]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/exec.c
fs/minix: fix block limit check for V1 filesystems
[mirror_ubuntu-hirsute-kernel.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 static int bprm_creds_from_file(struct linux_binprm *bprm);
76
77 int suid_dumpable = 0;
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 BUG_ON(!fmt);
85 if (WARN_ON(!fmt->load_binary))
86 return;
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117 * Note that a shared library must be both readable and executable due to
118 * security reasons.
119 *
120 * Also note that we take the address to load from from the file itself.
121 */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 struct linux_binfmt *fmt;
125 struct file *file;
126 struct filename *tmp = getname(library);
127 int error = PTR_ERR(tmp);
128 static const struct open_flags uselib_flags = {
129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 .acc_mode = MAY_READ | MAY_EXEC,
131 .intent = LOOKUP_OPEN,
132 .lookup_flags = LOOKUP_FOLLOW,
133 };
134
135 if (IS_ERR(tmp))
136 goto out;
137
138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 putname(tmp);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 error = -EINVAL;
145 if (!S_ISREG(file_inode(file)->i_mode))
146 goto exit;
147
148 error = -EACCES;
149 if (path_noexec(&file->f_path))
150 goto exit;
151
152 fsnotify_open(file);
153
154 error = -ENOEXEC;
155
156 read_lock(&binfmt_lock);
157 list_for_each_entry(fmt, &formats, lh) {
158 if (!fmt->load_shlib)
159 continue;
160 if (!try_module_get(fmt->module))
161 continue;
162 read_unlock(&binfmt_lock);
163 error = fmt->load_shlib(file);
164 read_lock(&binfmt_lock);
165 put_binfmt(fmt);
166 if (error != -ENOEXEC)
167 break;
168 }
169 read_unlock(&binfmt_lock);
170 exit:
171 fput(file);
172 out:
173 return error;
174 }
175 #endif /* #ifdef CONFIG_USELIB */
176
177 #ifdef CONFIG_MMU
178 /*
179 * The nascent bprm->mm is not visible until exec_mmap() but it can
180 * use a lot of memory, account these pages in current->mm temporary
181 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
182 * change the counter back via acct_arg_size(0).
183 */
184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
185 {
186 struct mm_struct *mm = current->mm;
187 long diff = (long)(pages - bprm->vma_pages);
188
189 if (!mm || !diff)
190 return;
191
192 bprm->vma_pages = pages;
193 add_mm_counter(mm, MM_ANONPAGES, diff);
194 }
195
196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
197 int write)
198 {
199 struct page *page;
200 int ret;
201 unsigned int gup_flags = FOLL_FORCE;
202
203 #ifdef CONFIG_STACK_GROWSUP
204 if (write) {
205 ret = expand_downwards(bprm->vma, pos);
206 if (ret < 0)
207 return NULL;
208 }
209 #endif
210
211 if (write)
212 gup_flags |= FOLL_WRITE;
213
214 /*
215 * We are doing an exec(). 'current' is the process
216 * doing the exec and bprm->mm is the new process's mm.
217 */
218 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
219 &page, NULL, NULL);
220 if (ret <= 0)
221 return NULL;
222
223 if (write)
224 acct_arg_size(bprm, vma_pages(bprm->vma));
225
226 return page;
227 }
228
229 static void put_arg_page(struct page *page)
230 {
231 put_page(page);
232 }
233
234 static void free_arg_pages(struct linux_binprm *bprm)
235 {
236 }
237
238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
239 struct page *page)
240 {
241 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
242 }
243
244 static int __bprm_mm_init(struct linux_binprm *bprm)
245 {
246 int err;
247 struct vm_area_struct *vma = NULL;
248 struct mm_struct *mm = bprm->mm;
249
250 bprm->vma = vma = vm_area_alloc(mm);
251 if (!vma)
252 return -ENOMEM;
253 vma_set_anonymous(vma);
254
255 if (mmap_write_lock_killable(mm)) {
256 err = -EINTR;
257 goto err_free;
258 }
259
260 /*
261 * Place the stack at the largest stack address the architecture
262 * supports. Later, we'll move this to an appropriate place. We don't
263 * use STACK_TOP because that can depend on attributes which aren't
264 * configured yet.
265 */
266 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267 vma->vm_end = STACK_TOP_MAX;
268 vma->vm_start = vma->vm_end - PAGE_SIZE;
269 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271
272 err = insert_vm_struct(mm, vma);
273 if (err)
274 goto err;
275
276 mm->stack_vm = mm->total_vm = 1;
277 mmap_write_unlock(mm);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280 err:
281 mmap_write_unlock(mm);
282 err_free:
283 bprm->vma = NULL;
284 vm_area_free(vma);
285 return err;
286 }
287
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290 return len <= MAX_ARG_STRLEN;
291 }
292
293 #else
294
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 int write)
301 {
302 struct page *page;
303
304 page = bprm->page[pos / PAGE_SIZE];
305 if (!page && write) {
306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 if (!page)
308 return NULL;
309 bprm->page[pos / PAGE_SIZE] = page;
310 }
311
312 return page;
313 }
314
315 static void put_arg_page(struct page *page)
316 {
317 }
318
319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321 if (bprm->page[i]) {
322 __free_page(bprm->page[i]);
323 bprm->page[i] = NULL;
324 }
325 }
326
327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329 int i;
330
331 for (i = 0; i < MAX_ARG_PAGES; i++)
332 free_arg_page(bprm, i);
333 }
334
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 struct page *page)
337 {
338 }
339
340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 return 0;
344 }
345
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348 return len <= bprm->p;
349 }
350
351 #endif /* CONFIG_MMU */
352
353 /*
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
358 */
359 static int bprm_mm_init(struct linux_binprm *bprm)
360 {
361 int err;
362 struct mm_struct *mm = NULL;
363
364 bprm->mm = mm = mm_alloc();
365 err = -ENOMEM;
366 if (!mm)
367 goto err;
368
369 /* Save current stack limit for all calculations made during exec. */
370 task_lock(current->group_leader);
371 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 task_unlock(current->group_leader);
373
374 err = __bprm_mm_init(bprm);
375 if (err)
376 goto err;
377
378 return 0;
379
380 err:
381 if (mm) {
382 bprm->mm = NULL;
383 mmdrop(mm);
384 }
385
386 return err;
387 }
388
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 bool is_compat;
392 #endif
393 union {
394 const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 const compat_uptr_t __user *compat;
397 #endif
398 } ptr;
399 };
400
401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403 const char __user *native;
404
405 #ifdef CONFIG_COMPAT
406 if (unlikely(argv.is_compat)) {
407 compat_uptr_t compat;
408
409 if (get_user(compat, argv.ptr.compat + nr))
410 return ERR_PTR(-EFAULT);
411
412 return compat_ptr(compat);
413 }
414 #endif
415
416 if (get_user(native, argv.ptr.native + nr))
417 return ERR_PTR(-EFAULT);
418
419 return native;
420 }
421
422 /*
423 * count() counts the number of strings in array ARGV.
