
227 struct list_head llink;
228
229 /* The "base" pointer is set to the container "struct epitem" */
230 struct epitem *base;
231
232 /*
233 * Wait queue item that will be linked to the target file wait
234 * queue head.
235 */
236 wait_queue_t wait;
237
238 /* The wait queue head that linked the "wait" wait queue item */
239 wait_queue_head_t *whead;
240 };
241
242 /* Wrapper struct used by poll queueing */
243 struct ep_pqueue {
244 poll_table pt;
245 struct epitem *epi;
246 };
247
248 /* Used by the ep_send_events() function as callback private data */
249 struct ep_send_events_data {
250 int maxevents;
251 struct epoll_event __user *events;
252 };
253
254 /*
255 * Configuration options available inside /proc/sys/fs/epoll/
256 */
257 /* Maximum number of epoll watched descriptors, per user */
258 static long max_user_watches __read_mostly;
259
260 /*
261 * This mutex is used to serialize ep_free() and eventpoll_release_file().
262 */
263 static DEFINE_MUTEX(epmutex);
264
265 /* Used to check for epoll file descriptor inclusion loops */
266 static struct nested_calls poll_loop_ncalls;
267
268 /* Used for safe wake up implementation */
269 static struct nested_calls poll_safewake_ncalls;
270
271 /* Used to call file's f_op->poll() under the nested calls boundaries */
272 static struct nested_calls poll_readywalk_ncalls;
273
274 /* Slab cache used to allocate "struct epitem" */
275 static struct kmem_cache *epi_cache __read_mostly;
276
277 /* Slab cache used to allocate "struct eppoll_entry" */
278 static struct kmem_cache *pwq_cache __read_mostly;
279
280 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
281 static LIST_HEAD(visited_list);
282
283 /*
284 * List of files with newly added links, where we may need to limit the number
285 * of emanating paths. Protected by the epmutex.
286 */
287 static LIST_HEAD(tfile_check_list);
288
289 #ifdef CONFIG_SYSCTL
290
291 #include <linux/sysctl.h>
292
293 static long zero;
294 static long long_max = LONG_MAX;
295
296 ctl_table epoll_table[] = {
297 {
298 .procname = "max_user_watches",
299 .data = &max_user_watches,
300 .maxlen = sizeof(max_user_watches),
301 .mode = 0644,
302 .proc_handler = proc_doulongvec_minmax,
303 .extra1 = &zero,
304 .extra2 = &long_max,
305 },
306 { }
307 };
308 #endif /* CONFIG_SYSCTL */
309
310 static const struct file_operations eventpoll_fops;
311
312 static inline int is_file_epoll(struct file *f)
313 {
314 return f->f_op == &eventpoll_fops;
315 }
316
317 /* Setup the structure that is used as key for the RB tree */
318 static inline void ep_set_ffd(struct epoll_filefd *ffd,
319 struct file *file, int fd)
320 {
321 ffd->file = file;
322 ffd->fd = fd;
323 }
324
325 /* Compare RB tree keys */
326 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
327 struct epoll_filefd *p2)
328 {
329 return (p1->file > p2->file ? +1:
330 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
331 }
332
333 /* Tells us if the item is currently linked */
334 static inline int ep_is_linked(struct list_head *p)
335 {
336 return !list_empty(p);
337 }
338
339 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
340 {
341 return container_of(p, struct eppoll_entry, wait);
342 }
343
344 /* Get the "struct epitem" from a wait queue pointer */
345 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
346 {
347 return container_of(p, struct eppoll_entry, wait)->base;
348 }
349
350 /* Get the "struct epitem" from an epoll queue wrapper */
351 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
352 {
353 return container_of(p, struct ep_pqueue, pt)->epi;
354 }
355
356 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
357 static inline int ep_op_has_event(int op)
358 {
359 return op != EPOLL_CTL_DEL;
360 }
361
362 /* Initialize the poll safe wake up structure */
363 static void ep_nested_calls_init(struct nested_calls *ncalls)
364 {
365 INIT_LIST_HEAD(&ncalls->tasks_call_list);
366 spin_lock_init(&ncalls->lock);
367 }
368
369 /**
370 * ep_events_available - Checks if ready events might be available.
371 *
372 * @ep: Pointer to the eventpoll context.
373 *
374 * Returns: Returns a value different than zero if ready events are available,
375 * or zero otherwise.
376 */
377 static inline int ep_events_available(struct eventpoll *ep)
378 {
379 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
380 }
381
382 /**
383 * ep_call_nested - Perform a bound (possibly) nested call, by checking
384 * that the recursion limit is not exceeded, and that
385 * the same nested call (by the meaning of same cookie) is
386 * no re-entered.
387 *
388 * @ncalls: Pointer to the nested_calls structure to be used for this call.
389 * @max_nests: Maximum number of allowed nesting calls.
390 * @nproc: Nested call core function pointer.
391 * @priv: Opaque data to be passed to the @nproc callback.
392 * @cookie: Cookie to be used to identify this nested call.
393 * @ctx: This instance context.
394 *
395 * Returns: Returns the code returned by the @nproc callback, or -1 if
396 * the maximum recursion limit has been exceeded.
397 */
398 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
399 int (*nproc)(void *, void *, int), void *priv,
400 void *cookie, void *ctx)
401 {
402 int error, call_nests = 0;
403 unsigned long flags;
404 struct list_head *lsthead = &ncalls->tasks_call_list;
405 struct nested_call_node *tncur;
406 struct nested_call_node tnode;
407
408 spin_lock_irqsave(&ncalls->lock, flags);
409
410 /*
411 * Try to see if the current task is already inside this wakeup call.
412 * We use a list here, since the population inside this set is always
413 * very much limited.
414 */
415 list_for_each_entry(tncur, lsthead, llink) {
416 if (tncur->ctx == ctx &&
417 (tncur->cookie == cookie || ++call_nests > max_nests)) {
418 /*
419 * Ops ... loop detected or maximum nest level reached.
420 * We abort this wake by breaking the cycle itself.
421 */
422 error = -1;
423 goto out_unlock;
424 }
425 }
426
427 /* Add the current task and cookie to the list */
428 tnode.ctx = ctx;
429 tnode.cookie = cookie;
430 list_add(&tnode.llink, lsthead);
431
432 spin_unlock_irqrestore(&ncalls->lock, flags);
433
434 /* Call the nested function */
435 error = (*nproc)(priv, cookie, call_nests);
436
437 /* Remove the current task from the list */
438 spin_lock_irqsave(&ncalls->lock, flags);
439 list_del(&tnode.llink);
440 out_unlock:
441 spin_unlock_irqrestore(&ncalls->lock, flags);
442
443 return error;
444 }
445
446 /*
447 * As described in commit 0ccf831cb lockdep: annotate epoll
448 * the use of wait queues used by epoll is done in a very controlled
449 * manner. Wake ups can nest inside each other, but are never done
450 * with the same locking. For example:
451 *
452 * dfd = socket(...);
453 * efd1 = epoll_create();
454 * efd2 = epoll_create();
455 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
456 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
457 *
458 * When a packet arrives to the device underneath "dfd", the net code will
459 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
460 * callback wakeup entry on that queue, and the wake_up() performed by the
461 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
462 * (efd1) notices that it may have some event ready, so it needs to wake up
463 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
464 * that ends up in another wake_up(), after having checked about the
465 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
466 * avoid stack blasting.
