]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/exec.c
Merge tag 'imx-drm-next-2016-11-10' of git://git.pengutronix.de/git/pza/linux into...
[mirror_ubuntu-bionic-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191 {
192 struct page *page;
193 int ret;
194 unsigned int gup_flags = FOLL_FORCE;
195
196 #ifdef CONFIG_STACK_GROWSUP
197 if (write) {
198 ret = expand_downwards(bprm->vma, pos);
199 if (ret < 0)
200 return NULL;
201 }
202 #endif
203
204 if (write)
205 gup_flags |= FOLL_WRITE;
206
207 /*
208 * We are doing an exec(). 'current' is the process
209 * doing the exec and bprm->mm is the new process's mm.
210 */
211 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
212 &page, NULL);
213 if (ret <= 0)
214 return NULL;
215
216 if (write) {
217 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218 struct rlimit *rlim;
219
220 acct_arg_size(bprm, size / PAGE_SIZE);
221
222 /*
223 * We've historically supported up to 32 pages (ARG_MAX)
224 * of argument strings even with small stacks
225 */
226 if (size <= ARG_MAX)
227 return page;
228
229 /*
230 * Limit to 1/4-th the stack size for the argv+env strings.
231 * This ensures that:
232 * - the remaining binfmt code will not run out of stack space,
233 * - the program will have a reasonable amount of stack left
234 * to work from.
235 */
236 rlim = current->signal->rlim;
237 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
238 put_page(page);
239 return NULL;
240 }
241 }
242
243 return page;
244 }
245
246 static void put_arg_page(struct page *page)
247 {
248 put_page(page);
249 }
250
251 static void free_arg_pages(struct linux_binprm *bprm)
252 {
253 }
254
255 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256 struct page *page)
257 {
258 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259 }
260
261 static int __bprm_mm_init(struct linux_binprm *bprm)
262 {
263 int err;
264 struct vm_area_struct *vma = NULL;
265 struct mm_struct *mm = bprm->mm;
266
267 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268 if (!vma)
269 return -ENOMEM;
270
271 if (down_write_killable(&mm->mmap_sem)) {
272 err = -EINTR;
273 goto err_free;
274 }
275 vma->vm_mm = mm;
276
277 /*
278 * Place the stack at the largest stack address the architecture
279 * supports. Later, we'll move this to an appropriate place. We don't
280 * use STACK_TOP because that can depend on attributes which aren't
281 * configured yet.
282 */
283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284 vma->vm_end = STACK_TOP_MAX;
285 vma->vm_start = vma->vm_end - PAGE_SIZE;
286 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
287 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288 INIT_LIST_HEAD(&vma->anon_vma_chain);
289
290 err = insert_vm_struct(mm, vma);
291 if (err)
292 goto err;
293
294 mm->stack_vm = mm->total_vm = 1;
295 arch_bprm_mm_init(mm, vma);
296 up_write(&mm->mmap_sem);
297 bprm->p = vma->vm_end - sizeof(void *);
298 return 0;
299 err:
300 up_write(&mm->mmap_sem);
301 err_free:
302 bprm->vma = NULL;
303 kmem_cache_free(vm_area_cachep, vma);
304 return err;
305 }
306
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
308 {
309 return len <= MAX_ARG_STRLEN;
310 }
311
312 #else
313
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315 {
316 }
317
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 int write)
320 {
321 struct page *page;
322
323 page = bprm->page[pos / PAGE_SIZE];
324 if (!page && write) {
325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326 if (!page)
327 return NULL;
328 bprm->page[pos / PAGE_SIZE] = page;
329 }
330
331 return page;
332 }
333
334 static void put_arg_page(struct page *page)
335 {
336 }
337
338 static void free_arg_page(struct linux_binprm *bprm, int i)
339 {
340 if (bprm->page[i]) {
341 __free_page(bprm->page[i]);
342 bprm->page[i] = NULL;
343 }
344 }
345
346 static void free_arg_pages(struct linux_binprm *bprm)
347 {
348 int i;
349
350 for (i = 0; i < MAX_ARG_PAGES; i++)
351 free_arg_page(bprm, i);
352 }
353
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 struct page *page)
356 {
357 }
358
359 static int __bprm_mm_init(struct linux_binprm *bprm)
360 {
361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362 return 0;
363 }
364
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
366 {
367 return len <= bprm->p;
368 }
369
370 #endif /* CONFIG_MMU */
371
372 /*
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
377 */
378 static int bprm_mm_init(struct linux_binprm *bprm)
379 {
380 int err;
381 struct mm_struct *mm = NULL;
382
383 bprm->mm = mm = mm_alloc();
384 err = -ENOMEM;
385 if (!mm)
386 goto err;
387
388 err = __bprm_mm_init(bprm);
389 if (err)
390 goto err;
391
392 return 0;
393
394 err:
395 if (mm) {
396 bprm->mm = NULL;
397 mmdrop(mm);
398 }
399
400 return err;
401 }
402
403 struct user_arg_ptr {
404 #ifdef CONFIG_COMPAT
405 bool is_compat;
406 #endif
407 union {
408 const char __user *const __user *native;
409 #ifdef CONFIG_COMPAT
410 const compat_uptr_t __user *compat;
411 #endif
412 } ptr;
413 };
414
415 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
416 {
417 const char __user *native;
418
419 #ifdef CONFIG_COMPAT
420 if (unlikely(argv.is_compat)) {
421 compat_uptr_t compat;
422
423 if (get_user(compat, argv.ptr.compat + nr))
424 return ERR_PTR(-EFAULT);
425
426 return compat_ptr(compat);
427 }
428 #endif
429
430 if (get_user(native, argv.ptr.native + nr))
431 return ERR_PTR(-EFAULT);
432
433 return native;
434 }
435
436 /*
437 * count() counts the number of strings in array ARGV.
438 */
439 static int count(struct user_arg_ptr argv, int max)
440 {
441 int i = 0;
442
443 if (argv.ptr.native != NULL) {
444 for (;;) {
445 const char __user *p = get_user_arg_ptr(argv, i);
446
447 if (!p)
448 break;
449
450 if (IS_ERR(p))
451 return -EFAULT;
452
453 if (i >= max)
454 return -E2BIG;
455 ++i;
456
457 if (fatal_signal_pending(current))
458 return -ERESTARTNOHAND;
459 cond_resched();
460 }
461 }
462 return i;
463 }
464
465 /*
466 * 'copy_strings()' copies argument/environment strings from the old
467 * processes's memory to the new process's stack. The call to get_user_pages()
468 * ensures the destination page is created and not swapped out.
