]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/exec.c
ocfs2: use memalloc_nofs_save instead of memalloc_noio_save
[mirror_ubuntu-jammy-kernel.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 int suid_dumpable = 0;
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 BUG_ON(!fmt);
83 if (WARN_ON(!fmt->load_binary))
84 return;
85 write_lock(&binfmt_lock);
86 insert ? list_add(&fmt->lh, &formats) :
87 list_add_tail(&fmt->lh, &formats);
88 write_unlock(&binfmt_lock);
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 module_put(fmt->module);
105 }
106
107 bool path_noexec(const struct path *path)
108 {
109 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112
113 #ifdef CONFIG_USELIB
114 /*
115 * Note that a shared library must be both readable and executable due to
116 * security reasons.
117 *
118 * Also note that we take the address to load from from the file itself.
119 */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 struct linux_binfmt *fmt;
123 struct file *file;
124 struct filename *tmp = getname(library);
125 int error = PTR_ERR(tmp);
126 static const struct open_flags uselib_flags = {
127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 .acc_mode = MAY_READ | MAY_EXEC,
129 .intent = LOOKUP_OPEN,
130 .lookup_flags = LOOKUP_FOLLOW,
131 };
132
133 if (IS_ERR(tmp))
134 goto out;
135
136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 putname(tmp);
138 error = PTR_ERR(file);
139 if (IS_ERR(file))
140 goto out;
141
142 error = -EINVAL;
143 if (!S_ISREG(file_inode(file)->i_mode))
144 goto exit;
145
146 error = -EACCES;
147 if (path_noexec(&file->f_path))
148 goto exit;
149
150 fsnotify_open(file);
151
152 error = -ENOEXEC;
153
154 read_lock(&binfmt_lock);
155 list_for_each_entry(fmt, &formats, lh) {
156 if (!fmt->load_shlib)
157 continue;
158 if (!try_module_get(fmt->module))
159 continue;
160 read_unlock(&binfmt_lock);
161 error = fmt->load_shlib(file);
162 read_lock(&binfmt_lock);
163 put_binfmt(fmt);
164 if (error != -ENOEXEC)
165 break;
166 }
167 read_unlock(&binfmt_lock);
168 exit:
169 fput(file);
170 out:
171 return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174
175 #ifdef CONFIG_MMU
176 /*
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
181 */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 struct mm_struct *mm = current->mm;
185 long diff = (long)(pages - bprm->vma_pages);
186
187 if (!mm || !diff)
188 return;
189
190 bprm->vma_pages = pages;
191 add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 int write)
196 {
197 struct page *page;
198 int ret;
199 unsigned int gup_flags = FOLL_FORCE;
200
201 #ifdef CONFIG_STACK_GROWSUP
202 if (write) {
203 ret = expand_downwards(bprm->vma, pos);
204 if (ret < 0)
205 return NULL;
206 }
207 #endif
208
209 if (write)
210 gup_flags |= FOLL_WRITE;
211
212 /*
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
215 */
216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 &page, NULL, NULL);
218 if (ret <= 0)
219 return NULL;
220
221 if (write)
222 acct_arg_size(bprm, vma_pages(bprm->vma));
223
224 return page;
225 }
226
227 static void put_arg_page(struct page *page)
228 {
229 put_page(page);
230 }
231
232 static void free_arg_pages(struct linux_binprm *bprm)
233 {
234 }
235
236 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
237 struct page *page)
238 {
239 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
240 }
241
242 static int __bprm_mm_init(struct linux_binprm *bprm)
243 {
244 int err;
245 struct vm_area_struct *vma = NULL;
246 struct mm_struct *mm = bprm->mm;
247
248 bprm->vma = vma = vm_area_alloc(mm);
249 if (!vma)
250 return -ENOMEM;
251 vma_set_anonymous(vma);
252
253 if (down_write_killable(&mm->mmap_sem)) {
254 err = -EINTR;
255 goto err_free;
256 }
257
258 /*
259 * Place the stack at the largest stack address the architecture
260 * supports. Later, we'll move this to an appropriate place. We don't
261 * use STACK_TOP because that can depend on attributes which aren't
262 * configured yet.
263 */
264 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
265 vma->vm_end = STACK_TOP_MAX;
266 vma->vm_start = vma->vm_end - PAGE_SIZE;
267 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
268 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
269
270 err = insert_vm_struct(mm, vma);
271 if (err)
272 goto err;
273
274 mm->stack_vm = mm->total_vm = 1;
275 up_write(&mm->mmap_sem);
276 bprm->p = vma->vm_end - sizeof(void *);
277 return 0;
278 err:
279 up_write(&mm->mmap_sem);
280 err_free:
281 bprm->vma = NULL;
282 vm_area_free(vma);
283 return err;
284 }
285
286 static bool valid_arg_len(struct linux_binprm *bprm, long len)
287 {
288 return len <= MAX_ARG_STRLEN;
289 }
290
291 #else
292
293 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
294 {
295 }
296
297 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
298 int write)
299 {
300 struct page *page;
301
302 page = bprm->page[pos / PAGE_SIZE];
303 if (!page && write) {
304 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
305 if (!page)
306 return NULL;
307 bprm->page[pos / PAGE_SIZE] = page;
308 }
309
310 return page;
311 }
312
313 static void put_arg_page(struct page *page)
314 {
315 }
316
317 static void free_arg_page(struct linux_binprm *bprm, int i)
318 {
319 if (bprm->page[i]) {
320 __free_page(bprm->page[i]);
321 bprm->page[i] = NULL;
322 }
323 }
324
325 static void free_arg_pages(struct linux_binprm *bprm)
326 {
327 int i;
328
329 for (i = 0; i < MAX_ARG_PAGES; i++)
330 free_arg_page(bprm, i);
331 }
332
333 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
334 struct page *page)
335 {
336 }
337
338 static int __bprm_mm_init(struct linux_binprm *bprm)
339 {
340 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
341 return 0;
342 }
343
344 static bool valid_arg_len(struct linux_binprm *bprm, long len)
345 {
346 return len <= bprm->p;
347 }
348
349 #endif /* CONFIG_MMU */
350
351 /*
352 * Create a new mm_struct and populate it with a temporary stack
353 * vm_area_struct. We don't have enough context at this point to set the stack
354 * flags, permissions, and offset, so we use temporary values. We'll update
355 * them later in setup_arg_pages().
356 */
357 static int bprm_mm_init(struct linux_binprm *bprm)
358 {
359 int err;
360 struct mm_struct *mm = NULL;
361
362 bprm->mm = mm = mm_alloc();
363 err = -ENOMEM;
364 if (!mm)
365 goto err;
366
367 /* Save current stack limit for all calculations made during exec. */
368 task_lock(current->group_leader);
369 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
370 task_unlock(current->group_leader);
371
372 err = __bprm_mm_init(bprm);
373 if (err)
374 goto err;
375
376 return 0;
377
378 err:
379 if (mm) {
380 bprm->mm = NULL;
381 mmdrop(mm);
382 }
383
384 return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 bool is_compat;
390 #endif
391 union {
392 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 const compat_uptr_t __user *compat;
395 #endif
396 } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401 const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
406
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
409
410 return compat_ptr(compat);
411 }
412 #endif
413
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
416
417 return native;
418 }
419
420 /*
421 * count() counts the number of strings in array ARGV.
