]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/exec.c
btrfs: Get rid of the confusing btrfs_file_extent_inline_len
[mirror_ubuntu-bionic-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <trace/events/fs.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71
72 #include <trace/events/task.h>
73 #include "internal.h"
74
75 #include <trace/events/sched.h>
76
77 int suid_dumpable = 0;
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 BUG_ON(!fmt);
85 if (WARN_ON(!fmt->load_binary))
86 return;
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 EXPORT_SYMBOL_GPL(path_noexec);
115
116 bool path_nosuid(const struct path *path)
117 {
118 return !mnt_may_suid(path->mnt) ||
119 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
120 }
121 EXPORT_SYMBOL(path_nosuid);
122
123 #ifdef CONFIG_USELIB
124 /*
125 * Note that a shared library must be both readable and executable due to
126 * security reasons.
127 *
128 * Also note that we take the address to load from from the file itself.
129 */
130 SYSCALL_DEFINE1(uselib, const char __user *, library)
131 {
132 struct linux_binfmt *fmt;
133 struct file *file;
134 struct filename *tmp = getname(library);
135 int error = PTR_ERR(tmp);
136 static const struct open_flags uselib_flags = {
137 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
138 .acc_mode = MAY_READ | MAY_EXEC,
139 .intent = LOOKUP_OPEN,
140 .lookup_flags = LOOKUP_FOLLOW,
141 };
142
143 if (IS_ERR(tmp))
144 goto out;
145
146 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
147 putname(tmp);
148 error = PTR_ERR(file);
149 if (IS_ERR(file))
150 goto out;
151
152 error = -EINVAL;
153 if (!S_ISREG(file_inode(file)->i_mode))
154 goto exit;
155
156 error = -EACCES;
157 if (path_noexec(&file->f_path))
158 goto exit;
159
160 fsnotify_open(file);
161
162 error = -ENOEXEC;
163
164 read_lock(&binfmt_lock);
165 list_for_each_entry(fmt, &formats, lh) {
166 if (!fmt->load_shlib)
167 continue;
168 if (!try_module_get(fmt->module))
169 continue;
170 read_unlock(&binfmt_lock);
171 error = fmt->load_shlib(file);
172 read_lock(&binfmt_lock);
173 put_binfmt(fmt);
174 if (error != -ENOEXEC)
175 break;
176 }
177 read_unlock(&binfmt_lock);
178 exit:
179 fput(file);
180 out:
181 return error;
182 }
183 #endif /* #ifdef CONFIG_USELIB */
184
185 #ifdef CONFIG_MMU
186 /*
187 * The nascent bprm->mm is not visible until exec_mmap() but it can
188 * use a lot of memory, account these pages in current->mm temporary
189 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
190 * change the counter back via acct_arg_size(0).
191 */
192 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
193 {
194 struct mm_struct *mm = current->mm;
195 long diff = (long)(pages - bprm->vma_pages);
196
197 if (!mm || !diff)
198 return;
199
200 bprm->vma_pages = pages;
201 add_mm_counter(mm, MM_ANONPAGES, diff);
202 }
203
204 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
205 int write)
206 {
207 struct page *page;
208 int ret;
209 unsigned int gup_flags = FOLL_FORCE;
210
211 #ifdef CONFIG_STACK_GROWSUP
212 if (write) {
213 ret = expand_downwards(bprm->vma, pos);
214 if (ret < 0)
215 return NULL;
216 }
217 #endif
218
219 if (write)
220 gup_flags |= FOLL_WRITE;
221
222 /*
223 * We are doing an exec(). 'current' is the process
224 * doing the exec and bprm->mm is the new process's mm.
225 */
226 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
227 &page, NULL, NULL);
228 if (ret <= 0)
229 return NULL;
230
231 if (write) {
232 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
233 unsigned long ptr_size, limit;
234
235 /*
236 * Since the stack will hold pointers to the strings, we
237 * must account for them as well.
238 *
239 * The size calculation is the entire vma while each arg page is
240 * built, so each time we get here it's calculating how far it
241 * is currently (rather than each call being just the newly
242 * added size from the arg page). As a result, we need to
243 * always add the entire size of the pointers, so that on the
244 * last call to get_arg_page() we'll actually have the entire
245 * correct size.