469 */
470 static int copy_strings(int argc, struct user_arg_ptr argv,
471 struct linux_binprm *bprm)
472 {
473 struct page *kmapped_page = NULL;
474 char *kaddr = NULL;
475 unsigned long kpos = 0;
476 int ret;
477
478 while (argc-- > 0) {
479 const char __user *str;
480 int len;
481 unsigned long pos;
482
483 ret = -EFAULT;
484 str = get_user_arg_ptr(argv, argc);
485 if (IS_ERR(str))
486 goto out;
487
488 len = strnlen_user(str, MAX_ARG_STRLEN);
489 if (!len)
490 goto out;
491
492 ret = -E2BIG;
493 if (!valid_arg_len(bprm, len))
494 goto out;
495
496 /* We're going to work our way backwords. */
497 pos = bprm->p;
498 str += len;
499 bprm->p -= len;
500
501 while (len > 0) {
502 int offset, bytes_to_copy;
503
504 if (fatal_signal_pending(current)) {
505 ret = -ERESTARTNOHAND;
506 goto out;
507 }
508 cond_resched();
509
510 offset = pos % PAGE_SIZE;
511 if (offset == 0)
512 offset = PAGE_SIZE;
513
514 bytes_to_copy = offset;
515 if (bytes_to_copy > len)
516 bytes_to_copy = len;
517
518 offset -= bytes_to_copy;
519 pos -= bytes_to_copy;
520 str -= bytes_to_copy;
521 len -= bytes_to_copy;
522
523 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
524 struct page *page;
525
526 page = get_arg_page(bprm, pos, 1);
527 if (!page) {
528 ret = -E2BIG;
529 goto out;
530 }
531
532 if (kmapped_page) {
533 flush_kernel_dcache_page(kmapped_page);
534 kunmap(kmapped_page);
535 put_arg_page(kmapped_page);
536 }
537 kmapped_page = page;
538 kaddr = kmap(kmapped_page);
539 kpos = pos & PAGE_MASK;
540 flush_arg_page(bprm, kpos, kmapped_page);
541 }
542 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
543 ret = -EFAULT;
544 goto out;
545 }
546 }
547 }
548 ret = 0;
549 out:
550 if (kmapped_page) {
551 flush_kernel_dcache_page(kmapped_page);
552 kunmap(kmapped_page);
553 put_arg_page(kmapped_page);
554 }
555 return ret;
556 }
557
558 /*
559 * Like copy_strings, but get argv and its values from kernel memory.
560 */
561 int copy_strings_kernel(int argc, const char *const *__argv,
562 struct linux_binprm *bprm)
563 {
564 int r;
565 mm_segment_t oldfs = get_fs();
566 struct user_arg_ptr argv = {
567 .ptr.native = (const char __user *const __user *)__argv,
568 };
569
570 set_fs(KERNEL_DS);
571 r = copy_strings(argc, argv, bprm);
572 set_fs(oldfs);
573
574 return r;
575 }
576 EXPORT_SYMBOL(copy_strings_kernel);
577
578 #ifdef CONFIG_MMU
579
580 /*
581 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
582 * the binfmt code determines where the new stack should reside, we shift it to
583 * its final location. The process proceeds as follows:
584 *
585 * 1) Use shift to calculate the new vma endpoints.
586 * 2) Extend vma to cover both the old and new ranges. This ensures the
587 * arguments passed to subsequent functions are consistent.
588 * 3) Move vma's page tables to the new range.
589 * 4) Free up any cleared pgd range.
590 * 5) Shrink the vma to cover only the new range.
591 */
592 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
593 {
594 struct mm_struct *mm = vma->vm_mm;
595 unsigned long old_start = vma->vm_start;
596 unsigned long old_end = vma->vm_end;
597 unsigned long length = old_end - old_start;
598 unsigned long new_start = old_start - shift;
599 unsigned long new_end = old_end - shift;
600 struct mmu_gather tlb;
601
602 BUG_ON(new_start > new_end);
603
604 /*
605 * ensure there are no vmas between where we want to go
606 * and where we are
607 */
608 if (vma != find_vma(mm, new_start))
609 return -EFAULT;
610
611 /*
612 * cover the whole range: [new_start, old_end)
613 */
614 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
615 return -ENOMEM;
616
617 /*
618 * move the page tables downwards, on failure we rely on
619 * process cleanup to remove whatever mess we made.
620 */
621 if (length != move_page_tables(vma, old_start,
622 vma, new_start, length, false))
623 return -ENOMEM;
624
625 lru_add_drain();
626 tlb_gather_mmu(&tlb, mm, old_start, old_end);
627 if (new_end > old_start) {
628 /*
629 * when the old and new regions overlap clear from new_end.
630 */
631 free_pgd_range(&tlb, new_end, old_end, new_end,
632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633 } else {
634 /*
635 * otherwise, clean from old_start; this is done to not touch
636 * the address space in [new_end, old_start) some architectures
637 * have constraints on va-space that make this illegal (IA64) -
638 * for the others its just a little faster.
639 */
640 free_pgd_range(&tlb, old_start, old_end, new_end,
641 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
642 }
643 tlb_finish_mmu(&tlb, old_start, old_end);
644
645 /*
646 * Shrink the vma to just the new range. Always succeeds.
647 */
648 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
649
650 return 0;
651 }
652
653 /*
654 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
655 * the stack is optionally relocated, and some extra space is added.