422 */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425 int i = 0;
426
427 if (argv.ptr.native != NULL) {
428 for (;;) {
429 const char __user *p = get_user_arg_ptr(argv, i);
430
431 if (!p)
432 break;
433
434 if (IS_ERR(p))
435 return -EFAULT;
436
437 if (i >= max)
438 return -E2BIG;
439 ++i;
440
441 if (fatal_signal_pending(current))
442 return -ERESTARTNOHAND;
443 cond_resched();
444 }
445 }
446 return i;
447 }
448
449 static int prepare_arg_pages(struct linux_binprm *bprm,
450 struct user_arg_ptr argv, struct user_arg_ptr envp)
451 {
452 unsigned long limit, ptr_size;
453
454 bprm->argc = count(argv, MAX_ARG_STRINGS);
455 if (bprm->argc < 0)
456 return bprm->argc;
457
458 bprm->envc = count(envp, MAX_ARG_STRINGS);
459 if (bprm->envc < 0)
460 return bprm->envc;
461
462 /*
463 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
464 * (whichever is smaller) for the argv+env strings.
465 * This ensures that:
466 * - the remaining binfmt code will not run out of stack space,
467 * - the program will have a reasonable amount of stack left
468 * to work from.
469 */
470 limit = _STK_LIM / 4 * 3;
471 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
472 /*
473 * We've historically supported up to 32 pages (ARG_MAX)
474 * of argument strings even with small stacks
475 */
476 limit = max_t(unsigned long, limit, ARG_MAX);
477 /*
478 * We must account for the size of all the argv and envp pointers to
479 * the argv and envp strings, since they will also take up space in
480 * the stack. They aren't stored until much later when we can't
481 * signal to the parent that the child has run out of stack space.
482 * Instead, calculate it here so it's possible to fail gracefully.
483 */
484 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
485 if (limit <= ptr_size)
486 return -E2BIG;
487 limit -= ptr_size;
488
489 bprm->argmin = bprm->p - limit;
490 return 0;
491 }
492
493 /*
494 * 'copy_strings()' copies argument/environment strings from the old
495 * processes's memory to the new process's stack. The call to get_user_pages()
496 * ensures the destination page is created and not swapped out.
497 */
498 static int copy_strings(int argc, struct user_arg_ptr argv,
499 struct linux_binprm *bprm)
500 {
501 struct page *kmapped_page = NULL;
502 char *kaddr = NULL;
503 unsigned long kpos = 0;
504 int ret;
505
506 while (argc-- > 0) {
507 const char __user *str;
508 int len;
509 unsigned long pos;
510
511 ret = -EFAULT;
512 str = get_user_arg_ptr(argv, argc);
513 if (IS_ERR(str))
514 goto out;
515
516 len = strnlen_user(str, MAX_ARG_STRLEN);
517 if (!len)
518 goto out;
519
520 ret = -E2BIG;
521 if (!valid_arg_len(bprm, len))
522 goto out;
523
524 /* We're going to work our way backwords. */
525 pos = bprm->p;
526 str += len;
527 bprm->p -= len;
528 #ifdef CONFIG_MMU
529 if (bprm->p < bprm->argmin)
530 goto out;
531 #endif
532
533 while (len > 0) {
534 int offset, bytes_to_copy;
535
536 if (fatal_signal_pending(current)) {
537 ret = -ERESTARTNOHAND;
538 goto out;
539 }
540 cond_resched();
541
542 offset = pos % PAGE_SIZE;
543 if (offset == 0)
544 offset = PAGE_SIZE;
545
546 bytes_to_copy = offset;
547 if (bytes_to_copy > len)
548 bytes_to_copy = len;
549
550 offset -= bytes_to_copy;
551 pos -= bytes_to_copy;
552 str -= bytes_to_copy;
553 len -= bytes_to_copy;
554
555 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
556 struct page *page;
557
558 page = get_arg_page(bprm, pos, 1);
559 if (!page) {
560 ret = -E2BIG;
561 goto out;
562 }
563
564 if (kmapped_page) {
565 flush_kernel_dcache_page(kmapped_page);
566 kunmap(kmapped_page);
567 put_arg_page(kmapped_page);
568 }
569 kmapped_page = page;
570 kaddr = kmap(kmapped_page);
571 kpos = pos & PAGE_MASK;
572 flush_arg_page(bprm, kpos, kmapped_page);
573 }
574 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
575 ret = -EFAULT;
576 goto out;
577 }
578 }
579 }
580 ret = 0;
581 out:
582 if (kmapped_page) {
583 flush_kernel_dcache_page(kmapped_page);
584 kunmap(kmapped_page);
585 put_arg_page(kmapped_page);
586 }
587 return ret;
588 }
589
590 /*
591 * Like copy_strings, but get argv and its values from kernel memory.
592 */
593 int copy_strings_kernel(int argc, const char *const *__argv,
594 struct linux_binprm *bprm)
595 {
596 int r;
597 mm_segment_t oldfs = get_fs();
598 struct user_arg_ptr argv = {
599 .ptr.native = (const char __user *const __user *)__argv,
600 };
601
602 set_fs(KERNEL_DS);
603 r = copy_strings(argc, argv, bprm);
604 set_fs(oldfs);
605
606 return r;
607 }
608 EXPORT_SYMBOL(copy_strings_kernel);
609
610 #ifdef CONFIG_MMU
611
612 /*
613 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
614 * the binfmt code determines where the new stack should reside, we shift it to
615 * its final location. The process proceeds as follows:
616 *
617 * 1) Use shift to calculate the new vma endpoints.
618 * 2) Extend vma to cover both the old and new ranges. This ensures the
619 * arguments passed to subsequent functions are consistent.
620 * 3) Move vma's page tables to the new range.
621 * 4) Free up any cleared pgd range.
622 * 5) Shrink the vma to cover only the new range.
623 */
624 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
625 {
626 struct mm_struct *mm = vma->vm_mm;
627 unsigned long old_start = vma->vm_start;
628 unsigned long old_end = vma->vm_end;
629 unsigned long length = old_end - old_start;
630 unsigned long new_start = old_start - shift;
631 unsigned long new_end = old_end - shift;
632 struct mmu_gather tlb;
633
634 BUG_ON(new_start > new_end);
635
636 /*
637 * ensure there are no vmas between where we want to go
638 * and where we are
639 */
640 if (vma != find_vma(mm, new_start))
641 return -EFAULT;
642
643 /*
644 * cover the whole range: [new_start, old_end)
645 */
646 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
647 return -ENOMEM;
648
649 /*
650 * move the page tables downwards, on failure we rely on
651 * process cleanup to remove whatever mess we made.
