]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/exec.c
bnxt_en: fix ternary sign extension bug in bnxt_show_temp()
[mirror_ubuntu-hirsute-kernel.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72
73 #include <trace/events/task.h>
74 #include "internal.h"
75
76 #include <trace/events/sched.h>
77
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79
80 int suid_dumpable = 0;
81
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 BUG_ON(!fmt);
88 if (WARN_ON(!fmt->load_binary))
89 return;
90 write_lock(&binfmt_lock);
91 insert ? list_add(&fmt->lh, &formats) :
92 list_add_tail(&fmt->lh, &formats);
93 write_unlock(&binfmt_lock);
94 }
95
96 EXPORT_SYMBOL(__register_binfmt);
97
98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 write_lock(&binfmt_lock);
101 list_del(&fmt->lh);
102 write_unlock(&binfmt_lock);
103 }
104
105 EXPORT_SYMBOL(unregister_binfmt);
106
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 module_put(fmt->module);
110 }
111
112 bool path_noexec(const struct path *path)
113 {
114 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 EXPORT_SYMBOL_GPL(path_noexec);
118
119 bool path_nosuid(const struct path *path)
120 {
121 return !mnt_may_suid(path->mnt) ||
122 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
123 }
124 EXPORT_SYMBOL(path_nosuid);
125
126 #ifdef CONFIG_USELIB
127 /*
128 * Note that a shared library must be both readable and executable due to
129 * security reasons.
130 *
131 * Also note that we take the address to load from from the file itself.
132 */
133 SYSCALL_DEFINE1(uselib, const char __user *, library)
134 {
135 struct linux_binfmt *fmt;
136 struct file *file;
137 struct filename *tmp = getname(library);
138 int error = PTR_ERR(tmp);
139 static const struct open_flags uselib_flags = {
140 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
141 .acc_mode = MAY_READ | MAY_EXEC,
142 .intent = LOOKUP_OPEN,
143 .lookup_flags = LOOKUP_FOLLOW,
144 };
145
146 if (IS_ERR(tmp))
147 goto out;
148
149 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
150 putname(tmp);
151 error = PTR_ERR(file);
152 if (IS_ERR(file))
153 goto out;
154
155 /*
156 * may_open() has already checked for this, so it should be
157 * impossible to trip now. But we need to be extra cautious
158 * and check again at the very end too.
159 */
160 error = -EACCES;
161 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
162 path_noexec(&file->f_path)))
163 goto exit;
164
165 fsnotify_open(file);
166
167 error = -ENOEXEC;
168
169 read_lock(&binfmt_lock);
170 list_for_each_entry(fmt, &formats, lh) {
171 if (!fmt->load_shlib)
172 continue;
173 if (!try_module_get(fmt->module))
174 continue;
175 read_unlock(&binfmt_lock);
176 error = fmt->load_shlib(file);
177 read_lock(&binfmt_lock);
178 put_binfmt(fmt);
179 if (error != -ENOEXEC)
180 break;
181 }
182 read_unlock(&binfmt_lock);
183 exit:
184 fput(file);
185 out:
186 return error;
187 }
188 #endif /* #ifdef CONFIG_USELIB */
189
190 #ifdef CONFIG_MMU
191 /*
192 * The nascent bprm->mm is not visible until exec_mmap() but it can
193 * use a lot of memory, account these pages in current->mm temporary
194 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
195 * change the counter back via acct_arg_size(0).
196 */
197 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
198 {
199 struct mm_struct *mm = current->mm;
200 long diff = (long)(pages - bprm->vma_pages);
201
202 if (!mm || !diff)
203 return;
204
205 bprm->vma_pages = pages;
206 add_mm_counter(mm, MM_ANONPAGES, diff);
207 }
208
209 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
210 int write)
211 {
212 struct page *page;
213 int ret;
214 unsigned int gup_flags = FOLL_FORCE;
215
216 #ifdef CONFIG_STACK_GROWSUP
217 if (write) {
218 ret = expand_downwards(bprm->vma, pos);
219 if (ret < 0)
220 return NULL;
221 }
222 #endif
223
224 if (write)
225 gup_flags |= FOLL_WRITE;
226
227 /*
228 * We are doing an exec(). 'current' is the process
229 * doing the exec and bprm->mm is the new process's mm.
230 */
231 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
232 &page, NULL, NULL);
233 if (ret <= 0)
234 return NULL;
235
236 if (write)
237 acct_arg_size(bprm, vma_pages(bprm->vma));
238
239 return page;
240 }
241
242 static void put_arg_page(struct page *page)
243 {
244 put_page(page);
245 }
246
247 static void free_arg_pages(struct linux_binprm *bprm)
248 {
249 }
250
251 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
252 struct page *page)
253 {
254 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
255 }
256
257 static int __bprm_mm_init(struct linux_binprm *bprm)
258 {
259 int err;
260 struct vm_area_struct *vma = NULL;
261 struct mm_struct *mm = bprm->mm;
262
263 bprm->vma = vma = vm_area_alloc(mm);
264 if (!vma)
265 return -ENOMEM;
266 vma_set_anonymous(vma);
267
268 if (mmap_write_lock_killable(mm)) {
269 err = -EINTR;
270 goto err_free;
271 }
272
273 /*
274 * Place the stack at the largest stack address the architecture
275 * supports. Later, we'll move this to an appropriate place. We don't
276 * use STACK_TOP because that can depend on attributes which aren't
277 * configured yet.
278 */
279 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
280 vma->vm_end = STACK_TOP_MAX;
281 vma->vm_start = vma->vm_end - PAGE_SIZE;
282 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
283 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
284
285 err = insert_vm_struct(mm, vma);
286 if (err)
287 goto err;
288
289 mm->stack_vm = mm->total_vm = 1;
290 mmap_write_unlock(mm);
291 bprm->p = vma->vm_end - sizeof(void *);
292 return 0;
293 err:
294 mmap_write_unlock(mm);
295 err_free:
296 bprm->vma = NULL;
297 vm_area_free(vma);
298 return err;
299 }
300
301 static bool valid_arg_len(struct linux_binprm *bprm, long len)
302 {
303 return len <= MAX_ARG_STRLEN;
304 }
305
306 #else
307
308 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
309 {
310 }
311
312 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 int write)
314 {
315 struct page *page;
316
317 page = bprm->page[pos / PAGE_SIZE];
318 if (!page && write) {
319 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
320 if (!page)
321 return NULL;
322 bprm->page[pos / PAGE_SIZE] = page;
323 }
324
325 return page;
326 }
327
328 static void put_arg_page(struct page *page)
329 {
330 }
331
332 static void free_arg_page(struct linux_binprm *bprm, int i)
333 {
334 if (bprm->page[i]) {
335 __free_page(bprm->page[i]);
336 bprm->page[i] = NULL;
337 }
338 }
339
340 static void free_arg_pages(struct linux_binprm *bprm)
341 {
342 int i;
343
344 for (i = 0; i < MAX_ARG_PAGES; i++)
345 free_arg_page(bprm, i);
346 }
347
348 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
349 struct page *page)
350 {
351 }
352
353 static int __bprm_mm_init(struct linux_binprm *bprm)
354 {
355 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
356 return 0;
357 }
358
359 static bool valid_arg_len(struct linux_binprm *bprm, long len)
360 {
361 return len <= bprm->p;
362 }
363
364 #endif /* CONFIG_MMU */
365
366 /*
367 * Create a new mm_struct and populate it with a temporary stack
368 * vm_area_struct. We don't have enough context at this point to set the stack
369 * flags, permissions, and offset, so we use temporary values. We'll update
370 * them later in setup_arg_pages().
