]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/exec.c
ARM: dts: bcm283x: Enable the VEC IP on all RaspberryPi boards
[mirror_ubuntu-zesty-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <trace/events/fs.h>
62
63 #include <linux/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/tlb.h>
66
67 #include <trace/events/task.h>
68 #include "internal.h"
69
70 #include <trace/events/sched.h>
71
72 int suid_dumpable = 0;
73
74 static LIST_HEAD(formats);
75 static DEFINE_RWLOCK(binfmt_lock);
76
77 void __register_binfmt(struct linux_binfmt * fmt, int insert)
78 {
79 BUG_ON(!fmt);
80 if (WARN_ON(!fmt->load_binary))
81 return;
82 write_lock(&binfmt_lock);
83 insert ? list_add(&fmt->lh, &formats) :
84 list_add_tail(&fmt->lh, &formats);
85 write_unlock(&binfmt_lock);
86 }
87
88 EXPORT_SYMBOL(__register_binfmt);
89
90 void unregister_binfmt(struct linux_binfmt * fmt)
91 {
92 write_lock(&binfmt_lock);
93 list_del(&fmt->lh);
94 write_unlock(&binfmt_lock);
95 }
96
97 EXPORT_SYMBOL(unregister_binfmt);
98
99 static inline void put_binfmt(struct linux_binfmt * fmt)
100 {
101 module_put(fmt->module);
102 }
103
104 bool path_noexec(const struct path *path)
105 {
106 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
107 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 }
109 EXPORT_SYMBOL_GPL(path_noexec);
110
111 bool path_nosuid(const struct path *path)
112 {
113 return !mnt_may_suid(path->mnt) ||
114 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
115 }
116 EXPORT_SYMBOL(path_nosuid);
117
118 #ifdef CONFIG_USELIB
119 /*
120 * Note that a shared library must be both readable and executable due to
121 * security reasons.
122 *
123 * Also note that we take the address to load from from the file itself.
124 */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 struct linux_binfmt *fmt;
128 struct file *file;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
136 };
137
138 if (IS_ERR(tmp))
139 goto out;
140
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 putname(tmp);
143 error = PTR_ERR(file);
144 if (IS_ERR(file))
145 goto out;
146
147 error = -EINVAL;
148 if (!S_ISREG(file_inode(file)->i_mode))
149 goto exit;
150
151 error = -EACCES;
152 if (path_noexec(&file->f_path))
153 goto exit;
154
155 fsnotify_open(file);
156
157 error = -ENOEXEC;
158
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
162 continue;
163 if (!try_module_get(fmt->module))
164 continue;
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
168 put_binfmt(fmt);
169 if (error != -ENOEXEC)
170 break;
171 }
172 read_unlock(&binfmt_lock);
173 exit:
174 fput(file);
175 out:
176 return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179
180 #ifdef CONFIG_MMU
181 /*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
191
192 if (!mm || !diff)
193 return;
194
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201 {
202 struct page *page;
203 int ret;
204 unsigned int gup_flags = FOLL_FORCE;
205
206 #ifdef CONFIG_STACK_GROWSUP
207 if (write) {
208 ret = expand_downwards(bprm->vma, pos);
209 if (ret < 0)
210 return NULL;
211 }
212 #endif
213
214 if (write)
215 gup_flags |= FOLL_WRITE;
216
217 /*
218 * We are doing an exec(). 'current' is the process
219 * doing the exec and bprm->mm is the new process's mm.
220 */
221 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
222 &page, NULL, NULL);
223 if (ret <= 0)
224 return NULL;
225
226 if (write) {
227 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
228 unsigned long ptr_size;
229 struct rlimit *rlim;
230
231 /*
232 * Since the stack will hold pointers to the strings, we
233 * must account for them as well.
234 *
235 * The size calculation is the entire vma while each arg page is
236 * built, so each time we get here it's calculating how far it
237 * is currently (rather than each call being just the newly
238 * added size from the arg page). As a result, we need to
239 * always add the entire size of the pointers, so that on the
240 * last call to get_arg_page() we'll actually have the entire
241 * correct size.
242 */
243 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
244 if (ptr_size > ULONG_MAX - size)
245 goto fail;
246 size += ptr_size;
247
248 acct_arg_size(bprm, size / PAGE_SIZE);
249
250 /*
251 * We've historically supported up to 32 pages (ARG_MAX)
252 * of argument strings even with small stacks
253 */
254 if (size <= ARG_MAX)
255 return page;
256
257 /*
258 * Limit to 1/4-th the stack size for the argv+env strings.
259 * This ensures that:
260 * - the remaining binfmt code will not run out of stack space,
261 * - the program will have a reasonable amount of stack left
262 * to work from.
263 */
264 rlim = current->signal->rlim;
265 if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4)
266 goto fail;
267 }
268
269 return page;
270
271 fail:
272 put_page(page);
273 return NULL;
274 }
275
276 static void put_arg_page(struct page *page)
277 {
278 put_page(page);
279 }
280
281 static void free_arg_pages(struct linux_binprm *bprm)
282 {
283 }
284
285 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
286 struct page *page)
287 {
288 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
289 }
290
291 static int __bprm_mm_init(struct linux_binprm *bprm)
292 {
293 int err;
294 struct vm_area_struct *vma = NULL;
295 struct mm_struct *mm = bprm->mm;
296
297 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
298 if (!vma)
299 return -ENOMEM;
300
301 if (down_write_killable(&mm->mmap_sem)) {
302 err = -EINTR;
303 goto err_free;
304 }
305 vma->vm_mm = mm;
306
307 /*
308 * Place the stack at the largest stack address the architecture
309 * supports. Later, we'll move this to an appropriate place. We don't
310 * use STACK_TOP because that can depend on attributes which aren't
311 * configured yet.