246 */
247 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
248 if (ptr_size > ULONG_MAX - size)
249 goto fail;
250 size += ptr_size;
251
252 acct_arg_size(bprm, size / PAGE_SIZE);
253
254 /*
255 * We've historically supported up to 32 pages (ARG_MAX)
256 * of argument strings even with small stacks
257 */
258 if (size <= ARG_MAX)
259 return page;
260
261 /*
262 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
263 * (whichever is smaller) for the argv+env strings.
264 * This ensures that:
265 * - the remaining binfmt code will not run out of stack space,
266 * - the program will have a reasonable amount of stack left
267 * to work from.
268 */
269 limit = _STK_LIM / 4 * 3;
270 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
271 if (size > limit)
272 goto fail;
273 }
274
275 return page;
276
277 fail:
278 put_page(page);
279 return NULL;
280 }
281
282 static void put_arg_page(struct page *page)
283 {
284 put_page(page);
285 }
286
287 static void free_arg_pages(struct linux_binprm *bprm)
288 {
289 }
290
291 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
292 struct page *page)
293 {
294 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
295 }
296
297 static int __bprm_mm_init(struct linux_binprm *bprm)
298 {
299 int err;
300 struct vm_area_struct *vma = NULL;
301 struct mm_struct *mm = bprm->mm;
302
303 bprm->vma = vma = vm_area_alloc(mm);
304 if (!vma)
305 return -ENOMEM;
306
307 if (down_write_killable(&mm->mmap_sem)) {
308 err = -EINTR;
309 goto err_free;
310 }
311
312 /*
313 * Place the stack at the largest stack address the architecture
314 * supports. Later, we'll move this to an appropriate place. We don't
315 * use STACK_TOP because that can depend on attributes which aren't
316 * configured yet.
317 */
318 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
319 vma->vm_end = STACK_TOP_MAX;
320 vma->vm_start = vma->vm_end - PAGE_SIZE;
321 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
322 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
323
324 err = insert_vm_struct(mm, vma);
325 if (err)
326 goto err;
327
328 mm->stack_vm = mm->total_vm = 1;
329 arch_bprm_mm_init(mm, vma);
330 up_write(&mm->mmap_sem);
331 bprm->p = vma->vm_end - sizeof(void *);
332 return 0;
333 err:
334 up_write(&mm->mmap_sem);
335 err_free:
336 bprm->vma = NULL;
337 vm_area_free(vma);
338 return err;
339 }
340
341 static bool valid_arg_len(struct linux_binprm *bprm, long len)
342 {
343 return len <= MAX_ARG_STRLEN;
344 }
345
346 #else
347
348 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
349 {
350 }
351
352 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
353 int write)
354 {
355 struct page *page;
356
357 page = bprm->page[pos / PAGE_SIZE];
358 if (!page && write) {
359 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
360 if (!page)
361 return NULL;
362 bprm->page[pos / PAGE_SIZE] = page;
363 }
364
365 return page;
366 }
367
368 static void put_arg_page(struct page *page)
369 {
370 }
371
372 static void free_arg_page(struct linux_binprm *bprm, int i)
373 {
374 if (bprm->page[i]) {
375 __free_page(bprm->page[i]);
376 bprm->page[i] = NULL;
377 }
378 }
379
380 static void free_arg_pages(struct linux_binprm *bprm)
381 {
382 int i;
383
384 for (i = 0; i < MAX_ARG_PAGES; i++)
385 free_arg_page(bprm, i);
386 }
387
388 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
389 struct page *page)
390 {
391 }
392
393 static int __bprm_mm_init(struct linux_binprm *bprm)
394 {
395 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
396 return 0;
397 }
398
399 static bool valid_arg_len(struct linux_binprm *bprm, long len)
400 {
401 return len <= bprm->p;
402 }
403
404 #endif /* CONFIG_MMU */
405
406 /*
407 * Create a new mm_struct and populate it with a temporary stack
408 * vm_area_struct. We don't have enough context at this point to set the stack
409 * flags, permissions, and offset, so we use temporary values. We'll update
410 * them later in setup_arg_pages().