371 */
372 static int bprm_mm_init(struct linux_binprm *bprm)
373 {
374 int err;
375 struct mm_struct *mm = NULL;
376
377 bprm->mm = mm = mm_alloc();
378 err = -ENOMEM;
379 if (!mm)
380 goto err;
381
382 /* Save current stack limit for all calculations made during exec. */
383 task_lock(current->group_leader);
384 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
385 task_unlock(current->group_leader);
386
387 err = __bprm_mm_init(bprm);
388 if (err)
389 goto err;
390
391 return 0;
392
393 err:
394 if (mm) {
395 bprm->mm = NULL;
396 mmdrop(mm);
397 }
398
399 return err;
400 }
401
402 struct user_arg_ptr {
403 #ifdef CONFIG_COMPAT
404 bool is_compat;
405 #endif
406 union {
407 const char __user *const __user *native;
408 #ifdef CONFIG_COMPAT
409 const compat_uptr_t __user *compat;
410 #endif
411 } ptr;
412 };
413
414 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
415 {
416 const char __user *native;
417
418 #ifdef CONFIG_COMPAT
419 if (unlikely(argv.is_compat)) {
420 compat_uptr_t compat;
421
422 if (get_user(compat, argv.ptr.compat + nr))
423 return ERR_PTR(-EFAULT);
424
425 return compat_ptr(compat);
426 }
427 #endif
428
429 if (get_user(native, argv.ptr.native + nr))
430 return ERR_PTR(-EFAULT);
431
432 return native;
433 }
434
435 /*
436 * count() counts the number of strings in array ARGV.
437 */
438 static int count(struct user_arg_ptr argv, int max)
439 {
440 int i = 0;
441
442 if (argv.ptr.native != NULL) {
443 for (;;) {
444 const char __user *p = get_user_arg_ptr(argv, i);
445
446 if (!p)
447 break;
448
449 if (IS_ERR(p))
450 return -EFAULT;
451
452 if (i >= max)
453 return -E2BIG;
454 ++i;
455
456 if (fatal_signal_pending(current))
457 return -ERESTARTNOHAND;
458 cond_resched();
459 }
460 }
461 return i;
462 }
463
464 static int count_strings_kernel(const char *const *argv)
465 {
466 int i;
467
468 if (!argv)
469 return 0;
470
471 for (i = 0; argv[i]; ++i) {
472 if (i >= MAX_ARG_STRINGS)
473 return -E2BIG;
474 if (fatal_signal_pending(current))
475 return -ERESTARTNOHAND;
476 cond_resched();
477 }
478 return i;
479 }
480
481 static int bprm_stack_limits(struct linux_binprm *bprm)
482 {
483 unsigned long limit, ptr_size;
484
485 /*
486 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
487 * (whichever is smaller) for the argv+env strings.
488 * This ensures that:
489 * - the remaining binfmt code will not run out of stack space,
490 * - the program will have a reasonable amount of stack left
491 * to work from.
492 */
493 limit = _STK_LIM / 4 * 3;
494 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
495 /*
496 * We've historically supported up to 32 pages (ARG_MAX)
497 * of argument strings even with small stacks
498 */
499 limit = max_t(unsigned long, limit, ARG_MAX);
500 /*
501 * We must account for the size of all the argv and envp pointers to
502 * the argv and envp strings, since they will also take up space in
503 * the stack. They aren't stored until much later when we can't
504 * signal to the parent that the child has run out of stack space.
505 * Instead, calculate it here so it's possible to fail gracefully.
506 */
507 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
508 if (limit <= ptr_size)
509 return -E2BIG;
510 limit -= ptr_size;
511
512 bprm->argmin = bprm->p - limit;
513 return 0;
514 }
515
516 /*
517 * 'copy_strings()' copies argument/environment strings from the old
518 * processes's memory to the new process's stack. The call to get_user_pages()
519 * ensures the destination page is created and not swapped out.
520 */
521 static int copy_strings(int argc, struct user_arg_ptr argv,
522 struct linux_binprm *bprm)
523 {
524 struct page *kmapped_page = NULL;
525 char *kaddr = NULL;
526 unsigned long kpos = 0;
527 int ret;
528
529 while (argc-- > 0) {
530 const char __user *str;
531 int len;
532 unsigned long pos;
533
534 ret = -EFAULT;
535 str = get_user_arg_ptr(argv, argc);
536 if (IS_ERR(str))
537 goto out;
538
539 len = strnlen_user(str, MAX_ARG_STRLEN);
540 if (!len)
541 goto out;
542
543 ret = -E2BIG;
544 if (!valid_arg_len(bprm, len))
545 goto out;
546
547 /* We're going to work our way backwords. */
548 pos = bprm->p;
549 str += len;
550 bprm->p -= len;
551 #ifdef CONFIG_MMU
552 if (bprm->p < bprm->argmin)
553 goto out;
554 #endif
555
556 while (len > 0) {
557 int offset, bytes_to_copy;
558
559 if (fatal_signal_pending(current)) {
560 ret = -ERESTARTNOHAND;
561 goto out;
562 }
563 cond_resched();
564
565 offset = pos % PAGE_SIZE;
566 if (offset == 0)
567 offset = PAGE_SIZE;
568
569 bytes_to_copy = offset;
570 if (bytes_to_copy > len)
571 bytes_to_copy = len;
572
573 offset -= bytes_to_copy;
574 pos -= bytes_to_copy;
575 str -= bytes_to_copy;
576 len -= bytes_to_copy;
577
578 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
579 struct page *page;
580
581 page = get_arg_page(bprm, pos, 1);
582 if (!page) {
583 ret = -E2BIG;
584 goto out;
585 }
586
587 if (kmapped_page) {
588 flush_kernel_dcache_page(kmapped_page);
589 kunmap(kmapped_page);
590 put_arg_page(kmapped_page);
591 }
592 kmapped_page = page;
593 kaddr = kmap(kmapped_page);
594 kpos = pos & PAGE_MASK;
595 flush_arg_page(bprm, kpos, kmapped_page);
596 }
597 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
598 ret = -EFAULT;
599 goto out;
600 }
601 }
602 }
603 ret = 0;
604 out:
605 if (kmapped_page) {
606 flush_kernel_dcache_page(kmapped_page);
607 kunmap(kmapped_page);
608 put_arg_page(kmapped_page);
609 }
610 return ret;
611 }
612
613 /*
614 * Copy and argument/environment string from the kernel to the processes stack.
615 */
616 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
617 {
618 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
619 unsigned long pos = bprm->p;
620
621 if (len == 0)
622 return -EFAULT;
623 if (!valid_arg_len(bprm, len))
624 return -E2BIG;
625
626 /* We're going to work our way backwards. */
627 arg += len;
628 bprm->p -= len;
629 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
630 return -E2BIG;
631
632 while (len > 0) {
633 unsigned int bytes_to_copy = min_t(unsigned int, len,
634 min_not_zero(offset_in_page(pos), PAGE_SIZE));
635 struct page *page;
636 char *kaddr;
637
638 pos -= bytes_to_copy;
639 arg -= bytes_to_copy;
640 len -= bytes_to_copy;
641
642 page = get_arg_page(bprm, pos, 1);
643 if (!page)
644 return -E2BIG;
645 kaddr = kmap_atomic(page);
646 flush_arg_page(bprm, pos & PAGE_MASK, page);
647 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
648 flush_kernel_dcache_page(page);
649 kunmap_atomic(kaddr);
650 put_arg_page(page);
651 }
652
653 return 0;
654 }
655 EXPORT_SYMBOL(copy_string_kernel);
656
657 static int copy_strings_kernel(int argc, const char *const *argv,
658 struct linux_binprm *bprm)
659 {
660 while (argc-- > 0) {
661 int ret = copy_string_kernel(argv[argc], bprm);
662 if (ret < 0)
663 return ret;
664 if (fatal_signal_pending(current))
665 return -ERESTARTNOHAND;
666 cond_resched();
667 }
668 return 0;
669 }
670
671 #ifdef CONFIG_MMU
672
673 /*
674 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
675 * the binfmt code determines where the new stack should reside, we shift it to
676 * its final location. The process proceeds as follows:
677 *
678 * 1) Use shift to calculate the new vma endpoints.