467 *
468 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
469 * this special case of epoll.
470 */
471 #ifdef CONFIG_DEBUG_LOCK_ALLOC
472 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
473 unsigned long events, int subclass)
474 {
475 unsigned long flags;
476
477 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
478 wake_up_locked_poll(wqueue, events);
479 spin_unlock_irqrestore(&wqueue->lock, flags);
480 }
481 #else
482 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
483 unsigned long events, int subclass)
484 {
485 wake_up_poll(wqueue, events);
486 }
487 #endif
488
489 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
490 {
491 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
492 1 + call_nests);
493 return 0;
494 }
495
496 /*
497 * Perform a safe wake up of the poll wait list. The problem is that
498 * with the new callback'd wake up system, it is possible that the
499 * poll callback is reentered from inside the call to wake_up() done
500 * on the poll wait queue head. The rule is that we cannot reenter the
501 * wake up code from the same task more than EP_MAX_NESTS times,
502 * and we cannot reenter the same wait queue head at all. This will
503 * enable to have a hierarchy of epoll file descriptor of no more than
504 * EP_MAX_NESTS deep.
505 */
506 static void ep_poll_safewake(wait_queue_head_t *wq)
507 {
508 int this_cpu = get_cpu();
509
510 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
511 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
512
513 put_cpu();
514 }
515
516 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
517 {
518 wait_queue_head_t *whead;
519
520 rcu_read_lock();
521 /* If it is cleared by POLLFREE, it should be rcu-safe */
522 whead = rcu_dereference(pwq->whead);
523 if (whead)
524 remove_wait_queue(whead, &pwq->wait);
525 rcu_read_unlock();
526 }
527
528 /*
529 * This function unregisters poll callbacks from the associated file
530 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
531 * ep_free).
532 */
533 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
534 {
535 struct list_head *lsthead = &epi->pwqlist;
536 struct eppoll_entry *pwq;
537
538 while (!list_empty(lsthead)) {
539 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
540
541 list_del(&pwq->llink);
542 ep_remove_wait_queue(pwq);
543 kmem_cache_free(pwq_cache, pwq);
544 }
545 }
546
547 /* call only when ep->mtx is held */
548 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
549 {
550 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
551 }
552
553 /* call only when ep->mtx is held */
554 static inline void ep_pm_stay_awake(struct epitem *epi)
555 {
556 struct wakeup_source *ws = ep_wakeup_source(epi);
557
558 if (ws)
559 __pm_stay_awake(ws);
560 }
561
562 static inline bool ep_has_wakeup_source(struct epitem *epi)
563 {
564 return rcu_access_pointer(epi->ws) ? true : false;
565 }
566
567 /* call when ep->mtx cannot be held (ep_poll_callback) */
568 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
569 {
570 struct wakeup_source *ws;
571
572 rcu_read_lock();
573 ws = rcu_dereference(epi->ws);
574 if (ws)
575 __pm_stay_awake(ws);
576 rcu_read_unlock();
577 }
578
579 /**
580 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
581 * the scan code, to call f_op->poll(). Also allows for
582 * O(NumReady) performance.
583 *
584 * @ep: Pointer to the epoll private data structure.
585 * @sproc: Pointer to the scan callback.
586 * @priv: Private opaque data passed to the @sproc callback.
587 * @depth: The current depth of recursive f_op->poll calls.
588 *
589 * Returns: The same integer error code returned by the @sproc callback.
590 */
591 static int ep_scan_ready_list(struct eventpoll *ep,
592 int (*sproc)(struct eventpoll *,
593 struct list_head *, void *),
594 void *priv,
595 int depth)
596 {
597 int error, pwake = 0;
598 unsigned long flags;
599 struct epitem *epi, *nepi;
600 LIST_HEAD(txlist);
601
602 /*
603 * We need to lock this because we could be hit by
604 * eventpoll_release_file() and epoll_ctl().
605 */
606 mutex_lock_nested(&ep->mtx, depth);
607
608 /*
609 * Steal the ready list, and re-init the original one to the
610 * empty list. Also, set ep->ovflist to NULL so that events
611 * happening while looping w/out locks, are not lost. We cannot
612 * have the poll callback to queue directly on ep->rdllist,
613 * because we want the "sproc" callback to be able to do it
614 * in a lockless way.
615 */
616 spin_lock_irqsave(&ep->lock, flags);
617 list_splice_init(&ep->rdllist, &txlist);
618 ep->ovflist = NULL;
619 spin_unlock_irqrestore(&ep->lock, flags);
620
621 /*
622 * Now call the callback function.
623 */
624 error = (*sproc)(ep, &txlist, priv);
625
626 spin_lock_irqsave(&ep->lock, flags);
627 /*
628 * During the time we spent inside the "sproc" callback, some
629 * other events might have been queued by the poll callback.
630 * We re-insert them inside the main ready-list here.
631 */
632 for (nepi = ep->ovflist; (epi = nepi) != NULL;
633 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
634 /*
635 * We need to check if the item is already in the list.
636 * During the "sproc" callback execution time, items are
637 * queued into ->ovflist but the "txlist" might already
638 * contain them, and the list_splice() below takes care of them.
639 */
640 if (!ep_is_linked(&epi->rdllink)) {
641 list_add_tail(&epi->rdllink, &ep->rdllist);
642 ep_pm_stay_awake(epi);
643 }
644 }
645 /*
646 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
647 * releasing the lock, events will be queued in the normal way inside
648 * ep->rdllist.
649 */
650 ep->ovflist = EP_UNACTIVE_PTR;
651
652 /*
653 * Quickly re-inject items left on "txlist".
654 */
655 list_splice(&txlist, &ep->rdllist);
656 __pm_relax(ep->ws);
657
658 if (!list_empty(&ep->rdllist)) {
659 /*
660 * Wake up (if active) both the eventpoll wait list and
661 * the ->poll() wait list (delayed after we release the lock).
662 */
663 if (waitqueue_active(&ep->wq))
664 wake_up_locked(&ep->wq);
665 if (waitqueue_active(&ep->poll_wait))
666 pwake++;
667 }
668 spin_unlock_irqrestore(&ep->lock, flags);
669
670 mutex_unlock(&ep->mtx);
671
672 /* We have to call this outside the lock */
673 if (pwake)
674 ep_poll_safewake(&ep->poll_wait);
675
676 return error;
677 }
678
679 static void epi_rcu_free(struct rcu_head *head)
680 {
681 struct epitem *epi = container_of(head, struct epitem, rcu);
682 kmem_cache_free(epi_cache, epi);
683 }
684
685 /*
686 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
687 * all the associated resources. Must be called with "mtx" held.
688 */
689 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
690 {
691 unsigned long flags;
692 struct file *file = epi->ffd.file;
693
694 /*
695 * Removes poll wait queue hooks. We _have_ to do this without holding
696 * the "ep->lock" otherwise a deadlock might occur. This because of the
697 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
698 * queue head lock when unregistering the wait queue. The wakeup callback
699 * will run by holding the wait queue head lock and will call our callback
700 * that will try to get "ep->lock".
