]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/exec.c
btrfs: store and load values of stripes_min/stripes_max in balance status item
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59
60 #include <trace/events/fs.h>
61
62 #include <asm/uaccess.h>
63 #include <asm/mmu_context.h>
64 #include <asm/tlb.h>
65
66 #include <trace/events/task.h>
67 #include "internal.h"
68
69 #include <trace/events/sched.h>
70
71 int suid_dumpable = 0;
72
73 static LIST_HEAD(formats);
74 static DEFINE_RWLOCK(binfmt_lock);
75
76 void __register_binfmt(struct linux_binfmt * fmt, int insert)
77 {
78 BUG_ON(!fmt);
79 if (WARN_ON(!fmt->load_binary))
80 return;
81 write_lock(&binfmt_lock);
82 insert ? list_add(&fmt->lh, &formats) :
83 list_add_tail(&fmt->lh, &formats);
84 write_unlock(&binfmt_lock);
85 }
86
87 EXPORT_SYMBOL(__register_binfmt);
88
89 void unregister_binfmt(struct linux_binfmt * fmt)
90 {
91 write_lock(&binfmt_lock);
92 list_del(&fmt->lh);
93 write_unlock(&binfmt_lock);
94 }
95
96 EXPORT_SYMBOL(unregister_binfmt);
97
98 static inline void put_binfmt(struct linux_binfmt * fmt)
99 {
100 module_put(fmt->module);
101 }
102
103 bool path_noexec(const struct path *path)
104 {
105 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
106 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
107 }
108 EXPORT_SYMBOL(path_noexec);
109
110 bool path_nosuid(const struct path *path)
111 {
112 return !mnt_may_suid(path->mnt) ||
113 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
114 }
115 EXPORT_SYMBOL(path_nosuid);
116
117 #ifdef CONFIG_USELIB
118 /*
119 * Note that a shared library must be both readable and executable due to
120 * security reasons.
121 *
122 * Also note that we take the address to load from from the file itself.
123 */
124 SYSCALL_DEFINE1(uselib, const char __user *, library)
125 {
126 struct linux_binfmt *fmt;
127 struct file *file;
128 struct filename *tmp = getname(library);
129 int error = PTR_ERR(tmp);
130 static const struct open_flags uselib_flags = {
131 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
132 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
133 .intent = LOOKUP_OPEN,
134 .lookup_flags = LOOKUP_FOLLOW,
135 };
136
137 if (IS_ERR(tmp))
138 goto out;
139
140 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141 putname(tmp);
142 error = PTR_ERR(file);
143 if (IS_ERR(file))
144 goto out;
145
146 error = -EINVAL;
147 if (!S_ISREG(file_inode(file)->i_mode))
148 goto exit;
149
150 error = -EACCES;
151 if (path_noexec(&file->f_path))
152 goto exit;
153
154 fsnotify_open(file);
155
156 error = -ENOEXEC;
157
158 read_lock(&binfmt_lock);
159 list_for_each_entry(fmt, &formats, lh) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
170 }
171 read_unlock(&binfmt_lock);
172 exit:
173 fput(file);
174 out:
175 return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178
179 #ifdef CONFIG_MMU
180 /*
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
185 */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 struct mm_struct *mm = current->mm;
189 long diff = (long)(pages - bprm->vma_pages);
190
191 if (!mm || !diff)
192 return;
193
194 bprm->vma_pages = pages;
195 add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 int write)
200 {
201 struct page *page;
202 int ret;
203
204 #ifdef CONFIG_STACK_GROWSUP
205 if (write) {
206 ret = expand_downwards(bprm->vma, pos);
207 if (ret < 0)
208 return NULL;
209 }
210 #endif
211 ret = get_user_pages(current, bprm->mm, pos,
212 1, write, 1, &page, NULL);
213 if (ret <= 0)
214 return NULL;
215
216 if (write) {
217 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218 struct rlimit *rlim;
219
220 acct_arg_size(bprm, size / PAGE_SIZE);
221
222 /*
223 * We've historically supported up to 32 pages (ARG_MAX)
224 * of argument strings even with small stacks
225 */
226 if (size <= ARG_MAX)
227 return page;
228
229 /*
230 * Limit to 1/4-th the stack size for the argv+env strings.
231 * This ensures that:
232 * - the remaining binfmt code will not run out of stack space,
233 * - the program will have a reasonable amount of stack left
234 * to work from.
235 */
236 rlim = current->signal->rlim;
237 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
238 put_page(page);
239 return NULL;
240 }
241 }
242
243 return page;
244 }
245
246 static void put_arg_page(struct page *page)
247 {
248 put_page(page);
249 }
250
251 static void free_arg_page(struct linux_binprm *bprm, int i)
252 {
253 }
254
255 static void free_arg_pages(struct linux_binprm *bprm)
256 {
257 }
258
259 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
260 struct page *page)
261 {
262 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
263 }
264
265 static int __bprm_mm_init(struct linux_binprm *bprm)
266 {
267 int err;
268 struct vm_area_struct *vma = NULL;
269 struct mm_struct *mm = bprm->mm;
270
271 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
272 if (!vma)
273 return -ENOMEM;
274
275 down_write(&mm->mmap_sem);
276 vma->vm_mm = mm;
277
278 /*
279 * Place the stack at the largest stack address the architecture
280 * supports. Later, we'll move this to an appropriate place. We don't
281 * use STACK_TOP because that can depend on attributes which aren't
282 * configured yet.