679 * 2) Extend vma to cover both the old and new ranges. This ensures the
680 * arguments passed to subsequent functions are consistent.
681 * 3) Move vma's page tables to the new range.
682 * 4) Free up any cleared pgd range.
683 * 5) Shrink the vma to cover only the new range.
684 */
685 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
686 {
687 struct mm_struct *mm = vma->vm_mm;
688 unsigned long old_start = vma->vm_start;
689 unsigned long old_end = vma->vm_end;
690 unsigned long length = old_end - old_start;
691 unsigned long new_start = old_start - shift;
692 unsigned long new_end = old_end - shift;
693 struct mmu_gather tlb;
694
695 BUG_ON(new_start > new_end);
696
697 /*
698 * ensure there are no vmas between where we want to go
699 * and where we are
700 */
701 if (vma != find_vma(mm, new_start))
702 return -EFAULT;
703
704 /*
705 * cover the whole range: [new_start, old_end)
706 */
707 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
708 return -ENOMEM;
709
710 /*
711 * move the page tables downwards, on failure we rely on
712 * process cleanup to remove whatever mess we made.
713 */
714 if (length != move_page_tables(vma, old_start,
715 vma, new_start, length, false))
716 return -ENOMEM;
717
718 lru_add_drain();
719 tlb_gather_mmu(&tlb, mm, old_start, old_end);
720 if (new_end > old_start) {
721 /*
722 * when the old and new regions overlap clear from new_end.
723 */
724 free_pgd_range(&tlb, new_end, old_end, new_end,
725 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
726 } else {
727 /*
728 * otherwise, clean from old_start; this is done to not touch
729 * the address space in [new_end, old_start) some architectures
730 * have constraints on va-space that make this illegal (IA64) -
731 * for the others its just a little faster.
732 */
733 free_pgd_range(&tlb, old_start, old_end, new_end,
734 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
735 }
736 tlb_finish_mmu(&tlb, old_start, old_end);
737
738 /*
739 * Shrink the vma to just the new range. Always succeeds.
740 */
741 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
742
743 return 0;
744 }
745
746 /*
747 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
748 * the stack is optionally relocated, and some extra space is added.
749 */
750 int setup_arg_pages(struct linux_binprm *bprm,
751 unsigned long stack_top,
752 int executable_stack)
753 {
754 unsigned long ret;
755 unsigned long stack_shift;
756 struct mm_struct *mm = current->mm;
757 struct vm_area_struct *vma = bprm->vma;
758 struct vm_area_struct *prev = NULL;
759 unsigned long vm_flags;
760 unsigned long stack_base;
761 unsigned long stack_size;
762 unsigned long stack_expand;
763 unsigned long rlim_stack;
764
765 #ifdef CONFIG_STACK_GROWSUP
766 /* Limit stack size */
767 stack_base = bprm->rlim_stack.rlim_max;
768
769 stack_base = calc_max_stack_size(stack_base);
770
771 /* Add space for stack randomization. */
772 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
773
774 /* Make sure we didn't let the argument array grow too large. */
775 if (vma->vm_end - vma->vm_start > stack_base)
776 return -ENOMEM;
777
778 stack_base = PAGE_ALIGN(stack_top - stack_base);
779
780 stack_shift = vma->vm_start - stack_base;
781 mm->arg_start = bprm->p - stack_shift;
782 bprm->p = vma->vm_end - stack_shift;
783 #else
784 stack_top = arch_align_stack(stack_top);
785 stack_top = PAGE_ALIGN(stack_top);
786
787 if (unlikely(stack_top < mmap_min_addr) ||
788 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
789 return -ENOMEM;
790
791 stack_shift = vma->vm_end - stack_top;
792
793 bprm->p -= stack_shift;
794 mm->arg_start = bprm->p;
795 #endif
796
797 if (bprm->loader)
798 bprm->loader -= stack_shift;
799 bprm->exec -= stack_shift;
800
801 if (mmap_write_lock_killable(mm))
802 return -EINTR;
803
804 vm_flags = VM_STACK_FLAGS;
805
806 /*
807 * Adjust stack execute permissions; explicitly enable for
808 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
809 * (arch default) otherwise.
810 */
811 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
812 vm_flags |= VM_EXEC;
813 else if (executable_stack == EXSTACK_DISABLE_X)
814 vm_flags &= ~VM_EXEC;
815 vm_flags |= mm->def_flags;
816 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
817
818 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
819 vm_flags);
820 if (ret)
821 goto out_unlock;
822 BUG_ON(prev != vma);
823
824 if (unlikely(vm_flags & VM_EXEC)) {
825 pr_warn_once("process '%pD4' started with executable stack\n",
826 bprm->file);
827 }
828
829 /* Move stack pages down in memory. */
830 if (stack_shift) {
831 ret = shift_arg_pages(vma, stack_shift);
832 if (ret)
833 goto out_unlock;
834 }
835
836 /* mprotect_fixup is overkill to remove the temporary stack flags */
837 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
838
839 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
840 stack_size = vma->vm_end - vma->vm_start;
841 /*
842 * Align this down to a page boundary as expand_stack
843 * will align it up.
844 */
845 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
846 #ifdef CONFIG_STACK_GROWSUP
847 if (stack_size + stack_expand > rlim_stack)
848 stack_base = vma->vm_start + rlim_stack;
849 else
850 stack_base = vma->vm_end + stack_expand;
851 #else
852 if (stack_size + stack_expand > rlim_stack)
853 stack_base = vma->vm_end - rlim_stack;
854 else
855 stack_base = vma->vm_start - stack_expand;
856 #endif
857 current->mm->start_stack = bprm->p;
858 ret = expand_stack(vma, stack_base);
859 if (ret)
860 ret = -EFAULT;
861
862 out_unlock:
863 mmap_write_unlock(mm);
864 return ret;
865 }
866 EXPORT_SYMBOL(setup_arg_pages);
867
868 #else
869
870 /*
871 * Transfer the program arguments and environment from the holding pages
872 * onto the stack. The provided stack pointer is adjusted accordingly.