312 */
313 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
314 vma->vm_end = STACK_TOP_MAX;
315 vma->vm_start = vma->vm_end - PAGE_SIZE;
316 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
317 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
318 INIT_LIST_HEAD(&vma->anon_vma_chain);
319
320 err = insert_vm_struct(mm, vma);
321 if (err)
322 goto err;
323
324 mm->stack_vm = mm->total_vm = 1;
325 arch_bprm_mm_init(mm, vma);
326 up_write(&mm->mmap_sem);
327 bprm->p = vma->vm_end - sizeof(void *);
328 return 0;
329 err:
330 up_write(&mm->mmap_sem);
331 err_free:
332 bprm->vma = NULL;
333 kmem_cache_free(vm_area_cachep, vma);
334 return err;
335 }
336
337 static bool valid_arg_len(struct linux_binprm *bprm, long len)
338 {
339 return len <= MAX_ARG_STRLEN;
340 }
341
342 #else
343
344 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
345 {
346 }
347
348 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
349 int write)
350 {
351 struct page *page;
352
353 page = bprm->page[pos / PAGE_SIZE];
354 if (!page && write) {
355 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
356 if (!page)
357 return NULL;
358 bprm->page[pos / PAGE_SIZE] = page;
359 }
360
361 return page;
362 }
363
364 static void put_arg_page(struct page *page)
365 {
366 }
367
368 static void free_arg_page(struct linux_binprm *bprm, int i)
369 {
370 if (bprm->page[i]) {
371 __free_page(bprm->page[i]);
372 bprm->page[i] = NULL;
373 }
374 }
375
376 static void free_arg_pages(struct linux_binprm *bprm)
377 {
378 int i;
379
380 for (i = 0; i < MAX_ARG_PAGES; i++)
381 free_arg_page(bprm, i);
382 }
383
384 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
385 struct page *page)
386 {
387 }
388
389 static int __bprm_mm_init(struct linux_binprm *bprm)
390 {
391 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
392 return 0;
393 }
394
395 static bool valid_arg_len(struct linux_binprm *bprm, long len)
396 {
397 return len <= bprm->p;
398 }
399
400 #endif /* CONFIG_MMU */
401
402 /*
403 * Create a new mm_struct and populate it with a temporary stack
404 * vm_area_struct. We don't have enough context at this point to set the stack
405 * flags, permissions, and offset, so we use temporary values. We'll update
406 * them later in setup_arg_pages().
407 */
408 static int bprm_mm_init(struct linux_binprm *bprm)
409 {
410 int err;
411 struct mm_struct *mm = NULL;
412
413 bprm->mm = mm = mm_alloc();
414 err = -ENOMEM;
415 if (!mm)
416 goto err;
417
418 err = __bprm_mm_init(bprm);
419 if (err)
420 goto err;
421
422 return 0;
423
424 err:
425 if (mm) {
426 bprm->mm = NULL;
427 mmdrop(mm);
428 }
429
430 return err;
431 }
432
433 struct user_arg_ptr {
434 #ifdef CONFIG_COMPAT
435 bool is_compat;
436 #endif
437 union {
438 const char __user *const __user *native;
439 #ifdef CONFIG_COMPAT
440 const compat_uptr_t __user *compat;
441 #endif
442 } ptr;
443 };
444
445 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
446 {
447 const char __user *native;
448
449 #ifdef CONFIG_COMPAT
450 if (unlikely(argv.is_compat)) {
451 compat_uptr_t compat;
452
453 if (get_user(compat, argv.ptr.compat + nr))
454 return ERR_PTR(-EFAULT);
455
456 return compat_ptr(compat);
457 }
458 #endif
459
460 if (get_user(native, argv.ptr.native + nr))
461 return ERR_PTR(-EFAULT);
462
463 return native;
464 }
465
466 /*
467 * count() counts the number of strings in array ARGV.
468 */
469 static int count(struct user_arg_ptr argv, int max)
470 {
471 int i = 0;
472
473 if (argv.ptr.native != NULL) {
474 for (;;) {
475 const char __user *p = get_user_arg_ptr(argv, i);
476
477 if (!p)
478 break;
479
480 if (IS_ERR(p))
481 return -EFAULT;
482
483 if (i >= max)
484 return -E2BIG;
485 ++i;
486
487 if (fatal_signal_pending(current))
488 return -ERESTARTNOHAND;
489 cond_resched();
490 }
491 }
492 return i;
493 }
494
495 /*
496 * 'copy_strings()' copies argument/environment strings from the old
497 * processes's memory to the new process's stack. The call to get_user_pages()
498 * ensures the destination page is created and not swapped out.
499 */
500 static int copy_strings(int argc, struct user_arg_ptr argv,
501 struct linux_binprm *bprm)
502 {
503 struct page *kmapped_page = NULL;
504 char *kaddr = NULL;
505 unsigned long kpos = 0;
506 int ret;
507
508 while (argc-- > 0) {
509 const char __user *str;
510 int len;
511 unsigned long pos;
512
513 ret = -EFAULT;
514 str = get_user_arg_ptr(argv, argc);
515 if (IS_ERR(str))
516 goto out;
517
518 len = strnlen_user(str, MAX_ARG_STRLEN);
519 if (!len)
520 goto out;
521
522 ret = -E2BIG;
523 if (!valid_arg_len(bprm, len))
524 goto out;
525
526 /* We're going to work our way backwords. */
527 pos = bprm->p;
528 str += len;
529 bprm->p -= len;
530
531 while (len > 0) {
532 int offset, bytes_to_copy;
533
534 if (fatal_signal_pending(current)) {
535 ret = -ERESTARTNOHAND;
536 goto out;
537 }
538 cond_resched();
539
540 offset = pos % PAGE_SIZE;
541 if (offset == 0)
542 offset = PAGE_SIZE;
543
544 bytes_to_copy = offset;
545 if (bytes_to_copy > len)
546 bytes_to_copy = len;
547
548 offset -= bytes_to_copy;
549 pos -= bytes_to_copy;
550 str -= bytes_to_copy;
551 len -= bytes_to_copy;
552
553 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
554 struct page *page;
555
556 page = get_arg_page(bprm, pos, 1);
557 if (!page) {
558 ret = -E2BIG;
559 goto out;
560 }
561
562 if (kmapped_page) {
563 flush_kernel_dcache_page(kmapped_page);
564 kunmap(kmapped_page);
565 put_arg_page(kmapped_page);
566 }
567 kmapped_page = page;
568 kaddr = kmap(kmapped_page);
569 kpos = pos & PAGE_MASK;
570 flush_arg_page(bprm, kpos, kmapped_page);
571 }
572 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
573 ret = -EFAULT;
574 goto out;
575 }
576 }
577 }
578 ret = 0;
579 out:
580 if (kmapped_page) {
581 flush_kernel_dcache_page(kmapped_page);
582 kunmap(kmapped_page);
583 put_arg_page(kmapped_page);
584 }
585 return ret;
586 }
587
588 /*
589 * Like copy_strings, but get argv and its values from kernel memory.
590 */
591 int copy_strings_kernel(int argc, const char *const *__argv,
592 struct linux_binprm *bprm)
593 {
594 int r;
595 mm_segment_t oldfs = get_fs();
596 struct user_arg_ptr argv = {
597 .ptr.native = (const char __user *const __user *)__argv,
598 };
599
600 set_fs(KERNEL_DS);
601 r = copy_strings(argc, argv, bprm);
602 set_fs(oldfs);
603
604 return r;
605 }
606 EXPORT_SYMBOL(copy_strings_kernel);
607
608 #ifdef CONFIG_MMU
609
610 /*
611 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
612 * the binfmt code determines where the new stack should reside, we shift it to
613 * its final location. The process proceeds as follows:
614 *
615 * 1) Use shift to calculate the new vma endpoints.
616 * 2) Extend vma to cover both the old and new ranges. This ensures the
617 * arguments passed to subsequent functions are consistent.
618 * 3) Move vma's page tables to the new range.
619 * 4) Free up any cleared pgd range.