701 */
702 ep_unregister_pollwait(ep, epi);
703
704 /* Remove the current item from the list of epoll hooks */
705 spin_lock(&file->f_lock);
706 list_del_rcu(&epi->fllink);
707 spin_unlock(&file->f_lock);
708
709 rb_erase(&epi->rbn, &ep->rbr);
710
711 spin_lock_irqsave(&ep->lock, flags);
712 if (ep_is_linked(&epi->rdllink))
713 list_del_init(&epi->rdllink);
714 spin_unlock_irqrestore(&ep->lock, flags);
715
716 wakeup_source_unregister(ep_wakeup_source(epi));
717 /*
718 * At this point it is safe to free the eventpoll item. Use the union
719 * field epi->rcu, since we are trying to minimize the size of
720 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
721 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
722 * use of the rbn field.
723 */
724 call_rcu(&epi->rcu, epi_rcu_free);
725
726 atomic_long_dec(&ep->user->epoll_watches);
727
728 return 0;
729 }
730
731 static void ep_free(struct eventpoll *ep)
732 {
733 struct rb_node *rbp;
734 struct epitem *epi;
735
736 /* We need to release all tasks waiting for these file */
737 if (waitqueue_active(&ep->poll_wait))
738 ep_poll_safewake(&ep->poll_wait);
739
740 /*
741 * We need to lock this because we could be hit by
742 * eventpoll_release_file() while we're freeing the "struct eventpoll".
743 * We do not need to hold "ep->mtx" here because the epoll file
744 * is on the way to be removed and no one has references to it
745 * anymore. The only hit might come from eventpoll_release_file() but
746 * holding "epmutex" is sufficient here.
747 */
748 mutex_lock(&epmutex);
749
750 /*
751 * Walks through the whole tree by unregistering poll callbacks.
752 */
753 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
754 epi = rb_entry(rbp, struct epitem, rbn);
755
756 ep_unregister_pollwait(ep, epi);
757 cond_resched();
758 }
759
760 /*
761 * Walks through the whole tree by freeing each "struct epitem". At this
762 * point we are sure no poll callbacks will be lingering around, and also by
763 * holding "epmutex" we can be sure that no file cleanup code will hit
764 * us during this operation. So we can avoid the lock on "ep->lock".
765 * We do not need to lock ep->mtx, either, we only do it to prevent
766 * a lockdep warning.
767 */
768 mutex_lock(&ep->mtx);
769 while ((rbp = rb_first(&ep->rbr)) != NULL) {
770 epi = rb_entry(rbp, struct epitem, rbn);
771 ep_remove(ep, epi);
772 cond_resched();
773 }
774 mutex_unlock(&ep->mtx);
775
776 mutex_unlock(&epmutex);
777 mutex_destroy(&ep->mtx);
778 free_uid(ep->user);
779 wakeup_source_unregister(ep->ws);
780 kfree(ep);
781 }
782
783 static int ep_eventpoll_release(struct inode *inode, struct file *file)
784 {
785 struct eventpoll *ep = file->private_data;
786
787 if (ep)
788 ep_free(ep);
789
790 return 0;
791 }
792
793 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
794 {
795 pt->_key = epi->event.events;
796
797 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
798 }
799
800 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
801 void *priv)
802 {
803 struct epitem *epi, *tmp;
804 poll_table pt;
805
806 init_poll_funcptr(&pt, NULL);
807
808 list_for_each_entry_safe(epi, tmp, head, rdllink) {
809 if (ep_item_poll(epi, &pt))
810 return POLLIN | POLLRDNORM;
811 else {
812 /*
813 * Item has been dropped into the ready list by the poll
814 * callback, but it's not actually ready, as far as
815 * caller requested events goes. We can remove it here.
816 */
817 __pm_relax(ep_wakeup_source(epi));
818 list_del_init(&epi->rdllink);
819 }
820 }
821
822 return 0;
823 }
824
825 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
826 {
827 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
828 }
829
830 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
831 {
832 int pollflags;
833 struct eventpoll *ep = file->private_data;
834
835 /* Insert inside our poll wait queue */
836 poll_wait(file, &ep->poll_wait, wait);
837
838 /*
839 * Proceed to find out if wanted events are really available inside
840 * the ready list. This need to be done under ep_call_nested()
841 * supervision, since the call to f_op->poll() done on listed files
842 * could re-enter here.
843 */
844 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
845 ep_poll_readyevents_proc, ep, ep, current);
846
847 return pollflags != -1 ? pollflags : 0;
848 }
849
850 #ifdef CONFIG_PROC_FS
851 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
852 {
853 struct eventpoll *ep = f->private_data;
854 struct rb_node *rbp;
855 int ret = 0;
856
857 mutex_lock(&ep->mtx);
858 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
859 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
860
861 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
862 epi->ffd.fd, epi->event.events,
863 (long long)epi->event.data);
864 if (ret)
865 break;
866 }
867 mutex_unlock(&ep->mtx);
868
869 return ret;
870 }
871 #endif
872
873 /* File callbacks that implement the eventpoll file behaviour */
874 static const struct file_operations eventpoll_fops = {
875 #ifdef CONFIG_PROC_FS
876 .show_fdinfo = ep_show_fdinfo,
877 #endif
878 .release = ep_eventpoll_release,
879 .poll = ep_eventpoll_poll,
880 .llseek = noop_llseek,
881 };
882
883 /*
884 * This is called from eventpoll_release() to unlink files from the eventpoll
885 * interface. We need to have this facility to cleanup correctly files that are
886 * closed without being removed from the eventpoll interface.
887 */
888 void eventpoll_release_file(struct file *file)
889 {
890 struct eventpoll *ep;
891 struct epitem *epi;
892
893 /*
894 * We don't want to get "file->f_lock" because it is not
895 * necessary. It is not necessary because we're in the "struct file"
896 * cleanup path, and this means that no one is using this file anymore.
897 * So, for example, epoll_ctl() cannot hit here since if we reach this
898 * point, the file counter already went to zero and fget() would fail.
899 * The only hit might come from ep_free() but by holding the mutex
900 * will correctly serialize the operation. We do need to acquire
901 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
902 * from anywhere but ep_free().
903 *
904 * Besides, ep_remove() acquires the lock, so we can't hold it here.
905 */
906 mutex_lock(&epmutex);
907 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
908 ep = epi->ep;
909 mutex_lock_nested(&ep->mtx, 0);
910 ep_remove(ep, epi);
911 mutex_unlock(&ep->mtx);
912 }
913 mutex_unlock(&epmutex);
914 }
915
916 static int ep_alloc(struct eventpoll **pep)
917 {
918 int error;
919 struct user_struct *user;
920 struct eventpoll *ep;
921
922 user = get_current_user();
923 error = -ENOMEM;
924 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
925 if (unlikely(!ep))
926 goto free_uid;
927
928 spin_lock_init(&ep->lock);
929 mutex_init(&ep->mtx);
930 init_waitqueue_head(&ep->wq);
931 init_waitqueue_head(&ep->poll_wait);
932 INIT_LIST_HEAD(&ep->rdllist);
933 ep->rbr = RB_ROOT;
934 ep->ovflist = EP_UNACTIVE_PTR;
935 ep->user = user;
936
937 *pep = ep;
938
939 return 0;
940
941 free_uid:
942 free_uid(user);
943 return error;
944 }
945
946 /*
947 * Search the file inside the eventpoll tree. The RB tree operations
948 * are protected by the "mtx" mutex, and ep_find() must be called with
949 * "mtx" held.