424 */
425 static int count(struct user_arg_ptr argv, int max)
426 {
427 int i = 0;
428
429 if (argv.ptr.native != NULL) {
430 for (;;) {
431 const char __user *p = get_user_arg_ptr(argv, i);
432
433 if (!p)
434 break;
435
436 if (IS_ERR(p))
437 return -EFAULT;
438
439 if (i >= max)
440 return -E2BIG;
441 ++i;
442
443 if (fatal_signal_pending(current))
444 return -ERESTARTNOHAND;
445 cond_resched();
446 }
447 }
448 return i;
449 }
450
451 static int count_strings_kernel(const char *const *argv)
452 {
453 int i;
454
455 if (!argv)
456 return 0;
457
458 for (i = 0; argv[i]; ++i) {
459 if (i >= MAX_ARG_STRINGS)
460 return -E2BIG;
461 if (fatal_signal_pending(current))
462 return -ERESTARTNOHAND;
463 cond_resched();
464 }
465 return i;
466 }
467
468 static int bprm_stack_limits(struct linux_binprm *bprm)
469 {
470 unsigned long limit, ptr_size;
471
472 /*
473 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
474 * (whichever is smaller) for the argv+env strings.
475 * This ensures that:
476 * - the remaining binfmt code will not run out of stack space,
477 * - the program will have a reasonable amount of stack left
478 * to work from.
479 */
480 limit = _STK_LIM / 4 * 3;
481 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
482 /*
483 * We've historically supported up to 32 pages (ARG_MAX)
484 * of argument strings even with small stacks
485 */
486 limit = max_t(unsigned long, limit, ARG_MAX);
487 /*
488 * We must account for the size of all the argv and envp pointers to
489 * the argv and envp strings, since they will also take up space in
490 * the stack. They aren't stored until much later when we can't
491 * signal to the parent that the child has run out of stack space.
492 * Instead, calculate it here so it's possible to fail gracefully.
493 */
494 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
495 if (limit <= ptr_size)
496 return -E2BIG;
497 limit -= ptr_size;
498
499 bprm->argmin = bprm->p - limit;
500 return 0;
501 }
502
503 /*
504 * 'copy_strings()' copies argument/environment strings from the old
505 * processes's memory to the new process's stack. The call to get_user_pages()
506 * ensures the destination page is created and not swapped out.
507 */
508 static int copy_strings(int argc, struct user_arg_ptr argv,
509 struct linux_binprm *bprm)
510 {
511 struct page *kmapped_page = NULL;
512 char *kaddr = NULL;
513 unsigned long kpos = 0;
514 int ret;
515
516 while (argc-- > 0) {
517 const char __user *str;
518 int len;
519 unsigned long pos;
520
521 ret = -EFAULT;
522 str = get_user_arg_ptr(argv, argc);
523 if (IS_ERR(str))
524 goto out;
525
526 len = strnlen_user(str, MAX_ARG_STRLEN);
527 if (!len)
528 goto out;
529
530 ret = -E2BIG;
531 if (!valid_arg_len(bprm, len))
532 goto out;
533
534 /* We're going to work our way backwords. */
535 pos = bprm->p;
536 str += len;
537 bprm->p -= len;
538 #ifdef CONFIG_MMU
539 if (bprm->p < bprm->argmin)
540 goto out;
541 #endif
542
543 while (len > 0) {
544 int offset, bytes_to_copy;
545
546 if (fatal_signal_pending(current)) {
547 ret = -ERESTARTNOHAND;
548 goto out;
549 }
550 cond_resched();
551
552 offset = pos % PAGE_SIZE;
553 if (offset == 0)
554 offset = PAGE_SIZE;
555
556 bytes_to_copy = offset;
557 if (bytes_to_copy > len)
558 bytes_to_copy = len;
559
560 offset -= bytes_to_copy;
561 pos -= bytes_to_copy;
562 str -= bytes_to_copy;
563 len -= bytes_to_copy;
564
565 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
566 struct page *page;
567
568 page = get_arg_page(bprm, pos, 1);
569 if (!page) {
570 ret = -E2BIG;
571 goto out;
572 }
573
574 if (kmapped_page) {
575 flush_kernel_dcache_page(kmapped_page);
576 kunmap(kmapped_page);
577 put_arg_page(kmapped_page);
578 }
579 kmapped_page = page;
580 kaddr = kmap(kmapped_page);
581 kpos = pos & PAGE_MASK;
582 flush_arg_page(bprm, kpos, kmapped_page);
583 }
584 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
585 ret = -EFAULT;
586 goto out;
587 }
588 }
589 }
590 ret = 0;
591 out:
592 if (kmapped_page) {
593 flush_kernel_dcache_page(kmapped_page);
594 kunmap(kmapped_page);
595 put_arg_page(kmapped_page);
596 }
597 return ret;
598 }
599
600 /*
601 * Copy and argument/environment string from the kernel to the processes stack.
602 */
603 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
604 {
605 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
606 unsigned long pos = bprm->p;
607
608 if (len == 0)
609 return -EFAULT;
610 if (!valid_arg_len(bprm, len))
611 return -E2BIG;
612
613 /* We're going to work our way backwards. */
614 arg += len;
615 bprm->p -= len;
616 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
617 return -E2BIG;
618
619 while (len > 0) {
620 unsigned int bytes_to_copy = min_t(unsigned int, len,
621 min_not_zero(offset_in_page(pos), PAGE_SIZE));
622 struct page *page;
623 char *kaddr;
624
625 pos -= bytes_to_copy;
626 arg -= bytes_to_copy;
627 len -= bytes_to_copy;
628
629 page = get_arg_page(bprm, pos, 1);
630 if (!page)
631 return -E2BIG;
632 kaddr = kmap_atomic(page);
633 flush_arg_page(bprm, pos & PAGE_MASK, page);
634 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
635 flush_kernel_dcache_page(page);
636 kunmap_atomic(kaddr);
637 put_arg_page(page);
638 }
639
640 return 0;
641 }
642 EXPORT_SYMBOL(copy_string_kernel);
643
644 static int copy_strings_kernel(int argc, const char *const *argv,
645 struct linux_binprm *bprm)
646 {
647 while (argc-- > 0) {
648 int ret = copy_string_kernel(argv[argc], bprm);
649 if (ret < 0)
650 return ret;
651 if (fatal_signal_pending(current))
652 return -ERESTARTNOHAND;
653 cond_resched();
654 }
655 return 0;
656 }
657
658 #ifdef CONFIG_MMU
659
660 /*
661 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
662 * the binfmt code determines where the new stack should reside, we shift it to
663 * its final location. The process proceeds as follows:
664 *
665 * 1) Use shift to calculate the new vma endpoints.
666 * 2) Extend vma to cover both the old and new ranges. This ensures the
667 * arguments passed to subsequent functions are consistent.
668 * 3) Move vma's page tables to the new range.
669 * 4) Free up any cleared pgd range.
670 * 5) Shrink the vma to cover only the new range.
671 */
672 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
673 {
674 struct mm_struct *mm = vma->vm_mm;
675 unsigned long old_start = vma->vm_start;
676 unsigned long old_end = vma->vm_end;
677 unsigned long length = old_end - old_start;
678 unsigned long new_start = old_start - shift;
679 unsigned long new_end = old_end - shift;
680 struct mmu_gather tlb;
681
682 BUG_ON(new_start > new_end);
683
684 /*
685 * ensure there are no vmas between where we want to go
686 * and where we are
687 */
688 if (vma != find_vma(mm, new_start))
689 return -EFAULT;
690
691 /*
692 * cover the whole range: [new_start, old_end)
693 */
694 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
695 return -ENOMEM;
696
697 /*
698 * move the page tables downwards, on failure we rely on
699 * process cleanup to remove whatever mess we made.
700 */
701 if (length != move_page_tables(vma, old_start,
702 vma, new_start, length, false))
703 return -ENOMEM;
704
705 lru_add_drain();
706 tlb_gather_mmu(&tlb, mm, old_start, old_end);
707 if (new_end > old_start) {
708 /*
709 * when the old and new regions overlap clear from new_end.