620 * 5) Shrink the vma to cover only the new range.
621 */
622 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
623 {
624 struct mm_struct *mm = vma->vm_mm;
625 unsigned long old_start = vma->vm_start;
626 unsigned long old_end = vma->vm_end;
627 unsigned long length = old_end - old_start;
628 unsigned long new_start = old_start - shift;
629 unsigned long new_end = old_end - shift;
630 struct mmu_gather tlb;
631
632 BUG_ON(new_start > new_end);
633
634 /*
635 * ensure there are no vmas between where we want to go
636 * and where we are
637 */
638 if (vma != find_vma(mm, new_start))
639 return -EFAULT;
640
641 /*
642 * cover the whole range: [new_start, old_end)
643 */
644 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
645 return -ENOMEM;
646
647 /*
648 * move the page tables downwards, on failure we rely on
649 * process cleanup to remove whatever mess we made.
650 */
651 if (length != move_page_tables(vma, old_start,
652 vma, new_start, length, false))
653 return -ENOMEM;
654
655 lru_add_drain();
656 tlb_gather_mmu(&tlb, mm, old_start, old_end);
657 if (new_end > old_start) {
658 /*
659 * when the old and new regions overlap clear from new_end.
660 */
661 free_pgd_range(&tlb, new_end, old_end, new_end,
662 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
663 } else {
664 /*
665 * otherwise, clean from old_start; this is done to not touch
666 * the address space in [new_end, old_start) some architectures
667 * have constraints on va-space that make this illegal (IA64) -
668 * for the others its just a little faster.
669 */
670 free_pgd_range(&tlb, old_start, old_end, new_end,
671 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
672 }
673 tlb_finish_mmu(&tlb, old_start, old_end);
674
675 /*
676 * Shrink the vma to just the new range. Always succeeds.
677 */
678 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
679
680 return 0;
681 }
682
683 /*
684 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
685 * the stack is optionally relocated, and some extra space is added.
686 */
687 int setup_arg_pages(struct linux_binprm *bprm,
688 unsigned long stack_top,
689 int executable_stack)
690 {
691 unsigned long ret;
692 unsigned long stack_shift;
693 struct mm_struct *mm = current->mm;
694 struct vm_area_struct *vma = bprm->vma;
695 struct vm_area_struct *prev = NULL;
696 unsigned long vm_flags;
697 unsigned long stack_base;
698 unsigned long stack_size;
699 unsigned long stack_expand;
700 unsigned long rlim_stack;
701
702 #ifdef CONFIG_STACK_GROWSUP
703 /* Limit stack size */
704 stack_base = rlimit_max(RLIMIT_STACK);
705 if (stack_base > STACK_SIZE_MAX)
706 stack_base = STACK_SIZE_MAX;
707
708 /* Add space for stack randomization. */
709 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
710
711 /* Make sure we didn't let the argument array grow too large. */
712 if (vma->vm_end - vma->vm_start > stack_base)
713 return -ENOMEM;
714
715 stack_base = PAGE_ALIGN(stack_top - stack_base);
716
717 stack_shift = vma->vm_start - stack_base;
718 mm->arg_start = bprm->p - stack_shift;
719 bprm->p = vma->vm_end - stack_shift;
720 #else
721 stack_top = arch_align_stack(stack_top);
722 stack_top = PAGE_ALIGN(stack_top);
723
724 if (unlikely(stack_top < mmap_min_addr) ||
725 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
726 return -ENOMEM;
727
728 stack_shift = vma->vm_end - stack_top;
729
730 bprm->p -= stack_shift;
731 mm->arg_start = bprm->p;
732 #endif
733
734 if (bprm->loader)
735 bprm->loader -= stack_shift;
736 bprm->exec -= stack_shift;
737
738 if (down_write_killable(&mm->mmap_sem))
739 return -EINTR;
740
741 vm_flags = VM_STACK_FLAGS;
742
743 /*
744 * Adjust stack execute permissions; explicitly enable for
745 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
746 * (arch default) otherwise.
747 */
748 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
749 vm_flags |= VM_EXEC;
750 else if (executable_stack == EXSTACK_DISABLE_X)
751 vm_flags &= ~VM_EXEC;
752 vm_flags |= mm->def_flags;
753 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
754
755 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
756 vm_flags);
757 if (ret)
758 goto out_unlock;
759 BUG_ON(prev != vma);
760
761 /* Move stack pages down in memory. */
762 if (stack_shift) {
763 ret = shift_arg_pages(vma, stack_shift);
764 if (ret)
765 goto out_unlock;
766 }
767
768 /* mprotect_fixup is overkill to remove the temporary stack flags */
769 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
770
771 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
772 stack_size = vma->vm_end - vma->vm_start;
773 /*
774 * Align this down to a page boundary as expand_stack
775 * will align it up.
776 */
777 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
778 #ifdef CONFIG_STACK_GROWSUP
779 if (stack_size + stack_expand > rlim_stack)
780 stack_base = vma->vm_start + rlim_stack;
781 else
782 stack_base = vma->vm_end + stack_expand;
783 #else
784 if (stack_size + stack_expand > rlim_stack)
785 stack_base = vma->vm_end - rlim_stack;
786 else
787 stack_base = vma->vm_start - stack_expand;
788 #endif
789 current->mm->start_stack = bprm->p;
790 ret = expand_stack(vma, stack_base);
791 if (ret)
792 ret = -EFAULT;
793
794 out_unlock:
795 up_write(&mm->mmap_sem);
796 return ret;
797 }
798 EXPORT_SYMBOL(setup_arg_pages);
799
800 #else
801
802 /*
803 * Transfer the program arguments and environment from the holding pages
804 * onto the stack. The provided stack pointer is adjusted accordingly.