283 */
284 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
285 vma->vm_end = STACK_TOP_MAX;
286 vma->vm_start = vma->vm_end - PAGE_SIZE;
287 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
288 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
289 INIT_LIST_HEAD(&vma->anon_vma_chain);
290
291 err = insert_vm_struct(mm, vma);
292 if (err)
293 goto err;
294
295 mm->stack_vm = mm->total_vm = 1;
296 arch_bprm_mm_init(mm, vma);
297 up_write(&mm->mmap_sem);
298 bprm->p = vma->vm_end - sizeof(void *);
299 return 0;
300 err:
301 up_write(&mm->mmap_sem);
302 bprm->vma = NULL;
303 kmem_cache_free(vm_area_cachep, vma);
304 return err;
305 }
306
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
308 {
309 return len <= MAX_ARG_STRLEN;
310 }
311
312 #else
313
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315 {
316 }
317
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 int write)
320 {
321 struct page *page;
322
323 page = bprm->page[pos / PAGE_SIZE];
324 if (!page && write) {
325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326 if (!page)
327 return NULL;
328 bprm->page[pos / PAGE_SIZE] = page;
329 }
330
331 return page;
332 }
333
334 static void put_arg_page(struct page *page)
335 {
336 }
337
338 static void free_arg_page(struct linux_binprm *bprm, int i)
339 {
340 if (bprm->page[i]) {
341 __free_page(bprm->page[i]);
342 bprm->page[i] = NULL;
343 }
344 }
345
346 static void free_arg_pages(struct linux_binprm *bprm)
347 {
348 int i;
349
350 for (i = 0; i < MAX_ARG_PAGES; i++)
351 free_arg_page(bprm, i);
352 }
353
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 struct page *page)
356 {
357 }
358
359 static int __bprm_mm_init(struct linux_binprm *bprm)
360 {
361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362 return 0;
363 }
364
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
366 {
367 return len <= bprm->p;
368 }
369
370 #endif /* CONFIG_MMU */
371
372 /*
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
377 */
378 static int bprm_mm_init(struct linux_binprm *bprm)
379 {
380 int err;
381 struct mm_struct *mm = NULL;
382
383 bprm->mm = mm = mm_alloc();
384 err = -ENOMEM;
385 if (!mm)
386 goto err;
387
388 err = __bprm_mm_init(bprm);
389 if (err)
390 goto err;
391
392 return 0;
393
394 err:
395 if (mm) {
396 bprm->mm = NULL;
397 mmdrop(mm);
398 }
399
400 return err;
401 }
402
403 struct user_arg_ptr {
404 #ifdef CONFIG_COMPAT
405 bool is_compat;
406 #endif
407 union {
408 const char __user *const __user *native;
409 #ifdef CONFIG_COMPAT
410 const compat_uptr_t __user *compat;
411 #endif
412 } ptr;
413 };
414
415 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
416 {
417 const char __user *native;
418
419 #ifdef CONFIG_COMPAT
420 if (unlikely(argv.is_compat)) {
421 compat_uptr_t compat;
422
423 if (get_user(compat, argv.ptr.compat + nr))
424 return ERR_PTR(-EFAULT);
425
426 return compat_ptr(compat);
427 }
428 #endif
429
430 if (get_user(native, argv.ptr.native + nr))
431 return ERR_PTR(-EFAULT);
432
433 return native;
434 }
435
436 /*
437 * count() counts the number of strings in array ARGV.
438 */
439 static int count(struct user_arg_ptr argv, int max)
440 {
441 int i = 0;
442
443 if (argv.ptr.native != NULL) {
444 for (;;) {
445 const char __user *p = get_user_arg_ptr(argv, i);
446
447 if (!p)
448 break;
449
450 if (IS_ERR(p))
451 return -EFAULT;
452
453 if (i >= max)
454 return -E2BIG;
455 ++i;
456
457 if (fatal_signal_pending(current))
458 return -ERESTARTNOHAND;
459 cond_resched();
460 }
461 }
462 return i;
463 }
464
465 /*
466 * 'copy_strings()' copies argument/environment strings from the old
467 * processes's memory to the new process's stack. The call to get_user_pages()
468 * ensures the destination page is created and not swapped out.
469 */
470 static int copy_strings(int argc, struct user_arg_ptr argv,
471 struct linux_binprm *bprm)
472 {
473 struct page *kmapped_page = NULL;
474 char *kaddr = NULL;
475 unsigned long kpos = 0;
476 int ret;
477
478 while (argc-- > 0) {
479 const char __user *str;
480 int len;
481 unsigned long pos;
482
483 ret = -EFAULT;
484 str = get_user_arg_ptr(argv, argc);
485 if (IS_ERR(str))
486 goto out;
487
488 len = strnlen_user(str, MAX_ARG_STRLEN);
489 if (!len)
490 goto out;
491
492 ret = -E2BIG;
493 if (!valid_arg_len(bprm, len))
494 goto out;
495
496 /* We're going to work our way backwords. */
497 pos = bprm->p;
498 str += len;
499 bprm->p -= len;
500
501 while (len > 0) {
502 int offset, bytes_to_copy;
503
504 if (fatal_signal_pending(current)) {
505 ret = -ERESTARTNOHAND;
506 goto out;
507 }
508 cond_resched();
509
510 offset = pos % PAGE_SIZE;
511 if (offset == 0)
512 offset = PAGE_SIZE;
513
514 bytes_to_copy = offset;
515 if (bytes_to_copy > len)
516 bytes_to_copy = len;
517
518 offset -= bytes_to_copy;
519 pos -= bytes_to_copy;
520 str -= bytes_to_copy;
521 len -= bytes_to_copy;
522
523 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
524 struct page *page;
525
526 page = get_arg_page(bprm, pos, 1);
527 if (!page) {
528 ret = -E2BIG;
529 goto out;
530 }
531
532 if (kmapped_page) {
533 flush_kernel_dcache_page(kmapped_page);
534 kunmap(kmapped_page);
535 put_arg_page(kmapped_page);
536 }
537 kmapped_page = page;
538 kaddr = kmap(kmapped_page);
539 kpos = pos & PAGE_MASK;
540 flush_arg_page(bprm, kpos, kmapped_page);
541 }
542 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
543 ret = -EFAULT;
544 goto out;
545 }
546 }
547 }
548 ret = 0;
549 out:
550 if (kmapped_page) {
551 flush_kernel_dcache_page(kmapped_page);
552 kunmap(kmapped_page);
553 put_arg_page(kmapped_page);
554 }
555 return ret;
556 }
557
558 /*
559 * Like copy_strings, but get argv and its values from kernel memory.