950 */
951 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
952 {
953 int kcmp;
954 struct rb_node *rbp;
955 struct epitem *epi, *epir = NULL;
956 struct epoll_filefd ffd;
957
958 ep_set_ffd(&ffd, file, fd);
959 for (rbp = ep->rbr.rb_node; rbp; ) {
960 epi = rb_entry(rbp, struct epitem, rbn);
961 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
962 if (kcmp > 0)
963 rbp = rbp->rb_right;
964 else if (kcmp < 0)
965 rbp = rbp->rb_left;
966 else {
967 epir = epi;
968 break;
969 }
970 }
971
972 return epir;
973 }
974
975 /*
976 * This is the callback that is passed to the wait queue wakeup
977 * mechanism. It is called by the stored file descriptors when they
978 * have events to report.
979 */
980 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
981 {
982 int pwake = 0;
983 unsigned long flags;
984 struct epitem *epi = ep_item_from_wait(wait);
985 struct eventpoll *ep = epi->ep;
986
987 if ((unsigned long)key & POLLFREE) {
988 ep_pwq_from_wait(wait)->whead = NULL;
989 /*
990 * whead = NULL above can race with ep_remove_wait_queue()
991 * which can do another remove_wait_queue() after us, so we
992 * can't use __remove_wait_queue(). whead->lock is held by
993 * the caller.
994 */
995 list_del_init(&wait->task_list);
996 }
997
998 spin_lock_irqsave(&ep->lock, flags);
999
1000 /*
1001 * If the event mask does not contain any poll(2) event, we consider the
1002 * descriptor to be disabled. This condition is likely the effect of the
1003 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1004 * until the next EPOLL_CTL_MOD will be issued.
1005 */
1006 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1007 goto out_unlock;
1008
1009 /*
1010 * Check the events coming with the callback. At this stage, not
1011 * every device reports the events in the "key" parameter of the
1012 * callback. We need to be able to handle both cases here, hence the
1013 * test for "key" != NULL before the event match test.
1014 */
1015 if (key && !((unsigned long) key & epi->event.events))
1016 goto out_unlock;
1017
1018 /*
1019 * If we are transferring events to userspace, we can hold no locks
1020 * (because we're accessing user memory, and because of linux f_op->poll()
1021 * semantics). All the events that happen during that period of time are
1022 * chained in ep->ovflist and requeued later on.
1023 */
1024 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1025 if (epi->next == EP_UNACTIVE_PTR) {
1026 epi->next = ep->ovflist;
1027 ep->ovflist = epi;
1028 if (epi->ws) {
1029 /*
1030 * Activate ep->ws since epi->ws may get
1031 * deactivated at any time.
1032 */
1033 __pm_stay_awake(ep->ws);
1034 }
1035
1036 }
1037 goto out_unlock;
1038 }
1039
1040 /* If this file is already in the ready list we exit soon */
1041 if (!ep_is_linked(&epi->rdllink)) {
1042 list_add_tail(&epi->rdllink, &ep->rdllist);
1043 ep_pm_stay_awake_rcu(epi);
1044 }
1045
1046 /*
1047 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1048 * wait list.
1049 */
1050 if (waitqueue_active(&ep->wq))
1051 wake_up_locked(&ep->wq);
1052 if (waitqueue_active(&ep->poll_wait))
1053 pwake++;
1054
1055 out_unlock:
1056 spin_unlock_irqrestore(&ep->lock, flags);
1057
1058 /* We have to call this outside the lock */
1059 if (pwake)
1060 ep_poll_safewake(&ep->poll_wait);
1061
1062 return 1;
1063 }
1064
1065 /*
1066 * This is the callback that is used to add our wait queue to the
1067 * target file wakeup lists.
1068 */
1069 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1070 poll_table *pt)
1071 {
1072 struct epitem *epi = ep_item_from_epqueue(pt);
1073 struct eppoll_entry *pwq;
1074
1075 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1076 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1077 pwq->whead = whead;
1078 pwq->base = epi;
1079 add_wait_queue(whead, &pwq->wait);
1080 list_add_tail(&pwq->llink, &epi->pwqlist);
1081 epi->nwait++;
1082 } else {
1083 /* We have to signal that an error occurred */
1084 epi->nwait = -1;
1085 }
1086 }
1087
1088 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1089 {
1090 int kcmp;
1091 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1092 struct epitem *epic;
1093
1094 while (*p) {
1095 parent = *p;
1096 epic = rb_entry(parent, struct epitem, rbn);
1097 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1098 if (kcmp > 0)
1099 p = &parent->rb_right;
1100 else
1101 p = &parent->rb_left;
1102 }
1103 rb_link_node(&epi->rbn, parent, p);
1104 rb_insert_color(&epi->rbn, &ep->rbr);
1105 }
1106
1107
1108
1109 #define PATH_ARR_SIZE 5
1110 /*
1111 * These are the number paths of length 1 to 5, that we are allowing to emanate
1112 * from a single file of interest. For example, we allow 1000 paths of length
1113 * 1, to emanate from each file of interest. This essentially represents the
1114 * potential wakeup paths, which need to be limited in order to avoid massive
1115 * uncontrolled wakeup storms. The common use case should be a single ep which
1116 * is connected to n file sources. In this case each file source has 1 path
1117 * of length 1. Thus, the numbers below should be more than sufficient. These
1118 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1119 * and delete can't add additional paths. Protected by the epmutex.
1120 */
1121 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1122 static int path_count[PATH_ARR_SIZE];
1123
1124 static int path_count_inc(int nests)
1125 {
1126 /* Allow an arbitrary number of depth 1 paths */
1127 if (nests == 0)
1128 return 0;
1129
1130 if (++path_count[nests] > path_limits[nests])
1131 return -1;
1132 return 0;
1133 }
1134
1135 static void path_count_init(void)
1136 {
1137 int i;
1138
1139 for (i = 0; i < PATH_ARR_SIZE; i++)
1140 path_count[i] = 0;
1141 }
1142
1143 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1144 {
1145 int error = 0;
1146 struct file *file = priv;
1147 struct file *child_file;
1148 struct epitem *epi;
1149
1150 /* CTL_DEL can remove links here, but that can't increase our count */
1151 rcu_read_lock();
1152 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1153 child_file = epi->ep->file;
1154 if (is_file_epoll(child_file)) {
1155 if (list_empty(&child_file->f_ep_links)) {
1156 if (path_count_inc(call_nests)) {
1157 error = -1;
1158 break;
1159 }
1160 } else {
1161 error = ep_call_nested(&poll_loop_ncalls,
1162 EP_MAX_NESTS,
1163 reverse_path_check_proc,
1164 child_file, child_file,
1165 current);
1166 }
1167 if (error != 0)
1168 break;
1169 } else {
1170 printk(KERN_ERR "reverse_path_check_proc: "
1171 "file is not an ep!\n");
1172 }
1173 }
1174 rcu_read_unlock();
1175 return error;
1176 }
1177
1178 /**
1179 * reverse_path_check - The tfile_check_list is list of file *, which have
1180 * links that are proposed to be newly added. We need to
1181 * make sure that those added links don't add too many
1182 * paths such that we will spend all our time waking up
1183 * eventpoll objects.
1184 *
1185 * Returns: Returns zero if the proposed links don't create too many paths,
1186 * -1 otherwise.