710 */
711 free_pgd_range(&tlb, new_end, old_end, new_end,
712 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
713 } else {
714 /*
715 * otherwise, clean from old_start; this is done to not touch
716 * the address space in [new_end, old_start) some architectures
717 * have constraints on va-space that make this illegal (IA64) -
718 * for the others its just a little faster.
719 */
720 free_pgd_range(&tlb, old_start, old_end, new_end,
721 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
722 }
723 tlb_finish_mmu(&tlb, old_start, old_end);
724
725 /*
726 * Shrink the vma to just the new range. Always succeeds.
727 */
728 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
729
730 return 0;
731 }
732
733 /*
734 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
735 * the stack is optionally relocated, and some extra space is added.
736 */
737 int setup_arg_pages(struct linux_binprm *bprm,
738 unsigned long stack_top,
739 int executable_stack)
740 {
741 unsigned long ret;
742 unsigned long stack_shift;
743 struct mm_struct *mm = current->mm;
744 struct vm_area_struct *vma = bprm->vma;
745 struct vm_area_struct *prev = NULL;
746 unsigned long vm_flags;
747 unsigned long stack_base;
748 unsigned long stack_size;
749 unsigned long stack_expand;
750 unsigned long rlim_stack;
751
752 #ifdef CONFIG_STACK_GROWSUP
753 /* Limit stack size */
754 stack_base = bprm->rlim_stack.rlim_max;
755 if (stack_base > STACK_SIZE_MAX)
756 stack_base = STACK_SIZE_MAX;
757
758 /* Add space for stack randomization. */
759 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
760
761 /* Make sure we didn't let the argument array grow too large. */
762 if (vma->vm_end - vma->vm_start > stack_base)
763 return -ENOMEM;
764
765 stack_base = PAGE_ALIGN(stack_top - stack_base);
766
767 stack_shift = vma->vm_start - stack_base;
768 mm->arg_start = bprm->p - stack_shift;
769 bprm->p = vma->vm_end - stack_shift;
770 #else
771 stack_top = arch_align_stack(stack_top);
772 stack_top = PAGE_ALIGN(stack_top);
773
774 if (unlikely(stack_top < mmap_min_addr) ||
775 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
776 return -ENOMEM;
777
778 stack_shift = vma->vm_end - stack_top;
779
780 bprm->p -= stack_shift;
781 mm->arg_start = bprm->p;
782 #endif
783
784 if (bprm->loader)
785 bprm->loader -= stack_shift;
786 bprm->exec -= stack_shift;
787
788 if (mmap_write_lock_killable(mm))
789 return -EINTR;
790
791 vm_flags = VM_STACK_FLAGS;
792
793 /*
794 * Adjust stack execute permissions; explicitly enable for
795 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
796 * (arch default) otherwise.
797 */
798 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
799 vm_flags |= VM_EXEC;
800 else if (executable_stack == EXSTACK_DISABLE_X)
801 vm_flags &= ~VM_EXEC;
802 vm_flags |= mm->def_flags;
803 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
804
805 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
806 vm_flags);
807 if (ret)
808 goto out_unlock;
809 BUG_ON(prev != vma);
810
811 if (unlikely(vm_flags & VM_EXEC)) {
812 pr_warn_once("process '%pD4' started with executable stack\n",
813 bprm->file);
814 }
815
816 /* Move stack pages down in memory. */
817 if (stack_shift) {
818 ret = shift_arg_pages(vma, stack_shift);
819 if (ret)
820 goto out_unlock;
821 }
822
823 /* mprotect_fixup is overkill to remove the temporary stack flags */
824 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
825
826 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
827 stack_size = vma->vm_end - vma->vm_start;
828 /*
829 * Align this down to a page boundary as expand_stack
830 * will align it up.
831 */
832 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
833 #ifdef CONFIG_STACK_GROWSUP
834 if (stack_size + stack_expand > rlim_stack)
835 stack_base = vma->vm_start + rlim_stack;
836 else
837 stack_base = vma->vm_end + stack_expand;
838 #else
839 if (stack_size + stack_expand > rlim_stack)
840 stack_base = vma->vm_end - rlim_stack;
841 else
842 stack_base = vma->vm_start - stack_expand;
843 #endif
844 current->mm->start_stack = bprm->p;
845 ret = expand_stack(vma, stack_base);
846 if (ret)
847 ret = -EFAULT;
848
849 out_unlock:
850 mmap_write_unlock(mm);
851 return ret;
852 }
853 EXPORT_SYMBOL(setup_arg_pages);
854
855 #else
856
857 /*
858 * Transfer the program arguments and environment from the holding pages
859 * onto the stack. The provided stack pointer is adjusted accordingly.
860 */
861 int transfer_args_to_stack(struct linux_binprm *bprm,
862 unsigned long *sp_location)
863 {
864 unsigned long index, stop, sp;
865 int ret = 0;
866
867 stop = bprm->p >> PAGE_SHIFT;
868 sp = *sp_location;
869
870 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
871 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
872 char *src = kmap(bprm->page[index]) + offset;
873 sp -= PAGE_SIZE - offset;
874 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
875 ret = -EFAULT;
876 kunmap(bprm->page[index]);
877 if (ret)
878 goto out;
879 }
880
881 *sp_location = sp;
882
883 out:
884 return ret;
885 }
886 EXPORT_SYMBOL(transfer_args_to_stack);
887
888 #endif /* CONFIG_MMU */
889
890 static struct file *do_open_execat(int fd, struct filename *name, int flags)
891 {
892 struct file *file;
893 int err;
894 struct open_flags open_exec_flags = {
895 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
896 .acc_mode = MAY_EXEC,
897 .intent = LOOKUP_OPEN,
898 .lookup_flags = LOOKUP_FOLLOW,
899 };
900
901 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
902 return ERR_PTR(-EINVAL);
903 if (flags & AT_SYMLINK_NOFOLLOW)
904 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
905 if (flags & AT_EMPTY_PATH)
906 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
907
908 file = do_filp_open(fd, name, &open_exec_flags);
909 if (IS_ERR(file))
910 goto out;
911
912 err = -EACCES;
913 if (!S_ISREG(file_inode(file)->i_mode))
914 goto exit;
915
916 if (path_noexec(&file->f_path))
917 goto exit;
918
919 err = deny_write_access(file);
920 if (err)
921 goto exit;
922
923 if (name->name[0] != '\0')
924 fsnotify_open(file);
925
926 out:
927 return file;
928
929 exit:
930 fput(file);
931 return ERR_PTR(err);
932 }
933
934 struct file *open_exec(const char *name)
935 {
936 struct filename *filename = getname_kernel(name);
937 struct file *f = ERR_CAST(filename);
938
939 if (!IS_ERR(filename)) {
940 f = do_open_execat(AT_FDCWD, filename, 0);
941 putname(filename);
942 }
943 return f;
944 }
945 EXPORT_SYMBOL(open_exec);
946
947 int kernel_read_file(struct file *file, void **buf, loff_t *size,
948 loff_t max_size, enum kernel_read_file_id id)
949 {
950 loff_t i_size, pos;
951 ssize_t bytes = 0;
952 int ret;
953
954 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
955 return -EINVAL;
956
957 ret = deny_write_access(file);