805 */
806 int transfer_args_to_stack(struct linux_binprm *bprm,
807 unsigned long *sp_location)
808 {
809 unsigned long index, stop, sp;
810 int ret = 0;
811
812 stop = bprm->p >> PAGE_SHIFT;
813 sp = *sp_location;
814
815 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
816 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
817 char *src = kmap(bprm->page[index]) + offset;
818 sp -= PAGE_SIZE - offset;
819 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
820 ret = -EFAULT;
821 kunmap(bprm->page[index]);
822 if (ret)
823 goto out;
824 }
825
826 *sp_location = sp;
827
828 out:
829 return ret;
830 }
831 EXPORT_SYMBOL(transfer_args_to_stack);
832
833 #endif /* CONFIG_MMU */
834
835 static struct file *do_open_execat(int fd, struct filename *name, int flags)
836 {
837 struct file *file;
838 int err;
839 struct open_flags open_exec_flags = {
840 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
841 .acc_mode = MAY_EXEC,
842 .intent = LOOKUP_OPEN,
843 .lookup_flags = LOOKUP_FOLLOW,
844 };
845
846 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
847 return ERR_PTR(-EINVAL);
848 if (flags & AT_SYMLINK_NOFOLLOW)
849 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
850 if (flags & AT_EMPTY_PATH)
851 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
852
853 file = do_filp_open(fd, name, &open_exec_flags);
854 if (IS_ERR(file))
855 goto out;
856
857 err = -EACCES;
858 if (!S_ISREG(file_inode(file)->i_mode))
859 goto exit;
860
861 if (path_noexec(&file->f_path))
862 goto exit;
863
864 err = deny_write_access(file);
865 if (err)
866 goto exit;
867
868 if (name->name[0] != '\0')
869 fsnotify_open(file);
870
871 trace_open_exec(name->name);
872
873 out:
874 return file;
875
876 exit:
877 fput(file);
878 return ERR_PTR(err);
879 }
880
881 struct file *open_exec(const char *name)
882 {
883 struct filename *filename = getname_kernel(name);
884 struct file *f = ERR_CAST(filename);
885
886 if (!IS_ERR(filename)) {
887 f = do_open_execat(AT_FDCWD, filename, 0);
888 putname(filename);
889 }
890 return f;
891 }
892 EXPORT_SYMBOL(open_exec);
893
894 int kernel_read(struct file *file, loff_t offset,
895 char *addr, unsigned long count)
896 {
897 mm_segment_t old_fs;
898 loff_t pos = offset;
899 int result;
900
901 old_fs = get_fs();
902 set_fs(get_ds());
903 /* The cast to a user pointer is valid due to the set_fs() */
904 result = vfs_read(file, (void __user *)addr, count, &pos);
905 set_fs(old_fs);
906 return result;
907 }
908
909 EXPORT_SYMBOL(kernel_read);
910
911 int kernel_read_file(struct file *file, void **buf, loff_t *size,
912 loff_t max_size, enum kernel_read_file_id id)
913 {
914 loff_t i_size, pos;
915 ssize_t bytes = 0;
916 int ret;
917
918 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
919 return -EINVAL;
920
921 ret = security_kernel_read_file(file, id);
922 if (ret)
923 return ret;
924
925 ret = deny_write_access(file);
926 if (ret)
927 return ret;
928
929 i_size = i_size_read(file_inode(file));
930 if (max_size > 0 && i_size > max_size) {
931 ret = -EFBIG;
932 goto out;
933 }
934 if (i_size <= 0) {
935 ret = -EINVAL;
936 goto out;
937 }
938
939 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
940 *buf = vmalloc(i_size);
941 if (!*buf) {
942 ret = -ENOMEM;
943 goto out;
944 }
945
946 pos = 0;
947 while (pos < i_size) {
948 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
949 i_size - pos);
950 if (bytes < 0) {
951 ret = bytes;
952 goto out;
953 }
954
955 if (bytes == 0)
956 break;
957 pos += bytes;
958 }
959
960 if (pos != i_size) {
961 ret = -EIO;
962 goto out_free;
963 }
964
965 ret = security_kernel_post_read_file(file, *buf, i_size, id);
966 if (!ret)
967 *size = pos;
968
969 out_free:
970 if (ret < 0) {
971 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
972 vfree(*buf);
973 *buf = NULL;
974 }
975 }
976
977 out:
978 allow_write_access(file);
979 return ret;
980 }
981 EXPORT_SYMBOL_GPL(kernel_read_file);
982
983 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
984 loff_t max_size, enum kernel_read_file_id id)
985 {
986 struct file *file;
987 int ret;
988
989 if (!path || !*path)
990 return -EINVAL;
991
992 file = filp_open(path, O_RDONLY, 0);
993 if (IS_ERR(file))
994 return PTR_ERR(file);
995
996 ret = kernel_read_file(file, buf, size, max_size, id);
997 fput(file);
998 return ret;
999 }
1000 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1001
1002 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1003 enum kernel_read_file_id id)
1004 {
1005 struct fd f = fdget(fd);
1006 int ret = -EBADF;
1007
1008 if (!f.file)
1009 goto out;
1010
1011 ret = kernel_read_file(f.file, buf, size, max_size, id);
1012 out:
1013 fdput(f);
1014 return ret;
1015 }
1016 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1017
1018 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1019 {
1020 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1021 if (res > 0)
1022 flush_icache_range(addr, addr + len);
1023 return res;
1024 }
1025 EXPORT_SYMBOL(read_code);
1026
1027 static int exec_mmap(struct mm_struct *mm)
1028 {
1029 struct task_struct *tsk;
1030 struct mm_struct *old_mm, *active_mm;
1031
1032 /* Notify parent that we're no longer interested in the old VM */
1033 tsk = current;
1034 old_mm = current->mm;
1035 mm_release(tsk, old_mm);
1036
1037 if (old_mm) {
1038 sync_mm_rss(old_mm);
1039 /*
1040 * Make sure that if there is a core dump in progress
1041 * for the old mm, we get out and die instead of going
1042 * through with the exec. We must hold mmap_sem around
1043 * checking core_state and changing tsk->mm.
1044 */
1045 down_read(&old_mm->mmap_sem);
1046 if (unlikely(old_mm->core_state)) {
1047 up_read(&old_mm->mmap_sem);
1048 return -EINTR;
1049 }
1050 }
1051 task_lock(tsk);
1052 active_mm = tsk->active_mm;
1053 tsk->mm = mm;
1054 tsk->active_mm = mm;
1055 activate_mm(active_mm, mm);
1056 tsk->mm->vmacache_seqnum = 0;
1057 vmacache_flush(tsk);
1058 task_unlock(tsk);
1059 if (old_mm) {
1060 up_read(&old_mm->mmap_sem);
1061 BUG_ON(active_mm != old_mm);
1062 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1063 mm_update_next_owner(old_mm);
1064 mmput(old_mm);
1065 return 0;
1066 }
1067 mmdrop(active_mm);
1068 return 0;
1069 }
1070
1071 /*
1072 * This function makes sure the current process has its own signal table,
1073 * so that flush_signal_handlers can later reset the handlers without
1074 * disturbing other processes. (Other processes might share the signal
1075 * table via the CLONE_SIGHAND option to clone().)
1076 */
1077 static int de_thread(struct task_struct *tsk)
1078 {
1079 struct signal_struct *sig = tsk->signal;
1080 struct sighand_struct *oldsighand = tsk->sighand;
1081 spinlock_t *lock = &oldsighand->siglock;
1082
1083 if (thread_group_empty(tsk))
1084 goto no_thread_group;
1085
1086 /*
1087 * Kill all other threads in the thread group.
1088 */
1089 spin_lock_irq(lock);
1090 if (signal_group_exit(sig)) {
1091 /*
1092 * Another group action in progress, just
1093 * return so that the signal is processed.