1187 */
1188 static int reverse_path_check(void)
1189 {
1190 int error = 0;
1191 struct file *current_file;
1192
1193 /* let's call this for all tfiles */
1194 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1195 path_count_init();
1196 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1197 reverse_path_check_proc, current_file,
1198 current_file, current);
1199 if (error)
1200 break;
1201 }
1202 return error;
1203 }
1204
1205 static int ep_create_wakeup_source(struct epitem *epi)
1206 {
1207 const char *name;
1208 struct wakeup_source *ws;
1209
1210 if (!epi->ep->ws) {
1211 epi->ep->ws = wakeup_source_register("eventpoll");
1212 if (!epi->ep->ws)
1213 return -ENOMEM;
1214 }
1215
1216 name = epi->ffd.file->f_path.dentry->d_name.name;
1217 ws = wakeup_source_register(name);
1218
1219 if (!ws)
1220 return -ENOMEM;
1221 rcu_assign_pointer(epi->ws, ws);
1222
1223 return 0;
1224 }
1225
1226 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1227 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1228 {
1229 struct wakeup_source *ws = ep_wakeup_source(epi);
1230
1231 RCU_INIT_POINTER(epi->ws, NULL);
1232
1233 /*
1234 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1235 * used internally by wakeup_source_remove, too (called by
1236 * wakeup_source_unregister), so we cannot use call_rcu
1237 */
1238 synchronize_rcu();
1239 wakeup_source_unregister(ws);
1240 }
1241
1242 /*
1243 * Must be called with "mtx" held.
1244 */
1245 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1246 struct file *tfile, int fd)
1247 {
1248 int error, revents, pwake = 0;
1249 unsigned long flags;
1250 long user_watches;
1251 struct epitem *epi;
1252 struct ep_pqueue epq;
1253
1254 user_watches = atomic_long_read(&ep->user->epoll_watches);
1255 if (unlikely(user_watches >= max_user_watches))
1256 return -ENOSPC;
1257 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1258 return -ENOMEM;
1259
1260 /* Item initialization follow here ... */
1261 INIT_LIST_HEAD(&epi->rdllink);
1262 INIT_LIST_HEAD(&epi->fllink);
1263 INIT_LIST_HEAD(&epi->pwqlist);
1264 epi->ep = ep;
1265 ep_set_ffd(&epi->ffd, tfile, fd);
1266 epi->event = *event;
1267 epi->nwait = 0;
1268 epi->next = EP_UNACTIVE_PTR;
1269 if (epi->event.events & EPOLLWAKEUP) {
1270 error = ep_create_wakeup_source(epi);
1271 if (error)
1272 goto error_create_wakeup_source;
1273 } else {
1274 RCU_INIT_POINTER(epi->ws, NULL);
1275 }
1276
1277 /* Initialize the poll table using the queue callback */
1278 epq.epi = epi;
1279 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1280
1281 /*
1282 * Attach the item to the poll hooks and get current event bits.
1283 * We can safely use the file* here because its usage count has
1284 * been increased by the caller of this function. Note that after
1285 * this operation completes, the poll callback can start hitting
1286 * the new item.
1287 */
1288 revents = ep_item_poll(epi, &epq.pt);
1289
1290 /*
1291 * We have to check if something went wrong during the poll wait queue
1292 * install process. Namely an allocation for a wait queue failed due
1293 * high memory pressure.
1294 */
1295 error = -ENOMEM;
1296 if (epi->nwait < 0)
1297 goto error_unregister;
1298
1299 /* Add the current item to the list of active epoll hook for this file */
1300 spin_lock(&tfile->f_lock);
1301 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1302 spin_unlock(&tfile->f_lock);
1303
1304 /*
1305 * Add the current item to the RB tree. All RB tree operations are
1306 * protected by "mtx", and ep_insert() is called with "mtx" held.
1307 */
1308 ep_rbtree_insert(ep, epi);
1309
1310 /* now check if we've created too many backpaths */
1311 error = -EINVAL;
1312 if (reverse_path_check())
1313 goto error_remove_epi;
1314
1315 /* We have to drop the new item inside our item list to keep track of it */
1316 spin_lock_irqsave(&ep->lock, flags);
1317
1318 /* If the file is already "ready" we drop it inside the ready list */
1319 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1320 list_add_tail(&epi->rdllink, &ep->rdllist);
1321 ep_pm_stay_awake(epi);
1322
1323 /* Notify waiting tasks that events are available */
1324 if (waitqueue_active(&ep->wq))
1325 wake_up_locked(&ep->wq);
1326 if (waitqueue_active(&ep->poll_wait))
1327 pwake++;
1328 }
1329
1330 spin_unlock_irqrestore(&ep->lock, flags);
1331
1332 atomic_long_inc(&ep->user->epoll_watches);
1333
1334 /* We have to call this outside the lock */
1335 if (pwake)
1336 ep_poll_safewake(&ep->poll_wait);
1337
1338 return 0;
1339
1340 error_remove_epi:
1341 spin_lock(&tfile->f_lock);
1342 list_del_rcu(&epi->fllink);
1343 spin_unlock(&tfile->f_lock);
1344
1345 rb_erase(&epi->rbn, &ep->rbr);
1346
1347 error_unregister:
1348 ep_unregister_pollwait(ep, epi);
1349
1350 /*
1351 * We need to do this because an event could have been arrived on some
1352 * allocated wait queue. Note that we don't care about the ep->ovflist
1353 * list, since that is used/cleaned only inside a section bound by "mtx".
1354 * And ep_insert() is called with "mtx" held.
1355 */
1356 spin_lock_irqsave(&ep->lock, flags);
1357 if (ep_is_linked(&epi->rdllink))
1358 list_del_init(&epi->rdllink);
1359 spin_unlock_irqrestore(&ep->lock, flags);
1360
1361 wakeup_source_unregister(ep_wakeup_source(epi));
1362
1363 error_create_wakeup_source:
1364 kmem_cache_free(epi_cache, epi);
1365
1366 return error;
1367 }
1368
1369 /*
1370 * Modify the interest event mask by dropping an event if the new mask
1371 * has a match in the current file status. Must be called with "mtx" held.
1372 */
1373 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1374 {
1375 int pwake = 0;
1376 unsigned int revents;
1377 poll_table pt;
1378
1379 init_poll_funcptr(&pt, NULL);
1380
1381 /*
1382 * Set the new event interest mask before calling f_op->poll();
1383 * otherwise we might miss an event that happens between the
1384 * f_op->poll() call and the new event set registering.
1385 */
1386 epi->event.events = event->events; /* need barrier below */
1387 epi->event.data = event->data; /* protected by mtx */
1388 if (epi->event.events & EPOLLWAKEUP) {
1389 if (!ep_has_wakeup_source(epi))
1390 ep_create_wakeup_source(epi);
1391 } else if (ep_has_wakeup_source(epi)) {
1392 ep_destroy_wakeup_source(epi);
1393 }
1394
1395 /*
1396 * The following barrier has two effects:
1397 *
1398 * 1) Flush epi changes above to other CPUs. This ensures
1399 * we do not miss events from ep_poll_callback if an
1400 * event occurs immediately after we call f_op->poll().
1401 * We need this because we did not take ep->lock while
1402 * changing epi above (but ep_poll_callback does take
1403 * ep->lock).
1404 *
1405 * 2) We also need to ensure we do not miss _past_ events
1406 * when calling f_op->poll(). This barrier also
1407 * pairs with the barrier in wq_has_sleeper (see
1408 * comments for wq_has_sleeper).