656 */
657 int setup_arg_pages(struct linux_binprm *bprm,
658 unsigned long stack_top,
659 int executable_stack)
660 {
661 unsigned long ret;
662 unsigned long stack_shift;
663 struct mm_struct *mm = current->mm;
664 struct vm_area_struct *vma = bprm->vma;
665 struct vm_area_struct *prev = NULL;
666 unsigned long vm_flags;
667 unsigned long stack_base;
668 unsigned long stack_size;
669 unsigned long stack_expand;
670 unsigned long rlim_stack;
671
672 #ifdef CONFIG_STACK_GROWSUP
673 /* Limit stack size */
674 stack_base = rlimit_max(RLIMIT_STACK);
675 if (stack_base > STACK_SIZE_MAX)
676 stack_base = STACK_SIZE_MAX;
677
678 /* Add space for stack randomization. */
679 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
680
681 /* Make sure we didn't let the argument array grow too large. */
682 if (vma->vm_end - vma->vm_start > stack_base)
683 return -ENOMEM;
684
685 stack_base = PAGE_ALIGN(stack_top - stack_base);
686
687 stack_shift = vma->vm_start - stack_base;
688 mm->arg_start = bprm->p - stack_shift;
689 bprm->p = vma->vm_end - stack_shift;
690 #else
691 stack_top = arch_align_stack(stack_top);
692 stack_top = PAGE_ALIGN(stack_top);
693
694 if (unlikely(stack_top < mmap_min_addr) ||
695 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
696 return -ENOMEM;
697
698 stack_shift = vma->vm_end - stack_top;
699
700 bprm->p -= stack_shift;
701 mm->arg_start = bprm->p;
702 #endif
703
704 if (bprm->loader)
705 bprm->loader -= stack_shift;
706 bprm->exec -= stack_shift;
707
708 if (down_write_killable(&mm->mmap_sem))
709 return -EINTR;
710
711 vm_flags = VM_STACK_FLAGS;
712
713 /*
714 * Adjust stack execute permissions; explicitly enable for
715 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
716 * (arch default) otherwise.
717 */
718 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
719 vm_flags |= VM_EXEC;
720 else if (executable_stack == EXSTACK_DISABLE_X)
721 vm_flags &= ~VM_EXEC;
722 vm_flags |= mm->def_flags;
723 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
724
725 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
726 vm_flags);
727 if (ret)
728 goto out_unlock;
729 BUG_ON(prev != vma);
730
731 /* Move stack pages down in memory. */
732 if (stack_shift) {
733 ret = shift_arg_pages(vma, stack_shift);
734 if (ret)
735 goto out_unlock;
736 }
737
738 /* mprotect_fixup is overkill to remove the temporary stack flags */
739 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
740
741 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
742 stack_size = vma->vm_end - vma->vm_start;
743 /*
744 * Align this down to a page boundary as expand_stack
745 * will align it up.
746 */
747 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
748 #ifdef CONFIG_STACK_GROWSUP
749 if (stack_size + stack_expand > rlim_stack)
750 stack_base = vma->vm_start + rlim_stack;
751 else
752 stack_base = vma->vm_end + stack_expand;
753 #else
754 if (stack_size + stack_expand > rlim_stack)
755 stack_base = vma->vm_end - rlim_stack;
756 else
757 stack_base = vma->vm_start - stack_expand;
758 #endif
759 current->mm->start_stack = bprm->p;
760 ret = expand_stack(vma, stack_base);
761 if (ret)
762 ret = -EFAULT;
763
764 out_unlock:
765 up_write(&mm->mmap_sem);
766 return ret;
767 }
768 EXPORT_SYMBOL(setup_arg_pages);
769
770 #else
771
772 /*
773 * Transfer the program arguments and environment from the holding pages
774 * onto the stack. The provided stack pointer is adjusted accordingly.
775 */
776 int transfer_args_to_stack(struct linux_binprm *bprm,
777 unsigned long *sp_location)
778 {
779 unsigned long index, stop, sp;
780 int ret = 0;
781
782 stop = bprm->p >> PAGE_SHIFT;
783 sp = *sp_location;
784
785 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
786 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
787 char *src = kmap(bprm->page[index]) + offset;
788 sp -= PAGE_SIZE - offset;
789 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
790 ret = -EFAULT;
791 kunmap(bprm->page[index]);
792 if (ret)
793 goto out;
794 }
795
796 *sp_location = sp;
797
798 out:
799 return ret;
800 }
801 EXPORT_SYMBOL(transfer_args_to_stack);
802
803 #endif /* CONFIG_MMU */
804
805 static struct file *do_open_execat(int fd, struct filename *name, int flags)
806 {
807 struct file *file;
808 int err;
809 struct open_flags open_exec_flags = {
810 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
811 .acc_mode = MAY_EXEC,
812 .intent = LOOKUP_OPEN,
813 .lookup_flags = LOOKUP_FOLLOW,
814 };
815
816 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
817 return ERR_PTR(-EINVAL);
818 if (flags & AT_SYMLINK_NOFOLLOW)
819 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
820 if (flags & AT_EMPTY_PATH)
821 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
822
823 file = do_filp_open(fd, name, &open_exec_flags);
824 if (IS_ERR(file))
825 goto out;
826
827 err = -EACCES;
828 if (!S_ISREG(file_inode(file)->i_mode))
829 goto exit;
830
831 if (path_noexec(&file->f_path))
832 goto exit;
833
834 err = deny_write_access(file);
835 if (err)
836 goto exit;
837
838 if (name->name[0] != '\0')
839 fsnotify_open(file);
840
841 out:
842 return file;
843
844 exit:
845 fput(file);
846 return ERR_PTR(err);
847 }
848
849 struct file *open_exec(const char *name)
850 {
851 struct filename *filename = getname_kernel(name);
852 struct file *f = ERR_CAST(filename);
853
854 if (!IS_ERR(filename)) {
855 f = do_open_execat(AT_FDCWD, filename, 0);
856 putname(filename);
857 }
858 return f;
859 }
860 EXPORT_SYMBOL(open_exec);
861
862 int kernel_read(struct file *file, loff_t offset,
863 char *addr, unsigned long count)
864 {
865 mm_segment_t old_fs;
866 loff_t pos = offset;
867 int result;
868
869 old_fs = get_fs();
870 set_fs(get_ds());
871 /* The cast to a user pointer is valid due to the set_fs() */
872 result = vfs_read(file, (void __user *)addr, count, &pos);
873 set_fs(old_fs);
874 return result;