560 */
561 int copy_strings_kernel(int argc, const char *const *__argv,
562 struct linux_binprm *bprm)
563 {
564 int r;
565 mm_segment_t oldfs = get_fs();
566 struct user_arg_ptr argv = {
567 .ptr.native = (const char __user *const __user *)__argv,
568 };
569
570 set_fs(KERNEL_DS);
571 r = copy_strings(argc, argv, bprm);
572 set_fs(oldfs);
573
574 return r;
575 }
576 EXPORT_SYMBOL(copy_strings_kernel);
577
578 #ifdef CONFIG_MMU
579
580 /*
581 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
582 * the binfmt code determines where the new stack should reside, we shift it to
583 * its final location. The process proceeds as follows:
584 *
585 * 1) Use shift to calculate the new vma endpoints.
586 * 2) Extend vma to cover both the old and new ranges. This ensures the
587 * arguments passed to subsequent functions are consistent.
588 * 3) Move vma's page tables to the new range.
589 * 4) Free up any cleared pgd range.
590 * 5) Shrink the vma to cover only the new range.
591 */
592 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
593 {
594 struct mm_struct *mm = vma->vm_mm;
595 unsigned long old_start = vma->vm_start;
596 unsigned long old_end = vma->vm_end;
597 unsigned long length = old_end - old_start;
598 unsigned long new_start = old_start - shift;
599 unsigned long new_end = old_end - shift;
600 struct mmu_gather tlb;
601
602 BUG_ON(new_start > new_end);
603
604 /*
605 * ensure there are no vmas between where we want to go
606 * and where we are
607 */
608 if (vma != find_vma(mm, new_start))
609 return -EFAULT;
610
611 /*
612 * cover the whole range: [new_start, old_end)
613 */
614 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
615 return -ENOMEM;
616
617 /*
618 * move the page tables downwards, on failure we rely on
619 * process cleanup to remove whatever mess we made.
620 */
621 if (length != move_page_tables(vma, old_start,
622 vma, new_start, length, false))
623 return -ENOMEM;
624
625 lru_add_drain();
626 tlb_gather_mmu(&tlb, mm, old_start, old_end);
627 if (new_end > old_start) {
628 /*
629 * when the old and new regions overlap clear from new_end.
630 */
631 free_pgd_range(&tlb, new_end, old_end, new_end,
632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633 } else {
634 /*
635 * otherwise, clean from old_start; this is done to not touch
636 * the address space in [new_end, old_start) some architectures
637 * have constraints on va-space that make this illegal (IA64) -
638 * for the others its just a little faster.
639 */
640 free_pgd_range(&tlb, old_start, old_end, new_end,
641 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
642 }
643 tlb_finish_mmu(&tlb, old_start, old_end);
644
645 /*
646 * Shrink the vma to just the new range. Always succeeds.
647 */
648 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
649
650 return 0;
651 }
652
653 /*
654 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
655 * the stack is optionally relocated, and some extra space is added.
656 */
657 int setup_arg_pages(struct linux_binprm *bprm,
658 unsigned long stack_top,
659 int executable_stack)
660 {
661 unsigned long ret;
662 unsigned long stack_shift;
663 struct mm_struct *mm = current->mm;
664 struct vm_area_struct *vma = bprm->vma;
665 struct vm_area_struct *prev = NULL;
666 unsigned long vm_flags;
667 unsigned long stack_base;
668 unsigned long stack_size;
669 unsigned long stack_expand;
670 unsigned long rlim_stack;
671
672 #ifdef CONFIG_STACK_GROWSUP
673 /* Limit stack size */
674 stack_base = rlimit_max(RLIMIT_STACK);
675 if (stack_base > STACK_SIZE_MAX)
676 stack_base = STACK_SIZE_MAX;
677
678 /* Add space for stack randomization. */
679 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
680
681 /* Make sure we didn't let the argument array grow too large. */
682 if (vma->vm_end - vma->vm_start > stack_base)
683 return -ENOMEM;
684
685 stack_base = PAGE_ALIGN(stack_top - stack_base);
686
687 stack_shift = vma->vm_start - stack_base;
688 mm->arg_start = bprm->p - stack_shift;
689 bprm->p = vma->vm_end - stack_shift;
690 #else
691 stack_top = arch_align_stack(stack_top);
692 stack_top = PAGE_ALIGN(stack_top);
693
694 if (unlikely(stack_top < mmap_min_addr) ||
695 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
696 return -ENOMEM;
697
698 stack_shift = vma->vm_end - stack_top;
699
700 bprm->p -= stack_shift;
701 mm->arg_start = bprm->p;
702 #endif
703
704 if (bprm->loader)
705 bprm->loader -= stack_shift;
706 bprm->exec -= stack_shift;
707
708 down_write(&mm->mmap_sem);
709 vm_flags = VM_STACK_FLAGS;
710
711 /*
712 * Adjust stack execute permissions; explicitly enable for
713 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
714 * (arch default) otherwise.
715 */
716 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
717 vm_flags |= VM_EXEC;
718 else if (executable_stack == EXSTACK_DISABLE_X)
719 vm_flags &= ~VM_EXEC;
720 vm_flags |= mm->def_flags;
721 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
722
723 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
724 vm_flags);
725 if (ret)
726 goto out_unlock;
727 BUG_ON(prev != vma);
728
729 /* Move stack pages down in memory. */
730 if (stack_shift) {
731 ret = shift_arg_pages(vma, stack_shift);
732 if (ret)
733 goto out_unlock;
734 }
735
736 /* mprotect_fixup is overkill to remove the temporary stack flags */
737 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
738
739 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
740 stack_size = vma->vm_end - vma->vm_start;
741 /*
742 * Align this down to a page boundary as expand_stack
743 * will align it up.