873 */
874 int transfer_args_to_stack(struct linux_binprm *bprm,
875 unsigned long *sp_location)
876 {
877 unsigned long index, stop, sp;
878 int ret = 0;
879
880 stop = bprm->p >> PAGE_SHIFT;
881 sp = *sp_location;
882
883 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
884 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
885 char *src = kmap(bprm->page[index]) + offset;
886 sp -= PAGE_SIZE - offset;
887 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
888 ret = -EFAULT;
889 kunmap(bprm->page[index]);
890 if (ret)
891 goto out;
892 }
893
894 *sp_location = sp;
895
896 out:
897 return ret;
898 }
899 EXPORT_SYMBOL(transfer_args_to_stack);
900
901 #endif /* CONFIG_MMU */
902
903 static struct file *do_open_execat(int fd, struct filename *name, int flags)
904 {
905 struct file *file;
906 int err;
907 struct open_flags open_exec_flags = {
908 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
909 .acc_mode = MAY_EXEC,
910 .intent = LOOKUP_OPEN,
911 .lookup_flags = LOOKUP_FOLLOW,
912 };
913
914 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
915 return ERR_PTR(-EINVAL);
916 if (flags & AT_SYMLINK_NOFOLLOW)
917 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
918 if (flags & AT_EMPTY_PATH)
919 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
920
921 file = do_filp_open(fd, name, &open_exec_flags);
922 if (IS_ERR(file))
923 goto out;
924
925 /*
926 * may_open() has already checked for this, so it should be
927 * impossible to trip now. But we need to be extra cautious
928 * and check again at the very end too.
929 */
930 err = -EACCES;
931 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
932 path_noexec(&file->f_path)))
933 goto exit;
934
935 err = deny_write_access(file);
936 if (err)
937 goto exit;
938
939 if (name->name[0] != '\0')
940 fsnotify_open(file);
941
942 out:
943 return file;
944
945 exit:
946 fput(file);
947 return ERR_PTR(err);
948 }
949
950 struct file *open_exec(const char *name)
951 {
952 struct filename *filename = getname_kernel(name);
953 struct file *f = ERR_CAST(filename);
954
955 if (!IS_ERR(filename)) {
956 f = do_open_execat(AT_FDCWD, filename, 0);
957 putname(filename);
958 }
959 return f;
960 }
961 EXPORT_SYMBOL(open_exec);
962
963 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
964 defined(CONFIG_BINFMT_ELF_FDPIC)
965 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
966 {
967 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
968 if (res > 0)
969 flush_icache_user_range(addr, addr + len);
970 return res;
971 }
972 EXPORT_SYMBOL(read_code);
973 #endif
974
975 /*
976 * Maps the mm_struct mm into the current task struct.
977 * On success, this function returns with exec_update_lock
978 * held for writing.
979 */
980 static int exec_mmap(struct mm_struct *mm)
981 {
982 struct task_struct *tsk;
983 struct mm_struct *old_mm, *active_mm;
984 int ret;
985
986 /* Notify parent that we're no longer interested in the old VM */
987 tsk = current;
988 old_mm = current->mm;
989 exec_mm_release(tsk, old_mm);
990 if (old_mm)
991 sync_mm_rss(old_mm);
992
993 ret = down_write_killable(&tsk->signal->exec_update_lock);
994 if (ret)
995 return ret;
996
997 if (old_mm) {
998 /*
999 * Make sure that if there is a core dump in progress
1000 * for the old mm, we get out and die instead of going
1001 * through with the exec. We must hold mmap_lock around
1002 * checking core_state and changing tsk->mm.
1003 */
1004 mmap_read_lock(old_mm);
1005 if (unlikely(old_mm->core_state)) {
1006 mmap_read_unlock(old_mm);
1007 up_write(&tsk->signal->exec_update_lock);
1008 return -EINTR;
1009 }
1010 }
1011
1012 task_lock(tsk);
1013 membarrier_exec_mmap(mm);
1014
1015 local_irq_disable();
1016 active_mm = tsk->active_mm;
1017 tsk->active_mm = mm;
1018 tsk->mm = mm;
1019 /*
1020 * This prevents preemption while active_mm is being loaded and
1021 * it and mm are being updated, which could cause problems for
1022 * lazy tlb mm refcounting when these are updated by context
1023 * switches. Not all architectures can handle irqs off over
1024 * activate_mm yet.
1025 */
1026 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027 local_irq_enable();
1028 activate_mm(active_mm, mm);
1029 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1030 local_irq_enable();
1031 tsk->mm->vmacache_seqnum = 0;
1032 vmacache_flush(tsk);
1033 task_unlock(tsk);
1034 if (old_mm) {
1035 mmap_read_unlock(old_mm);
1036 BUG_ON(active_mm != old_mm);
1037 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1038 mm_update_next_owner(old_mm);
1039 mmput(old_mm);
1040 return 0;
1041 }
1042 mmdrop(active_mm);
1043 return 0;
1044 }
1045
1046 static int de_thread(struct task_struct *tsk)
1047 {
1048 struct signal_struct *sig = tsk->signal;
1049 struct sighand_struct *oldsighand = tsk->sighand;
1050 spinlock_t *lock = &oldsighand->siglock;
1051
1052 if (thread_group_empty(tsk))
1053 goto no_thread_group;
1054
1055 /*
1056 * Kill all other threads in the thread group.
1057 */
1058 spin_lock_irq(lock);
1059 if (signal_group_exit(sig)) {
1060 /*
1061 * Another group action in progress, just
1062 * return so that the signal is processed.
1063 */
1064 spin_unlock_irq(lock);
1065 return -EAGAIN;
1066 }
1067
1068 sig->group_exit_task = tsk;
1069 sig->notify_count = zap_other_threads(tsk);
1070 if (!thread_group_leader(tsk))
1071 sig->notify_count--;
1072
1073 while (sig->notify_count) {
1074 __set_current_state(TASK_KILLABLE);
1075 spin_unlock_irq(lock);
1076 schedule();
1077 if (__fatal_signal_pending(tsk))
1078 goto killed;
1079 spin_lock_irq(lock);
1080 }
1081 spin_unlock_irq(lock);
1082
1083 /*
1084 * At this point all other threads have exited, all we have to
1085 * do is to wait for the thread group leader to become inactive,
1086 * and to assume its PID:
1087 */
1088 if (!thread_group_leader(tsk)) {
1089 struct task_struct *leader = tsk->group_leader;
1090
1091 for (;;) {
1092 cgroup_threadgroup_change_begin(tsk);
1093 write_lock_irq(&tasklist_lock);
1094 /*
1095 * Do this under tasklist_lock to ensure that
1096 * exit_notify() can't miss ->group_exit_task
1097 */
1098 sig->notify_count = -1;
1099 if (likely(leader->exit_state))
1100 break;
1101 __set_current_state(TASK_KILLABLE);
1102 write_unlock_irq(&tasklist_lock);
1103 cgroup_threadgroup_change_end(tsk);
1104 schedule();
1105 if (__fatal_signal_pending(tsk))
1106 goto killed;
1107 }
1108
1109 /*
1110 * The only record we have of the real-time age of a
1111 * process, regardless of execs it's done, is start_time.
1112 * All the past CPU time is accumulated in signal_struct
1113 * from sister threads now dead. But in this non-leader
1114 * exec, nothing survives from the original leader thread,
1115 * whose birth marks the true age of this process now.
1116 * When we take on its identity by switching to its PID, we
1117 * also take its birthdate (always earlier than our own).
1118 */
1119 tsk->start_time = leader->start_time;
1120 tsk->start_boottime = leader->start_boottime;
1121
1122 BUG_ON(!same_thread_group(leader, tsk));
1123 /*
1124 * An exec() starts a new thread group with the
1125 * TGID of the previous thread group. Rehash the
1126 * two threads with a switched PID, and release
1127 * the former thread group leader:
1128 */
1129
1130 /* Become a process group leader with the old leader's pid.
1131 * The old leader becomes a thread of the this thread group.