652 */
653 if (length != move_page_tables(vma, old_start,
654 vma, new_start, length, false))
655 return -ENOMEM;
656
657 lru_add_drain();
658 tlb_gather_mmu(&tlb, mm, old_start, old_end);
659 if (new_end > old_start) {
660 /*
661 * when the old and new regions overlap clear from new_end.
662 */
663 free_pgd_range(&tlb, new_end, old_end, new_end,
664 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
665 } else {
666 /*
667 * otherwise, clean from old_start; this is done to not touch
668 * the address space in [new_end, old_start) some architectures
669 * have constraints on va-space that make this illegal (IA64) -
670 * for the others its just a little faster.
671 */
672 free_pgd_range(&tlb, old_start, old_end, new_end,
673 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
674 }
675 tlb_finish_mmu(&tlb, old_start, old_end);
676
677 /*
678 * Shrink the vma to just the new range. Always succeeds.
679 */
680 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
681
682 return 0;
683 }
684
685 /*
686 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
687 * the stack is optionally relocated, and some extra space is added.
688 */
689 int setup_arg_pages(struct linux_binprm *bprm,
690 unsigned long stack_top,
691 int executable_stack)
692 {
693 unsigned long ret;
694 unsigned long stack_shift;
695 struct mm_struct *mm = current->mm;
696 struct vm_area_struct *vma = bprm->vma;
697 struct vm_area_struct *prev = NULL;
698 unsigned long vm_flags;
699 unsigned long stack_base;
700 unsigned long stack_size;
701 unsigned long stack_expand;
702 unsigned long rlim_stack;
703
704 #ifdef CONFIG_STACK_GROWSUP
705 /* Limit stack size */
706 stack_base = bprm->rlim_stack.rlim_max;
707 if (stack_base > STACK_SIZE_MAX)
708 stack_base = STACK_SIZE_MAX;
709
710 /* Add space for stack randomization. */
711 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
712
713 /* Make sure we didn't let the argument array grow too large. */
714 if (vma->vm_end - vma->vm_start > stack_base)
715 return -ENOMEM;
716
717 stack_base = PAGE_ALIGN(stack_top - stack_base);
718
719 stack_shift = vma->vm_start - stack_base;
720 mm->arg_start = bprm->p - stack_shift;
721 bprm->p = vma->vm_end - stack_shift;
722 #else
723 stack_top = arch_align_stack(stack_top);
724 stack_top = PAGE_ALIGN(stack_top);
725
726 if (unlikely(stack_top < mmap_min_addr) ||
727 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
728 return -ENOMEM;
729
730 stack_shift = vma->vm_end - stack_top;
731
732 bprm->p -= stack_shift;
733 mm->arg_start = bprm->p;
734 #endif
735
736 if (bprm->loader)
737 bprm->loader -= stack_shift;
738 bprm->exec -= stack_shift;
739
740 if (down_write_killable(&mm->mmap_sem))
741 return -EINTR;
742
743 vm_flags = VM_STACK_FLAGS;
744
745 /*
746 * Adjust stack execute permissions; explicitly enable for
747 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
748 * (arch default) otherwise.
749 */
750 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
751 vm_flags |= VM_EXEC;
752 else if (executable_stack == EXSTACK_DISABLE_X)
753 vm_flags &= ~VM_EXEC;
754 vm_flags |= mm->def_flags;
755 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
756
757 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
758 vm_flags);
759 if (ret)
760 goto out_unlock;
761 BUG_ON(prev != vma);
762
763 if (unlikely(vm_flags & VM_EXEC)) {
764 pr_warn_once("process '%pD4' started with executable stack\n",
765 bprm->file);
766 }
767
768 /* Move stack pages down in memory. */
769 if (stack_shift) {
770 ret = shift_arg_pages(vma, stack_shift);
771 if (ret)
772 goto out_unlock;
773 }
774
775 /* mprotect_fixup is overkill to remove the temporary stack flags */
776 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
777
778 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
779 stack_size = vma->vm_end - vma->vm_start;
780 /*
781 * Align this down to a page boundary as expand_stack
782 * will align it up.
783 */
784 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
785 #ifdef CONFIG_STACK_GROWSUP
786 if (stack_size + stack_expand > rlim_stack)
787 stack_base = vma->vm_start + rlim_stack;
788 else
789 stack_base = vma->vm_end + stack_expand;
790 #else
791 if (stack_size + stack_expand > rlim_stack)
792 stack_base = vma->vm_end - rlim_stack;
793 else
794 stack_base = vma->vm_start - stack_expand;
795 #endif
796 current->mm->start_stack = bprm->p;
797 ret = expand_stack(vma, stack_base);
798 if (ret)
799 ret = -EFAULT;
800
801 out_unlock:
802 up_write(&mm->mmap_sem);
803 return ret;
804 }
805 EXPORT_SYMBOL(setup_arg_pages);
806
807 #else
808
809 /*
810 * Transfer the program arguments and environment from the holding pages
811 * onto the stack. The provided stack pointer is adjusted accordingly.