1409 *
1410 * This barrier will now guarantee ep_poll_callback or f_op->poll
1411 * (or both) will notice the readiness of an item.
1412 */
1413 smp_mb();
1414
1415 /*
1416 * Get current event bits. We can safely use the file* here because
1417 * its usage count has been increased by the caller of this function.
1418 */
1419 revents = ep_item_poll(epi, &pt);
1420
1421 /*
1422 * If the item is "hot" and it is not registered inside the ready
1423 * list, push it inside.
1424 */
1425 if (revents & event->events) {
1426 spin_lock_irq(&ep->lock);
1427 if (!ep_is_linked(&epi->rdllink)) {
1428 list_add_tail(&epi->rdllink, &ep->rdllist);
1429 ep_pm_stay_awake(epi);
1430
1431 /* Notify waiting tasks that events are available */
1432 if (waitqueue_active(&ep->wq))
1433 wake_up_locked(&ep->wq);
1434 if (waitqueue_active(&ep->poll_wait))
1435 pwake++;
1436 }
1437 spin_unlock_irq(&ep->lock);
1438 }
1439
1440 /* We have to call this outside the lock */
1441 if (pwake)
1442 ep_poll_safewake(&ep->poll_wait);
1443
1444 return 0;
1445 }
1446
1447 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1448 void *priv)
1449 {
1450 struct ep_send_events_data *esed = priv;
1451 int eventcnt;
1452 unsigned int revents;
1453 struct epitem *epi;
1454 struct epoll_event __user *uevent;
1455 struct wakeup_source *ws;
1456 poll_table pt;
1457
1458 init_poll_funcptr(&pt, NULL);
1459
1460 /*
1461 * We can loop without lock because we are passed a task private list.
1462 * Items cannot vanish during the loop because ep_scan_ready_list() is
1463 * holding "mtx" during this call.
1464 */
1465 for (eventcnt = 0, uevent = esed->events;
1466 !list_empty(head) && eventcnt < esed->maxevents;) {
1467 epi = list_first_entry(head, struct epitem, rdllink);
1468
1469 /*
1470 * Activate ep->ws before deactivating epi->ws to prevent
1471 * triggering auto-suspend here (in case we reactive epi->ws
1472 * below).
1473 *
1474 * This could be rearranged to delay the deactivation of epi->ws
1475 * instead, but then epi->ws would temporarily be out of sync
1476 * with ep_is_linked().
1477 */
1478 ws = ep_wakeup_source(epi);
1479 if (ws) {
1480 if (ws->active)
1481 __pm_stay_awake(ep->ws);
1482 __pm_relax(ws);
1483 }
1484
1485 list_del_init(&epi->rdllink);
1486
1487 revents = ep_item_poll(epi, &pt);
1488
1489 /*
1490 * If the event mask intersect the caller-requested one,
1491 * deliver the event to userspace. Again, ep_scan_ready_list()
1492 * is holding "mtx", so no operations coming from userspace
1493 * can change the item.
1494 */
1495 if (revents) {
1496 if (__put_user(revents, &uevent->events) ||
1497 __put_user(epi->event.data, &uevent->data)) {
1498 list_add(&epi->rdllink, head);
1499 ep_pm_stay_awake(epi);
1500 return eventcnt ? eventcnt : -EFAULT;
1501 }
1502 eventcnt++;
1503 uevent++;
1504 if (epi->event.events & EPOLLONESHOT)
1505 epi->event.events &= EP_PRIVATE_BITS;
1506 else if (!(epi->event.events & EPOLLET)) {
1507 /*
1508 * If this file has been added with Level
1509 * Trigger mode, we need to insert back inside
1510 * the ready list, so that the next call to
1511 * epoll_wait() will check again the events
1512 * availability. At this point, no one can insert
1513 * into ep->rdllist besides us. The epoll_ctl()
1514 * callers are locked out by
1515 * ep_scan_ready_list() holding "mtx" and the
1516 * poll callback will queue them in ep->ovflist.
1517 */
1518 list_add_tail(&epi->rdllink, &ep->rdllist);
1519 ep_pm_stay_awake(epi);
1520 }
1521 }
1522 }
1523
1524 return eventcnt;
1525 }
1526
1527 static int ep_send_events(struct eventpoll *ep,
1528 struct epoll_event __user *events, int maxevents)
1529 {
1530 struct ep_send_events_data esed;
1531
1532 esed.maxevents = maxevents;
1533 esed.events = events;
1534
1535 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1536 }
1537
1538 static inline struct timespec ep_set_mstimeout(long ms)
1539 {
1540 struct timespec now, ts = {
1541 .tv_sec = ms / MSEC_PER_SEC,
1542 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1543 };
1544
1545 ktime_get_ts(&now);
1546 return timespec_add_safe(now, ts);
1547 }
1548
1549 /**
1550 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1551 * event buffer.
1552 *
1553 * @ep: Pointer to the eventpoll context.
1554 * @events: Pointer to the userspace buffer where the ready events should be
1555 * stored.
1556 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1557 * @timeout: Maximum timeout for the ready events fetch operation, in
1558 * milliseconds. If the @timeout is zero, the function will not block,
1559 * while if the @timeout is less than zero, the function will block
1560 * until at least one event has been retrieved (or an error
1561 * occurred).
1562 *
1563 * Returns: Returns the number of ready events which have been fetched, or an
1564 * error code, in case of error.
1565 */
1566 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1567 int maxevents, long timeout)
1568 {
1569 int res = 0, eavail, timed_out = 0;
1570 unsigned long flags;
1571 long slack = 0;
1572 wait_queue_t wait;
1573 ktime_t expires, *to = NULL;
1574
1575 if (timeout > 0) {
1576 struct timespec end_time = ep_set_mstimeout(timeout);
1577
1578 slack = select_estimate_accuracy(&end_time);
1579 to = &expires;
1580 *to = timespec_to_ktime(end_time);
1581 } else if (timeout == 0) {
1582 /*
1583 * Avoid the unnecessary trip to the wait queue loop, if the
1584 * caller specified a non blocking operation.
1585 */
1586 timed_out = 1;
1587 spin_lock_irqsave(&ep->lock, flags);
1588 goto check_events;
1589 }
1590
1591 fetch_events:
1592 spin_lock_irqsave(&ep->lock, flags);
1593
1594 if (!ep_events_available(ep)) {
1595 /*
1596 * We don't have any available event to return to the caller.
1597 * We need to sleep here, and we will be wake up by
1598 * ep_poll_callback() when events will become available.
1599 */
1600 init_waitqueue_entry(&wait, current);
1601 __add_wait_queue_exclusive(&ep->wq, &wait);
1602
1603 for (;;) {
1604 /*
1605 * We don't want to sleep if the ep_poll_callback() sends us
1606 * a wakeup in between. That's why we set the task state
1607 * to TASK_INTERRUPTIBLE before doing the checks.
1608 */
1609 set_current_state(TASK_INTERRUPTIBLE);
1610 if (ep_events_available(ep) || timed_out)
1611 break;
1612 if (signal_pending(current)) {
1613 res = -EINTR;
1614 break;
1615 }
1616
1617 spin_unlock_irqrestore(&ep->lock, flags);
1618 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1619 timed_out = 1;
1620
1621 spin_lock_irqsave(&ep->lock, flags);
1622 }
1623 __remove_wait_queue(&ep->wq, &wait);
1624
1625 set_current_state(TASK_RUNNING);
1626 }
1627 check_events:
1628 /* Is it worth to try to dig for events ? */
1629 eavail = ep_events_available(ep);
1630
1631 spin_unlock_irqrestore(&ep->lock, flags);
1632
1633 /*
1634 * Try to transfer events to user space. In case we get 0 events and
1635 * there's still timeout left over, we go trying again in search of
1636 * more luck.