1132 */
1133 exchange_tids(tsk, leader);
1134 transfer_pid(leader, tsk, PIDTYPE_TGID);
1135 transfer_pid(leader, tsk, PIDTYPE_PGID);
1136 transfer_pid(leader, tsk, PIDTYPE_SID);
1137
1138 list_replace_rcu(&leader->tasks, &tsk->tasks);
1139 list_replace_init(&leader->sibling, &tsk->sibling);
1140
1141 tsk->group_leader = tsk;
1142 leader->group_leader = tsk;
1143
1144 tsk->exit_signal = SIGCHLD;
1145 leader->exit_signal = -1;
1146
1147 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1148 leader->exit_state = EXIT_DEAD;
1149
1150 /*
1151 * We are going to release_task()->ptrace_unlink() silently,
1152 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1153 * the tracer wont't block again waiting for this thread.
1154 */
1155 if (unlikely(leader->ptrace))
1156 __wake_up_parent(leader, leader->parent);
1157 write_unlock_irq(&tasklist_lock);
1158 cgroup_threadgroup_change_end(tsk);
1159
1160 release_task(leader);
1161 }
1162
1163 sig->group_exit_task = NULL;
1164 sig->notify_count = 0;
1165
1166 no_thread_group:
1167 /* we have changed execution domain */
1168 tsk->exit_signal = SIGCHLD;
1169
1170 BUG_ON(!thread_group_leader(tsk));
1171 return 0;
1172
1173 killed:
1174 /* protects against exit_notify() and __exit_signal() */
1175 read_lock(&tasklist_lock);
1176 sig->group_exit_task = NULL;
1177 sig->notify_count = 0;
1178 read_unlock(&tasklist_lock);
1179 return -EAGAIN;
1180 }
1181
1182
1183 /*
1184 * This function makes sure the current process has its own signal table,
1185 * so that flush_signal_handlers can later reset the handlers without
1186 * disturbing other processes. (Other processes might share the signal
1187 * table via the CLONE_SIGHAND option to clone().)
1188 */
1189 static int unshare_sighand(struct task_struct *me)
1190 {
1191 struct sighand_struct *oldsighand = me->sighand;
1192
1193 if (refcount_read(&oldsighand->count) != 1) {
1194 struct sighand_struct *newsighand;
1195 /*
1196 * This ->sighand is shared with the CLONE_SIGHAND
1197 * but not CLONE_THREAD task, switch to the new one.
1198 */
1199 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1200 if (!newsighand)
1201 return -ENOMEM;
1202
1203 refcount_set(&newsighand->count, 1);
1204 memcpy(newsighand->action, oldsighand->action,
1205 sizeof(newsighand->action));
1206
1207 write_lock_irq(&tasklist_lock);
1208 spin_lock(&oldsighand->siglock);
1209 rcu_assign_pointer(me->sighand, newsighand);
1210 spin_unlock(&oldsighand->siglock);
1211 write_unlock_irq(&tasklist_lock);
1212
1213 __cleanup_sighand(oldsighand);
1214 }
1215 return 0;
1216 }
1217
1218 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1219 {
1220 task_lock(tsk);
1221 strncpy(buf, tsk->comm, buf_size);
1222 task_unlock(tsk);
1223 return buf;
1224 }
1225 EXPORT_SYMBOL_GPL(__get_task_comm);
1226
1227 /*
1228 * These functions flushes out all traces of the currently running executable
1229 * so that a new one can be started
1230 */
1231
1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1233 {
1234 task_lock(tsk);
1235 trace_task_rename(tsk, buf);
1236 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1237 task_unlock(tsk);
1238 perf_event_comm(tsk, exec);
1239 }
1240
1241 /*
1242 * Calling this is the point of no return. None of the failures will be
1243 * seen by userspace since either the process is already taking a fatal
1244 * signal (via de_thread() or coredump), or will have SEGV raised
1245 * (after exec_mmap()) by search_binary_handler (see below).
1246 */
1247 int begin_new_exec(struct linux_binprm * bprm)
1248 {
1249 struct task_struct *me = current;
1250 int retval;
1251
1252 /* Once we are committed compute the creds */
1253 retval = bprm_creds_from_file(bprm);
1254 if (retval)
1255 return retval;
1256
1257 /*
1258 * Ensure all future errors are fatal.
1259 */
1260 bprm->point_of_no_return = true;
1261
1262 /*
1263 * Make this the only thread in the thread group.
1264 */
1265 retval = de_thread(me);
1266 if (retval)
1267 goto out;
1268
1269 /*
1270 * Cancel any io_uring activity across execve
1271 */
1272 io_uring_task_cancel();
1273
1274 /* Ensure the files table is not shared. */
1275 retval = unshare_files();
1276 if (retval)
1277 goto out;
1278
1279 /*
1280 * Must be called _before_ exec_mmap() as bprm->mm is
1281 * not visibile until then. This also enables the update
1282 * to be lockless.
1283 */
1284 set_mm_exe_file(bprm->mm, bprm->file);
1285
1286 /* If the binary is not readable then enforce mm->dumpable=0 */
1287 would_dump(bprm, bprm->file);
1288 if (bprm->have_execfd)
1289 would_dump(bprm, bprm->executable);
1290
1291 /*
1292 * Release all of the old mmap stuff
1293 */
1294 acct_arg_size(bprm, 0);
1295 retval = exec_mmap(bprm->mm);
1296 if (retval)
1297 goto out;
1298
1299 bprm->mm = NULL;
1300
1301 #ifdef CONFIG_POSIX_TIMERS
1302 exit_itimers(me->signal);
1303 flush_itimer_signals();
1304 #endif
1305
1306 /*
1307 * Make the signal table private.
1308 */
1309 retval = unshare_sighand(me);
1310 if (retval)
1311 goto out_unlock;
1312
1313 /*
1314 * Ensure that the uaccess routines can actually operate on userspace
1315 * pointers:
1316 */
1317 force_uaccess_begin();
1318
1319 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1320 PF_NOFREEZE | PF_NO_SETAFFINITY);
1321 flush_thread();
1322 me->personality &= ~bprm->per_clear;
1323
1324 clear_syscall_work_syscall_user_dispatch(me);
1325
1326 /*
1327 * We have to apply CLOEXEC before we change whether the process is
1328 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1329 * trying to access the should-be-closed file descriptors of a process
1330 * undergoing exec(2).
1331 */
1332 do_close_on_exec(me->files);
1333
1334 if (bprm->secureexec) {
1335 /* Make sure parent cannot signal privileged process. */
1336 me->pdeath_signal = 0;
1337
1338 /*
1339 * For secureexec, reset the stack limit to sane default to
1340 * avoid bad behavior from the prior rlimits. This has to
1341 * happen before arch_pick_mmap_layout(), which examines
1342 * RLIMIT_STACK, but after the point of no return to avoid
1343 * needing to clean up the change on failure.
1344 */
1345 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1346 bprm->rlim_stack.rlim_cur = _STK_LIM;
1347 }
1348
1349 me->sas_ss_sp = me->sas_ss_size = 0;
1350
1351 /*
1352 * Figure out dumpability. Note that this checking only of current
1353 * is wrong, but userspace depends on it. This should be testing
1354 * bprm->secureexec instead.