1094 */
1095 spin_unlock_irq(lock);
1096 return -EAGAIN;
1097 }
1098
1099 sig->group_exit_task = tsk;
1100 sig->notify_count = zap_other_threads(tsk);
1101 if (!thread_group_leader(tsk))
1102 sig->notify_count--;
1103
1104 while (sig->notify_count) {
1105 __set_current_state(TASK_KILLABLE);
1106 spin_unlock_irq(lock);
1107 schedule();
1108 if (unlikely(__fatal_signal_pending(tsk)))
1109 goto killed;
1110 spin_lock_irq(lock);
1111 }
1112 spin_unlock_irq(lock);
1113
1114 /*
1115 * At this point all other threads have exited, all we have to
1116 * do is to wait for the thread group leader to become inactive,
1117 * and to assume its PID:
1118 */
1119 if (!thread_group_leader(tsk)) {
1120 struct task_struct *leader = tsk->group_leader;
1121
1122 for (;;) {
1123 threadgroup_change_begin(tsk);
1124 write_lock_irq(&tasklist_lock);
1125 /*
1126 * Do this under tasklist_lock to ensure that
1127 * exit_notify() can't miss ->group_exit_task
1128 */
1129 sig->notify_count = -1;
1130 if (likely(leader->exit_state))
1131 break;
1132 __set_current_state(TASK_KILLABLE);
1133 write_unlock_irq(&tasklist_lock);
1134 threadgroup_change_end(tsk);
1135 schedule();
1136 if (unlikely(__fatal_signal_pending(tsk)))
1137 goto killed;
1138 }
1139
1140 /*
1141 * The only record we have of the real-time age of a
1142 * process, regardless of execs it's done, is start_time.
1143 * All the past CPU time is accumulated in signal_struct
1144 * from sister threads now dead. But in this non-leader
1145 * exec, nothing survives from the original leader thread,
1146 * whose birth marks the true age of this process now.
1147 * When we take on its identity by switching to its PID, we
1148 * also take its birthdate (always earlier than our own).
1149 */
1150 tsk->start_time = leader->start_time;
1151 tsk->real_start_time = leader->real_start_time;
1152
1153 BUG_ON(!same_thread_group(leader, tsk));
1154 BUG_ON(has_group_leader_pid(tsk));
1155 /*
1156 * An exec() starts a new thread group with the
1157 * TGID of the previous thread group. Rehash the
1158 * two threads with a switched PID, and release
1159 * the former thread group leader:
1160 */
1161
1162 /* Become a process group leader with the old leader's pid.
1163 * The old leader becomes a thread of the this thread group.
1164 * Note: The old leader also uses this pid until release_task
1165 * is called. Odd but simple and correct.
1166 */
1167 tsk->pid = leader->pid;
1168 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1169 transfer_pid(leader, tsk, PIDTYPE_PGID);
1170 transfer_pid(leader, tsk, PIDTYPE_SID);
1171
1172 list_replace_rcu(&leader->tasks, &tsk->tasks);
1173 list_replace_init(&leader->sibling, &tsk->sibling);
1174
1175 tsk->group_leader = tsk;
1176 leader->group_leader = tsk;
1177
1178 tsk->exit_signal = SIGCHLD;
1179 leader->exit_signal = -1;
1180
1181 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1182 leader->exit_state = EXIT_DEAD;
1183
1184 /*
1185 * We are going to release_task()->ptrace_unlink() silently,
1186 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1187 * the tracer wont't block again waiting for this thread.
1188 */
1189 if (unlikely(leader->ptrace))
1190 __wake_up_parent(leader, leader->parent);
1191 write_unlock_irq(&tasklist_lock);
1192 threadgroup_change_end(tsk);
1193
1194 release_task(leader);
1195 }
1196
1197 sig->group_exit_task = NULL;
1198 sig->notify_count = 0;
1199
1200 no_thread_group:
1201 /* we have changed execution domain */
1202 tsk->exit_signal = SIGCHLD;
1203
1204 #ifdef CONFIG_POSIX_TIMERS
1205 exit_itimers(sig);
1206 flush_itimer_signals();
1207 #endif
1208
1209 if (atomic_read(&oldsighand->count) != 1) {
1210 struct sighand_struct *newsighand;
1211 /*
1212 * This ->sighand is shared with the CLONE_SIGHAND
1213 * but not CLONE_THREAD task, switch to the new one.
1214 */
1215 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1216 if (!newsighand)
1217 return -ENOMEM;
1218
1219 atomic_set(&newsighand->count, 1);
1220 memcpy(newsighand->action, oldsighand->action,
1221 sizeof(newsighand->action));
1222
1223 write_lock_irq(&tasklist_lock);
1224 spin_lock(&oldsighand->siglock);
1225 rcu_assign_pointer(tsk->sighand, newsighand);
1226 spin_unlock(&oldsighand->siglock);
1227 write_unlock_irq(&tasklist_lock);
1228
1229 __cleanup_sighand(oldsighand);
1230 }
1231
1232 BUG_ON(!thread_group_leader(tsk));
1233 return 0;
1234
1235 killed:
1236 /* protects against exit_notify() and __exit_signal() */
1237 read_lock(&tasklist_lock);
1238 sig->group_exit_task = NULL;
1239 sig->notify_count = 0;
1240 read_unlock(&tasklist_lock);
1241 return -EAGAIN;
1242 }
1243
1244 char *get_task_comm(char *buf, struct task_struct *tsk)
1245 {
1246 /* buf must be at least sizeof(tsk->comm) in size */
1247 task_lock(tsk);
1248 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1249 task_unlock(tsk);
1250 return buf;
1251 }
1252 EXPORT_SYMBOL_GPL(get_task_comm);
1253
1254 /*
1255 * These functions flushes out all traces of the currently running executable
1256 * so that a new one can be started
1257 */
1258
1259 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1260 {
1261 task_lock(tsk);
1262 trace_task_rename(tsk, buf);
1263 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1264 task_unlock(tsk);
1265 perf_event_comm(tsk, exec);
1266 }
1267
1268 int flush_old_exec(struct linux_binprm * bprm)
1269 {
1270 int retval;
1271
1272 /*
1273 * Make sure we have a private signal table and that
1274 * we are unassociated from the previous thread group.
1275 */
1276 retval = de_thread(current);
1277 if (retval)
1278 goto out;
1279
1280 /*
1281 * Must be called _before_ exec_mmap() as bprm->mm is
1282 * not visibile until then. This also enables the update
1283 * to be lockless.
1284 */
1285 set_mm_exe_file(bprm->mm, bprm->file);
1286
1287 /*
1288 * Release all of the old mmap stuff
1289 */
1290 acct_arg_size(bprm, 0);
1291 retval = exec_mmap(bprm->mm);
1292 if (retval)
1293 goto out;
1294
1295 bprm->mm = NULL; /* We're using it now */
1296
1297 set_fs(USER_DS);
1298 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1299 PF_NOFREEZE | PF_NO_SETAFFINITY);
1300 flush_thread();
1301 current->personality &= ~bprm->per_clear;
1302
1303 /*
1304 * We have to apply CLOEXEC before we change whether the process is
1305 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1306 * trying to access the should-be-closed file descriptors of a process
1307 * undergoing exec(2).