958 if (ret)
959 return ret;
960
961 ret = security_kernel_read_file(file, id);
962 if (ret)
963 goto out;
964
965 i_size = i_size_read(file_inode(file));
966 if (i_size <= 0) {
967 ret = -EINVAL;
968 goto out;
969 }
970 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
971 ret = -EFBIG;
972 goto out;
973 }
974
975 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
976 *buf = vmalloc(i_size);
977 if (!*buf) {
978 ret = -ENOMEM;
979 goto out;
980 }
981
982 pos = 0;
983 while (pos < i_size) {
984 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
985 if (bytes < 0) {
986 ret = bytes;
987 goto out_free;
988 }
989
990 if (bytes == 0)
991 break;
992 }
993
994 if (pos != i_size) {
995 ret = -EIO;
996 goto out_free;
997 }
998
999 ret = security_kernel_post_read_file(file, *buf, i_size, id);
1000 if (!ret)
1001 *size = pos;
1002
1003 out_free:
1004 if (ret < 0) {
1005 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
1006 vfree(*buf);
1007 *buf = NULL;
1008 }
1009 }
1010
1011 out:
1012 allow_write_access(file);
1013 return ret;
1014 }
1015 EXPORT_SYMBOL_GPL(kernel_read_file);
1016
1017 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1018 loff_t max_size, enum kernel_read_file_id id)
1019 {
1020 struct file *file;
1021 int ret;
1022
1023 if (!path || !*path)
1024 return -EINVAL;
1025
1026 file = filp_open(path, O_RDONLY, 0);
1027 if (IS_ERR(file))
1028 return PTR_ERR(file);
1029
1030 ret = kernel_read_file(file, buf, size, max_size, id);
1031 fput(file);
1032 return ret;
1033 }
1034 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1035
1036 int kernel_read_file_from_path_initns(const char *path, void **buf,
1037 loff_t *size, loff_t max_size,
1038 enum kernel_read_file_id id)
1039 {
1040 struct file *file;
1041 struct path root;
1042 int ret;
1043
1044 if (!path || !*path)
1045 return -EINVAL;
1046
1047 task_lock(&init_task);
1048 get_fs_root(init_task.fs, &root);
1049 task_unlock(&init_task);
1050
1051 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1052 path_put(&root);
1053 if (IS_ERR(file))
1054 return PTR_ERR(file);
1055
1056 ret = kernel_read_file(file, buf, size, max_size, id);
1057 fput(file);
1058 return ret;
1059 }
1060 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1061
1062 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1063 enum kernel_read_file_id id)
1064 {
1065 struct fd f = fdget(fd);
1066 int ret = -EBADF;
1067
1068 if (!f.file)
1069 goto out;
1070
1071 ret = kernel_read_file(f.file, buf, size, max_size, id);
1072 out:
1073 fdput(f);
1074 return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1077
1078 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1079 defined(CONFIG_BINFMT_ELF_FDPIC)
1080 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1081 {
1082 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1083 if (res > 0)
1084 flush_icache_user_range(addr, addr + len);
1085 return res;
1086 }
1087 EXPORT_SYMBOL(read_code);
1088 #endif
1089
1090 /*
1091 * Maps the mm_struct mm into the current task struct.
1092 * On success, this function returns with the mutex
1093 * exec_update_mutex locked.
1094 */
1095 static int exec_mmap(struct mm_struct *mm)
1096 {
1097 struct task_struct *tsk;
1098 struct mm_struct *old_mm, *active_mm;
1099 int ret;
1100
1101 /* Notify parent that we're no longer interested in the old VM */
1102 tsk = current;
1103 old_mm = current->mm;
1104 exec_mm_release(tsk, old_mm);
1105 if (old_mm)
1106 sync_mm_rss(old_mm);
1107
1108 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1109 if (ret)
1110 return ret;
1111
1112 if (old_mm) {
1113 /*
1114 * Make sure that if there is a core dump in progress
1115 * for the old mm, we get out and die instead of going
1116 * through with the exec. We must hold mmap_lock around
1117 * checking core_state and changing tsk->mm.
1118 */
1119 mmap_read_lock(old_mm);
1120 if (unlikely(old_mm->core_state)) {
1121 mmap_read_unlock(old_mm);
1122 mutex_unlock(&tsk->signal->exec_update_mutex);
1123 return -EINTR;
1124 }
1125 }
1126
1127 task_lock(tsk);
1128 active_mm = tsk->active_mm;
1129 membarrier_exec_mmap(mm);
1130 tsk->mm = mm;
1131 tsk->active_mm = mm;
1132 activate_mm(active_mm, mm);
1133 tsk->mm->vmacache_seqnum = 0;
1134 vmacache_flush(tsk);
1135 task_unlock(tsk);
1136 if (old_mm) {
1137 mmap_read_unlock(old_mm);
1138 BUG_ON(active_mm != old_mm);
1139 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1140 mm_update_next_owner(old_mm);
1141 mmput(old_mm);
1142 return 0;
1143 }
1144 mmdrop(active_mm);
1145 return 0;
1146 }
1147
1148 static int de_thread(struct task_struct *tsk)
1149 {
1150 struct signal_struct *sig = tsk->signal;
1151 struct sighand_struct *oldsighand = tsk->sighand;
1152 spinlock_t *lock = &oldsighand->siglock;
1153
1154 if (thread_group_empty(tsk))
1155 goto no_thread_group;
1156
1157 /*
1158 * Kill all other threads in the thread group.
1159 */
1160 spin_lock_irq(lock);
1161 if (signal_group_exit(sig)) {
1162 /*
1163 * Another group action in progress, just
1164 * return so that the signal is processed.
1165 */
1166 spin_unlock_irq(lock);
1167 return -EAGAIN;
1168 }
1169
1170 sig->group_exit_task = tsk;
1171 sig->notify_count = zap_other_threads(tsk);
1172 if (!thread_group_leader(tsk))
1173 sig->notify_count--;
1174
1175 while (sig->notify_count) {
1176 __set_current_state(TASK_KILLABLE);
1177 spin_unlock_irq(lock);
1178 schedule();
1179 if (__fatal_signal_pending(tsk))
1180 goto killed;
1181 spin_lock_irq(lock);
1182 }
1183 spin_unlock_irq(lock);
1184
1185 /*
1186 * At this point all other threads have exited, all we have to
1187 * do is to wait for the thread group leader to become inactive,
1188 * and to assume its PID:
1189 */
1190 if (!thread_group_leader(tsk)) {
1191 struct task_struct *leader = tsk->group_leader;
1192
1193 for (;;) {
1194 cgroup_threadgroup_change_begin(tsk);
1195 write_lock_irq(&tasklist_lock);
1196 /*
1197 * Do this under tasklist_lock to ensure that
1198 * exit_notify() can't miss ->group_exit_task
1199 */
1200 sig->notify_count = -1;
1201 if (likely(leader->exit_state))
1202 break;
1203 __set_current_state(TASK_KILLABLE);
1204 write_unlock_irq(&tasklist_lock);
1205 cgroup_threadgroup_change_end(tsk);
1206 schedule();
1207 if (__fatal_signal_pending(tsk))
1208 goto killed;
1209 }
1210
1211 /*
1212 * The only record we have of the real-time age of a
1213 * process, regardless of execs it's done, is start_time.
1214 * All the past CPU time is accumulated in signal_struct
1215 * from sister threads now dead. But in this non-leader
1216 * exec, nothing survives from the original leader thread,
1217 * whose birth marks the true age of this process now.
1218 * When we take on its identity by switching to its PID, we
1219 * also take its birthdate (always earlier than our own).