812 */
813 int transfer_args_to_stack(struct linux_binprm *bprm,
814 unsigned long *sp_location)
815 {
816 unsigned long index, stop, sp;
817 int ret = 0;
818
819 stop = bprm->p >> PAGE_SHIFT;
820 sp = *sp_location;
821
822 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
823 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
824 char *src = kmap(bprm->page[index]) + offset;
825 sp -= PAGE_SIZE - offset;
826 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
827 ret = -EFAULT;
828 kunmap(bprm->page[index]);
829 if (ret)
830 goto out;
831 }
832
833 *sp_location = sp;
834
835 out:
836 return ret;
837 }
838 EXPORT_SYMBOL(transfer_args_to_stack);
839
840 #endif /* CONFIG_MMU */
841
842 static struct file *do_open_execat(int fd, struct filename *name, int flags)
843 {
844 struct file *file;
845 int err;
846 struct open_flags open_exec_flags = {
847 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
848 .acc_mode = MAY_EXEC,
849 .intent = LOOKUP_OPEN,
850 .lookup_flags = LOOKUP_FOLLOW,
851 };
852
853 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
854 return ERR_PTR(-EINVAL);
855 if (flags & AT_SYMLINK_NOFOLLOW)
856 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
857 if (flags & AT_EMPTY_PATH)
858 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
859
860 file = do_filp_open(fd, name, &open_exec_flags);
861 if (IS_ERR(file))
862 goto out;
863
864 err = -EACCES;
865 if (!S_ISREG(file_inode(file)->i_mode))
866 goto exit;
867
868 if (path_noexec(&file->f_path))
869 goto exit;
870
871 err = deny_write_access(file);
872 if (err)
873 goto exit;
874
875 if (name->name[0] != '\0')
876 fsnotify_open(file);
877
878 out:
879 return file;
880
881 exit:
882 fput(file);
883 return ERR_PTR(err);
884 }
885
886 struct file *open_exec(const char *name)
887 {
888 struct filename *filename = getname_kernel(name);
889 struct file *f = ERR_CAST(filename);
890
891 if (!IS_ERR(filename)) {
892 f = do_open_execat(AT_FDCWD, filename, 0);
893 putname(filename);
894 }
895 return f;
896 }
897 EXPORT_SYMBOL(open_exec);
898
899 int kernel_read_file(struct file *file, void **buf, loff_t *size,
900 loff_t max_size, enum kernel_read_file_id id)
901 {
902 loff_t i_size, pos;
903 ssize_t bytes = 0;
904 int ret;
905
906 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
907 return -EINVAL;
908
909 ret = deny_write_access(file);
910 if (ret)
911 return ret;
912
913 ret = security_kernel_read_file(file, id);
914 if (ret)
915 goto out;
916
917 i_size = i_size_read(file_inode(file));
918 if (i_size <= 0) {
919 ret = -EINVAL;
920 goto out;
921 }
922 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
923 ret = -EFBIG;
924 goto out;
925 }
926
927 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
928 *buf = vmalloc(i_size);
929 if (!*buf) {
930 ret = -ENOMEM;
931 goto out;
932 }
933
934 pos = 0;
935 while (pos < i_size) {
936 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
937 if (bytes < 0) {
938 ret = bytes;
939 goto out_free;
940 }
941
942 if (bytes == 0)
943 break;
944 }
945
946 if (pos != i_size) {
947 ret = -EIO;
948 goto out_free;
949 }
950
951 ret = security_kernel_post_read_file(file, *buf, i_size, id);
952 if (!ret)
953 *size = pos;
954
955 out_free:
956 if (ret < 0) {
957 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
958 vfree(*buf);
959 *buf = NULL;
960 }
961 }
962
963 out:
964 allow_write_access(file);
965 return ret;
966 }
967 EXPORT_SYMBOL_GPL(kernel_read_file);
968
969 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
970 loff_t max_size, enum kernel_read_file_id id)
971 {
972 struct file *file;
973 int ret;
974
975 if (!path || !*path)
976 return -EINVAL;
977
978 file = filp_open(path, O_RDONLY, 0);
979 if (IS_ERR(file))
980 return PTR_ERR(file);
981
982 ret = kernel_read_file(file, buf, size, max_size, id);
983 fput(file);
984 return ret;
985 }
986 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
987
988 int kernel_read_file_from_path_initns(const char *path, void **buf,
989 loff_t *size, loff_t max_size,
990 enum kernel_read_file_id id)
991 {
992 struct file *file;
993 struct path root;
994 int ret;
995
996 if (!path || !*path)
997 return -EINVAL;
998
999 task_lock(&init_task);
1000 get_fs_root(init_task.fs, &root);
1001 task_unlock(&init_task);
1002
1003 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1004 path_put(&root);
1005 if (IS_ERR(file))
1006 return PTR_ERR(file);
1007
1008 ret = kernel_read_file(file, buf, size, max_size, id);
1009 fput(file);
1010 return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1013
1014 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1015 enum kernel_read_file_id id)
1016 {
1017 struct fd f = fdget(fd);
1018 int ret = -EBADF;
1019
1020 if (!f.file)
1021 goto out;
1022
1023 ret = kernel_read_file(f.file, buf, size, max_size, id);
1024 out:
1025 fdput(f);
1026 return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1029
1030 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1031 {
1032 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1033 if (res > 0)
1034 flush_icache_range(addr, addr + len);
1035 return res;
1036 }
1037 EXPORT_SYMBOL(read_code);
1038
1039 static int exec_mmap(struct mm_struct *mm)
1040 {
1041 struct task_struct *tsk;
1042 struct mm_struct *old_mm, *active_mm;
1043
1044 /* Notify parent that we're no longer interested in the old VM */
1045 tsk = current;
1046 old_mm = current->mm;
1047 exec_mm_release(tsk, old_mm);
1048
1049 if (old_mm) {
1050 sync_mm_rss(old_mm);
1051 /*
1052 * Make sure that if there is a core dump in progress
1053 * for the old mm, we get out and die instead of going
1054 * through with the exec. We must hold mmap_sem around
1055 * checking core_state and changing tsk->mm.
1056 */
1057 down_read(&old_mm->mmap_sem);
1058 if (unlikely(old_mm->core_state)) {
1059 up_read(&old_mm->mmap_sem);
1060 return -EINTR;
1061 }
1062 }
1063 task_lock(tsk);
1064 active_mm = tsk->active_mm;
1065 membarrier_exec_mmap(mm);
1066 tsk->mm = mm;
1067 tsk->active_mm = mm;
1068 activate_mm(active_mm, mm);
1069 tsk->mm->vmacache_seqnum = 0;
1070 vmacache_flush(tsk);
1071 task_unlock(tsk);
1072 if (old_mm) {
1073 up_read(&old_mm->mmap_sem);
1074 BUG_ON(active_mm != old_mm);
1075 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1076 mm_update_next_owner(old_mm);
1077 mmput(old_mm);
1078 return 0;
1079 }
1080 mmdrop(active_mm);
1081 return 0;
1082 }
1083
1084 /*
1085 * This function makes sure the current process has its own signal table,
1086 * so that flush_signal_handlers can later reset the handlers without
1087 * disturbing other processes. (Other processes might share the signal
1088 * table via the CLONE_SIGHAND option to clone().)
1089 */
1090 static int de_thread(struct task_struct *tsk)
1091 {
1092 struct signal_struct *sig = tsk->signal;
1093 struct sighand_struct *oldsighand = tsk->sighand;
1094 spinlock_t *lock = &oldsighand->siglock;
1095
1096 if (thread_group_empty(tsk))
1097 goto no_thread_group;
1098
1099 /*
1100 * Kill all other threads in the thread group.
1101 */
1102 spin_lock_irq(lock);
1103 if (signal_group_exit(sig)) {
1104 /*
1105 * Another group action in progress, just
1106 * return so that the signal is processed.
1107 */
1108 spin_unlock_irq(lock);
1109 return -EAGAIN;
1110 }
1111
1112 sig->group_exit_task = tsk;
1113 sig->notify_count = zap_other_threads(tsk);
1114 if (!thread_group_leader(tsk))
1115 sig->notify_count--;
1116
1117 while (sig->notify_count) {
1118 __set_current_state(TASK_KILLABLE);
1119 spin_unlock_irq(lock);
1120 schedule();
1121 if (__fatal_signal_pending(tsk))
1122 goto killed;
1123 spin_lock_irq(lock);
1124 }
1125 spin_unlock_irq(lock);
1126
1127 /*
1128 * At this point all other threads have exited, all we have to
1129 * do is to wait for the thread group leader to become inactive,
1130 * and to assume its PID:
1131 */
1132 if (!thread_group_leader(tsk)) {
1133 struct task_struct *leader = tsk->group_leader;
1134
1135 for (;;) {
1136 cgroup_threadgroup_change_begin(tsk);
1137 write_lock_irq(&tasklist_lock);
1138 /*
1139 * Do this under tasklist_lock to ensure that
1140 * exit_notify() can't miss ->group_exit_task
1141 */
1142 sig->notify_count = -1;
1143 if (likely(leader->exit_state))
1144 break;
1145 __set_current_state(TASK_KILLABLE);
1146 write_unlock_irq(&tasklist_lock);
1147 cgroup_threadgroup_change_end(tsk);
1148 schedule();
1149 if (__fatal_signal_pending(tsk))
1150 goto killed;
1151 }
1152
1153 /*
1154 * The only record we have of the real-time age of a
1155 * process, regardless of execs it's done, is start_time.