411 */
412 static int bprm_mm_init(struct linux_binprm *bprm)
413 {
414 int err;
415 struct mm_struct *mm = NULL;
416
417 bprm->mm = mm = mm_alloc();
418 err = -ENOMEM;
419 if (!mm)
420 goto err;
421
422 err = __bprm_mm_init(bprm);
423 if (err)
424 goto err;
425
426 return 0;
427
428 err:
429 if (mm) {
430 bprm->mm = NULL;
431 mmdrop(mm);
432 }
433
434 return err;
435 }
436
437 struct user_arg_ptr {
438 #ifdef CONFIG_COMPAT
439 bool is_compat;
440 #endif
441 union {
442 const char __user *const __user *native;
443 #ifdef CONFIG_COMPAT
444 const compat_uptr_t __user *compat;
445 #endif
446 } ptr;
447 };
448
449 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
450 {
451 const char __user *native;
452
453 #ifdef CONFIG_COMPAT
454 if (unlikely(argv.is_compat)) {
455 compat_uptr_t compat;
456
457 if (get_user(compat, argv.ptr.compat + nr))
458 return ERR_PTR(-EFAULT);
459
460 return compat_ptr(compat);
461 }
462 #endif
463
464 if (get_user(native, argv.ptr.native + nr))
465 return ERR_PTR(-EFAULT);
466
467 return native;
468 }
469
470 /*
471 * count() counts the number of strings in array ARGV.
472 */
473 static int count(struct user_arg_ptr argv, int max)
474 {
475 int i = 0;
476
477 if (argv.ptr.native != NULL) {
478 for (;;) {
479 const char __user *p = get_user_arg_ptr(argv, i);
480
481 if (!p)
482 break;
483
484 if (IS_ERR(p))
485 return -EFAULT;
486
487 if (i >= max)
488 return -E2BIG;
489 ++i;
490
491 if (fatal_signal_pending(current))
492 return -ERESTARTNOHAND;
493 cond_resched();
494 }
495 }
496 return i;
497 }
498
499 /*
500 * 'copy_strings()' copies argument/environment strings from the old
501 * processes's memory to the new process's stack. The call to get_user_pages()
502 * ensures the destination page is created and not swapped out.
503 */
504 static int copy_strings(int argc, struct user_arg_ptr argv,
505 struct linux_binprm *bprm)
506 {
507 struct page *kmapped_page = NULL;
508 char *kaddr = NULL;
509 unsigned long kpos = 0;
510 int ret;
511
512 while (argc-- > 0) {
513 const char __user *str;
514 int len;
515 unsigned long pos;
516
517 ret = -EFAULT;
518 str = get_user_arg_ptr(argv, argc);
519 if (IS_ERR(str))
520 goto out;
521
522 len = strnlen_user(str, MAX_ARG_STRLEN);
523 if (!len)
524 goto out;
525
526 ret = -E2BIG;
527 if (!valid_arg_len(bprm, len))
528 goto out;
529
530 /* We're going to work our way backwords. */
531 pos = bprm->p;
532 str += len;
533 bprm->p -= len;
534
535 while (len > 0) {
536 int offset, bytes_to_copy;
537
538 if (fatal_signal_pending(current)) {
539 ret = -ERESTARTNOHAND;
540 goto out;
541 }
542 cond_resched();
543
544 offset = pos % PAGE_SIZE;
545 if (offset == 0)
546 offset = PAGE_SIZE;
547
548 bytes_to_copy = offset;
549 if (bytes_to_copy > len)
550 bytes_to_copy = len;
551
552 offset -= bytes_to_copy;
553 pos -= bytes_to_copy;
554 str -= bytes_to_copy;
555 len -= bytes_to_copy;
556
557 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
558 struct page *page;
559
560 page = get_arg_page(bprm, pos, 1);
561 if (!page) {
562 ret = -E2BIG;
563 goto out;
564 }
565
566 if (kmapped_page) {
567 flush_kernel_dcache_page(kmapped_page);
568 kunmap(kmapped_page);
569 put_arg_page(kmapped_page);
570 }
571 kmapped_page = page;
572 kaddr = kmap(kmapped_page);
573 kpos = pos & PAGE_MASK;
574 flush_arg_page(bprm, kpos, kmapped_page);
575 }
576 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
577 ret = -EFAULT;
578 goto out;
579 }
580 }
581 }
582 ret = 0;
583 out:
584 if (kmapped_page) {
585 flush_kernel_dcache_page(kmapped_page);
586 kunmap(kmapped_page);
587 put_arg_page(kmapped_page);
588 }
589 return ret;
590 }
591
592 /*
593 * Like copy_strings, but get argv and its values from kernel memory.