875 }
876
877 EXPORT_SYMBOL(kernel_read);
878
879 int kernel_read_file(struct file *file, void **buf, loff_t *size,
880 loff_t max_size, enum kernel_read_file_id id)
881 {
882 loff_t i_size, pos;
883 ssize_t bytes = 0;
884 int ret;
885
886 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
887 return -EINVAL;
888
889 ret = security_kernel_read_file(file, id);
890 if (ret)
891 return ret;
892
893 ret = deny_write_access(file);
894 if (ret)
895 return ret;
896
897 i_size = i_size_read(file_inode(file));
898 if (max_size > 0 && i_size > max_size) {
899 ret = -EFBIG;
900 goto out;
901 }
902 if (i_size <= 0) {
903 ret = -EINVAL;
904 goto out;
905 }
906
907 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
908 *buf = vmalloc(i_size);
909 if (!*buf) {
910 ret = -ENOMEM;
911 goto out;
912 }
913
914 pos = 0;
915 while (pos < i_size) {
916 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
917 i_size - pos);
918 if (bytes < 0) {
919 ret = bytes;
920 goto out;
921 }
922
923 if (bytes == 0)
924 break;
925 pos += bytes;
926 }
927
928 if (pos != i_size) {
929 ret = -EIO;
930 goto out_free;
931 }
932
933 ret = security_kernel_post_read_file(file, *buf, i_size, id);
934 if (!ret)
935 *size = pos;
936
937 out_free:
938 if (ret < 0) {
939 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
940 vfree(*buf);
941 *buf = NULL;
942 }
943 }
944
945 out:
946 allow_write_access(file);
947 return ret;
948 }
949 EXPORT_SYMBOL_GPL(kernel_read_file);
950
951 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
952 loff_t max_size, enum kernel_read_file_id id)
953 {
954 struct file *file;
955 int ret;
956
957 if (!path || !*path)
958 return -EINVAL;
959
960 file = filp_open(path, O_RDONLY, 0);
961 if (IS_ERR(file))
962 return PTR_ERR(file);
963
964 ret = kernel_read_file(file, buf, size, max_size, id);
965 fput(file);
966 return ret;
967 }
968 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
969
970 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
971 enum kernel_read_file_id id)
972 {
973 struct fd f = fdget(fd);
974 int ret = -EBADF;
975
976 if (!f.file)
977 goto out;
978
979 ret = kernel_read_file(f.file, buf, size, max_size, id);
980 out:
981 fdput(f);
982 return ret;
983 }
984 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
985
986 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
987 {
988 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
989 if (res > 0)
990 flush_icache_range(addr, addr + len);
991 return res;
992 }
993 EXPORT_SYMBOL(read_code);
994
995 static int exec_mmap(struct mm_struct *mm)
996 {
997 struct task_struct *tsk;
998 struct mm_struct *old_mm, *active_mm;
999
1000 /* Notify parent that we're no longer interested in the old VM */
1001 tsk = current;
1002 old_mm = current->mm;
1003 mm_release(tsk, old_mm);
1004
1005 if (old_mm) {
1006 sync_mm_rss(old_mm);
1007 /*
1008 * Make sure that if there is a core dump in progress
1009 * for the old mm, we get out and die instead of going
1010 * through with the exec. We must hold mmap_sem around
1011 * checking core_state and changing tsk->mm.
1012 */
1013 down_read(&old_mm->mmap_sem);
1014 if (unlikely(old_mm->core_state)) {
1015 up_read(&old_mm->mmap_sem);
1016 return -EINTR;
1017 }
1018 }
1019 task_lock(tsk);
1020 active_mm = tsk->active_mm;
1021 tsk->mm = mm;
1022 tsk->active_mm = mm;
1023 activate_mm(active_mm, mm);
1024 tsk->mm->vmacache_seqnum = 0;
1025 vmacache_flush(tsk);
1026 task_unlock(tsk);
1027 if (old_mm) {
1028 up_read(&old_mm->mmap_sem);
1029 BUG_ON(active_mm != old_mm);
1030 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1031 mm_update_next_owner(old_mm);
1032 mmput(old_mm);
1033 return 0;
1034 }
1035 mmdrop(active_mm);
1036 return 0;
1037 }
1038
1039 /*
1040 * This function makes sure the current process has its own signal table,
1041 * so that flush_signal_handlers can later reset the handlers without
1042 * disturbing other processes. (Other processes might share the signal
1043 * table via the CLONE_SIGHAND option to clone().)
1044 */
1045 static int de_thread(struct task_struct *tsk)
1046 {
1047 struct signal_struct *sig = tsk->signal;
1048 struct sighand_struct *oldsighand = tsk->sighand;
1049 spinlock_t *lock = &oldsighand->siglock;
1050
1051 if (thread_group_empty(tsk))
1052 goto no_thread_group;
1053
1054 /*
1055 * Kill all other threads in the thread group.
1056 */
1057 spin_lock_irq(lock);
1058 if (signal_group_exit(sig)) {
1059 /*
1060 * Another group action in progress, just
1061 * return so that the signal is processed.
1062 */
1063 spin_unlock_irq(lock);
1064 return -EAGAIN;
1065 }
1066
1067 sig->group_exit_task = tsk;
1068 sig->notify_count = zap_other_threads(tsk);
1069 if (!thread_group_leader(tsk))
1070 sig->notify_count--;
1071
1072 while (sig->notify_count) {
1073 __set_current_state(TASK_KILLABLE);
1074 spin_unlock_irq(lock);
1075 schedule();
1076 if (unlikely(__fatal_signal_pending(tsk)))
1077 goto killed;
1078 spin_lock_irq(lock);
1079 }
1080 spin_unlock_irq(lock);
1081
1082 /*
1083 * At this point all other threads have exited, all we have to
1084 * do is to wait for the thread group leader to become inactive,
1085 * and to assume its PID:
1086 */
1087 if (!thread_group_leader(tsk)) {
1088 struct task_struct *leader = tsk->group_leader;
1089
1090 for (;;) {
1091 threadgroup_change_begin(tsk);
1092 write_lock_irq(&tasklist_lock);
1093 /*
1094 * Do this under tasklist_lock to ensure that
1095 * exit_notify() can't miss ->group_exit_task
1096 */
1097 sig->notify_count = -1;
1098 if (likely(leader->exit_state))
1099 break;
1100 __set_current_state(TASK_KILLABLE);
1101 write_unlock_irq(&tasklist_lock);
1102 threadgroup_change_end(tsk);
1103 schedule();
1104 if (unlikely(__fatal_signal_pending(tsk)))
1105 goto killed;
1106 }
1107
1108 /*
1109 * The only record we have of the real-time age of a
1110 * process, regardless of execs it's done, is start_time.