1220 */
1221 tsk->start_time = leader->start_time;
1222 tsk->start_boottime = leader->start_boottime;
1223
1224 BUG_ON(!same_thread_group(leader, tsk));
1225 /*
1226 * An exec() starts a new thread group with the
1227 * TGID of the previous thread group. Rehash the
1228 * two threads with a switched PID, and release
1229 * the former thread group leader:
1230 */
1231
1232 /* Become a process group leader with the old leader's pid.
1233 * The old leader becomes a thread of the this thread group.
1234 */
1235 exchange_tids(tsk, leader);
1236 transfer_pid(leader, tsk, PIDTYPE_TGID);
1237 transfer_pid(leader, tsk, PIDTYPE_PGID);
1238 transfer_pid(leader, tsk, PIDTYPE_SID);
1239
1240 list_replace_rcu(&leader->tasks, &tsk->tasks);
1241 list_replace_init(&leader->sibling, &tsk->sibling);
1242
1243 tsk->group_leader = tsk;
1244 leader->group_leader = tsk;
1245
1246 tsk->exit_signal = SIGCHLD;
1247 leader->exit_signal = -1;
1248
1249 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1250 leader->exit_state = EXIT_DEAD;
1251
1252 /*
1253 * We are going to release_task()->ptrace_unlink() silently,
1254 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1255 * the tracer wont't block again waiting for this thread.
1256 */
1257 if (unlikely(leader->ptrace))
1258 __wake_up_parent(leader, leader->parent);
1259 write_unlock_irq(&tasklist_lock);
1260 cgroup_threadgroup_change_end(tsk);
1261
1262 release_task(leader);
1263 }
1264
1265 sig->group_exit_task = NULL;
1266 sig->notify_count = 0;
1267
1268 no_thread_group:
1269 /* we have changed execution domain */
1270 tsk->exit_signal = SIGCHLD;
1271
1272 BUG_ON(!thread_group_leader(tsk));
1273 return 0;
1274
1275 killed:
1276 /* protects against exit_notify() and __exit_signal() */
1277 read_lock(&tasklist_lock);
1278 sig->group_exit_task = NULL;
1279 sig->notify_count = 0;
1280 read_unlock(&tasklist_lock);
1281 return -EAGAIN;
1282 }
1283
1284
1285 /*
1286 * This function makes sure the current process has its own signal table,
1287 * so that flush_signal_handlers can later reset the handlers without
1288 * disturbing other processes. (Other processes might share the signal
1289 * table via the CLONE_SIGHAND option to clone().)
1290 */
1291 static int unshare_sighand(struct task_struct *me)
1292 {
1293 struct sighand_struct *oldsighand = me->sighand;
1294
1295 if (refcount_read(&oldsighand->count) != 1) {
1296 struct sighand_struct *newsighand;
1297 /*
1298 * This ->sighand is shared with the CLONE_SIGHAND
1299 * but not CLONE_THREAD task, switch to the new one.
1300 */
1301 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1302 if (!newsighand)
1303 return -ENOMEM;
1304
1305 refcount_set(&newsighand->count, 1);
1306 memcpy(newsighand->action, oldsighand->action,
1307 sizeof(newsighand->action));
1308
1309 write_lock_irq(&tasklist_lock);
1310 spin_lock(&oldsighand->siglock);
1311 rcu_assign_pointer(me->sighand, newsighand);
1312 spin_unlock(&oldsighand->siglock);
1313 write_unlock_irq(&tasklist_lock);
1314
1315 __cleanup_sighand(oldsighand);
1316 }
1317 return 0;
1318 }
1319
1320 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1321 {
1322 task_lock(tsk);
1323 strncpy(buf, tsk->comm, buf_size);
1324 task_unlock(tsk);
1325 return buf;
1326 }
1327 EXPORT_SYMBOL_GPL(__get_task_comm);
1328
1329 /*
1330 * These functions flushes out all traces of the currently running executable
1331 * so that a new one can be started
1332 */
1333
1334 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1335 {
1336 task_lock(tsk);
1337 trace_task_rename(tsk, buf);
1338 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1339 task_unlock(tsk);
1340 perf_event_comm(tsk, exec);
1341 }
1342
1343 /*
1344 * Calling this is the point of no return. None of the failures will be
1345 * seen by userspace since either the process is already taking a fatal
1346 * signal (via de_thread() or coredump), or will have SEGV raised
1347 * (after exec_mmap()) by search_binary_handler (see below).
1348 */
1349 int begin_new_exec(struct linux_binprm * bprm)
1350 {
1351 struct task_struct *me = current;
1352 int retval;
1353
1354 /* Once we are committed compute the creds */
1355 retval = bprm_creds_from_file(bprm);
1356 if (retval)
1357 return retval;
1358
1359 /*
1360 * Ensure all future errors are fatal.
1361 */
1362 bprm->point_of_no_return = true;
1363
1364 /*
1365 * Make this the only thread in the thread group.
1366 */
1367 retval = de_thread(me);
1368 if (retval)
1369 goto out;
1370
1371 /*
1372 * Must be called _before_ exec_mmap() as bprm->mm is
1373 * not visibile until then. This also enables the update
1374 * to be lockless.
1375 */
1376 set_mm_exe_file(bprm->mm, bprm->file);
1377
1378 /* If the binary is not readable then enforce mm->dumpable=0 */
1379 would_dump(bprm, bprm->file);
1380 if (bprm->have_execfd)
1381 would_dump(bprm, bprm->executable);
1382
1383 /*
1384 * Release all of the old mmap stuff
1385 */
1386 acct_arg_size(bprm, 0);
1387 retval = exec_mmap(bprm->mm);
1388 if (retval)
1389 goto out;
1390
1391 bprm->mm = NULL;
1392
1393 #ifdef CONFIG_POSIX_TIMERS
1394 exit_itimers(me->signal);
1395 flush_itimer_signals();
1396 #endif
1397
1398 /*
1399 * Make the signal table private.
1400 */
1401 retval = unshare_sighand(me);
1402 if (retval)
1403 goto out_unlock;
1404
1405 /*
1406 * Ensure that the uaccess routines can actually operate on userspace
1407 * pointers:
1408 */
1409 force_uaccess_begin();
1410
1411 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1412 PF_NOFREEZE | PF_NO_SETAFFINITY);
1413 flush_thread();
1414 me->personality &= ~bprm->per_clear;
1415
1416 /*
1417 * We have to apply CLOEXEC before we change whether the process is
1418 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1419 * trying to access the should-be-closed file descriptors of a process
1420 * undergoing exec(2).
1421 */
1422 do_close_on_exec(me->files);
1423
1424 if (bprm->secureexec) {
1425 /* Make sure parent cannot signal privileged process. */
1426 me->pdeath_signal = 0;
1427
1428 /*
1429 * For secureexec, reset the stack limit to sane default to
1430 * avoid bad behavior from the prior rlimits. This has to
1431 * happen before arch_pick_mmap_layout(), which examines
1432 * RLIMIT_STACK, but after the point of no return to avoid
1433 * needing to clean up the change on failure.
1434 */
1435 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1436 bprm->rlim_stack.rlim_cur = _STK_LIM;
1437 }
1438
1439 me->sas_ss_sp = me->sas_ss_size = 0;
1440
1441 /*
1442 * Figure out dumpability. Note that this checking only of current
1443 * is wrong, but userspace depends on it. This should be testing
1444 * bprm->secureexec instead.