744 */
745 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
746 #ifdef CONFIG_STACK_GROWSUP
747 if (stack_size + stack_expand > rlim_stack)
748 stack_base = vma->vm_start + rlim_stack;
749 else
750 stack_base = vma->vm_end + stack_expand;
751 #else
752 if (stack_size + stack_expand > rlim_stack)
753 stack_base = vma->vm_end - rlim_stack;
754 else
755 stack_base = vma->vm_start - stack_expand;
756 #endif
757 current->mm->start_stack = bprm->p;
758 ret = expand_stack(vma, stack_base);
759 if (ret)
760 ret = -EFAULT;
761
762 out_unlock:
763 up_write(&mm->mmap_sem);
764 return ret;
765 }
766 EXPORT_SYMBOL(setup_arg_pages);
767
768 #endif /* CONFIG_MMU */
769
770 static struct file *do_open_execat(int fd, struct filename *name, int flags)
771 {
772 struct file *file;
773 int err;
774 struct open_flags open_exec_flags = {
775 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
776 .acc_mode = MAY_EXEC | MAY_OPEN,
777 .intent = LOOKUP_OPEN,
778 .lookup_flags = LOOKUP_FOLLOW,
779 };
780
781 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
782 return ERR_PTR(-EINVAL);
783 if (flags & AT_SYMLINK_NOFOLLOW)
784 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
785 if (flags & AT_EMPTY_PATH)
786 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
787
788 file = do_filp_open(fd, name, &open_exec_flags);
789 if (IS_ERR(file))
790 goto out;
791
792 err = -EACCES;
793 if (!S_ISREG(file_inode(file)->i_mode))
794 goto exit;
795
796 if (path_noexec(&file->f_path))
797 goto exit;
798
799 err = deny_write_access(file);
800 if (err)
801 goto exit;
802
803 if (name->name[0] != '\0')
804 fsnotify_open(file);
805
806 trace_open_exec(name->name);
807
808 out:
809 return file;
810
811 exit:
812 fput(file);
813 return ERR_PTR(err);
814 }
815
816 struct file *open_exec(const char *name)
817 {
818 struct filename *filename = getname_kernel(name);
819 struct file *f = ERR_CAST(filename);
820
821 if (!IS_ERR(filename)) {
822 f = do_open_execat(AT_FDCWD, filename, 0);
823 putname(filename);
824 }
825 return f;
826 }
827 EXPORT_SYMBOL(open_exec);
828
829 int kernel_read(struct file *file, loff_t offset,
830 char *addr, unsigned long count)
831 {
832 mm_segment_t old_fs;
833 loff_t pos = offset;
834 int result;
835
836 old_fs = get_fs();
837 set_fs(get_ds());
838 /* The cast to a user pointer is valid due to the set_fs() */
839 result = vfs_read(file, (void __user *)addr, count, &pos);
840 set_fs(old_fs);
841 return result;
842 }
843
844 EXPORT_SYMBOL(kernel_read);
845
846 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
847 {
848 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
849 if (res > 0)
850 flush_icache_range(addr, addr + len);
851 return res;
852 }
853 EXPORT_SYMBOL(read_code);
854
855 static int exec_mmap(struct mm_struct *mm)
856 {
857 struct task_struct *tsk;
858 struct mm_struct *old_mm, *active_mm;
859
860 /* Notify parent that we're no longer interested in the old VM */
861 tsk = current;
862 old_mm = current->mm;
863 mm_release(tsk, old_mm);
864
865 if (old_mm) {
866 sync_mm_rss(old_mm);
867 /*
868 * Make sure that if there is a core dump in progress
869 * for the old mm, we get out and die instead of going
870 * through with the exec. We must hold mmap_sem around
871 * checking core_state and changing tsk->mm.
872 */
873 down_read(&old_mm->mmap_sem);
874 if (unlikely(old_mm->core_state)) {
875 up_read(&old_mm->mmap_sem);
876 return -EINTR;
877 }
878 }
879 task_lock(tsk);
880 active_mm = tsk->active_mm;
881 tsk->mm = mm;
882 tsk->active_mm = mm;
883 activate_mm(active_mm, mm);
884 tsk->mm->vmacache_seqnum = 0;
885 vmacache_flush(tsk);
886 task_unlock(tsk);
887 if (old_mm) {
888 up_read(&old_mm->mmap_sem);
889 BUG_ON(active_mm != old_mm);
890 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
891 mm_update_next_owner(old_mm);
892 mmput(old_mm);
893 return 0;
894 }
895 mmdrop(active_mm);
896 return 0;
897 }
898
899 /*
900 * This function makes sure the current process has its own signal table,
901 * so that flush_signal_handlers can later reset the handlers without
902 * disturbing other processes. (Other processes might share the signal
903 * table via the CLONE_SIGHAND option to clone().)
904 */
905 static int de_thread(struct task_struct *tsk)
906 {
907 struct signal_struct *sig = tsk->signal;
908 struct sighand_struct *oldsighand = tsk->sighand;
909 spinlock_t *lock = &oldsighand->siglock;
910
911 if (thread_group_empty(tsk))
912 goto no_thread_group;
913
914 /*
915 * Kill all other threads in the thread group.
916 */
917 spin_lock_irq(lock);
918 if (signal_group_exit(sig)) {
919 /*
920 * Another group action in progress, just
921 * return so that the signal is processed.
922 */
923 spin_unlock_irq(lock);
924 return -EAGAIN;
925 }
926
927 sig->group_exit_task = tsk;
928 sig->notify_count = zap_other_threads(tsk);
929 if (!thread_group_leader(tsk))
930 sig->notify_count--;
931
932 while (sig->notify_count) {
933 __set_current_state(TASK_KILLABLE);
934 spin_unlock_irq(lock);
935 schedule();
936 if (unlikely(__fatal_signal_pending(tsk)))
937 goto killed;
938 spin_lock_irq(lock);
939 }
940 spin_unlock_irq(lock);
941
942 /*
943 * At this point all other threads have exited, all we have to
944 * do is to wait for the thread group leader to become inactive,
945 * and to assume its PID:
946 */
947 if (!thread_group_leader(tsk)) {
948 struct task_struct *leader = tsk->group_leader;
949
950 for (;;) {
951 threadgroup_change_begin(tsk);
952 write_lock_irq(&tasklist_lock);
953 /*
954 * Do this under tasklist_lock to ensure that
955 * exit_notify() can't miss ->group_exit_task
956 */
957 sig->notify_count = -1;
958 if (likely(leader->exit_state))
959 break;
960 __set_current_state(TASK_KILLABLE);
961 write_unlock_irq(&tasklist_lock);
962 threadgroup_change_end(tsk);
963 schedule();
964 if (unlikely(__fatal_signal_pending(tsk)))
965 goto killed;
966 }
967
968 /*
969 * The only record we have of the real-time age of a
970 * process, regardless of execs it's done, is start_time.