1637 */
1638 if (!res && eavail &&
1639 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1640 goto fetch_events;
1641
1642 return res;
1643 }
1644
1645 /**
1646 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1647 * API, to verify that adding an epoll file inside another
1648 * epoll structure, does not violate the constraints, in
1649 * terms of closed loops, or too deep chains (which can
1650 * result in excessive stack usage).
1651 *
1652 * @priv: Pointer to the epoll file to be currently checked.
1653 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1654 * data structure pointer.
1655 * @call_nests: Current dept of the @ep_call_nested() call stack.
1656 *
1657 * Returns: Returns zero if adding the epoll @file inside current epoll
1658 * structure @ep does not violate the constraints, or -1 otherwise.
1659 */
1660 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1661 {
1662 int error = 0;
1663 struct file *file = priv;
1664 struct eventpoll *ep = file->private_data;
1665 struct eventpoll *ep_tovisit;
1666 struct rb_node *rbp;
1667 struct epitem *epi;
1668
1669 mutex_lock_nested(&ep->mtx, call_nests + 1);
1670 ep->visited = 1;
1671 list_add(&ep->visited_list_link, &visited_list);
1672 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1673 epi = rb_entry(rbp, struct epitem, rbn);
1674 if (unlikely(is_file_epoll(epi->ffd.file))) {
1675 ep_tovisit = epi->ffd.file->private_data;
1676 if (ep_tovisit->visited)
1677 continue;
1678 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1679 ep_loop_check_proc, epi->ffd.file,
1680 ep_tovisit, current);
1681 if (error != 0)
1682 break;
1683 } else {
1684 /*
1685 * If we've reached a file that is not associated with
1686 * an ep, then we need to check if the newly added
1687 * links are going to add too many wakeup paths. We do
1688 * this by adding it to the tfile_check_list, if it's
1689 * not already there, and calling reverse_path_check()
1690 * during ep_insert().
1691 */
1692 if (list_empty(&epi->ffd.file->f_tfile_llink))
1693 list_add(&epi->ffd.file->f_tfile_llink,
1694 &tfile_check_list);
1695 }
1696 }
1697 mutex_unlock(&ep->mtx);
1698
1699 return error;
1700 }
1701
1702 /**
1703 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1704 * another epoll file (represented by @ep) does not create
1705 * closed loops or too deep chains.
1706 *
1707 * @ep: Pointer to the epoll private data structure.
1708 * @file: Pointer to the epoll file to be checked.
1709 *
1710 * Returns: Returns zero if adding the epoll @file inside current epoll
1711 * structure @ep does not violate the constraints, or -1 otherwise.
1712 */
1713 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1714 {
1715 int ret;
1716 struct eventpoll *ep_cur, *ep_next;
1717
1718 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1719 ep_loop_check_proc, file, ep, current);
1720 /* clear visited list */
1721 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1722 visited_list_link) {
1723 ep_cur->visited = 0;
1724 list_del(&ep_cur->visited_list_link);
1725 }
1726 return ret;
1727 }
1728
1729 static void clear_tfile_check_list(void)
1730 {
1731 struct file *file;
1732
1733 /* first clear the tfile_check_list */
1734 while (!list_empty(&tfile_check_list)) {
1735 file = list_first_entry(&tfile_check_list, struct file,
1736 f_tfile_llink);
1737 list_del_init(&file->f_tfile_llink);
1738 }
1739 INIT_LIST_HEAD(&tfile_check_list);
1740 }
1741
1742 /*
1743 * Open an eventpoll file descriptor.
1744 */
1745 SYSCALL_DEFINE1(epoll_create1, int, flags)
1746 {
1747 int error, fd;
1748 struct eventpoll *ep = NULL;
1749 struct file *file;
1750
1751 /* Check the EPOLL_* constant for consistency. */
1752 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1753
1754 if (flags & ~EPOLL_CLOEXEC)
1755 return -EINVAL;
1756 /*
1757 * Create the internal data structure ("struct eventpoll").
1758 */
1759 error = ep_alloc(&ep);
1760 if (error < 0)
1761 return error;
1762 /*
1763 * Creates all the items needed to setup an eventpoll file. That is,
1764 * a file structure and a free file descriptor.
1765 */
1766 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1767 if (fd < 0) {
1768 error = fd;
1769 goto out_free_ep;
1770 }
1771 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1772 O_RDWR | (flags & O_CLOEXEC));
1773 if (IS_ERR(file)) {
1774 error = PTR_ERR(file);
1775 goto out_free_fd;
1776 }
1777 ep->file = file;
1778 fd_install(fd, file);
1779 return fd;
1780
1781 out_free_fd:
1782 put_unused_fd(fd);
1783 out_free_ep:
1784 ep_free(ep);
1785 return error;
1786 }
1787
1788 SYSCALL_DEFINE1(epoll_create, int, size)
1789 {
1790 if (size <= 0)
1791 return -EINVAL;
1792
1793 return sys_epoll_create1(0);
1794 }
1795
1796 /*
1797 * The following function implements the controller interface for
1798 * the eventpoll file that enables the insertion/removal/change of
1799 * file descriptors inside the interest set.
1800 */
1801 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1802 struct epoll_event __user *, event)
1803 {
1804 int error;
1805 int did_lock_epmutex = 0;
1806 struct fd f, tf;
1807 struct eventpoll *ep;
1808 struct epitem *epi;
1809 struct epoll_event epds;
1810
1811 error = -EFAULT;
1812 if (ep_op_has_event(op) &&
1813 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1814 goto error_return;
1815
1816 error = -EBADF;
1817 f = fdget(epfd);
1818 if (!f.file)
1819 goto error_return;
1820
1821 /* Get the "struct file *" for the target file */
1822 tf = fdget(fd);
1823 if (!tf.file)
1824 goto error_fput;
1825
1826 /* The target file descriptor must support poll */
1827 error = -EPERM;
1828 if (!tf.file->f_op || !tf.file->f_op->poll)
1829 goto error_tgt_fput;
1830
1831 /* Check if EPOLLWAKEUP is allowed */
1832 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1833 epds.events &= ~EPOLLWAKEUP;
1834
1835 /*
1836 * We have to check that the file structure underneath the file descriptor
1837 * the user passed to us _is_ an eventpoll file. And also we do not permit
1838 * adding an epoll file descriptor inside itself.
1839 */
1840 error = -EINVAL;
1841 if (f.file == tf.file || !is_file_epoll(f.file))
1842 goto error_tgt_fput;
1843
1844 /*
1845 * At this point it is safe to assume that the "private_data" contains
1846 * our own data structure.
1847 */
1848 ep = f.file->private_data;
1849
1850 /*
1851 * When we insert an epoll file descriptor, inside another epoll file
1852 * descriptor, there is the change of creating closed loops, which are
1853 * better be handled here, than in more critical paths. While we are
1854 * checking for loops we also determine the list of files reachable
1855 * and hang them on the tfile_check_list, so we can check that we
1856 * haven't created too many possible wakeup paths.