1308 */
1309 do_close_on_exec(current->files);
1310 return 0;
1311
1312 out:
1313 return retval;
1314 }
1315 EXPORT_SYMBOL(flush_old_exec);
1316
1317 void would_dump(struct linux_binprm *bprm, struct file *file)
1318 {
1319 struct inode *inode = file_inode(file);
1320 if (inode_permission(inode, MAY_READ) < 0) {
1321 struct user_namespace *old, *user_ns;
1322 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1323
1324 /* Ensure mm->user_ns contains the executable */
1325 user_ns = old = bprm->mm->user_ns;
1326 while ((user_ns != &init_user_ns) &&
1327 !privileged_wrt_inode_uidgid(user_ns, inode))
1328 user_ns = user_ns->parent;
1329
1330 if (old != user_ns) {
1331 bprm->mm->user_ns = get_user_ns(user_ns);
1332 put_user_ns(old);
1333 }
1334 }
1335 }
1336 EXPORT_SYMBOL(would_dump);
1337
1338 void setup_new_exec(struct linux_binprm * bprm)
1339 {
1340 arch_pick_mmap_layout(current->mm);
1341
1342 /* This is the point of no return */
1343 current->sas_ss_sp = current->sas_ss_size = 0;
1344
1345 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1346 set_dumpable(current->mm, SUID_DUMP_USER);
1347 else
1348 set_dumpable(current->mm, suid_dumpable);
1349
1350 perf_event_exec();
1351 __set_task_comm(current, kbasename(bprm->filename), true);
1352
1353 /* Set the new mm task size. We have to do that late because it may
1354 * depend on TIF_32BIT which is only updated in flush_thread() on
1355 * some architectures like powerpc
1356 */
1357 current->mm->task_size = TASK_SIZE;
1358
1359 /* install the new credentials */
1360 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1361 !gid_eq(bprm->cred->gid, current_egid())) {
1362 current->pdeath_signal = 0;
1363 } else {
1364 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1365 set_dumpable(current->mm, suid_dumpable);
1366 }
1367
1368 /* An exec changes our domain. We are no longer part of the thread
1369 group */
1370 current->self_exec_id++;
1371 flush_signal_handlers(current, 0);
1372 }
1373 EXPORT_SYMBOL(setup_new_exec);
1374
1375 /*
1376 * Prepare credentials and lock ->cred_guard_mutex.
1377 * install_exec_creds() commits the new creds and drops the lock.
1378 * Or, if exec fails before, free_bprm() should release ->cred and
1379 * and unlock.
1380 */
1381 int prepare_bprm_creds(struct linux_binprm *bprm)
1382 {
1383 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1384 return -ERESTARTNOINTR;
1385
1386 bprm->cred = prepare_exec_creds();
1387 if (likely(bprm->cred))
1388 return 0;
1389
1390 mutex_unlock(&current->signal->cred_guard_mutex);
1391 return -ENOMEM;
1392 }
1393
1394 static void free_bprm(struct linux_binprm *bprm)
1395 {
1396 free_arg_pages(bprm);
1397 if (bprm->cred) {
1398 mutex_unlock(&current->signal->cred_guard_mutex);
1399 abort_creds(bprm->cred);
1400 }
1401 if (bprm->file) {
1402 allow_write_access(bprm->file);
1403 fput(bprm->file);
1404 }
1405 /* If a binfmt changed the interp, free it. */
1406 if (bprm->interp != bprm->filename)
1407 kfree(bprm->interp);
1408 kfree(bprm);
1409 }
1410
1411 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1412 {
1413 /* If a binfmt changed the interp, free it first. */
1414 if (bprm->interp != bprm->filename)
1415 kfree(bprm->interp);
1416 bprm->interp = kstrdup(interp, GFP_KERNEL);
1417 if (!bprm->interp)
1418 return -ENOMEM;
1419 return 0;
1420 }
1421 EXPORT_SYMBOL(bprm_change_interp);
1422
1423 /*
1424 * install the new credentials for this executable
1425 */
1426 void install_exec_creds(struct linux_binprm *bprm)
1427 {
1428 security_bprm_committing_creds(bprm);
1429
1430 commit_creds(bprm->cred);
1431 bprm->cred = NULL;
1432
1433 /*
1434 * Disable monitoring for regular users
1435 * when executing setuid binaries. Must
1436 * wait until new credentials are committed
1437 * by commit_creds() above
1438 */
1439 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1440 perf_event_exit_task(current);
1441 /*
1442 * cred_guard_mutex must be held at least to this point to prevent
1443 * ptrace_attach() from altering our determination of the task's
1444 * credentials; any time after this it may be unlocked.
1445 */
1446 security_bprm_committed_creds(bprm);
1447 mutex_unlock(&current->signal->cred_guard_mutex);
1448 }
1449 EXPORT_SYMBOL(install_exec_creds);
1450
1451 /*
1452 * determine how safe it is to execute the proposed program
1453 * - the caller must hold ->cred_guard_mutex to protect against
1454 * PTRACE_ATTACH or seccomp thread-sync
1455 */
1456 static void check_unsafe_exec(struct linux_binprm *bprm)
1457 {
1458 struct task_struct *p = current, *t;
1459 unsigned n_fs;
1460 bool fs_recheck;
1461
1462 if (p->ptrace) {
1463 if (ptracer_capable(p, current_user_ns()))
1464 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1465 else
1466 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1467 }
1468
1469 /*
1470 * This isn't strictly necessary, but it makes it harder for LSMs to
1471 * mess up.
1472 */
1473 if (task_no_new_privs(current))
1474 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1475
1476 recheck:
1477 fs_recheck = false;
1478 t = p;
1479 n_fs = 1;
1480 spin_lock(&p->fs->lock);
1481 rcu_read_lock();
1482 while_each_thread(p, t) {
1483 if (t->fs == p->fs)
1484 n_fs++;
1485 if (t->flags & (PF_EXITING | PF_FORKNOEXEC))
1486 fs_recheck = true;
1487 }
1488 rcu_read_unlock();
1489
1490 if (p->fs->users > n_fs) {
1491 if (fs_recheck) {
1492 spin_unlock(&p->fs->lock);
1493 goto recheck;
1494 }
1495 bprm->unsafe |= LSM_UNSAFE_SHARE;
1496 } else
1497 p->fs->in_exec = 1;
1498 spin_unlock(&p->fs->lock);
1499 }
1500
1501 static void bprm_fill_uid(struct linux_binprm *bprm)
1502 {
1503 struct inode *inode;
1504 unsigned int mode;
1505 kuid_t uid;
1506 kgid_t gid;
1507
1508 /*
1509 * Since this can be called multiple times (via prepare_binprm),
1510 * we must clear any previous work done when setting set[ug]id
1511 * bits from any earlier bprm->file uses (for example when run
1512 * first for a setuid script then again for its interpreter).