1445 */
1446 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1447 !(uid_eq(current_euid(), current_uid()) &&
1448 gid_eq(current_egid(), current_gid())))
1449 set_dumpable(current->mm, suid_dumpable);
1450 else
1451 set_dumpable(current->mm, SUID_DUMP_USER);
1452
1453 perf_event_exec();
1454 __set_task_comm(me, kbasename(bprm->filename), true);
1455
1456 /* An exec changes our domain. We are no longer part of the thread
1457 group */
1458 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1459 flush_signal_handlers(me, 0);
1460
1461 /*
1462 * install the new credentials for this executable
1463 */
1464 security_bprm_committing_creds(bprm);
1465
1466 commit_creds(bprm->cred);
1467 bprm->cred = NULL;
1468
1469 /*
1470 * Disable monitoring for regular users
1471 * when executing setuid binaries. Must
1472 * wait until new credentials are committed
1473 * by commit_creds() above
1474 */
1475 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1476 perf_event_exit_task(me);
1477 /*
1478 * cred_guard_mutex must be held at least to this point to prevent
1479 * ptrace_attach() from altering our determination of the task's
1480 * credentials; any time after this it may be unlocked.
1481 */
1482 security_bprm_committed_creds(bprm);
1483
1484 /* Pass the opened binary to the interpreter. */
1485 if (bprm->have_execfd) {
1486 retval = get_unused_fd_flags(0);
1487 if (retval < 0)
1488 goto out_unlock;
1489 fd_install(retval, bprm->executable);
1490 bprm->executable = NULL;
1491 bprm->execfd = retval;
1492 }
1493 return 0;
1494
1495 out_unlock:
1496 mutex_unlock(&me->signal->exec_update_mutex);
1497 out:
1498 return retval;
1499 }
1500 EXPORT_SYMBOL(begin_new_exec);
1501
1502 void would_dump(struct linux_binprm *bprm, struct file *file)
1503 {
1504 struct inode *inode = file_inode(file);
1505 if (inode_permission(inode, MAY_READ) < 0) {
1506 struct user_namespace *old, *user_ns;
1507 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1508
1509 /* Ensure mm->user_ns contains the executable */
1510 user_ns = old = bprm->mm->user_ns;
1511 while ((user_ns != &init_user_ns) &&
1512 !privileged_wrt_inode_uidgid(user_ns, inode))
1513 user_ns = user_ns->parent;
1514
1515 if (old != user_ns) {
1516 bprm->mm->user_ns = get_user_ns(user_ns);
1517 put_user_ns(old);
1518 }
1519 }
1520 }
1521 EXPORT_SYMBOL(would_dump);
1522
1523 void setup_new_exec(struct linux_binprm * bprm)
1524 {
1525 /* Setup things that can depend upon the personality */
1526 struct task_struct *me = current;
1527
1528 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1529
1530 arch_setup_new_exec();
1531
1532 /* Set the new mm task size. We have to do that late because it may
1533 * depend on TIF_32BIT which is only updated in flush_thread() on
1534 * some architectures like powerpc
1535 */
1536 me->mm->task_size = TASK_SIZE;
1537 mutex_unlock(&me->signal->exec_update_mutex);
1538 mutex_unlock(&me->signal->cred_guard_mutex);
1539 }
1540 EXPORT_SYMBOL(setup_new_exec);
1541
1542 /* Runs immediately before start_thread() takes over. */
1543 void finalize_exec(struct linux_binprm *bprm)
1544 {
1545 /* Store any stack rlimit changes before starting thread. */
1546 task_lock(current->group_leader);
1547 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1548 task_unlock(current->group_leader);
1549 }
1550 EXPORT_SYMBOL(finalize_exec);
1551
1552 /*
1553 * Prepare credentials and lock ->cred_guard_mutex.
1554 * setup_new_exec() commits the new creds and drops the lock.
1555 * Or, if exec fails before, free_bprm() should release ->cred and
1556 * and unlock.
1557 */
1558 static int prepare_bprm_creds(struct linux_binprm *bprm)
1559 {
1560 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1561 return -ERESTARTNOINTR;
1562
1563 bprm->cred = prepare_exec_creds();
1564 if (likely(bprm->cred))
1565 return 0;
1566
1567 mutex_unlock(&current->signal->cred_guard_mutex);
1568 return -ENOMEM;
1569 }
1570
1571 static void free_bprm(struct linux_binprm *bprm)
1572 {
1573 if (bprm->mm) {
1574 acct_arg_size(bprm, 0);
1575 mmput(bprm->mm);
1576 }
1577 free_arg_pages(bprm);
1578 if (bprm->cred) {
1579 mutex_unlock(&current->signal->cred_guard_mutex);
1580 abort_creds(bprm->cred);
1581 }
1582 if (bprm->file) {
1583 allow_write_access(bprm->file);
1584 fput(bprm->file);
1585 }
1586 if (bprm->executable)
1587 fput(bprm->executable);
1588 /* If a binfmt changed the interp, free it. */
1589 if (bprm->interp != bprm->filename)
1590 kfree(bprm->interp);
1591 kfree(bprm->fdpath);
1592 kfree(bprm);
1593 }
1594
1595 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1596 {
1597 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1598 int retval = -ENOMEM;
1599 if (!bprm)
1600 goto out;
1601
1602 if (fd == AT_FDCWD || filename->name[0] == '/') {
1603 bprm->filename = filename->name;
1604 } else {
1605 if (filename->name[0] == '\0')
1606 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1607 else
1608 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1609 fd, filename->name);
1610 if (!bprm->fdpath)
1611 goto out_free;
1612
1613 bprm->filename = bprm->fdpath;
1614 }
1615 bprm->interp = bprm->filename;
1616
1617 retval = bprm_mm_init(bprm);
1618 if (retval)
1619 goto out_free;
1620 return bprm;
1621
1622 out_free:
1623 free_bprm(bprm);
1624 out:
1625 return ERR_PTR(retval);
1626 }
1627
1628 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1629 {
1630 /* If a binfmt changed the interp, free it first. */
1631 if (bprm->interp != bprm->filename)
1632 kfree(bprm->interp);
1633 bprm->interp = kstrdup(interp, GFP_KERNEL);
1634 if (!bprm->interp)
1635 return -ENOMEM;
1636 return 0;
1637 }
1638 EXPORT_SYMBOL(bprm_change_interp);
1639
1640 /*
1641 * determine how safe it is to execute the proposed program
1642 * - the caller must hold ->cred_guard_mutex to protect against
1643 * PTRACE_ATTACH or seccomp thread-sync
1644 */
1645 static void check_unsafe_exec(struct linux_binprm *bprm)
1646 {
1647 struct task_struct *p = current, *t;
1648 unsigned n_fs;
1649
1650 if (p->ptrace)
1651 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1652
1653 /*
1654 * This isn't strictly necessary, but it makes it harder for LSMs to
1655 * mess up.