971 * All the past CPU time is accumulated in signal_struct
972 * from sister threads now dead. But in this non-leader
973 * exec, nothing survives from the original leader thread,
974 * whose birth marks the true age of this process now.
975 * When we take on its identity by switching to its PID, we
976 * also take its birthdate (always earlier than our own).
977 */
978 tsk->start_time = leader->start_time;
979 tsk->real_start_time = leader->real_start_time;
980
981 BUG_ON(!same_thread_group(leader, tsk));
982 BUG_ON(has_group_leader_pid(tsk));
983 /*
984 * An exec() starts a new thread group with the
985 * TGID of the previous thread group. Rehash the
986 * two threads with a switched PID, and release
987 * the former thread group leader:
988 */
989
990 /* Become a process group leader with the old leader's pid.
991 * The old leader becomes a thread of the this thread group.
992 * Note: The old leader also uses this pid until release_task
993 * is called. Odd but simple and correct.
994 */
995 tsk->pid = leader->pid;
996 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
997 transfer_pid(leader, tsk, PIDTYPE_PGID);
998 transfer_pid(leader, tsk, PIDTYPE_SID);
999
1000 list_replace_rcu(&leader->tasks, &tsk->tasks);
1001 list_replace_init(&leader->sibling, &tsk->sibling);
1002
1003 tsk->group_leader = tsk;
1004 leader->group_leader = tsk;
1005
1006 tsk->exit_signal = SIGCHLD;
1007 leader->exit_signal = -1;
1008
1009 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1010 leader->exit_state = EXIT_DEAD;
1011
1012 /*
1013 * We are going to release_task()->ptrace_unlink() silently,
1014 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1015 * the tracer wont't block again waiting for this thread.
1016 */
1017 if (unlikely(leader->ptrace))
1018 __wake_up_parent(leader, leader->parent);
1019 write_unlock_irq(&tasklist_lock);
1020 threadgroup_change_end(tsk);
1021
1022 release_task(leader);
1023 }
1024
1025 sig->group_exit_task = NULL;
1026 sig->notify_count = 0;
1027
1028 no_thread_group:
1029 /* we have changed execution domain */
1030 tsk->exit_signal = SIGCHLD;
1031
1032 exit_itimers(sig);
1033 flush_itimer_signals();
1034
1035 if (atomic_read(&oldsighand->count) != 1) {
1036 struct sighand_struct *newsighand;
1037 /*
1038 * This ->sighand is shared with the CLONE_SIGHAND
1039 * but not CLONE_THREAD task, switch to the new one.
1040 */
1041 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1042 if (!newsighand)
1043 return -ENOMEM;
1044
1045 atomic_set(&newsighand->count, 1);
1046 memcpy(newsighand->action, oldsighand->action,
1047 sizeof(newsighand->action));
1048
1049 write_lock_irq(&tasklist_lock);
1050 spin_lock(&oldsighand->siglock);
1051 rcu_assign_pointer(tsk->sighand, newsighand);
1052 spin_unlock(&oldsighand->siglock);
1053 write_unlock_irq(&tasklist_lock);
1054
1055 __cleanup_sighand(oldsighand);
1056 }
1057
1058 BUG_ON(!thread_group_leader(tsk));
1059 return 0;
1060
1061 killed:
1062 /* protects against exit_notify() and __exit_signal() */
1063 read_lock(&tasklist_lock);
1064 sig->group_exit_task = NULL;
1065 sig->notify_count = 0;
1066 read_unlock(&tasklist_lock);
1067 return -EAGAIN;
1068 }
1069
1070 char *get_task_comm(char *buf, struct task_struct *tsk)
1071 {
1072 /* buf must be at least sizeof(tsk->comm) in size */
1073 task_lock(tsk);
1074 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1075 task_unlock(tsk);
1076 return buf;
1077 }
1078 EXPORT_SYMBOL_GPL(get_task_comm);
1079
1080 /*
1081 * These functions flushes out all traces of the currently running executable
1082 * so that a new one can be started
1083 */
1084
1085 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1086 {
1087 task_lock(tsk);
1088 trace_task_rename(tsk, buf);
1089 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1090 task_unlock(tsk);
1091 perf_event_comm(tsk, exec);
1092 }
1093
1094 int flush_old_exec(struct linux_binprm * bprm)
1095 {
1096 int retval;
1097
1098 /*
1099 * Make sure we have a private signal table and that
1100 * we are unassociated from the previous thread group.
1101 */
1102 retval = de_thread(current);
1103 if (retval)
1104 goto out;
1105
1106 /*
1107 * Must be called _before_ exec_mmap() as bprm->mm is
1108 * not visibile until then. This also enables the update
1109 * to be lockless.
1110 */
1111 set_mm_exe_file(bprm->mm, bprm->file);
1112
1113 /*
1114 * Release all of the old mmap stuff
1115 */
1116 acct_arg_size(bprm, 0);
1117 retval = exec_mmap(bprm->mm);
1118 if (retval)
1119 goto out;
1120
1121 bprm->mm = NULL; /* We're using it now */
1122
1123 set_fs(USER_DS);
1124 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1125 PF_NOFREEZE | PF_NO_SETAFFINITY);
1126 flush_thread();
1127 current->personality &= ~bprm->per_clear;
1128
1129 return 0;
1130
1131 out:
1132 return retval;
1133 }
1134 EXPORT_SYMBOL(flush_old_exec);
1135
1136 void would_dump(struct linux_binprm *bprm, struct file *file)
1137 {
1138 if (inode_permission(file_inode(file), MAY_READ) < 0)
1139 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1140 }
1141 EXPORT_SYMBOL(would_dump);
1142
1143 void setup_new_exec(struct linux_binprm * bprm)
1144 {
1145 arch_pick_mmap_layout(current->mm);
1146
1147 /* This is the point of no return */
1148 current->sas_ss_sp = current->sas_ss_size = 0;
1149
1150 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1151 set_dumpable(current->mm, SUID_DUMP_USER);
1152 else
1153 set_dumpable(current->mm, suid_dumpable);
1154
1155 perf_event_exec();
1156 __set_task_comm(current, kbasename(bprm->filename), true);
1157
1158 /* Set the new mm task size. We have to do that late because it may
1159 * depend on TIF_32BIT which is only updated in flush_thread() on
1160 * some architectures like powerpc
1161 */
1162 current->mm->task_size = TASK_SIZE;
1163
1164 /* install the new credentials */
1165 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1166 !gid_eq(bprm->cred->gid, current_egid())) {
1167 current->pdeath_signal = 0;
1168 } else {
1169 would_dump(bprm, bprm->file);
1170 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1171 set_dumpable(current->mm, suid_dumpable);
1172 }
1173
1174 /* An exec changes our domain. We are no longer part of the thread
1175 group */
1176 current->self_exec_id++;
1177 flush_signal_handlers(current, 0);
1178 do_close_on_exec(current->files);
1179 }
1180 EXPORT_SYMBOL(setup_new_exec);
1181
1182 /*
1183 * Prepare credentials and lock ->cred_guard_mutex.