594 */
595 int copy_strings_kernel(int argc, const char *const *__argv,
596 struct linux_binprm *bprm)
597 {
598 int r;
599 mm_segment_t oldfs = get_fs();
600 struct user_arg_ptr argv = {
601 .ptr.native = (const char __user *const __user *)__argv,
602 };
603
604 set_fs(KERNEL_DS);
605 r = copy_strings(argc, argv, bprm);
606 set_fs(oldfs);
607
608 return r;
609 }
610 EXPORT_SYMBOL(copy_strings_kernel);
611
612 #ifdef CONFIG_MMU
613
614 /*
615 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
616 * the binfmt code determines where the new stack should reside, we shift it to
617 * its final location. The process proceeds as follows:
618 *
619 * 1) Use shift to calculate the new vma endpoints.
620 * 2) Extend vma to cover both the old and new ranges. This ensures the
621 * arguments passed to subsequent functions are consistent.
622 * 3) Move vma's page tables to the new range.
623 * 4) Free up any cleared pgd range.
624 * 5) Shrink the vma to cover only the new range.
625 */
626 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
627 {
628 struct mm_struct *mm = vma->vm_mm;
629 unsigned long old_start = vma->vm_start;
630 unsigned long old_end = vma->vm_end;
631 unsigned long length = old_end - old_start;
632 unsigned long new_start = old_start - shift;
633 unsigned long new_end = old_end - shift;
634 struct mmu_gather tlb;
635
636 BUG_ON(new_start > new_end);
637
638 /*
639 * ensure there are no vmas between where we want to go
640 * and where we are
641 */
642 if (vma != find_vma(mm, new_start))
643 return -EFAULT;
644
645 /*
646 * cover the whole range: [new_start, old_end)
647 */
648 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
649 return -ENOMEM;
650
651 /*
652 * move the page tables downwards, on failure we rely on
653 * process cleanup to remove whatever mess we made.
654 */
655 if (length != move_page_tables(vma, old_start,
656 vma, new_start, length, false))
657 return -ENOMEM;
658
659 lru_add_drain();
660 tlb_gather_mmu(&tlb, mm, old_start, old_end);
661 if (new_end > old_start) {
662 /*
663 * when the old and new regions overlap clear from new_end.
664 */
665 free_pgd_range(&tlb, new_end, old_end, new_end,
666 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
667 } else {
668 /*
669 * otherwise, clean from old_start; this is done to not touch
670 * the address space in [new_end, old_start) some architectures
671 * have constraints on va-space that make this illegal (IA64) -
672 * for the others its just a little faster.
673 */
674 free_pgd_range(&tlb, old_start, old_end, new_end,
675 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
676 }
677 tlb_finish_mmu(&tlb, old_start, old_end);
678
679 /*
680 * Shrink the vma to just the new range. Always succeeds.
681 */
682 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
683
684 return 0;
685 }
686
687 /*
688 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
689 * the stack is optionally relocated, and some extra space is added.
690 */
691 int setup_arg_pages(struct linux_binprm *bprm,
692 unsigned long stack_top,
693 int executable_stack)
694 {
695 unsigned long ret;
696 unsigned long stack_shift;
697 struct mm_struct *mm = current->mm;
698 struct vm_area_struct *vma = bprm->vma;
699 struct vm_area_struct *prev = NULL;
700 unsigned long vm_flags;
701 unsigned long stack_base;
702 unsigned long stack_size;
703 unsigned long stack_expand;
704 unsigned long rlim_stack;
705
706 #ifdef CONFIG_STACK_GROWSUP
707 /* Limit stack size */
708 stack_base = rlimit_max(RLIMIT_STACK);
709 if (stack_base > STACK_SIZE_MAX)
710 stack_base = STACK_SIZE_MAX;
711
712 /* Add space for stack randomization. */
713 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
714
715 /* Make sure we didn't let the argument array grow too large. */
716 if (vma->vm_end - vma->vm_start > stack_base)
717 return -ENOMEM;
718
719 stack_base = PAGE_ALIGN(stack_top - stack_base);
720
721 stack_shift = vma->vm_start - stack_base;
722 mm->arg_start = bprm->p - stack_shift;
723 bprm->p = vma->vm_end - stack_shift;
724 #else
725 stack_top = arch_align_stack(stack_top);
726 stack_top = PAGE_ALIGN(stack_top);
727
728 if (unlikely(stack_top < mmap_min_addr) ||
729 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
730 return -ENOMEM;
731
732 stack_shift = vma->vm_end - stack_top;
733
734 bprm->p -= stack_shift;
735 mm->arg_start = bprm->p;
736 #endif
737
738 if (bprm->loader)
739 bprm->loader -= stack_shift;
740 bprm->exec -= stack_shift;
741
742 if (down_write_killable(&mm->mmap_sem))
743 return -EINTR;
744
745 vm_flags = VM_STACK_FLAGS;
746
747 /*
748 * Adjust stack execute permissions; explicitly enable for
749 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
750 * (arch default) otherwise.