1656 */
1657 if (task_no_new_privs(current))
1658 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1659
1660 t = p;
1661 n_fs = 1;
1662 spin_lock(&p->fs->lock);
1663 rcu_read_lock();
1664 while_each_thread(p, t) {
1665 if (t->fs == p->fs)
1666 n_fs++;
1667 }
1668 rcu_read_unlock();
1669
1670 if (p->fs->users > n_fs)
1671 bprm->unsafe |= LSM_UNSAFE_SHARE;
1672 else
1673 p->fs->in_exec = 1;
1674 spin_unlock(&p->fs->lock);
1675 }
1676
1677 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1678 {
1679 /* Handle suid and sgid on files */
1680 struct inode *inode;
1681 unsigned int mode;
1682 kuid_t uid;
1683 kgid_t gid;
1684
1685 if (!mnt_may_suid(file->f_path.mnt))
1686 return;
1687
1688 if (task_no_new_privs(current))
1689 return;
1690
1691 inode = file->f_path.dentry->d_inode;
1692 mode = READ_ONCE(inode->i_mode);
1693 if (!(mode & (S_ISUID|S_ISGID)))
1694 return;
1695
1696 /* Be careful if suid/sgid is set */
1697 inode_lock(inode);
1698
1699 /* reload atomically mode/uid/gid now that lock held */
1700 mode = inode->i_mode;
1701 uid = inode->i_uid;
1702 gid = inode->i_gid;
1703 inode_unlock(inode);
1704
1705 /* We ignore suid/sgid if there are no mappings for them in the ns */
1706 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1707 !kgid_has_mapping(bprm->cred->user_ns, gid))
1708 return;
1709
1710 if (mode & S_ISUID) {
1711 bprm->per_clear |= PER_CLEAR_ON_SETID;
1712 bprm->cred->euid = uid;
1713 }
1714
1715 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1716 bprm->per_clear |= PER_CLEAR_ON_SETID;
1717 bprm->cred->egid = gid;
1718 }
1719 }
1720
1721 /*
1722 * Compute brpm->cred based upon the final binary.
1723 */
1724 static int bprm_creds_from_file(struct linux_binprm *bprm)
1725 {
1726 /* Compute creds based on which file? */
1727 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1728
1729 bprm_fill_uid(bprm, file);
1730 return security_bprm_creds_from_file(bprm, file);
1731 }
1732
1733 /*
1734 * Fill the binprm structure from the inode.
1735 * Read the first BINPRM_BUF_SIZE bytes
1736 *
1737 * This may be called multiple times for binary chains (scripts for example).
1738 */
1739 static int prepare_binprm(struct linux_binprm *bprm)
1740 {
1741 loff_t pos = 0;
1742
1743 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1744 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1745 }
1746
1747 /*
1748 * Arguments are '\0' separated strings found at the location bprm->p
1749 * points to; chop off the first by relocating brpm->p to right after
1750 * the first '\0' encountered.
1751 */
1752 int remove_arg_zero(struct linux_binprm *bprm)
1753 {
1754 int ret = 0;
1755 unsigned long offset;
1756 char *kaddr;
1757 struct page *page;
1758
1759 if (!bprm->argc)
1760 return 0;
1761
1762 do {
1763 offset = bprm->p & ~PAGE_MASK;
1764 page = get_arg_page(bprm, bprm->p, 0);
1765 if (!page) {
1766 ret = -EFAULT;
1767 goto out;
1768 }
1769 kaddr = kmap_atomic(page);
1770
1771 for (; offset < PAGE_SIZE && kaddr[offset];
1772 offset++, bprm->p++)
1773 ;
1774
1775 kunmap_atomic(kaddr);
1776 put_arg_page(page);
1777 } while (offset == PAGE_SIZE);
1778
1779 bprm->p++;
1780 bprm->argc--;
1781 ret = 0;
1782
1783 out:
1784 return ret;
1785 }
1786 EXPORT_SYMBOL(remove_arg_zero);
1787
1788 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1789 /*
1790 * cycle the list of binary formats handler, until one recognizes the image
1791 */
1792 static int search_binary_handler(struct linux_binprm *bprm)
1793 {
1794 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1795 struct linux_binfmt *fmt;
1796 int retval;
1797
1798 retval = prepare_binprm(bprm);
1799 if (retval < 0)
1800 return retval;
1801
1802 retval = security_bprm_check(bprm);
1803 if (retval)
1804 return retval;
1805
1806 retval = -ENOENT;
1807 retry:
1808 read_lock(&binfmt_lock);
1809 list_for_each_entry(fmt, &formats, lh) {
1810 if (!try_module_get(fmt->module))
1811 continue;
1812 read_unlock(&binfmt_lock);
1813
1814 retval = fmt->load_binary(bprm);
1815
1816 read_lock(&binfmt_lock);
1817 put_binfmt(fmt);
1818 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1819 read_unlock(&binfmt_lock);
1820 return retval;
1821 }
1822 }
1823 read_unlock(&binfmt_lock);
1824
1825 if (need_retry) {
1826 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1827 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1828 return retval;
1829 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1830 return retval;
1831 need_retry = false;
1832 goto retry;
1833 }
1834
1835 return retval;
1836 }
1837
1838 static int exec_binprm(struct linux_binprm *bprm)
1839 {
1840 pid_t old_pid, old_vpid;
1841 int ret, depth;
1842
1843 /* Need to fetch pid before load_binary changes it */
1844 old_pid = current->pid;
1845 rcu_read_lock();
1846 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1847 rcu_read_unlock();
1848
1849 /* This allows 4 levels of binfmt rewrites before failing hard. */
1850 for (depth = 0;; depth++) {
1851 struct file *exec;
1852 if (depth > 5)
1853 return -ELOOP;
1854
1855 ret = search_binary_handler(bprm);
1856 if (ret < 0)
1857 return ret;
1858 if (!bprm->interpreter)
1859 break;
1860
1861 exec = bprm->file;
1862 bprm->file = bprm->interpreter;
1863 bprm->interpreter = NULL;
1864
1865 allow_write_access(exec);
1866 if (unlikely(bprm->have_execfd)) {
1867 if (bprm->executable) {
1868 fput(exec);
1869 return -ENOEXEC;
1870 }
1871 bprm->executable = exec;
1872 } else
1873 fput(exec);
1874 }
1875
1876 audit_bprm(bprm);
1877 trace_sched_process_exec(current, old_pid, bprm);
1878 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1879 proc_exec_connector(current);
1880 return 0;
1881 }
1882
1883 /*
1884 * sys_execve() executes a new program.
1885 */
1886 static int bprm_execve(struct linux_binprm *bprm,
1887 int fd, struct filename *filename, int flags)
1888 {
1889 struct file *file;
1890 struct files_struct *displaced;
1891 int retval;
1892
1893 retval = unshare_files(&displaced);
1894 if (retval)
1895 return retval;
1896
1897 retval = prepare_bprm_creds(bprm);
1898 if (retval)
1899 goto out_files;
1900
1901 check_unsafe_exec(bprm);
1902 current->in_execve = 1;
1903
1904 file = do_open_execat(fd, filename, flags);
1905 retval = PTR_ERR(file);
1906 if (IS_ERR(file))
1907 goto out_unmark;
1908
1909 sched_exec();
1910
1911 bprm->file = file;
1912 /*
1913 * Record that a name derived from an O_CLOEXEC fd will be
1914 * inaccessible after exec. Relies on having exclusive access to
1915 * current->files (due to unshare_files above).
1916 */
1917 if (bprm->fdpath &&
1918 close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1919 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1920
1921 /* Set the unchanging part of bprm->cred */
1922 retval = security_bprm_creds_for_exec(bprm);
1923 if (retval)
1924 goto out;
1925
1926 retval = exec_binprm(bprm);
1927 if (retval < 0)
1928 goto out;
1929
1930 /* execve succeeded */
1931 current->fs->in_exec = 0;
1932 current->in_execve = 0;
1933 rseq_execve(current);
1934 acct_update_integrals(current);
1935 task_numa_free(current, false);
1936 if (displaced)
1937 put_files_struct(displaced);
1938 return retval;
1939
1940 out:
1941 /*
1942 * If past the point of no return ensure the the code never
1943 * returns to the userspace process. Use an existing fatal
1944 * signal if present otherwise terminate the process with
1945 * SIGSEGV.