1156 * All the past CPU time is accumulated in signal_struct
1157 * from sister threads now dead. But in this non-leader
1158 * exec, nothing survives from the original leader thread,
1159 * whose birth marks the true age of this process now.
1160 * When we take on its identity by switching to its PID, we
1161 * also take its birthdate (always earlier than our own).
1162 */
1163 tsk->start_time = leader->start_time;
1164 tsk->start_boottime = leader->start_boottime;
1165
1166 BUG_ON(!same_thread_group(leader, tsk));
1167 BUG_ON(has_group_leader_pid(tsk));
1168 /*
1169 * An exec() starts a new thread group with the
1170 * TGID of the previous thread group. Rehash the
1171 * two threads with a switched PID, and release
1172 * the former thread group leader:
1173 */
1174
1175 /* Become a process group leader with the old leader's pid.
1176 * The old leader becomes a thread of the this thread group.
1177 * Note: The old leader also uses this pid until release_task
1178 * is called. Odd but simple and correct.
1179 */
1180 tsk->pid = leader->pid;
1181 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1182 transfer_pid(leader, tsk, PIDTYPE_TGID);
1183 transfer_pid(leader, tsk, PIDTYPE_PGID);
1184 transfer_pid(leader, tsk, PIDTYPE_SID);
1185
1186 list_replace_rcu(&leader->tasks, &tsk->tasks);
1187 list_replace_init(&leader->sibling, &tsk->sibling);
1188
1189 tsk->group_leader = tsk;
1190 leader->group_leader = tsk;
1191
1192 tsk->exit_signal = SIGCHLD;
1193 leader->exit_signal = -1;
1194
1195 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1196 leader->exit_state = EXIT_DEAD;
1197
1198 /*
1199 * We are going to release_task()->ptrace_unlink() silently,
1200 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1201 * the tracer wont't block again waiting for this thread.
1202 */
1203 if (unlikely(leader->ptrace))
1204 __wake_up_parent(leader, leader->parent);
1205 write_unlock_irq(&tasklist_lock);
1206 cgroup_threadgroup_change_end(tsk);
1207
1208 release_task(leader);
1209 }
1210
1211 sig->group_exit_task = NULL;
1212 sig->notify_count = 0;
1213
1214 no_thread_group:
1215 /* we have changed execution domain */
1216 tsk->exit_signal = SIGCHLD;
1217
1218 #ifdef CONFIG_POSIX_TIMERS
1219 exit_itimers(sig);
1220 flush_itimer_signals();
1221 #endif
1222
1223 if (refcount_read(&oldsighand->count) != 1) {
1224 struct sighand_struct *newsighand;
1225 /*
1226 * This ->sighand is shared with the CLONE_SIGHAND
1227 * but not CLONE_THREAD task, switch to the new one.
1228 */
1229 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1230 if (!newsighand)
1231 return -ENOMEM;
1232
1233 refcount_set(&newsighand->count, 1);
1234 memcpy(newsighand->action, oldsighand->action,
1235 sizeof(newsighand->action));
1236
1237 write_lock_irq(&tasklist_lock);
1238 spin_lock(&oldsighand->siglock);
1239 rcu_assign_pointer(tsk->sighand, newsighand);
1240 spin_unlock(&oldsighand->siglock);
1241 write_unlock_irq(&tasklist_lock);
1242
1243 __cleanup_sighand(oldsighand);
1244 }
1245
1246 BUG_ON(!thread_group_leader(tsk));
1247 return 0;
1248
1249 killed:
1250 /* protects against exit_notify() and __exit_signal() */
1251 read_lock(&tasklist_lock);
1252 sig->group_exit_task = NULL;
1253 sig->notify_count = 0;
1254 read_unlock(&tasklist_lock);
1255 return -EAGAIN;
1256 }
1257
1258 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1259 {
1260 task_lock(tsk);
1261 strncpy(buf, tsk->comm, buf_size);
1262 task_unlock(tsk);
1263 return buf;
1264 }
1265 EXPORT_SYMBOL_GPL(__get_task_comm);
1266
1267 /*
1268 * These functions flushes out all traces of the currently running executable
1269 * so that a new one can be started
1270 */
1271
1272 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1273 {
1274 task_lock(tsk);
1275 trace_task_rename(tsk, buf);
1276 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1277 task_unlock(tsk);
1278 perf_event_comm(tsk, exec);
1279 }
1280
1281 /*
1282 * Calling this is the point of no return. None of the failures will be
1283 * seen by userspace since either the process is already taking a fatal
1284 * signal (via de_thread() or coredump), or will have SEGV raised
1285 * (after exec_mmap()) by search_binary_handlers (see below).
1286 */
1287 int flush_old_exec(struct linux_binprm * bprm)
1288 {
1289 int retval;
1290
1291 /*
1292 * Make sure we have a private signal table and that
1293 * we are unassociated from the previous thread group.
1294 */
1295 retval = de_thread(current);
1296 if (retval)
1297 goto out;
1298
1299 /*
1300 * Must be called _before_ exec_mmap() as bprm->mm is
1301 * not visibile until then. This also enables the update
1302 * to be lockless.
1303 */
1304 set_mm_exe_file(bprm->mm, bprm->file);
1305
1306 /*
1307 * Release all of the old mmap stuff
1308 */
1309 acct_arg_size(bprm, 0);
1310 retval = exec_mmap(bprm->mm);
1311 if (retval)
1312 goto out;
1313
1314 /*
1315 * After clearing bprm->mm (to mark that current is using the
1316 * prepared mm now), we have nothing left of the original
1317 * process. If anything from here on returns an error, the check
1318 * in search_binary_handler() will SEGV current.
1319 */
1320 bprm->mm = NULL;
1321
1322 set_fs(USER_DS);
1323 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1324 PF_NOFREEZE | PF_NO_SETAFFINITY);
1325 flush_thread();
1326 current->personality &= ~bprm->per_clear;
1327
1328 /*
1329 * We have to apply CLOEXEC before we change whether the process is
1330 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1331 * trying to access the should-be-closed file descriptors of a process
1332 * undergoing exec(2).