1355 */
1356 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1357 !(uid_eq(current_euid(), current_uid()) &&
1358 gid_eq(current_egid(), current_gid())))
1359 set_dumpable(current->mm, suid_dumpable);
1360 else
1361 set_dumpable(current->mm, SUID_DUMP_USER);
1362
1363 perf_event_exec();
1364 __set_task_comm(me, kbasename(bprm->filename), true);
1365
1366 /* An exec changes our domain. We are no longer part of the thread
1367 group */
1368 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1369 flush_signal_handlers(me, 0);
1370
1371 /*
1372 * install the new credentials for this executable
1373 */
1374 security_bprm_committing_creds(bprm);
1375
1376 commit_creds(bprm->cred);
1377 bprm->cred = NULL;
1378
1379 /*
1380 * Disable monitoring for regular users
1381 * when executing setuid binaries. Must
1382 * wait until new credentials are committed
1383 * by commit_creds() above
1384 */
1385 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1386 perf_event_exit_task(me);
1387 /*
1388 * cred_guard_mutex must be held at least to this point to prevent
1389 * ptrace_attach() from altering our determination of the task's
1390 * credentials; any time after this it may be unlocked.
1391 */
1392 security_bprm_committed_creds(bprm);
1393
1394 /* Pass the opened binary to the interpreter. */
1395 if (bprm->have_execfd) {
1396 retval = get_unused_fd_flags(0);
1397 if (retval < 0)
1398 goto out_unlock;
1399 fd_install(retval, bprm->executable);
1400 bprm->executable = NULL;
1401 bprm->execfd = retval;
1402 }
1403 return 0;
1404
1405 out_unlock:
1406 up_write(&me->signal->exec_update_lock);
1407 out:
1408 return retval;
1409 }
1410 EXPORT_SYMBOL(begin_new_exec);
1411
1412 void would_dump(struct linux_binprm *bprm, struct file *file)
1413 {
1414 struct inode *inode = file_inode(file);
1415 if (inode_permission(inode, MAY_READ) < 0) {
1416 struct user_namespace *old, *user_ns;
1417 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1418
1419 /* Ensure mm->user_ns contains the executable */
1420 user_ns = old = bprm->mm->user_ns;
1421 while ((user_ns != &init_user_ns) &&
1422 !privileged_wrt_inode_uidgid(user_ns, inode))
1423 user_ns = user_ns->parent;
1424
1425 if (old != user_ns) {
1426 bprm->mm->user_ns = get_user_ns(user_ns);
1427 put_user_ns(old);
1428 }
1429 }
1430 }
1431 EXPORT_SYMBOL(would_dump);
1432
1433 void setup_new_exec(struct linux_binprm * bprm)
1434 {
1435 /* Setup things that can depend upon the personality */
1436 struct task_struct *me = current;
1437
1438 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1439
1440 arch_setup_new_exec();
1441
1442 /* Set the new mm task size. We have to do that late because it may
1443 * depend on TIF_32BIT which is only updated in flush_thread() on
1444 * some architectures like powerpc
1445 */
1446 me->mm->task_size = TASK_SIZE;
1447 up_write(&me->signal->exec_update_lock);
1448 mutex_unlock(&me->signal->cred_guard_mutex);
1449 }
1450 EXPORT_SYMBOL(setup_new_exec);
1451
1452 /* Runs immediately before start_thread() takes over. */
1453 void finalize_exec(struct linux_binprm *bprm)
1454 {
1455 /* Store any stack rlimit changes before starting thread. */
1456 task_lock(current->group_leader);
1457 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1458 task_unlock(current->group_leader);
1459 }
1460 EXPORT_SYMBOL(finalize_exec);
1461
1462 /*
1463 * Prepare credentials and lock ->cred_guard_mutex.
1464 * setup_new_exec() commits the new creds and drops the lock.
1465 * Or, if exec fails before, free_bprm() should release ->cred and
1466 * and unlock.
1467 */
1468 static int prepare_bprm_creds(struct linux_binprm *bprm)
1469 {
1470 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1471 return -ERESTARTNOINTR;
1472
1473 bprm->cred = prepare_exec_creds();
1474 if (likely(bprm->cred))
1475 return 0;
1476
1477 mutex_unlock(&current->signal->cred_guard_mutex);
1478 return -ENOMEM;
1479 }
1480
1481 static void free_bprm(struct linux_binprm *bprm)
1482 {
1483 if (bprm->mm) {
1484 acct_arg_size(bprm, 0);
1485 mmput(bprm->mm);
1486 }
1487 free_arg_pages(bprm);
1488 if (bprm->cred) {
1489 mutex_unlock(&current->signal->cred_guard_mutex);
1490 abort_creds(bprm->cred);
1491 }
1492 if (bprm->file) {
1493 allow_write_access(bprm->file);
1494 fput(bprm->file);
1495 }
1496 if (bprm->executable)
1497 fput(bprm->executable);
1498 /* If a binfmt changed the interp, free it. */
1499 if (bprm->interp != bprm->filename)
1500 kfree(bprm->interp);
1501 kfree(bprm->fdpath);
1502 kfree(bprm);
1503 }
1504
1505 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1506 {
1507 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1508 int retval = -ENOMEM;
1509 if (!bprm)
1510 goto out;
1511
1512 if (fd == AT_FDCWD || filename->name[0] == '/') {
1513 bprm->filename = filename->name;
1514 } else {
1515 if (filename->name[0] == '\0')
1516 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1517 else
1518 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1519 fd, filename->name);
1520 if (!bprm->fdpath)
1521 goto out_free;
1522
1523 bprm->filename = bprm->fdpath;
1524 }
1525 bprm->interp = bprm->filename;
1526
1527 retval = bprm_mm_init(bprm);
1528 if (retval)
1529 goto out_free;
1530 return bprm;
1531
1532 out_free:
1533 free_bprm(bprm);
1534 out:
1535 return ERR_PTR(retval);
1536 }
1537
1538 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1539 {
1540 /* If a binfmt changed the interp, free it first. */
1541 if (bprm->interp != bprm->filename)
1542 kfree(bprm->interp);
1543 bprm->interp = kstrdup(interp, GFP_KERNEL);
1544 if (!bprm->interp)
1545 return -ENOMEM;
1546 return 0;
1547 }
1548 EXPORT_SYMBOL(bprm_change_interp);
1549
1550 /*
1551 * determine how safe it is to execute the proposed program
1552 * - the caller must hold ->cred_guard_mutex to protect against
1553 * PTRACE_ATTACH or seccomp thread-sync
1554 */
1555 static void check_unsafe_exec(struct linux_binprm *bprm)
1556 {
1557 struct task_struct *p = current, *t;
1558 unsigned n_fs;
1559
1560 if (p->ptrace)
1561 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1562
1563 /*
1564 * This isn't strictly necessary, but it makes it harder for LSMs to
1565 * mess up.
1566 */
1567 if (task_no_new_privs(current))
1568 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1569
1570 t = p;
1571 n_fs = 1;
1572 spin_lock(&p->fs->lock);
1573 rcu_read_lock();
1574 while_each_thread(p, t) {
1575 if (t->fs == p->fs)
1576 n_fs++;
1577 }
1578 rcu_read_unlock();
1579
1580 if (p->fs->users > n_fs)
1581 bprm->unsafe |= LSM_UNSAFE_SHARE;
1582 else
1583 p->fs->in_exec = 1;
1584 spin_unlock(&p->fs->lock);
1585 }
1586
1587 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1588 {
1589 /* Handle suid and sgid on files */
1590 struct inode *inode;
1591 unsigned int mode;
1592 kuid_t uid;
1593 kgid_t gid;
1594
1595 if (path_nosuid(&file->f_path))
1596 return;
1597
1598 if (task_no_new_privs(current))
1599 return;
1600
1601 inode = file->f_path.dentry->d_inode;
1602 mode = READ_ONCE(inode->i_mode);
1603 if (!(mode & (S_ISUID|S_ISGID)))
1604 return;
1605
1606 /* Be careful if suid/sgid is set */
1607 inode_lock(inode);
1608
1609 /* reload atomically mode/uid/gid now that lock held */
1610 mode = inode->i_mode;
1611 uid = inode->i_uid;
1612 gid = inode->i_gid;
1613 inode_unlock(inode);
1614
1615 /* We ignore suid/sgid if there are no mappings for them in the ns */
1616 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1617 !kgid_has_mapping(bprm->cred->user_ns, gid))
1618 return;
1619
1620 if (mode & S_ISUID) {
1621 bprm->per_clear |= PER_CLEAR_ON_SETID;
1622 bprm->cred->euid = uid;
1623 }
1624
1625 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1626 bprm->per_clear |= PER_CLEAR_ON_SETID;
1627 bprm->cred->egid = gid;
1628 }
1629 }
1630
1631 /*
1632 * Compute brpm->cred based upon the final binary.