1184 * install_exec_creds() commits the new creds and drops the lock.
1185 * Or, if exec fails before, free_bprm() should release ->cred and
1186 * and unlock.
1187 */
1188 int prepare_bprm_creds(struct linux_binprm *bprm)
1189 {
1190 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1191 return -ERESTARTNOINTR;
1192
1193 bprm->cred = prepare_exec_creds();
1194 if (likely(bprm->cred))
1195 return 0;
1196
1197 mutex_unlock(&current->signal->cred_guard_mutex);
1198 return -ENOMEM;
1199 }
1200
1201 static void free_bprm(struct linux_binprm *bprm)
1202 {
1203 free_arg_pages(bprm);
1204 if (bprm->cred) {
1205 mutex_unlock(&current->signal->cred_guard_mutex);
1206 abort_creds(bprm->cred);
1207 }
1208 if (bprm->file) {
1209 allow_write_access(bprm->file);
1210 fput(bprm->file);
1211 }
1212 /* If a binfmt changed the interp, free it. */
1213 if (bprm->interp != bprm->filename)
1214 kfree(bprm->interp);
1215 kfree(bprm);
1216 }
1217
1218 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1219 {
1220 /* If a binfmt changed the interp, free it first. */
1221 if (bprm->interp != bprm->filename)
1222 kfree(bprm->interp);
1223 bprm->interp = kstrdup(interp, GFP_KERNEL);
1224 if (!bprm->interp)
1225 return -ENOMEM;
1226 return 0;
1227 }
1228 EXPORT_SYMBOL(bprm_change_interp);
1229
1230 /*
1231 * install the new credentials for this executable
1232 */
1233 void install_exec_creds(struct linux_binprm *bprm)
1234 {
1235 security_bprm_committing_creds(bprm);
1236
1237 commit_creds(bprm->cred);
1238 bprm->cred = NULL;
1239
1240 /*
1241 * Disable monitoring for regular users
1242 * when executing setuid binaries. Must
1243 * wait until new credentials are committed
1244 * by commit_creds() above
1245 */
1246 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1247 perf_event_exit_task(current);
1248 /*
1249 * cred_guard_mutex must be held at least to this point to prevent
1250 * ptrace_attach() from altering our determination of the task's
1251 * credentials; any time after this it may be unlocked.
1252 */
1253 security_bprm_committed_creds(bprm);
1254 mutex_unlock(&current->signal->cred_guard_mutex);
1255 }
1256 EXPORT_SYMBOL(install_exec_creds);
1257
1258 /*
1259 * determine how safe it is to execute the proposed program
1260 * - the caller must hold ->cred_guard_mutex to protect against
1261 * PTRACE_ATTACH or seccomp thread-sync
1262 */
1263 static void check_unsafe_exec(struct linux_binprm *bprm)
1264 {
1265 struct task_struct *p = current, *t;
1266 unsigned n_fs;
1267
1268 if (p->ptrace) {
1269 if (p->ptrace & PT_PTRACE_CAP)
1270 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1271 else
1272 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1273 }
1274
1275 /*
1276 * This isn't strictly necessary, but it makes it harder for LSMs to
1277 * mess up.
1278 */
1279 if (task_no_new_privs(current))
1280 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1281
1282 t = p;
1283 n_fs = 1;
1284 spin_lock(&p->fs->lock);
1285 rcu_read_lock();
1286 while_each_thread(p, t) {
1287 if (t->fs == p->fs)
1288 n_fs++;
1289 }
1290 rcu_read_unlock();
1291
1292 if (p->fs->users > n_fs)
1293 bprm->unsafe |= LSM_UNSAFE_SHARE;
1294 else
1295 p->fs->in_exec = 1;
1296 spin_unlock(&p->fs->lock);
1297 }
1298
1299 static void bprm_fill_uid(struct linux_binprm *bprm)
1300 {
1301 struct inode *inode;
1302 unsigned int mode;
1303 kuid_t uid;
1304 kgid_t gid;
1305
1306 /* clear any previous set[ug]id data from a previous binary */
1307 bprm->cred->euid = current_euid();
1308 bprm->cred->egid = current_egid();
1309
1310 if (path_nosuid(&bprm->file->f_path))
1311 return;
1312
1313 if (task_no_new_privs(current))
1314 return;
1315
1316 inode = file_inode(bprm->file);
1317 mode = READ_ONCE(inode->i_mode);
1318 if (!(mode & (S_ISUID|S_ISGID)))
1319 return;
1320
1321 /* Be careful if suid/sgid is set */
1322 mutex_lock(&inode->i_mutex);
1323
1324 /* reload atomically mode/uid/gid now that lock held */
1325 mode = inode->i_mode;
1326 uid = inode->i_uid;
1327 gid = inode->i_gid;
1328 mutex_unlock(&inode->i_mutex);
1329
1330 /* We ignore suid/sgid if there are no mappings for them in the ns */
1331 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1332 !kgid_has_mapping(bprm->cred->user_ns, gid))
1333 return;
1334
1335 if (mode & S_ISUID) {
1336 bprm->per_clear |= PER_CLEAR_ON_SETID;
1337 bprm->cred->euid = uid;
1338 }
1339
1340 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1341 bprm->per_clear |= PER_CLEAR_ON_SETID;
1342 bprm->cred->egid = gid;
1343 }
1344 }
1345
1346 /*
1347 * Fill the binprm structure from the inode.