1111 * All the past CPU time is accumulated in signal_struct
1112 * from sister threads now dead. But in this non-leader
1113 * exec, nothing survives from the original leader thread,
1114 * whose birth marks the true age of this process now.
1115 * When we take on its identity by switching to its PID, we
1116 * also take its birthdate (always earlier than our own).
1117 */
1118 tsk->start_time = leader->start_time;
1119 tsk->real_start_time = leader->real_start_time;
1120
1121 BUG_ON(!same_thread_group(leader, tsk));
1122 BUG_ON(has_group_leader_pid(tsk));
1123 /*
1124 * An exec() starts a new thread group with the
1125 * TGID of the previous thread group. Rehash the
1126 * two threads with a switched PID, and release
1127 * the former thread group leader:
1128 */
1129
1130 /* Become a process group leader with the old leader's pid.
1131 * The old leader becomes a thread of the this thread group.
1132 * Note: The old leader also uses this pid until release_task
1133 * is called. Odd but simple and correct.
1134 */
1135 tsk->pid = leader->pid;
1136 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1137 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 transfer_pid(leader, tsk, PIDTYPE_SID);
1139
1140 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 list_replace_init(&leader->sibling, &tsk->sibling);
1142
1143 tsk->group_leader = tsk;
1144 leader->group_leader = tsk;
1145
1146 tsk->exit_signal = SIGCHLD;
1147 leader->exit_signal = -1;
1148
1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 leader->exit_state = EXIT_DEAD;
1151
1152 /*
1153 * We are going to release_task()->ptrace_unlink() silently,
1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 * the tracer wont't block again waiting for this thread.
1156 */
1157 if (unlikely(leader->ptrace))
1158 __wake_up_parent(leader, leader->parent);
1159 write_unlock_irq(&tasklist_lock);
1160 threadgroup_change_end(tsk);
1161
1162 release_task(leader);
1163 }
1164
1165 sig->group_exit_task = NULL;
1166 sig->notify_count = 0;
1167
1168 no_thread_group:
1169 /* we have changed execution domain */
1170 tsk->exit_signal = SIGCHLD;
1171
1172 exit_itimers(sig);
1173 flush_itimer_signals();
1174
1175 if (atomic_read(&oldsighand->count) != 1) {
1176 struct sighand_struct *newsighand;
1177 /*
1178 * This ->sighand is shared with the CLONE_SIGHAND
1179 * but not CLONE_THREAD task, switch to the new one.
1180 */
1181 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1182 if (!newsighand)
1183 return -ENOMEM;
1184
1185 atomic_set(&newsighand->count, 1);
1186 memcpy(newsighand->action, oldsighand->action,
1187 sizeof(newsighand->action));
1188
1189 write_lock_irq(&tasklist_lock);
1190 spin_lock(&oldsighand->siglock);
1191 rcu_assign_pointer(tsk->sighand, newsighand);
1192 spin_unlock(&oldsighand->siglock);
1193 write_unlock_irq(&tasklist_lock);
1194
1195 __cleanup_sighand(oldsighand);
1196 }
1197
1198 BUG_ON(!thread_group_leader(tsk));
1199 return 0;
1200
1201 killed:
1202 /* protects against exit_notify() and __exit_signal() */
1203 read_lock(&tasklist_lock);
1204 sig->group_exit_task = NULL;
1205 sig->notify_count = 0;
1206 read_unlock(&tasklist_lock);
1207 return -EAGAIN;
1208 }
1209
1210 char *get_task_comm(char *buf, struct task_struct *tsk)
1211 {
1212 /* buf must be at least sizeof(tsk->comm) in size */
1213 task_lock(tsk);
1214 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1215 task_unlock(tsk);
1216 return buf;
1217 }
1218 EXPORT_SYMBOL_GPL(get_task_comm);
1219
1220 /*
1221 * These functions flushes out all traces of the currently running executable
1222 * so that a new one can be started
1223 */
1224
1225 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1226 {
1227 task_lock(tsk);
1228 trace_task_rename(tsk, buf);
1229 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1230 task_unlock(tsk);
1231 perf_event_comm(tsk, exec);
1232 }
1233
1234 int flush_old_exec(struct linux_binprm * bprm)
1235 {
1236 int retval;
1237
1238 /*
1239 * Make sure we have a private signal table and that
1240 * we are unassociated from the previous thread group.
1241 */
1242 retval = de_thread(current);
1243 if (retval)
1244 goto out;
1245
1246 /*
1247 * Must be called _before_ exec_mmap() as bprm->mm is
1248 * not visibile until then. This also enables the update
1249 * to be lockless.
1250 */
1251 set_mm_exe_file(bprm->mm, bprm->file);
1252
1253 /*
1254 * Release all of the old mmap stuff
1255 */
1256 acct_arg_size(bprm, 0);
1257 retval = exec_mmap(bprm->mm);
1258 if (retval)
1259 goto out;
1260
1261 bprm->mm = NULL; /* We're using it now */
1262
1263 set_fs(USER_DS);
1264 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1265 PF_NOFREEZE | PF_NO_SETAFFINITY);
1266 flush_thread();
1267 current->personality &= ~bprm->per_clear;
1268
1269 return 0;
1270
1271 out:
1272 return retval;
1273 }
1274 EXPORT_SYMBOL(flush_old_exec);
1275
1276 void would_dump(struct linux_binprm *bprm, struct file *file)
1277 {
1278 if (inode_permission(file_inode(file), MAY_READ) < 0)
1279 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1280 }
1281 EXPORT_SYMBOL(would_dump);
1282
1283 void setup_new_exec(struct linux_binprm * bprm)
1284 {
1285 arch_pick_mmap_layout(current->mm);
1286
1287 /* This is the point of no return */
1288 current->sas_ss_sp = current->sas_ss_size = 0;
1289
1290 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1291 set_dumpable(current->mm, SUID_DUMP_USER);
1292 else
1293 set_dumpable(current->mm, suid_dumpable);
1294
1295 perf_event_exec();
1296 __set_task_comm(current, kbasename(bprm->filename), true);
1297
1298 /* Set the new mm task size. We have to do that late because it may
1299 * depend on TIF_32BIT which is only updated in flush_thread() on
1300 * some architectures like powerpc
1301 */
1302 current->mm->task_size = TASK_SIZE;
1303
1304 /* install the new credentials */
1305 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1306 !gid_eq(bprm->cred->gid, current_egid())) {
1307 current->pdeath_signal = 0;
1308 } else {
1309 would_dump(bprm, bprm->file);
1310 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1311 set_dumpable(current->mm, suid_dumpable);
1312 }
1313
1314 /* An exec changes our domain. We are no longer part of the thread
1315 group */
1316 current->self_exec_id++;
1317 flush_signal_handlers(current, 0);
1318 do_close_on_exec(current->files);
1319 }
1320 EXPORT_SYMBOL(setup_new_exec);
1321
1322 /*
1323 * Prepare credentials and lock ->cred_guard_mutex.