1633 */
1634 static int bprm_creds_from_file(struct linux_binprm *bprm)
1635 {
1636 /* Compute creds based on which file? */
1637 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1638
1639 bprm_fill_uid(bprm, file);
1640 return security_bprm_creds_from_file(bprm, file);
1641 }
1642
1643 /*
1644 * Fill the binprm structure from the inode.
1645 * Read the first BINPRM_BUF_SIZE bytes
1646 *
1647 * This may be called multiple times for binary chains (scripts for example).
1648 */
1649 static int prepare_binprm(struct linux_binprm *bprm)
1650 {
1651 loff_t pos = 0;
1652
1653 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1654 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1655 }
1656
1657 /*
1658 * Arguments are '\0' separated strings found at the location bprm->p
1659 * points to; chop off the first by relocating brpm->p to right after
1660 * the first '\0' encountered.
1661 */
1662 int remove_arg_zero(struct linux_binprm *bprm)
1663 {
1664 int ret = 0;
1665 unsigned long offset;
1666 char *kaddr;
1667 struct page *page;
1668
1669 if (!bprm->argc)
1670 return 0;
1671
1672 do {
1673 offset = bprm->p & ~PAGE_MASK;
1674 page = get_arg_page(bprm, bprm->p, 0);
1675 if (!page) {
1676 ret = -EFAULT;
1677 goto out;
1678 }
1679 kaddr = kmap_atomic(page);
1680
1681 for (; offset < PAGE_SIZE && kaddr[offset];
1682 offset++, bprm->p++)
1683 ;
1684
1685 kunmap_atomic(kaddr);
1686 put_arg_page(page);
1687 } while (offset == PAGE_SIZE);
1688
1689 bprm->p++;
1690 bprm->argc--;
1691 ret = 0;
1692
1693 out:
1694 return ret;
1695 }
1696 EXPORT_SYMBOL(remove_arg_zero);
1697
1698 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1699 /*
1700 * cycle the list of binary formats handler, until one recognizes the image
1701 */
1702 static int search_binary_handler(struct linux_binprm *bprm)
1703 {
1704 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1705 struct linux_binfmt *fmt;
1706 int retval;
1707
1708 retval = prepare_binprm(bprm);
1709 if (retval < 0)
1710 return retval;
1711
1712 retval = security_bprm_check(bprm);
1713 if (retval)
1714 return retval;
1715
1716 retval = -ENOENT;
1717 retry:
1718 read_lock(&binfmt_lock);
1719 list_for_each_entry(fmt, &formats, lh) {
1720 if (!try_module_get(fmt->module))
1721 continue;
1722 read_unlock(&binfmt_lock);
1723
1724 retval = fmt->load_binary(bprm);
1725
1726 read_lock(&binfmt_lock);
1727 put_binfmt(fmt);
1728 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1729 read_unlock(&binfmt_lock);
1730 return retval;
1731 }
1732 }
1733 read_unlock(&binfmt_lock);
1734
1735 if (need_retry) {
1736 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1737 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1738 return retval;
1739 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1740 return retval;
1741 need_retry = false;
1742 goto retry;
1743 }
1744
1745 return retval;
1746 }
1747
1748 static int exec_binprm(struct linux_binprm *bprm)
1749 {
1750 pid_t old_pid, old_vpid;
1751 int ret, depth;
1752
1753 /* Need to fetch pid before load_binary changes it */
1754 old_pid = current->pid;
1755 rcu_read_lock();
1756 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1757 rcu_read_unlock();
1758
1759 /* This allows 4 levels of binfmt rewrites before failing hard. */
1760 for (depth = 0;; depth++) {
1761 struct file *exec;
1762 if (depth > 5)
1763 return -ELOOP;
1764
1765 ret = search_binary_handler(bprm);
1766 if (ret < 0)
1767 return ret;
1768 if (!bprm->interpreter)
1769 break;
1770
1771 exec = bprm->file;
1772 bprm->file = bprm->interpreter;
1773 bprm->interpreter = NULL;
1774
1775 allow_write_access(exec);
1776 if (unlikely(bprm->have_execfd)) {
1777 if (bprm->executable) {
1778 fput(exec);
1779 return -ENOEXEC;
1780 }
1781 bprm->executable = exec;
1782 } else
1783 fput(exec);
1784 }
1785
1786 audit_bprm(bprm);
1787 trace_sched_process_exec(current, old_pid, bprm);
1788 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1789 proc_exec_connector(current);
1790 return 0;
1791 }
1792
1793 /*
1794 * sys_execve() executes a new program.
1795 */
1796 static int bprm_execve(struct linux_binprm *bprm,
1797 int fd, struct filename *filename, int flags)
1798 {
1799 struct file *file;
1800 int retval;
1801
1802 retval = prepare_bprm_creds(bprm);
1803 if (retval)
1804 return retval;
1805
1806 check_unsafe_exec(bprm);
1807 current->in_execve = 1;
1808
1809 file = do_open_execat(fd, filename, flags);
1810 retval = PTR_ERR(file);
1811 if (IS_ERR(file))
1812 goto out_unmark;
1813
1814 sched_exec();
1815
1816 bprm->file = file;
1817 /*
1818 * Record that a name derived from an O_CLOEXEC fd will be
1819 * inaccessible after exec. This allows the code in exec to
1820 * choose to fail when the executable is not mmaped into the
1821 * interpreter and an open file descriptor is not passed to
1822 * the interpreter. This makes for a better user experience
1823 * than having the interpreter start and then immediately fail
1824 * when it finds the executable is inaccessible.
1825 */
1826 if (bprm->fdpath && get_close_on_exec(fd))
1827 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1828
1829 /* Set the unchanging part of bprm->cred */
1830 retval = security_bprm_creds_for_exec(bprm);
1831 if (retval)
1832 goto out;
1833
1834 retval = exec_binprm(bprm);
1835 if (retval < 0)
1836 goto out;
1837
1838 /* execve succeeded */
1839 current->fs->in_exec = 0;
1840 current->in_execve = 0;
1841 rseq_execve(current);
1842 acct_update_integrals(current);
1843 task_numa_free(current, false);
1844 return retval;
1845
1846 out:
1847 /*
1848 * If past the point of no return ensure the the code never
1849 * returns to the userspace process. Use an existing fatal
1850 * signal if present otherwise terminate the process with
1851 * SIGSEGV.