1348 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1349 *
1350 * This may be called multiple times for binary chains (scripts for example).
1351 */
1352 int prepare_binprm(struct linux_binprm *bprm)
1353 {
1354 int retval;
1355
1356 bprm_fill_uid(bprm);
1357
1358 /* fill in binprm security blob */
1359 retval = security_bprm_set_creds(bprm);
1360 if (retval)
1361 return retval;
1362 bprm->cred_prepared = 1;
1363
1364 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1365 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1366 }
1367
1368 EXPORT_SYMBOL(prepare_binprm);
1369
1370 /*
1371 * Arguments are '\0' separated strings found at the location bprm->p
1372 * points to; chop off the first by relocating brpm->p to right after
1373 * the first '\0' encountered.
1374 */
1375 int remove_arg_zero(struct linux_binprm *bprm)
1376 {
1377 int ret = 0;
1378 unsigned long offset;
1379 char *kaddr;
1380 struct page *page;
1381
1382 if (!bprm->argc)
1383 return 0;
1384
1385 do {
1386 offset = bprm->p & ~PAGE_MASK;
1387 page = get_arg_page(bprm, bprm->p, 0);
1388 if (!page) {
1389 ret = -EFAULT;
1390 goto out;
1391 }
1392 kaddr = kmap_atomic(page);
1393
1394 for (; offset < PAGE_SIZE && kaddr[offset];
1395 offset++, bprm->p++)
1396 ;
1397
1398 kunmap_atomic(kaddr);
1399 put_arg_page(page);
1400
1401 if (offset == PAGE_SIZE)
1402 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1403 } while (offset == PAGE_SIZE);
1404
1405 bprm->p++;
1406 bprm->argc--;
1407 ret = 0;
1408
1409 out:
1410 return ret;
1411 }
1412 EXPORT_SYMBOL(remove_arg_zero);
1413
1414 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1415 /*
1416 * cycle the list of binary formats handler, until one recognizes the image
1417 */
1418 int search_binary_handler(struct linux_binprm *bprm)
1419 {
1420 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1421 struct linux_binfmt *fmt;
1422 int retval;
1423
1424 /* This allows 4 levels of binfmt rewrites before failing hard. */
1425 if (bprm->recursion_depth > 5)
1426 return -ELOOP;
1427
1428 retval = security_bprm_check(bprm);
1429 if (retval)
1430 return retval;
1431
1432 retval = -ENOENT;
1433 retry:
1434 read_lock(&binfmt_lock);
1435 list_for_each_entry(fmt, &formats, lh) {
1436 if (!try_module_get(fmt->module))
1437 continue;
1438 read_unlock(&binfmt_lock);
1439 bprm->recursion_depth++;
1440 retval = fmt->load_binary(bprm);
1441 read_lock(&binfmt_lock);
1442 put_binfmt(fmt);
1443 bprm->recursion_depth--;
1444 if (retval < 0 && !bprm->mm) {
1445 /* we got to flush_old_exec() and failed after it */
1446 read_unlock(&binfmt_lock);
1447 force_sigsegv(SIGSEGV, current);
1448 return retval;
1449 }
1450 if (retval != -ENOEXEC || !bprm->file) {
1451 read_unlock(&binfmt_lock);
1452 return retval;
1453 }
1454 }
1455 read_unlock(&binfmt_lock);
1456
1457 if (need_retry) {
1458 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1459 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1460 return retval;
1461 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1462 return retval;
1463 need_retry = false;
1464 goto retry;
1465 }
1466
1467 return retval;
1468 }
1469 EXPORT_SYMBOL(search_binary_handler);
1470
1471 static int exec_binprm(struct linux_binprm *bprm)
1472 {
1473 pid_t old_pid, old_vpid;
1474 int ret;
1475
1476 /* Need to fetch pid before load_binary changes it */
1477 old_pid = current->pid;
1478 rcu_read_lock();
1479 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1480 rcu_read_unlock();
1481
1482 ret = search_binary_handler(bprm);
1483 if (ret >= 0) {
1484 audit_bprm(bprm);
1485 trace_sched_process_exec(current, old_pid, bprm);
1486 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1487 proc_exec_connector(current);
1488 }
1489
1490 return ret;
1491 }
1492
1493 /*
1494 * sys_execve() executes a new program.
1495 */
1496 static int do_execveat_common(int fd, struct filename *filename,
1497 struct user_arg_ptr argv,
1498 struct user_arg_ptr envp,
1499 int flags)
1500 {
1501 char *pathbuf = NULL;
1502 struct linux_binprm *bprm;
1503 struct file *file;
1504 struct files_struct *displaced;
1505 int retval;
1506
1507 if (IS_ERR(filename))
1508 return PTR_ERR(filename);
1509
1510 /*
1511 * We move the actual failure in case of RLIMIT_NPROC excess from
1512 * set*uid() to execve() because too many poorly written programs
1513 * don't check setuid() return code. Here we additionally recheck
1514 * whether NPROC limit is still exceeded.
1515 */
1516 if ((current->flags & PF_NPROC_EXCEEDED) &&
1517 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1518 retval = -EAGAIN;
1519 goto out_ret;
1520 }
1521
1522 /* We're below the limit (still or again), so we don't want to make
1523 * further execve() calls fail. */
1524 current->flags &= ~PF_NPROC_EXCEEDED;
1525
1526 retval = unshare_files(&displaced);
1527 if (retval)
1528 goto out_ret;
1529
1530 retval = -ENOMEM;
1531 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1532 if (!bprm)
1533 goto out_files;
1534
1535 retval = prepare_bprm_creds(bprm);
1536 if (retval)
1537 goto out_free;
1538
1539 check_unsafe_exec(bprm);
1540 current->in_execve = 1;
1541
1542 file = do_open_execat(fd, filename, flags);
1543 retval = PTR_ERR(file);
1544 if (IS_ERR(file))
1545 goto out_unmark;
1546
1547 sched_exec();
1548
1549 bprm->file = file;
1550 if (fd == AT_FDCWD || filename->name[0] == '/') {
1551 bprm->filename = filename->name;
1552 } else {
1553 if (filename->name[0] == '\0')
1554 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1555 else
1556 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1557 fd, filename->name);
1558 if (!pathbuf) {
1559 retval = -ENOMEM;
1560 goto out_unmark;
1561 }
1562 /*
1563 * Record that a name derived from an O_CLOEXEC fd will be
1564 * inaccessible after exec. Relies on having exclusive access to
1565 * current->files (due to unshare_files above).