1513 */
1514 bprm->cred->euid = current_euid();
1515 bprm->cred->egid = current_egid();
1516
1517 if (path_nosuid(&bprm->file->f_path))
1518 return;
1519
1520 if (task_no_new_privs(current))
1521 return;
1522
1523 inode = file_inode(bprm->file);
1524 mode = READ_ONCE(inode->i_mode);
1525 if (!(mode & (S_ISUID|S_ISGID)))
1526 return;
1527
1528 /* Be careful if suid/sgid is set */
1529 inode_lock(inode);
1530
1531 /* reload atomically mode/uid/gid now that lock held */
1532 mode = inode->i_mode;
1533 uid = inode->i_uid;
1534 gid = inode->i_gid;
1535 inode_unlock(inode);
1536
1537 /* We ignore suid/sgid if there are no mappings for them in the ns */
1538 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1539 !kgid_has_mapping(bprm->cred->user_ns, gid))
1540 return;
1541
1542 if (mode & S_ISUID) {
1543 bprm->per_clear |= PER_CLEAR_ON_SETID;
1544 bprm->cred->euid = uid;
1545 }
1546
1547 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1548 bprm->per_clear |= PER_CLEAR_ON_SETID;
1549 bprm->cred->egid = gid;
1550 }
1551 }
1552
1553 /*
1554 * Fill the binprm structure from the inode.
1555 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1556 *
1557 * This may be called multiple times for binary chains (scripts for example).
1558 */
1559 int prepare_binprm(struct linux_binprm *bprm)
1560 {
1561 int retval;
1562
1563 bprm_fill_uid(bprm);
1564
1565 /* fill in binprm security blob */
1566 retval = security_bprm_set_creds(bprm);
1567 if (retval)
1568 return retval;
1569 bprm->cred_prepared = 1;
1570
1571 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1572 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1573 }
1574
1575 EXPORT_SYMBOL(prepare_binprm);
1576
1577 /*
1578 * Arguments are '\0' separated strings found at the location bprm->p
1579 * points to; chop off the first by relocating brpm->p to right after
1580 * the first '\0' encountered.
1581 */
1582 int remove_arg_zero(struct linux_binprm *bprm)
1583 {
1584 int ret = 0;
1585 unsigned long offset;
1586 char *kaddr;
1587 struct page *page;
1588
1589 if (!bprm->argc)
1590 return 0;
1591
1592 do {
1593 offset = bprm->p & ~PAGE_MASK;
1594 page = get_arg_page(bprm, bprm->p, 0);
1595 if (!page) {
1596 ret = -EFAULT;
1597 goto out;
1598 }
1599 kaddr = kmap_atomic(page);
1600
1601 for (; offset < PAGE_SIZE && kaddr[offset];
1602 offset++, bprm->p++)
1603 ;
1604
1605 kunmap_atomic(kaddr);
1606 put_arg_page(page);
1607 } while (offset == PAGE_SIZE);
1608
1609 bprm->p++;
1610 bprm->argc--;
1611 ret = 0;
1612
1613 out:
1614 return ret;
1615 }
1616 EXPORT_SYMBOL(remove_arg_zero);
1617
1618 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1619 /*
1620 * cycle the list of binary formats handler, until one recognizes the image
1621 */
1622 int search_binary_handler(struct linux_binprm *bprm)
1623 {
1624 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1625 struct linux_binfmt *fmt;
1626 int retval;
1627
1628 /* This allows 4 levels of binfmt rewrites before failing hard. */
1629 if (bprm->recursion_depth > 5)
1630 return -ELOOP;
1631
1632 retval = security_bprm_check(bprm);
1633 if (retval)
1634 return retval;
1635
1636 retval = -ENOENT;
1637 retry:
1638 read_lock(&binfmt_lock);
1639 list_for_each_entry(fmt, &formats, lh) {
1640 if (!try_module_get(fmt->module))
1641 continue;
1642 read_unlock(&binfmt_lock);
1643 bprm->recursion_depth++;
1644 retval = fmt->load_binary(bprm);
1645 read_lock(&binfmt_lock);
1646 put_binfmt(fmt);
1647 bprm->recursion_depth--;
1648 if (retval < 0 && !bprm->mm) {
1649 /* we got to flush_old_exec() and failed after it */
1650 read_unlock(&binfmt_lock);
1651 force_sigsegv(SIGSEGV, current);
1652 return retval;
1653 }
1654 if (retval != -ENOEXEC || !bprm->file) {
1655 read_unlock(&binfmt_lock);
1656 return retval;
1657 }
1658 }
1659 read_unlock(&binfmt_lock);
1660
1661 if (need_retry) {
1662 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1663 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1664 return retval;
1665 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1666 return retval;
1667 need_retry = false;
1668 goto retry;
1669 }
1670
1671 return retval;
1672 }
1673 EXPORT_SYMBOL(search_binary_handler);
1674
1675 static int exec_binprm(struct linux_binprm *bprm)
1676 {
1677 pid_t old_pid, old_vpid;
1678 int ret;
1679
1680 /* Need to fetch pid before load_binary changes it */
1681 old_pid = current->pid;
1682 rcu_read_lock();
1683 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1684 rcu_read_unlock();
1685
1686 ret = search_binary_handler(bprm);
1687 if (ret >= 0) {
1688 audit_bprm(bprm);
1689 trace_sched_process_exec(current, old_pid, bprm);
1690 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1691 proc_exec_connector(current);
1692 }
1693
1694 return ret;
1695 }
1696
1697 /*
1698 * sys_execve() executes a new program.
1699 */
1700 static int do_execveat_common(int fd, struct filename *filename,
1701 struct user_arg_ptr argv,
1702 struct user_arg_ptr envp,
1703 int flags)
1704 {
1705 char *pathbuf = NULL;
1706 struct linux_binprm *bprm;
1707 struct file *file;
1708 struct files_struct *displaced;
1709 int retval;
1710
1711 if (IS_ERR(filename))
1712 return PTR_ERR(filename);
1713
1714 /*
1715 * We move the actual failure in case of RLIMIT_NPROC excess from
1716 * set*uid() to execve() because too many poorly written programs
1717 * don't check setuid() return code. Here we additionally recheck
1718 * whether NPROC limit is still exceeded.