1333 */
1334 do_close_on_exec(current->files);
1335 return 0;
1336
1337 out:
1338 return retval;
1339 }
1340 EXPORT_SYMBOL(flush_old_exec);
1341
1342 void would_dump(struct linux_binprm *bprm, struct file *file)
1343 {
1344 struct inode *inode = file_inode(file);
1345 if (inode_permission(inode, MAY_READ) < 0) {
1346 struct user_namespace *old, *user_ns;
1347 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1348
1349 /* Ensure mm->user_ns contains the executable */
1350 user_ns = old = bprm->mm->user_ns;
1351 while ((user_ns != &init_user_ns) &&
1352 !privileged_wrt_inode_uidgid(user_ns, inode))
1353 user_ns = user_ns->parent;
1354
1355 if (old != user_ns) {
1356 bprm->mm->user_ns = get_user_ns(user_ns);
1357 put_user_ns(old);
1358 }
1359 }
1360 }
1361 EXPORT_SYMBOL(would_dump);
1362
1363 void setup_new_exec(struct linux_binprm * bprm)
1364 {
1365 /*
1366 * Once here, prepare_binrpm() will not be called any more, so
1367 * the final state of setuid/setgid/fscaps can be merged into the
1368 * secureexec flag.
1369 */
1370 bprm->secureexec |= bprm->cap_elevated;
1371
1372 if (bprm->secureexec) {
1373 /* Make sure parent cannot signal privileged process. */
1374 current->pdeath_signal = 0;
1375
1376 /*
1377 * For secureexec, reset the stack limit to sane default to
1378 * avoid bad behavior from the prior rlimits. This has to
1379 * happen before arch_pick_mmap_layout(), which examines
1380 * RLIMIT_STACK, but after the point of no return to avoid
1381 * needing to clean up the change on failure.
1382 */
1383 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1384 bprm->rlim_stack.rlim_cur = _STK_LIM;
1385 }
1386
1387 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1388
1389 current->sas_ss_sp = current->sas_ss_size = 0;
1390
1391 /*
1392 * Figure out dumpability. Note that this checking only of current
1393 * is wrong, but userspace depends on it. This should be testing
1394 * bprm->secureexec instead.
1395 */
1396 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1397 !(uid_eq(current_euid(), current_uid()) &&
1398 gid_eq(current_egid(), current_gid())))
1399 set_dumpable(current->mm, suid_dumpable);
1400 else
1401 set_dumpable(current->mm, SUID_DUMP_USER);
1402
1403 arch_setup_new_exec();
1404 perf_event_exec();
1405 __set_task_comm(current, kbasename(bprm->filename), true);
1406
1407 /* Set the new mm task size. We have to do that late because it may
1408 * depend on TIF_32BIT which is only updated in flush_thread() on
1409 * some architectures like powerpc
1410 */
1411 current->mm->task_size = TASK_SIZE;
1412
1413 /* An exec changes our domain. We are no longer part of the thread
1414 group */
1415 current->self_exec_id++;
1416 flush_signal_handlers(current, 0);
1417 }
1418 EXPORT_SYMBOL(setup_new_exec);
1419
1420 /* Runs immediately before start_thread() takes over. */
1421 void finalize_exec(struct linux_binprm *bprm)
1422 {
1423 /* Store any stack rlimit changes before starting thread. */
1424 task_lock(current->group_leader);
1425 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1426 task_unlock(current->group_leader);
1427 }
1428 EXPORT_SYMBOL(finalize_exec);
1429
1430 /*
1431 * Prepare credentials and lock ->cred_guard_mutex.
1432 * install_exec_creds() commits the new creds and drops the lock.
1433 * Or, if exec fails before, free_bprm() should release ->cred and
1434 * and unlock.
1435 */
1436 static int prepare_bprm_creds(struct linux_binprm *bprm)
1437 {
1438 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1439 return -ERESTARTNOINTR;
1440
1441 bprm->cred = prepare_exec_creds();
1442 if (likely(bprm->cred))
1443 return 0;
1444
1445 mutex_unlock(&current->signal->cred_guard_mutex);
1446 return -ENOMEM;
1447 }
1448
1449 static void free_bprm(struct linux_binprm *bprm)
1450 {
1451 free_arg_pages(bprm);
1452 if (bprm->cred) {
1453 mutex_unlock(&current->signal->cred_guard_mutex);
1454 abort_creds(bprm->cred);
1455 }
1456 if (bprm->file) {
1457 allow_write_access(bprm->file);
1458 fput(bprm->file);
1459 }
1460 /* If a binfmt changed the interp, free it. */
1461 if (bprm->interp != bprm->filename)
1462 kfree(bprm->interp);
1463 kfree(bprm);
1464 }
1465
1466 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1467 {
1468 /* If a binfmt changed the interp, free it first. */
1469 if (bprm->interp != bprm->filename)
1470 kfree(bprm->interp);
1471 bprm->interp = kstrdup(interp, GFP_KERNEL);
1472 if (!bprm->interp)
1473 return -ENOMEM;
1474 return 0;
1475 }
1476 EXPORT_SYMBOL(bprm_change_interp);
1477
1478 /*
1479 * install the new credentials for this executable
1480 */
1481 void install_exec_creds(struct linux_binprm *bprm)
1482 {
1483 security_bprm_committing_creds(bprm);
1484
1485 commit_creds(bprm->cred);
1486 bprm->cred = NULL;
1487
1488 /*
1489 * Disable monitoring for regular users
1490 * when executing setuid binaries. Must
1491 * wait until new credentials are committed
1492 * by commit_creds() above
1493 */
1494 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1495 perf_event_exit_task(current);
1496 /*
1497 * cred_guard_mutex must be held at least to this point to prevent
1498 * ptrace_attach() from altering our determination of the task's
1499 * credentials; any time after this it may be unlocked.
1500 */
1501 security_bprm_committed_creds(bprm);
1502 mutex_unlock(&current->signal->cred_guard_mutex);
1503 }
1504 EXPORT_SYMBOL(install_exec_creds);
1505
1506 /*
1507 * determine how safe it is to execute the proposed program
1508 * - the caller must hold ->cred_guard_mutex to protect against
1509 * PTRACE_ATTACH or seccomp thread-sync
1510 */
1511 static void check_unsafe_exec(struct linux_binprm *bprm)
1512 {
1513 struct task_struct *p = current, *t;
1514 unsigned n_fs;
1515
1516 if (p->ptrace)
1517 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1518
1519 /*
1520 * This isn't strictly necessary, but it makes it harder for LSMs to
1521 * mess up.
1522 */
1523 if (task_no_new_privs(current))
1524 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1525
1526 t = p;
1527 n_fs = 1;
1528 spin_lock(&p->fs->lock);
1529 rcu_read_lock();
1530 while_each_thread(p, t) {
1531 if (t->fs == p->fs)
1532 n_fs++;
1533 }
1534 rcu_read_unlock();
1535
1536 if (p->fs->users > n_fs)
1537 bprm->unsafe |= LSM_UNSAFE_SHARE;
1538 else
1539 p->fs->in_exec = 1;
1540 spin_unlock(&p->fs->lock);
1541 }
1542
1543 static void bprm_fill_uid(struct linux_binprm *bprm)
1544 {
1545 struct inode *inode;
1546 unsigned int mode;
1547 kuid_t uid;
1548 kgid_t gid;
1549
1550 /*
1551 * Since this can be called multiple times (via prepare_binprm),
1552 * we must clear any previous work done when setting set[ug]id
1553 * bits from any earlier bprm->file uses (for example when run
1554 * first for a setuid script then again for its interpreter).