1324 * install_exec_creds() commits the new creds and drops the lock.
1325 * Or, if exec fails before, free_bprm() should release ->cred and
1326 * and unlock.
1327 */
1328 int prepare_bprm_creds(struct linux_binprm *bprm)
1329 {
1330 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1331 return -ERESTARTNOINTR;
1332
1333 bprm->cred = prepare_exec_creds();
1334 if (likely(bprm->cred))
1335 return 0;
1336
1337 mutex_unlock(&current->signal->cred_guard_mutex);
1338 return -ENOMEM;
1339 }
1340
1341 static void free_bprm(struct linux_binprm *bprm)
1342 {
1343 free_arg_pages(bprm);
1344 if (bprm->cred) {
1345 mutex_unlock(&current->signal->cred_guard_mutex);
1346 abort_creds(bprm->cred);
1347 }
1348 if (bprm->file) {
1349 allow_write_access(bprm->file);
1350 fput(bprm->file);
1351 }
1352 /* If a binfmt changed the interp, free it. */
1353 if (bprm->interp != bprm->filename)
1354 kfree(bprm->interp);
1355 kfree(bprm);
1356 }
1357
1358 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1359 {
1360 /* If a binfmt changed the interp, free it first. */
1361 if (bprm->interp != bprm->filename)
1362 kfree(bprm->interp);
1363 bprm->interp = kstrdup(interp, GFP_KERNEL);
1364 if (!bprm->interp)
1365 return -ENOMEM;
1366 return 0;
1367 }
1368 EXPORT_SYMBOL(bprm_change_interp);
1369
1370 /*
1371 * install the new credentials for this executable
1372 */
1373 void install_exec_creds(struct linux_binprm *bprm)
1374 {
1375 security_bprm_committing_creds(bprm);
1376
1377 commit_creds(bprm->cred);
1378 bprm->cred = NULL;
1379
1380 /*
1381 * Disable monitoring for regular users
1382 * when executing setuid binaries. Must
1383 * wait until new credentials are committed
1384 * by commit_creds() above
1385 */
1386 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1387 perf_event_exit_task(current);
1388 /*
1389 * cred_guard_mutex must be held at least to this point to prevent
1390 * ptrace_attach() from altering our determination of the task's
1391 * credentials; any time after this it may be unlocked.
1392 */
1393 security_bprm_committed_creds(bprm);
1394 mutex_unlock(&current->signal->cred_guard_mutex);
1395 }
1396 EXPORT_SYMBOL(install_exec_creds);
1397
1398 /*
1399 * determine how safe it is to execute the proposed program
1400 * - the caller must hold ->cred_guard_mutex to protect against
1401 * PTRACE_ATTACH or seccomp thread-sync
1402 */
1403 static void check_unsafe_exec(struct linux_binprm *bprm)
1404 {
1405 struct task_struct *p = current, *t;
1406 unsigned n_fs;
1407
1408 if (p->ptrace) {
1409 if (p->ptrace & PT_PTRACE_CAP)
1410 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1411 else
1412 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1413 }
1414
1415 /*
1416 * This isn't strictly necessary, but it makes it harder for LSMs to
1417 * mess up.
1418 */
1419 if (task_no_new_privs(current))
1420 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1421
1422 t = p;
1423 n_fs = 1;
1424 spin_lock(&p->fs->lock);
1425 rcu_read_lock();
1426 while_each_thread(p, t) {
1427 if (t->fs == p->fs)
1428 n_fs++;
1429 }
1430 rcu_read_unlock();
1431
1432 if (p->fs->users > n_fs)
1433 bprm->unsafe |= LSM_UNSAFE_SHARE;
1434 else
1435 p->fs->in_exec = 1;
1436 spin_unlock(&p->fs->lock);
1437 }
1438
1439 static void bprm_fill_uid(struct linux_binprm *bprm)
1440 {
1441 struct inode *inode;
1442 unsigned int mode;
1443 kuid_t uid;
1444 kgid_t gid;
1445
1446 /*
1447 * Since this can be called multiple times (via prepare_binprm),
1448 * we must clear any previous work done when setting set[ug]id
1449 * bits from any earlier bprm->file uses (for example when run
1450 * first for a setuid script then again for its interpreter).
1451 */
1452 bprm->cred->euid = current_euid();
1453 bprm->cred->egid = current_egid();
1454
1455 if (!mnt_may_suid(bprm->file->f_path.mnt))
1456 return;
1457
1458 if (task_no_new_privs(current))
1459 return;
1460
1461 inode = file_inode(bprm->file);
1462 mode = READ_ONCE(inode->i_mode);
1463 if (!(mode & (S_ISUID|S_ISGID)))
1464 return;
1465
1466 /* Be careful if suid/sgid is set */
1467 inode_lock(inode);
1468
1469 /* reload atomically mode/uid/gid now that lock held */
1470 mode = inode->i_mode;
1471 uid = inode->i_uid;
1472 gid = inode->i_gid;
1473 inode_unlock(inode);
1474
1475 /* We ignore suid/sgid if there are no mappings for them in the ns */
1476 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1477 !kgid_has_mapping(bprm->cred->user_ns, gid))
1478 return;
1479
1480 if (mode & S_ISUID) {
1481 bprm->per_clear |= PER_CLEAR_ON_SETID;
1482 bprm->cred->euid = uid;
1483 }
1484
1485 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1486 bprm->per_clear |= PER_CLEAR_ON_SETID;
1487 bprm->cred->egid = gid;
1488 }
1489 }
1490
1491 /*
1492 * Fill the binprm structure from the inode.