1719 */
1720 if ((current->flags & PF_NPROC_EXCEEDED) &&
1721 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1722 retval = -EAGAIN;
1723 goto out_ret;
1724 }
1725
1726 /* We're below the limit (still or again), so we don't want to make
1727 * further execve() calls fail. */
1728 current->flags &= ~PF_NPROC_EXCEEDED;
1729
1730 retval = unshare_files(&displaced);
1731 if (retval)
1732 goto out_ret;
1733
1734 retval = -ENOMEM;
1735 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1736 if (!bprm)
1737 goto out_files;
1738
1739 retval = prepare_bprm_creds(bprm);
1740 if (retval)
1741 goto out_free;
1742
1743 check_unsafe_exec(bprm);
1744 current->in_execve = 1;
1745
1746 file = do_open_execat(fd, filename, flags);
1747 retval = PTR_ERR(file);
1748 if (IS_ERR(file))
1749 goto out_unmark;
1750
1751 sched_exec();
1752
1753 bprm->file = file;
1754 if (fd == AT_FDCWD || filename->name[0] == '/') {
1755 bprm->filename = filename->name;
1756 } else {
1757 if (filename->name[0] == '\0')
1758 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1759 else
1760 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1761 fd, filename->name);
1762 if (!pathbuf) {
1763 retval = -ENOMEM;
1764 goto out_unmark;
1765 }
1766 /*
1767 * Record that a name derived from an O_CLOEXEC fd will be
1768 * inaccessible after exec. Relies on having exclusive access to
1769 * current->files (due to unshare_files above).
1770 */
1771 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1772 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1773 bprm->filename = pathbuf;
1774 }
1775 bprm->interp = bprm->filename;
1776
1777 retval = bprm_mm_init(bprm);
1778 if (retval)
1779 goto out_unmark;
1780
1781 bprm->argc = count(argv, MAX_ARG_STRINGS);
1782 if ((retval = bprm->argc) < 0)
1783 goto out;
1784
1785 bprm->envc = count(envp, MAX_ARG_STRINGS);
1786 if ((retval = bprm->envc) < 0)
1787 goto out;
1788
1789 retval = prepare_binprm(bprm);
1790 if (retval < 0)
1791 goto out;
1792
1793 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1794 if (retval < 0)
1795 goto out;
1796
1797 bprm->exec = bprm->p;
1798 retval = copy_strings(bprm->envc, envp, bprm);
1799 if (retval < 0)
1800 goto out;
1801
1802 retval = copy_strings(bprm->argc, argv, bprm);
1803 if (retval < 0)
1804 goto out;
1805
1806 would_dump(bprm, bprm->file);
1807
1808 retval = exec_binprm(bprm);
1809 if (retval < 0)
1810 goto out;
1811
1812 /* execve succeeded */
1813 current->fs->in_exec = 0;
1814 current->in_execve = 0;
1815 acct_update_integrals(current);
1816 task_numa_free(current);
1817 free_bprm(bprm);
1818 kfree(pathbuf);
1819 putname(filename);
1820 if (displaced)
1821 put_files_struct(displaced);
1822 return retval;
1823
1824 out:
1825 if (bprm->mm) {
1826 acct_arg_size(bprm, 0);
1827 mmput(bprm->mm);
1828 }
1829
1830 out_unmark:
1831 current->fs->in_exec = 0;
1832 current->in_execve = 0;
1833
1834 out_free:
1835 free_bprm(bprm);
1836 kfree(pathbuf);
1837
1838 out_files:
1839 if (displaced)
1840 reset_files_struct(displaced);
1841 out_ret:
1842 putname(filename);
1843 return retval;
1844 }
1845
1846 int do_execve(struct filename *filename,
1847 const char __user *const __user *__argv,
1848 const char __user *const __user *__envp)
1849 {
1850 struct user_arg_ptr argv = { .ptr.native = __argv };
1851 struct user_arg_ptr envp = { .ptr.native = __envp };
1852 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1853 }
1854
1855 int do_execveat(int fd, struct filename *filename,
1856 const char __user *const __user *__argv,
1857 const char __user *const __user *__envp,
1858 int flags)
1859 {
1860 struct user_arg_ptr argv = { .ptr.native = __argv };
1861 struct user_arg_ptr envp = { .ptr.native = __envp };
1862
1863 return do_execveat_common(fd, filename, argv, envp, flags);
1864 }
1865
1866 #ifdef CONFIG_COMPAT
1867 static int compat_do_execve(struct filename *filename,
1868 const compat_uptr_t __user *__argv,
1869 const compat_uptr_t __user *__envp)
1870 {
1871 struct user_arg_ptr argv = {
1872 .is_compat = true,
1873 .ptr.compat = __argv,
1874 };
1875 struct user_arg_ptr envp = {
1876 .is_compat = true,
1877 .ptr.compat = __envp,
1878 };
1879 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1880 }
1881
1882 static int compat_do_execveat(int fd, struct filename *filename,
1883 const compat_uptr_t __user *__argv,
1884 const compat_uptr_t __user *__envp,
1885 int flags)
1886 {
1887 struct user_arg_ptr argv = {
1888 .is_compat = true,
1889 .ptr.compat = __argv,
1890 };
1891 struct user_arg_ptr envp = {
1892 .is_compat = true,
1893 .ptr.compat = __envp,
1894 };
1895 return do_execveat_common(fd, filename, argv, envp, flags);
1896 }
1897 #endif
1898
1899 void set_binfmt(struct linux_binfmt *new)
1900 {
1901 struct mm_struct *mm = current->mm;
1902
1903 if (mm->binfmt)
1904 module_put(mm->binfmt->module);
1905
1906 mm->binfmt = new;
1907 if (new)
1908 __module_get(new->module);
1909 }
1910 EXPORT_SYMBOL(set_binfmt);
1911
1912 /*
1913 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1914 */
1915 void set_dumpable(struct mm_struct *mm, int value)
1916 {
1917 unsigned long old, new;
1918
1919 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1920 return;
1921
1922 do {
1923 old = ACCESS_ONCE(mm->flags);
1924 new = (old & ~MMF_DUMPABLE_MASK) | value;
1925 } while (cmpxchg(&mm->flags, old, new) != old);
1926 }
1927
1928 SYSCALL_DEFINE3(execve,
1929 const char __user *, filename,
1930 const char __user *const __user *, argv,
1931 const char __user *const __user *, envp)
1932 {
1933 return do_execve(getname(filename), argv, envp);
1934 }
1935
1936 SYSCALL_DEFINE5(execveat,
1937 int, fd, const char __user *, filename,
1938 const char __user *const __user *, argv,
1939 const char __user *const __user *, envp,
1940 int, flags)
1941 {
1942 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1943
1944 return do_execveat(fd,
1945 getname_flags(filename, lookup_flags, NULL),
1946 argv, envp, flags);
1947 }
1948
1949 #ifdef CONFIG_COMPAT
1950 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1951 const compat_uptr_t __user *, argv,
1952 const compat_uptr_t __user *, envp)
1953 {
1954 return compat_do_execve(getname(filename), argv, envp);
1955 }
1956
1957 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1958 const char __user *, filename,
1959 const compat_uptr_t __user *, argv,
1960 const compat_uptr_t __user *, envp,
1961 int, flags)
1962 {
1963 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1964
1965 return compat_do_execveat(fd,
1966 getname_flags(filename, lookup_flags, NULL),
1967 argv, envp, flags);
1968 }
1969 #endif