1555 */
1556 bprm->cred->euid = current_euid();
1557 bprm->cred->egid = current_egid();
1558
1559 if (!mnt_may_suid(bprm->file->f_path.mnt))
1560 return;
1561
1562 if (task_no_new_privs(current))
1563 return;
1564
1565 inode = bprm->file->f_path.dentry->d_inode;
1566 mode = READ_ONCE(inode->i_mode);
1567 if (!(mode & (S_ISUID|S_ISGID)))
1568 return;
1569
1570 /* Be careful if suid/sgid is set */
1571 inode_lock(inode);
1572
1573 /* reload atomically mode/uid/gid now that lock held */
1574 mode = inode->i_mode;
1575 uid = inode->i_uid;
1576 gid = inode->i_gid;
1577 inode_unlock(inode);
1578
1579 /* We ignore suid/sgid if there are no mappings for them in the ns */
1580 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1581 !kgid_has_mapping(bprm->cred->user_ns, gid))
1582 return;
1583
1584 if (mode & S_ISUID) {
1585 bprm->per_clear |= PER_CLEAR_ON_SETID;
1586 bprm->cred->euid = uid;
1587 }
1588
1589 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1590 bprm->per_clear |= PER_CLEAR_ON_SETID;
1591 bprm->cred->egid = gid;
1592 }
1593 }
1594
1595 /*
1596 * Fill the binprm structure from the inode.
1597 * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1598 *
1599 * This may be called multiple times for binary chains (scripts for example).
1600 */
1601 int prepare_binprm(struct linux_binprm *bprm)
1602 {
1603 int retval;
1604 loff_t pos = 0;
1605
1606 bprm_fill_uid(bprm);
1607
1608 /* fill in binprm security blob */
1609 retval = security_bprm_set_creds(bprm);
1610 if (retval)
1611 return retval;
1612 bprm->called_set_creds = 1;
1613
1614 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1615 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1616 }
1617
1618 EXPORT_SYMBOL(prepare_binprm);
1619
1620 /*
1621 * Arguments are '\0' separated strings found at the location bprm->p
1622 * points to; chop off the first by relocating brpm->p to right after
1623 * the first '\0' encountered.
1624 */
1625 int remove_arg_zero(struct linux_binprm *bprm)
1626 {
1627 int ret = 0;
1628 unsigned long offset;
1629 char *kaddr;
1630 struct page *page;
1631
1632 if (!bprm->argc)
1633 return 0;
1634
1635 do {
1636 offset = bprm->p & ~PAGE_MASK;
1637 page = get_arg_page(bprm, bprm->p, 0);
1638 if (!page) {
1639 ret = -EFAULT;
1640 goto out;
1641 }
1642 kaddr = kmap_atomic(page);
1643
1644 for (; offset < PAGE_SIZE && kaddr[offset];
1645 offset++, bprm->p++)
1646 ;
1647
1648 kunmap_atomic(kaddr);
1649 put_arg_page(page);
1650 } while (offset == PAGE_SIZE);
1651
1652 bprm->p++;
1653 bprm->argc--;
1654 ret = 0;
1655
1656 out:
1657 return ret;
1658 }
1659 EXPORT_SYMBOL(remove_arg_zero);
1660
1661 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1662 /*
1663 * cycle the list of binary formats handler, until one recognizes the image
1664 */
1665 int search_binary_handler(struct linux_binprm *bprm)
1666 {
1667 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1668 struct linux_binfmt *fmt;
1669 int retval;
1670
1671 /* This allows 4 levels of binfmt rewrites before failing hard. */
1672 if (bprm->recursion_depth > 5)
1673 return -ELOOP;
1674
1675 retval = security_bprm_check(bprm);
1676 if (retval)
1677 return retval;
1678
1679 retval = -ENOENT;
1680 retry:
1681 read_lock(&binfmt_lock);
1682 list_for_each_entry(fmt, &formats, lh) {
1683 if (!try_module_get(fmt->module))
1684 continue;
1685 read_unlock(&binfmt_lock);
1686
1687 bprm->recursion_depth++;
1688 retval = fmt->load_binary(bprm);
1689 bprm->recursion_depth--;
1690
1691 read_lock(&binfmt_lock);
1692 put_binfmt(fmt);
1693 if (retval < 0 && !bprm->mm) {
1694 /* we got to flush_old_exec() and failed after it */
1695 read_unlock(&binfmt_lock);
1696 force_sigsegv(SIGSEGV);
1697 return retval;
1698 }
1699 if (retval != -ENOEXEC || !bprm->file) {
1700 read_unlock(&binfmt_lock);
1701 return retval;
1702 }
1703 }
1704 read_unlock(&binfmt_lock);
1705
1706 if (need_retry) {
1707 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1708 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1709 return retval;
1710 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1711 return retval;
1712 need_retry = false;
1713 goto retry;
1714 }
1715
1716 return retval;
1717 }
1718 EXPORT_SYMBOL(search_binary_handler);
1719
1720 static int exec_binprm(struct linux_binprm *bprm)
1721 {
1722 pid_t old_pid, old_vpid;
1723 int ret;
1724
1725 /* Need to fetch pid before load_binary changes it */
1726 old_pid = current->pid;
1727 rcu_read_lock();
1728 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1729 rcu_read_unlock();
1730
1731 ret = search_binary_handler(bprm);
1732 if (ret >= 0) {
1733 audit_bprm(bprm);
1734 trace_sched_process_exec(current, old_pid, bprm);
1735 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1736 proc_exec_connector(current);
1737 }
1738
1739 return ret;
1740 }
1741
1742 /*
1743 * sys_execve() executes a new program.
1744 */
1745 static int __do_execve_file(int fd, struct filename *filename,
1746 struct user_arg_ptr argv,
1747 struct user_arg_ptr envp,
1748 int flags, struct file *file)
1749 {
1750 char *pathbuf = NULL;
1751 struct linux_binprm *bprm;
1752 struct files_struct *displaced;
1753 int retval;
1754
1755 if (IS_ERR(filename))
1756 return PTR_ERR(filename);
1757
1758 /*
1759 * We move the actual failure in case of RLIMIT_NPROC excess from
1760 * set*uid() to execve() because too many poorly written programs
1761 * don't check setuid() return code. Here we additionally recheck
1762 * whether NPROC limit is still exceeded.