1493 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1494 *
1495 * This may be called multiple times for binary chains (scripts for example).
1496 */
1497 int prepare_binprm(struct linux_binprm *bprm)
1498 {
1499 int retval;
1500
1501 bprm_fill_uid(bprm);
1502
1503 /* fill in binprm security blob */
1504 retval = security_bprm_set_creds(bprm);
1505 if (retval)
1506 return retval;
1507 bprm->cred_prepared = 1;
1508
1509 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1510 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1511 }
1512
1513 EXPORT_SYMBOL(prepare_binprm);
1514
1515 /*
1516 * Arguments are '\0' separated strings found at the location bprm->p
1517 * points to; chop off the first by relocating brpm->p to right after
1518 * the first '\0' encountered.
1519 */
1520 int remove_arg_zero(struct linux_binprm *bprm)
1521 {
1522 int ret = 0;
1523 unsigned long offset;
1524 char *kaddr;
1525 struct page *page;
1526
1527 if (!bprm->argc)
1528 return 0;
1529
1530 do {
1531 offset = bprm->p & ~PAGE_MASK;
1532 page = get_arg_page(bprm, bprm->p, 0);
1533 if (!page) {
1534 ret = -EFAULT;
1535 goto out;
1536 }
1537 kaddr = kmap_atomic(page);
1538
1539 for (; offset < PAGE_SIZE && kaddr[offset];
1540 offset++, bprm->p++)
1541 ;
1542
1543 kunmap_atomic(kaddr);
1544 put_arg_page(page);
1545 } while (offset == PAGE_SIZE);
1546
1547 bprm->p++;
1548 bprm->argc--;
1549 ret = 0;
1550
1551 out:
1552 return ret;
1553 }
1554 EXPORT_SYMBOL(remove_arg_zero);
1555
1556 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1557 /*
1558 * cycle the list of binary formats handler, until one recognizes the image
1559 */
1560 int search_binary_handler(struct linux_binprm *bprm)
1561 {
1562 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1563 struct linux_binfmt *fmt;
1564 int retval;
1565
1566 /* This allows 4 levels of binfmt rewrites before failing hard. */
1567 if (bprm->recursion_depth > 5)
1568 return -ELOOP;
1569
1570 retval = security_bprm_check(bprm);
1571 if (retval)
1572 return retval;
1573
1574 retval = -ENOENT;
1575 retry:
1576 read_lock(&binfmt_lock);
1577 list_for_each_entry(fmt, &formats, lh) {
1578 if (!try_module_get(fmt->module))
1579 continue;
1580 read_unlock(&binfmt_lock);
1581 bprm->recursion_depth++;
1582 retval = fmt->load_binary(bprm);
1583 read_lock(&binfmt_lock);
1584 put_binfmt(fmt);
1585 bprm->recursion_depth--;
1586 if (retval < 0 && !bprm->mm) {
1587 /* we got to flush_old_exec() and failed after it */
1588 read_unlock(&binfmt_lock);
1589 force_sigsegv(SIGSEGV, current);
1590 return retval;
1591 }
1592 if (retval != -ENOEXEC || !bprm->file) {
1593 read_unlock(&binfmt_lock);
1594 return retval;
1595 }
1596 }
1597 read_unlock(&binfmt_lock);
1598
1599 if (need_retry) {
1600 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1601 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1602 return retval;
1603 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1604 return retval;
1605 need_retry = false;
1606 goto retry;
1607 }
1608
1609 return retval;
1610 }
1611 EXPORT_SYMBOL(search_binary_handler);
1612
1613 static int exec_binprm(struct linux_binprm *bprm)
1614 {
1615 pid_t old_pid, old_vpid;
1616 int ret;
1617
1618 /* Need to fetch pid before load_binary changes it */
1619 old_pid = current->pid;
1620 rcu_read_lock();
1621 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1622 rcu_read_unlock();
1623
1624 ret = search_binary_handler(bprm);
1625 if (ret >= 0) {
1626 audit_bprm(bprm);
1627 trace_sched_process_exec(current, old_pid, bprm);
1628 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1629 proc_exec_connector(current);
1630 }
1631
1632 return ret;
1633 }
1634
1635 /*
1636 * sys_execve() executes a new program.
1637 */
1638 static int do_execveat_common(int fd, struct filename *filename,
1639 struct user_arg_ptr argv,
1640 struct user_arg_ptr envp,
1641 int flags)
1642 {
1643 char *pathbuf = NULL;
1644 struct linux_binprm *bprm;
1645 struct file *file;
1646 struct files_struct *displaced;
1647 int retval;
1648
1649 if (IS_ERR(filename))
1650 return PTR_ERR(filename);
1651
1652 /*
1653 * We move the actual failure in case of RLIMIT_NPROC excess from
1654 * set*uid() to execve() because too many poorly written programs
1655 * don't check setuid() return code. Here we additionally recheck
1656 * whether NPROC limit is still exceeded.
1657 */
1658 if ((current->flags & PF_NPROC_EXCEEDED) &&
1659 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1660 retval = -EAGAIN;
1661 goto out_ret;
1662 }
1663
1664 /* We're below the limit (still or again), so we don't want to make
1665 * further execve() calls fail. */
1666 current->flags &= ~PF_NPROC_EXCEEDED;
1667
1668 retval = unshare_files(&displaced);
1669 if (retval)
1670 goto out_ret;
1671
1672 retval = -ENOMEM;
1673 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1674 if (!bprm)
1675 goto out_files;
1676
1677 retval = prepare_bprm_creds(bprm);
1678 if (retval)
1679 goto out_free;
1680
1681 check_unsafe_exec(bprm);
1682 current->in_execve = 1;
1683
1684 file = do_open_execat(fd, filename, flags);
1685 retval = PTR_ERR(file);
1686 if (IS_ERR(file))
1687 goto out_unmark;
1688
1689 sched_exec();
1690
1691 bprm->file = file;
1692 if (fd == AT_FDCWD || filename->name[0] == '/') {
1693 bprm->filename = filename->name;
1694 } else {
1695 if (filename->name[0] == '\0')
1696 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1697 else
1698 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1699 fd, filename->name);
1700 if (!pathbuf) {
1701 retval = -ENOMEM;
1702 goto out_unmark;
1703 }
1704 /*
1705 * Record that a name derived from an O_CLOEXEC fd will be
1706 * inaccessible after exec. Relies on having exclusive access to
1707 * current->files (due to unshare_files above).