1566 */
1567 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1568 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1569 bprm->filename = pathbuf;
1570 }
1571 bprm->interp = bprm->filename;
1572
1573 retval = bprm_mm_init(bprm);
1574 if (retval)
1575 goto out_unmark;
1576
1577 bprm->argc = count(argv, MAX_ARG_STRINGS);
1578 if ((retval = bprm->argc) < 0)
1579 goto out;
1580
1581 bprm->envc = count(envp, MAX_ARG_STRINGS);
1582 if ((retval = bprm->envc) < 0)
1583 goto out;
1584
1585 retval = prepare_binprm(bprm);
1586 if (retval < 0)
1587 goto out;
1588
1589 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1590 if (retval < 0)
1591 goto out;
1592
1593 bprm->exec = bprm->p;
1594 retval = copy_strings(bprm->envc, envp, bprm);
1595 if (retval < 0)
1596 goto out;
1597
1598 retval = copy_strings(bprm->argc, argv, bprm);
1599 if (retval < 0)
1600 goto out;
1601
1602 retval = exec_binprm(bprm);
1603 if (retval < 0)
1604 goto out;
1605
1606 /* execve succeeded */
1607 current->fs->in_exec = 0;
1608 current->in_execve = 0;
1609 acct_update_integrals(current);
1610 task_numa_free(current);
1611 free_bprm(bprm);
1612 kfree(pathbuf);
1613 putname(filename);
1614 if (displaced)
1615 put_files_struct(displaced);
1616 return retval;
1617
1618 out:
1619 if (bprm->mm) {
1620 acct_arg_size(bprm, 0);
1621 mmput(bprm->mm);
1622 }
1623
1624 out_unmark:
1625 current->fs->in_exec = 0;
1626 current->in_execve = 0;
1627
1628 out_free:
1629 free_bprm(bprm);
1630 kfree(pathbuf);
1631
1632 out_files:
1633 if (displaced)
1634 reset_files_struct(displaced);
1635 out_ret:
1636 putname(filename);
1637 return retval;
1638 }
1639
1640 int do_execve(struct filename *filename,
1641 const char __user *const __user *__argv,
1642 const char __user *const __user *__envp)
1643 {
1644 struct user_arg_ptr argv = { .ptr.native = __argv };
1645 struct user_arg_ptr envp = { .ptr.native = __envp };
1646 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1647 }
1648
1649 int do_execveat(int fd, struct filename *filename,
1650 const char __user *const __user *__argv,
1651 const char __user *const __user *__envp,
1652 int flags)
1653 {
1654 struct user_arg_ptr argv = { .ptr.native = __argv };
1655 struct user_arg_ptr envp = { .ptr.native = __envp };
1656
1657 return do_execveat_common(fd, filename, argv, envp, flags);
1658 }
1659
1660 #ifdef CONFIG_COMPAT
1661 static int compat_do_execve(struct filename *filename,
1662 const compat_uptr_t __user *__argv,
1663 const compat_uptr_t __user *__envp)
1664 {
1665 struct user_arg_ptr argv = {
1666 .is_compat = true,
1667 .ptr.compat = __argv,
1668 };
1669 struct user_arg_ptr envp = {
1670 .is_compat = true,
1671 .ptr.compat = __envp,
1672 };
1673 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1674 }
1675
1676 static int compat_do_execveat(int fd, struct filename *filename,
1677 const compat_uptr_t __user *__argv,
1678 const compat_uptr_t __user *__envp,
1679 int flags)
1680 {
1681 struct user_arg_ptr argv = {
1682 .is_compat = true,
1683 .ptr.compat = __argv,
1684 };
1685 struct user_arg_ptr envp = {
1686 .is_compat = true,
1687 .ptr.compat = __envp,
1688 };
1689 return do_execveat_common(fd, filename, argv, envp, flags);
1690 }
1691 #endif
1692
1693 void set_binfmt(struct linux_binfmt *new)
1694 {
1695 struct mm_struct *mm = current->mm;
1696
1697 if (mm->binfmt)
1698 module_put(mm->binfmt->module);
1699
1700 mm->binfmt = new;
1701 if (new)
1702 __module_get(new->module);
1703 }
1704 EXPORT_SYMBOL(set_binfmt);
1705
1706 /*
1707 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1708 */
1709 void set_dumpable(struct mm_struct *mm, int value)
1710 {
1711 unsigned long old, new;
1712
1713 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1714 return;
1715
1716 do {
1717 old = ACCESS_ONCE(mm->flags);
1718 new = (old & ~MMF_DUMPABLE_MASK) | value;
1719 } while (cmpxchg(&mm->flags, old, new) != old);
1720 }
1721
1722 SYSCALL_DEFINE3(execve,
1723 const char __user *, filename,
1724 const char __user *const __user *, argv,
1725 const char __user *const __user *, envp)
1726 {
1727 return do_execve(getname(filename), argv, envp);
1728 }
1729
1730 SYSCALL_DEFINE5(execveat,
1731 int, fd, const char __user *, filename,
1732 const char __user *const __user *, argv,
1733 const char __user *const __user *, envp,
1734 int, flags)
1735 {
1736 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1737
1738 return do_execveat(fd,
1739 getname_flags(filename, lookup_flags, NULL),
1740 argv, envp, flags);
1741 }
1742
1743 #ifdef CONFIG_COMPAT
1744 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1745 const compat_uptr_t __user *, argv,
1746 const compat_uptr_t __user *, envp)
1747 {
1748 return compat_do_execve(getname(filename), argv, envp);
1749 }
1750
1751 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1752 const char __user *, filename,
1753 const compat_uptr_t __user *, argv,
1754 const compat_uptr_t __user *, envp,
1755 int, flags)
1756 {
1757 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1758
1759 return compat_do_execveat(fd,
1760 getname_flags(filename, lookup_flags, NULL),
1761 argv, envp, flags);
1762 }
1763 #endif