1763 */
1764 if ((current->flags & PF_NPROC_EXCEEDED) &&
1765 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1766 retval = -EAGAIN;
1767 goto out_ret;
1768 }
1769
1770 /* We're below the limit (still or again), so we don't want to make
1771 * further execve() calls fail. */
1772 current->flags &= ~PF_NPROC_EXCEEDED;
1773
1774 retval = unshare_files(&displaced);
1775 if (retval)
1776 goto out_ret;
1777
1778 retval = -ENOMEM;
1779 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1780 if (!bprm)
1781 goto out_files;
1782
1783 retval = prepare_bprm_creds(bprm);
1784 if (retval)
1785 goto out_free;
1786
1787 check_unsafe_exec(bprm);
1788 current->in_execve = 1;
1789
1790 if (!file)
1791 file = do_open_execat(fd, filename, flags);
1792 retval = PTR_ERR(file);
1793 if (IS_ERR(file))
1794 goto out_unmark;
1795
1796 sched_exec();
1797
1798 bprm->file = file;
1799 if (!filename) {
1800 bprm->filename = "none";
1801 } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1802 bprm->filename = filename->name;
1803 } else {
1804 if (filename->name[0] == '\0')
1805 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1806 else
1807 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1808 fd, filename->name);
1809 if (!pathbuf) {
1810 retval = -ENOMEM;
1811 goto out_unmark;
1812 }
1813 /*
1814 * Record that a name derived from an O_CLOEXEC fd will be
1815 * inaccessible after exec. Relies on having exclusive access to
1816 * current->files (due to unshare_files above).
1817 */
1818 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1819 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1820 bprm->filename = pathbuf;
1821 }
1822 bprm->interp = bprm->filename;
1823
1824 retval = bprm_mm_init(bprm);
1825 if (retval)
1826 goto out_unmark;
1827
1828 retval = prepare_arg_pages(bprm, argv, envp);
1829 if (retval < 0)
1830 goto out;
1831
1832 retval = prepare_binprm(bprm);
1833 if (retval < 0)
1834 goto out;
1835
1836 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1837 if (retval < 0)
1838 goto out;
1839
1840 bprm->exec = bprm->p;
1841 retval = copy_strings(bprm->envc, envp, bprm);
1842 if (retval < 0)
1843 goto out;
1844
1845 retval = copy_strings(bprm->argc, argv, bprm);
1846 if (retval < 0)
1847 goto out;
1848
1849 would_dump(bprm, bprm->file);
1850
1851 retval = exec_binprm(bprm);
1852 if (retval < 0)
1853 goto out;
1854
1855 /* execve succeeded */
1856 current->fs->in_exec = 0;
1857 current->in_execve = 0;
1858 rseq_execve(current);
1859 acct_update_integrals(current);
1860 task_numa_free(current, false);
1861 free_bprm(bprm);
1862 kfree(pathbuf);
1863 if (filename)
1864 putname(filename);
1865 if (displaced)
1866 put_files_struct(displaced);
1867 return retval;
1868
1869 out:
1870 if (bprm->mm) {
1871 acct_arg_size(bprm, 0);
1872 mmput(bprm->mm);
1873 }
1874
1875 out_unmark:
1876 current->fs->in_exec = 0;
1877 current->in_execve = 0;
1878
1879 out_free:
1880 free_bprm(bprm);
1881 kfree(pathbuf);
1882
1883 out_files:
1884 if (displaced)
1885 reset_files_struct(displaced);
1886 out_ret:
1887 if (filename)
1888 putname(filename);
1889 return retval;
1890 }
1891
1892 static int do_execveat_common(int fd, struct filename *filename,
1893 struct user_arg_ptr argv,
1894 struct user_arg_ptr envp,
1895 int flags)
1896 {
1897 return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1898 }
1899
1900 int do_execve_file(struct file *file, void *__argv, void *__envp)
1901 {
1902 struct user_arg_ptr argv = { .ptr.native = __argv };
1903 struct user_arg_ptr envp = { .ptr.native = __envp };
1904
1905 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1906 }
1907
1908 int do_execve(struct filename *filename,
1909 const char __user *const __user *__argv,
1910 const char __user *const __user *__envp)
1911 {
1912 struct user_arg_ptr argv = { .ptr.native = __argv };
1913 struct user_arg_ptr envp = { .ptr.native = __envp };
1914 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1915 }
1916
1917 int do_execveat(int fd, struct filename *filename,
1918 const char __user *const __user *__argv,
1919 const char __user *const __user *__envp,
1920 int flags)
1921 {
1922 struct user_arg_ptr argv = { .ptr.native = __argv };
1923 struct user_arg_ptr envp = { .ptr.native = __envp };
1924
1925 return do_execveat_common(fd, filename, argv, envp, flags);
1926 }
1927
1928 #ifdef CONFIG_COMPAT
1929 static int compat_do_execve(struct filename *filename,
1930 const compat_uptr_t __user *__argv,
1931 const compat_uptr_t __user *__envp)
1932 {
1933 struct user_arg_ptr argv = {
1934 .is_compat = true,
1935 .ptr.compat = __argv,
1936 };
1937 struct user_arg_ptr envp = {
1938 .is_compat = true,
1939 .ptr.compat = __envp,
1940 };
1941 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1942 }
1943
1944 static int compat_do_execveat(int fd, struct filename *filename,
1945 const compat_uptr_t __user *__argv,
1946 const compat_uptr_t __user *__envp,
1947 int flags)
1948 {
1949 struct user_arg_ptr argv = {
1950 .is_compat = true,
1951 .ptr.compat = __argv,
1952 };
1953 struct user_arg_ptr envp = {
1954 .is_compat = true,
1955 .ptr.compat = __envp,
1956 };
1957 return do_execveat_common(fd, filename, argv, envp, flags);
1958 }
1959 #endif
1960
1961 void set_binfmt(struct linux_binfmt *new)
1962 {
1963 struct mm_struct *mm = current->mm;
1964
1965 if (mm->binfmt)
1966 module_put(mm->binfmt->module);
1967
1968 mm->binfmt = new;
1969 if (new)
1970 __module_get(new->module);
1971 }
1972 EXPORT_SYMBOL(set_binfmt);
1973
1974 /*
1975 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1976 */
1977 void set_dumpable(struct mm_struct *mm, int value)
1978 {
1979 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1980 return;
1981
1982 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1983 }
1984
1985 SYSCALL_DEFINE3(execve,
1986 const char __user *, filename,
1987 const char __user *const __user *, argv,
1988 const char __user *const __user *, envp)
1989 {
1990 return do_execve(getname(filename), argv, envp);
1991 }
1992
1993 SYSCALL_DEFINE5(execveat,
1994 int, fd, const char __user *, filename,
1995 const char __user *const __user *, argv,
1996 const char __user *const __user *, envp,
1997 int, flags)
1998 {
1999 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2000
2001 return do_execveat(fd,
2002 getname_flags(filename, lookup_flags, NULL),
2003 argv, envp, flags);
2004 }
2005
2006 #ifdef CONFIG_COMPAT
2007 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2008 const compat_uptr_t __user *, argv,
2009 const compat_uptr_t __user *, envp)
2010 {
2011 return compat_do_execve(getname(filename), argv, envp);
2012 }
2013
2014 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2015 const char __user *, filename,
2016 const compat_uptr_t __user *, argv,
2017 const compat_uptr_t __user *, envp,
2018 int, flags)
2019 {
2020 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2021
2022 return compat_do_execveat(fd,
2023 getname_flags(filename, lookup_flags, NULL),
2024 argv, envp, flags);
2025 }
2026 #endif