1857 *
1858 * We need to hold the epmutex across ep_insert to prevent
1859 * multple adds from creating loops in parallel.
1860 */
1861 if (op == EPOLL_CTL_ADD) {
1862 mutex_lock(&epmutex);
1863 did_lock_epmutex = 1;
1864 if (is_file_epoll(tf.file)) {
1865 error = -ELOOP;
1866 if (ep_loop_check(ep, tf.file) != 0) {
1867 clear_tfile_check_list();
1868 goto error_tgt_fput;
1869 }
1870 } else
1871 list_add(&tf.file->f_tfile_llink, &tfile_check_list);
1872 }
1873
1874 mutex_lock_nested(&ep->mtx, 0);
1875
1876 /*
1877 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1878 * above, we can be sure to be able to use the item looked up by
1879 * ep_find() till we release the mutex.
1880 */
1881 epi = ep_find(ep, tf.file, fd);
1882
1883 error = -EINVAL;
1884 switch (op) {
1885 case EPOLL_CTL_ADD:
1886 if (!epi) {
1887 epds.events |= POLLERR | POLLHUP;
1888 error = ep_insert(ep, &epds, tf.file, fd);
1889 } else
1890 error = -EEXIST;
1891 clear_tfile_check_list();
1892 break;
1893 case EPOLL_CTL_DEL:
1894 if (epi)
1895 error = ep_remove(ep, epi);
1896 else
1897 error = -ENOENT;
1898 break;
1899 case EPOLL_CTL_MOD:
1900 if (epi) {
1901 epds.events |= POLLERR | POLLHUP;
1902 error = ep_modify(ep, epi, &epds);
1903 } else
1904 error = -ENOENT;
1905 break;
1906 }
1907 mutex_unlock(&ep->mtx);
1908
1909 error_tgt_fput:
1910 if (did_lock_epmutex)
1911 mutex_unlock(&epmutex);
1912
1913 fdput(tf);
1914 error_fput:
1915 fdput(f);
1916 error_return:
1917
1918 return error;
1919 }
1920
1921 /*
1922 * Implement the event wait interface for the eventpoll file. It is the kernel
1923 * part of the user space epoll_wait(2).
1924 */
1925 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1926 int, maxevents, int, timeout)
1927 {
1928 int error;
1929 struct fd f;
1930 struct eventpoll *ep;
1931
1932 /* The maximum number of event must be greater than zero */
1933 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1934 return -EINVAL;
1935
1936 /* Verify that the area passed by the user is writeable */
1937 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1938 return -EFAULT;
1939
1940 /* Get the "struct file *" for the eventpoll file */
1941 f = fdget(epfd);
1942 if (!f.file)
1943 return -EBADF;
1944
1945 /*
1946 * We have to check that the file structure underneath the fd
1947 * the user passed to us _is_ an eventpoll file.
1948 */
1949 error = -EINVAL;
1950 if (!is_file_epoll(f.file))
1951 goto error_fput;
1952
1953 /*
1954 * At this point it is safe to assume that the "private_data" contains
1955 * our own data structure.
1956 */
1957 ep = f.file->private_data;
1958
1959 /* Time to fish for events ... */
1960 error = ep_poll(ep, events, maxevents, timeout);
1961
1962 error_fput:
1963 fdput(f);
1964 return error;
1965 }
1966
1967 /*
1968 * Implement the event wait interface for the eventpoll file. It is the kernel
1969 * part of the user space epoll_pwait(2).
1970 */
1971 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1972 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1973 size_t, sigsetsize)
1974 {
1975 int error;
1976 sigset_t ksigmask, sigsaved;
1977
1978 /*
1979 * If the caller wants a certain signal mask to be set during the wait,
1980 * we apply it here.
1981 */
1982 if (sigmask) {
1983 if (sigsetsize != sizeof(sigset_t))
1984 return -EINVAL;
1985 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1986 return -EFAULT;
1987 sigsaved = current->blocked;
1988 set_current_blocked(&ksigmask);
1989 }
1990
1991 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1992
1993 /*
1994 * If we changed the signal mask, we need to restore the original one.
1995 * In case we've got a signal while waiting, we do not restore the
1996 * signal mask yet, and we allow do_signal() to deliver the signal on
1997 * the way back to userspace, before the signal mask is restored.
1998 */
1999 if (sigmask) {
2000 if (error == -EINTR) {
2001 memcpy(&current->saved_sigmask, &sigsaved,
2002 sizeof(sigsaved));
2003 set_restore_sigmask();
2004 } else
2005 set_current_blocked(&sigsaved);
2006 }
2007
2008 return error;
2009 }
2010
2011 #ifdef CONFIG_COMPAT
2012 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2013 struct epoll_event __user *, events,
2014 int, maxevents, int, timeout,
2015 const compat_sigset_t __user *, sigmask,
2016 compat_size_t, sigsetsize)
2017 {
2018 long err;
2019 compat_sigset_t csigmask;
2020 sigset_t ksigmask, sigsaved;
2021
2022 /*
2023 * If the caller wants a certain signal mask to be set during the wait,
2024 * we apply it here.
2025 */
2026 if (sigmask) {
2027 if (sigsetsize != sizeof(compat_sigset_t))
2028 return -EINVAL;
2029 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2030 return -EFAULT;
2031 sigset_from_compat(&ksigmask, &csigmask);
2032 sigsaved = current->blocked;
2033 set_current_blocked(&ksigmask);
2034 }
2035
2036 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2037
2038 /*
2039 * If we changed the signal mask, we need to restore the original one.
2040 * In case we've got a signal while waiting, we do not restore the
2041 * signal mask yet, and we allow do_signal() to deliver the signal on
2042 * the way back to userspace, before the signal mask is restored.
2043 */
2044 if (sigmask) {
2045 if (err == -EINTR) {
2046 memcpy(&current->saved_sigmask, &sigsaved,
2047 sizeof(sigsaved));
2048 set_restore_sigmask();
2049 } else
2050 set_current_blocked(&sigsaved);
2051 }
2052
2053 return err;
2054 }
2055 #endif
2056
2057 static int __init eventpoll_init(void)
2058 {
2059 struct sysinfo si;
2060
2061 si_meminfo(&si);
2062 /*
2063 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2064 */
2065 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2066 EP_ITEM_COST;
2067 BUG_ON(max_user_watches < 0);
2068
2069 /*
2070 * Initialize the structure used to perform epoll file descriptor
2071 * inclusion loops checks.
2072 */
2073 ep_nested_calls_init(&poll_loop_ncalls);
2074
2075 /* Initialize the structure used to perform safe poll wait head wake ups */
2076 ep_nested_calls_init(&poll_safewake_ncalls);
2077
2078 /* Initialize the structure used to perform file's f_op->poll() calls */
2079 ep_nested_calls_init(&poll_readywalk_ncalls);
2080
2081 /*
2082 * We can have many thousands of epitems, so prevent this from
2083 * using an extra cache line on 64-bit (and smaller) CPUs
2084 */
2085 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2086
2087 /* Allocates slab cache used to allocate "struct epitem" items */
2088 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2089 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2090
2091 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2092 pwq_cache = kmem_cache_create("eventpoll_pwq",
2093 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2094
2095 return 0;
2096 }
2097 fs_initcall(eventpoll_init);