1946 */
1947 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1948 force_sigsegv(SIGSEGV);
1949
1950 out_unmark:
1951 current->fs->in_exec = 0;
1952 current->in_execve = 0;
1953
1954 out_files:
1955 if (displaced)
1956 reset_files_struct(displaced);
1957
1958 return retval;
1959 }
1960
1961 static int do_execveat_common(int fd, struct filename *filename,
1962 struct user_arg_ptr argv,
1963 struct user_arg_ptr envp,
1964 int flags)
1965 {
1966 struct linux_binprm *bprm;
1967 int retval;
1968
1969 if (IS_ERR(filename))
1970 return PTR_ERR(filename);
1971
1972 /*
1973 * We move the actual failure in case of RLIMIT_NPROC excess from
1974 * set*uid() to execve() because too many poorly written programs
1975 * don't check setuid() return code. Here we additionally recheck
1976 * whether NPROC limit is still exceeded.
1977 */
1978 if ((current->flags & PF_NPROC_EXCEEDED) &&
1979 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1980 retval = -EAGAIN;
1981 goto out_ret;
1982 }
1983
1984 /* We're below the limit (still or again), so we don't want to make
1985 * further execve() calls fail. */
1986 current->flags &= ~PF_NPROC_EXCEEDED;
1987
1988 bprm = alloc_bprm(fd, filename);
1989 if (IS_ERR(bprm)) {
1990 retval = PTR_ERR(bprm);
1991 goto out_ret;
1992 }
1993
1994 retval = count(argv, MAX_ARG_STRINGS);
1995 if (retval < 0)
1996 goto out_free;
1997 bprm->argc = retval;
1998
1999 retval = count(envp, MAX_ARG_STRINGS);
2000 if (retval < 0)
2001 goto out_free;
2002 bprm->envc = retval;
2003
2004 retval = bprm_stack_limits(bprm);
2005 if (retval < 0)
2006 goto out_free;
2007
2008 retval = copy_string_kernel(bprm->filename, bprm);
2009 if (retval < 0)
2010 goto out_free;
2011 bprm->exec = bprm->p;
2012
2013 retval = copy_strings(bprm->envc, envp, bprm);
2014 if (retval < 0)
2015 goto out_free;
2016
2017 retval = copy_strings(bprm->argc, argv, bprm);
2018 if (retval < 0)
2019 goto out_free;
2020
2021 retval = bprm_execve(bprm, fd, filename, flags);
2022 out_free:
2023 free_bprm(bprm);
2024
2025 out_ret:
2026 putname(filename);
2027 return retval;
2028 }
2029
2030 int kernel_execve(const char *kernel_filename,
2031 const char *const *argv, const char *const *envp)
2032 {
2033 struct filename *filename;
2034 struct linux_binprm *bprm;
2035 int fd = AT_FDCWD;
2036 int retval;
2037
2038 filename = getname_kernel(kernel_filename);
2039 if (IS_ERR(filename))
2040 return PTR_ERR(filename);
2041
2042 bprm = alloc_bprm(fd, filename);
2043 if (IS_ERR(bprm)) {
2044 retval = PTR_ERR(bprm);
2045 goto out_ret;
2046 }
2047
2048 retval = count_strings_kernel(argv);
2049 if (retval < 0)
2050 goto out_free;
2051 bprm->argc = retval;
2052
2053 retval = count_strings_kernel(envp);
2054 if (retval < 0)
2055 goto out_free;
2056 bprm->envc = retval;
2057
2058 retval = bprm_stack_limits(bprm);
2059 if (retval < 0)
2060 goto out_free;
2061
2062 retval = copy_string_kernel(bprm->filename, bprm);
2063 if (retval < 0)
2064 goto out_free;
2065 bprm->exec = bprm->p;
2066
2067 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2068 if (retval < 0)
2069 goto out_free;
2070
2071 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2072 if (retval < 0)
2073 goto out_free;
2074
2075 retval = bprm_execve(bprm, fd, filename, 0);
2076 out_free:
2077 free_bprm(bprm);
2078 out_ret:
2079 putname(filename);
2080 return retval;
2081 }
2082
2083 static int do_execve(struct filename *filename,
2084 const char __user *const __user *__argv,
2085 const char __user *const __user *__envp)
2086 {
2087 struct user_arg_ptr argv = { .ptr.native = __argv };
2088 struct user_arg_ptr envp = { .ptr.native = __envp };
2089 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2090 }
2091
2092 static int do_execveat(int fd, struct filename *filename,
2093 const char __user *const __user *__argv,
2094 const char __user *const __user *__envp,
2095 int flags)
2096 {
2097 struct user_arg_ptr argv = { .ptr.native = __argv };
2098 struct user_arg_ptr envp = { .ptr.native = __envp };
2099
2100 return do_execveat_common(fd, filename, argv, envp, flags);
2101 }
2102
2103 #ifdef CONFIG_COMPAT
2104 static int compat_do_execve(struct filename *filename,
2105 const compat_uptr_t __user *__argv,
2106 const compat_uptr_t __user *__envp)
2107 {
2108 struct user_arg_ptr argv = {
2109 .is_compat = true,
2110 .ptr.compat = __argv,
2111 };
2112 struct user_arg_ptr envp = {
2113 .is_compat = true,
2114 .ptr.compat = __envp,
2115 };
2116 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2117 }
2118
2119 static int compat_do_execveat(int fd, struct filename *filename,
2120 const compat_uptr_t __user *__argv,
2121 const compat_uptr_t __user *__envp,
2122 int flags)
2123 {
2124 struct user_arg_ptr argv = {
2125 .is_compat = true,
2126 .ptr.compat = __argv,
2127 };
2128 struct user_arg_ptr envp = {
2129 .is_compat = true,
2130 .ptr.compat = __envp,
2131 };
2132 return do_execveat_common(fd, filename, argv, envp, flags);
2133 }
2134 #endif
2135
2136 void set_binfmt(struct linux_binfmt *new)
2137 {
2138 struct mm_struct *mm = current->mm;
2139
2140 if (mm->binfmt)
2141 module_put(mm->binfmt->module);
2142
2143 mm->binfmt = new;
2144 if (new)
2145 __module_get(new->module);
2146 }
2147 EXPORT_SYMBOL(set_binfmt);
2148
2149 /*
2150 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2151 */
2152 void set_dumpable(struct mm_struct *mm, int value)
2153 {
2154 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2155 return;
2156
2157 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2158 }
2159
2160 SYSCALL_DEFINE3(execve,
2161 const char __user *, filename,
2162 const char __user *const __user *, argv,
2163 const char __user *const __user *, envp)
2164 {
2165 return do_execve(getname(filename), argv, envp);
2166 }
2167
2168 SYSCALL_DEFINE5(execveat,
2169 int, fd, const char __user *, filename,
2170 const char __user *const __user *, argv,
2171 const char __user *const __user *, envp,
2172 int, flags)
2173 {
2174 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2175
2176 return do_execveat(fd,
2177 getname_flags(filename, lookup_flags, NULL),
2178 argv, envp, flags);
2179 }
2180
2181 #ifdef CONFIG_COMPAT
2182 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2183 const compat_uptr_t __user *, argv,
2184 const compat_uptr_t __user *, envp)
2185 {
2186 return compat_do_execve(getname(filename), argv, envp);
2187 }
2188
2189 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2190 const char __user *, filename,
2191 const compat_uptr_t __user *, argv,
2192 const compat_uptr_t __user *, envp,
2193 int, flags)
2194 {
2195 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2196
2197 return compat_do_execveat(fd,
2198 getname_flags(filename, lookup_flags, NULL),
2199 argv, envp, flags);
2200 }
2201 #endif