1852 */
1853 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1854 force_sigsegv(SIGSEGV);
1855
1856 out_unmark:
1857 current->fs->in_exec = 0;
1858 current->in_execve = 0;
1859
1860 return retval;
1861 }
1862
1863 static int do_execveat_common(int fd, struct filename *filename,
1864 struct user_arg_ptr argv,
1865 struct user_arg_ptr envp,
1866 int flags)
1867 {
1868 struct linux_binprm *bprm;
1869 int retval;
1870
1871 if (IS_ERR(filename))
1872 return PTR_ERR(filename);
1873
1874 /*
1875 * We move the actual failure in case of RLIMIT_NPROC excess from
1876 * set*uid() to execve() because too many poorly written programs
1877 * don't check setuid() return code. Here we additionally recheck
1878 * whether NPROC limit is still exceeded.
1879 */
1880 if ((current->flags & PF_NPROC_EXCEEDED) &&
1881 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1882 retval = -EAGAIN;
1883 goto out_ret;
1884 }
1885
1886 /* We're below the limit (still or again), so we don't want to make
1887 * further execve() calls fail. */
1888 current->flags &= ~PF_NPROC_EXCEEDED;
1889
1890 bprm = alloc_bprm(fd, filename);
1891 if (IS_ERR(bprm)) {
1892 retval = PTR_ERR(bprm);
1893 goto out_ret;
1894 }
1895
1896 retval = count(argv, MAX_ARG_STRINGS);
1897 if (retval < 0)
1898 goto out_free;
1899 bprm->argc = retval;
1900
1901 retval = count(envp, MAX_ARG_STRINGS);
1902 if (retval < 0)
1903 goto out_free;
1904 bprm->envc = retval;
1905
1906 retval = bprm_stack_limits(bprm);
1907 if (retval < 0)
1908 goto out_free;
1909
1910 retval = copy_string_kernel(bprm->filename, bprm);
1911 if (retval < 0)
1912 goto out_free;
1913 bprm->exec = bprm->p;
1914
1915 retval = copy_strings(bprm->envc, envp, bprm);
1916 if (retval < 0)
1917 goto out_free;
1918
1919 retval = copy_strings(bprm->argc, argv, bprm);
1920 if (retval < 0)
1921 goto out_free;
1922
1923 retval = bprm_execve(bprm, fd, filename, flags);
1924 out_free:
1925 free_bprm(bprm);
1926
1927 out_ret:
1928 putname(filename);
1929 return retval;
1930 }
1931
1932 int kernel_execve(const char *kernel_filename,
1933 const char *const *argv, const char *const *envp)
1934 {
1935 struct filename *filename;
1936 struct linux_binprm *bprm;
1937 int fd = AT_FDCWD;
1938 int retval;
1939
1940 filename = getname_kernel(kernel_filename);
1941 if (IS_ERR(filename))
1942 return PTR_ERR(filename);
1943
1944 bprm = alloc_bprm(fd, filename);
1945 if (IS_ERR(bprm)) {
1946 retval = PTR_ERR(bprm);
1947 goto out_ret;
1948 }
1949
1950 retval = count_strings_kernel(argv);
1951 if (retval < 0)
1952 goto out_free;
1953 bprm->argc = retval;
1954
1955 retval = count_strings_kernel(envp);
1956 if (retval < 0)
1957 goto out_free;
1958 bprm->envc = retval;
1959
1960 retval = bprm_stack_limits(bprm);
1961 if (retval < 0)
1962 goto out_free;
1963
1964 retval = copy_string_kernel(bprm->filename, bprm);
1965 if (retval < 0)
1966 goto out_free;
1967 bprm->exec = bprm->p;
1968
1969 retval = copy_strings_kernel(bprm->envc, envp, bprm);
1970 if (retval < 0)
1971 goto out_free;
1972
1973 retval = copy_strings_kernel(bprm->argc, argv, bprm);
1974 if (retval < 0)
1975 goto out_free;
1976
1977 retval = bprm_execve(bprm, fd, filename, 0);
1978 out_free:
1979 free_bprm(bprm);
1980 out_ret:
1981 putname(filename);
1982 return retval;
1983 }
1984
1985 static int do_execve(struct filename *filename,
1986 const char __user *const __user *__argv,
1987 const char __user *const __user *__envp)
1988 {
1989 struct user_arg_ptr argv = { .ptr.native = __argv };
1990 struct user_arg_ptr envp = { .ptr.native = __envp };
1991 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1992 }
1993
1994 static int do_execveat(int fd, struct filename *filename,
1995 const char __user *const __user *__argv,
1996 const char __user *const __user *__envp,
1997 int flags)
1998 {
1999 struct user_arg_ptr argv = { .ptr.native = __argv };
2000 struct user_arg_ptr envp = { .ptr.native = __envp };
2001
2002 return do_execveat_common(fd, filename, argv, envp, flags);
2003 }
2004
2005 #ifdef CONFIG_COMPAT
2006 static int compat_do_execve(struct filename *filename,
2007 const compat_uptr_t __user *__argv,
2008 const compat_uptr_t __user *__envp)
2009 {
2010 struct user_arg_ptr argv = {
2011 .is_compat = true,
2012 .ptr.compat = __argv,
2013 };
2014 struct user_arg_ptr envp = {
2015 .is_compat = true,
2016 .ptr.compat = __envp,
2017 };
2018 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2019 }
2020
2021 static int compat_do_execveat(int fd, struct filename *filename,
2022 const compat_uptr_t __user *__argv,
2023 const compat_uptr_t __user *__envp,
2024 int flags)
2025 {
2026 struct user_arg_ptr argv = {
2027 .is_compat = true,
2028 .ptr.compat = __argv,
2029 };
2030 struct user_arg_ptr envp = {
2031 .is_compat = true,
2032 .ptr.compat = __envp,
2033 };
2034 return do_execveat_common(fd, filename, argv, envp, flags);
2035 }
2036 #endif
2037
2038 void set_binfmt(struct linux_binfmt *new)
2039 {
2040 struct mm_struct *mm = current->mm;
2041
2042 if (mm->binfmt)
2043 module_put(mm->binfmt->module);
2044
2045 mm->binfmt = new;
2046 if (new)
2047 __module_get(new->module);
2048 }
2049 EXPORT_SYMBOL(set_binfmt);
2050
2051 /*
2052 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2053 */
2054 void set_dumpable(struct mm_struct *mm, int value)
2055 {
2056 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2057 return;
2058
2059 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2060 }
2061
2062 SYSCALL_DEFINE3(execve,
2063 const char __user *, filename,
2064 const char __user *const __user *, argv,
2065 const char __user *const __user *, envp)
2066 {
2067 return do_execve(getname(filename), argv, envp);
2068 }
2069
2070 SYSCALL_DEFINE5(execveat,
2071 int, fd, const char __user *, filename,
2072 const char __user *const __user *, argv,
2073 const char __user *const __user *, envp,
2074 int, flags)
2075 {
2076 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2077
2078 return do_execveat(fd,
2079 getname_flags(filename, lookup_flags, NULL),
2080 argv, envp, flags);
2081 }
2082
2083 #ifdef CONFIG_COMPAT
2084 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2085 const compat_uptr_t __user *, argv,
2086 const compat_uptr_t __user *, envp)
2087 {
2088 return compat_do_execve(getname(filename), argv, envp);
2089 }
2090
2091 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2092 const char __user *, filename,
2093 const compat_uptr_t __user *, argv,
2094 const compat_uptr_t __user *, envp,
2095 int, flags)
2096 {
2097 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2098
2099 return compat_do_execveat(fd,
2100 getname_flags(filename, lookup_flags, NULL),
2101 argv, envp, flags);
2102 }
2103 #endif