1708 */
1709 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1710 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1711 bprm->filename = pathbuf;
1712 }
1713 bprm->interp = bprm->filename;
1714
1715 retval = bprm_mm_init(bprm);
1716 if (retval)
1717 goto out_unmark;
1718
1719 bprm->argc = count(argv, MAX_ARG_STRINGS);
1720 if ((retval = bprm->argc) < 0)
1721 goto out;
1722
1723 bprm->envc = count(envp, MAX_ARG_STRINGS);
1724 if ((retval = bprm->envc) < 0)
1725 goto out;
1726
1727 retval = prepare_binprm(bprm);
1728 if (retval < 0)
1729 goto out;
1730
1731 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1732 if (retval < 0)
1733 goto out;
1734
1735 bprm->exec = bprm->p;
1736 retval = copy_strings(bprm->envc, envp, bprm);
1737 if (retval < 0)
1738 goto out;
1739
1740 retval = copy_strings(bprm->argc, argv, bprm);
1741 if (retval < 0)
1742 goto out;
1743
1744 retval = exec_binprm(bprm);
1745 if (retval < 0)
1746 goto out;
1747
1748 /* execve succeeded */
1749 current->fs->in_exec = 0;
1750 current->in_execve = 0;
1751 acct_update_integrals(current);
1752 task_numa_free(current);
1753 free_bprm(bprm);
1754 kfree(pathbuf);
1755 putname(filename);
1756 if (displaced)
1757 put_files_struct(displaced);
1758 return retval;
1759
1760 out:
1761 if (bprm->mm) {
1762 acct_arg_size(bprm, 0);
1763 mmput(bprm->mm);
1764 }
1765
1766 out_unmark:
1767 current->fs->in_exec = 0;
1768 current->in_execve = 0;
1769
1770 out_free:
1771 free_bprm(bprm);
1772 kfree(pathbuf);
1773
1774 out_files:
1775 if (displaced)
1776 reset_files_struct(displaced);
1777 out_ret:
1778 putname(filename);
1779 return retval;
1780 }
1781
1782 int do_execve(struct filename *filename,
1783 const char __user *const __user *__argv,
1784 const char __user *const __user *__envp)
1785 {
1786 struct user_arg_ptr argv = { .ptr.native = __argv };
1787 struct user_arg_ptr envp = { .ptr.native = __envp };
1788 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1789 }
1790
1791 int do_execveat(int fd, struct filename *filename,
1792 const char __user *const __user *__argv,
1793 const char __user *const __user *__envp,
1794 int flags)
1795 {
1796 struct user_arg_ptr argv = { .ptr.native = __argv };
1797 struct user_arg_ptr envp = { .ptr.native = __envp };
1798
1799 return do_execveat_common(fd, filename, argv, envp, flags);
1800 }
1801
1802 #ifdef CONFIG_COMPAT
1803 static int compat_do_execve(struct filename *filename,
1804 const compat_uptr_t __user *__argv,
1805 const compat_uptr_t __user *__envp)
1806 {
1807 struct user_arg_ptr argv = {
1808 .is_compat = true,
1809 .ptr.compat = __argv,
1810 };
1811 struct user_arg_ptr envp = {
1812 .is_compat = true,
1813 .ptr.compat = __envp,
1814 };
1815 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1816 }
1817
1818 static int compat_do_execveat(int fd, struct filename *filename,
1819 const compat_uptr_t __user *__argv,
1820 const compat_uptr_t __user *__envp,
1821 int flags)
1822 {
1823 struct user_arg_ptr argv = {
1824 .is_compat = true,
1825 .ptr.compat = __argv,
1826 };
1827 struct user_arg_ptr envp = {
1828 .is_compat = true,
1829 .ptr.compat = __envp,
1830 };
1831 return do_execveat_common(fd, filename, argv, envp, flags);
1832 }
1833 #endif
1834
1835 void set_binfmt(struct linux_binfmt *new)
1836 {
1837 struct mm_struct *mm = current->mm;
1838
1839 if (mm->binfmt)
1840 module_put(mm->binfmt->module);
1841
1842 mm->binfmt = new;
1843 if (new)
1844 __module_get(new->module);
1845 }
1846 EXPORT_SYMBOL(set_binfmt);
1847
1848 /*
1849 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1850 */
1851 void set_dumpable(struct mm_struct *mm, int value)
1852 {
1853 unsigned long old, new;
1854
1855 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1856 return;
1857
1858 do {
1859 old = ACCESS_ONCE(mm->flags);
1860 new = (old & ~MMF_DUMPABLE_MASK) | value;
1861 } while (cmpxchg(&mm->flags, old, new) != old);
1862 }
1863
1864 SYSCALL_DEFINE3(execve,
1865 const char __user *, filename,
1866 const char __user *const __user *, argv,
1867 const char __user *const __user *, envp)
1868 {
1869 return do_execve(getname(filename), argv, envp);
1870 }
1871
1872 SYSCALL_DEFINE5(execveat,
1873 int, fd, const char __user *, filename,
1874 const char __user *const __user *, argv,
1875 const char __user *const __user *, envp,
1876 int, flags)
1877 {
1878 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1879
1880 return do_execveat(fd,
1881 getname_flags(filename, lookup_flags, NULL),
1882 argv, envp, flags);
1883 }
1884
1885 #ifdef CONFIG_COMPAT
1886 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1887 const compat_uptr_t __user *, argv,
1888 const compat_uptr_t __user *, envp)
1889 {
1890 return compat_do_execve(getname(filename), argv, envp);
1891 }
1892
1893 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1894 const char __user *, filename,
1895 const compat_uptr_t __user *, argv,
1896 const compat_uptr_t __user *, envp,
1897 int, flags)
1898 {
1899 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1900
1901 return compat_do_execveat(fd,
1902 getname_flags(filename, lookup_flags, NULL),
1903 argv, envp, flags);
1904 }
1905 #endif