751 */
752 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
753 vm_flags |= VM_EXEC;
754 else if (executable_stack == EXSTACK_DISABLE_X)
755 vm_flags &= ~VM_EXEC;
756 vm_flags |= mm->def_flags;
757 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
758
759 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
760 vm_flags);
761 if (ret)
762 goto out_unlock;
763 BUG_ON(prev != vma);
764
765 /* Move stack pages down in memory. */
766 if (stack_shift) {
767 ret = shift_arg_pages(vma, stack_shift);
768 if (ret)
769 goto out_unlock;
770 }
771
772 /* mprotect_fixup is overkill to remove the temporary stack flags */
773 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
774
775 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
776 stack_size = vma->vm_end - vma->vm_start;
777 /*
778 * Align this down to a page boundary as expand_stack
779 * will align it up.
780 */
781 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
782 #ifdef CONFIG_STACK_GROWSUP
783 if (stack_size + stack_expand > rlim_stack)
784 stack_base = vma->vm_start + rlim_stack;
785 else
786 stack_base = vma->vm_end + stack_expand;
787 #else
788 if (stack_size + stack_expand > rlim_stack)
789 stack_base = vma->vm_end - rlim_stack;
790 else
791 stack_base = vma->vm_start - stack_expand;
792 #endif
793 current->mm->start_stack = bprm->p;
794 ret = expand_stack(vma, stack_base);
795 if (ret)
796 ret = -EFAULT;
797
798 out_unlock:
799 up_write(&mm->mmap_sem);
800 return ret;
801 }
802 EXPORT_SYMBOL(setup_arg_pages);
803
804 #else
805
806 /*
807 * Transfer the program arguments and environment from the holding pages
808 * onto the stack. The provided stack pointer is adjusted accordingly.
809 */
810 int transfer_args_to_stack(struct linux_binprm *bprm,
811 unsigned long *sp_location)
812 {
813 unsigned long index, stop, sp;
814 int ret = 0;
815
816 stop = bprm->p >> PAGE_SHIFT;
817 sp = *sp_location;
818
819 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
820 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
821 char *src = kmap(bprm->page[index]) + offset;
822 sp -= PAGE_SIZE - offset;
823 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
824 ret = -EFAULT;
825 kunmap(bprm->page[index]);
826 if (ret)
827 goto out;
828 }
829
830 *sp_location = sp;
831
832 out:
833 return ret;
834 }
835 EXPORT_SYMBOL(transfer_args_to_stack);
836
837 #endif /* CONFIG_MMU */
838
839 static struct file *do_open_execat(int fd, struct filename *name, int flags)
840 {
841 struct file *file;
842 int err;
843 struct open_flags open_exec_flags = {
844 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
845 .acc_mode = MAY_EXEC,
846 .intent = LOOKUP_OPEN,
847 .lookup_flags = LOOKUP_FOLLOW,
848 };
849
850 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
851 return ERR_PTR(-EINVAL);
852 if (flags & AT_SYMLINK_NOFOLLOW)
853 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
854 if (flags & AT_EMPTY_PATH)
855 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
856
857 file = do_filp_open(fd, name, &open_exec_flags);
858 if (IS_ERR(file))
859 goto out;
860
861 err = -EACCES;
862 if (!S_ISREG(file_inode(file)->i_mode))
863 goto exit;
864
865 if (path_noexec(&file->f_path))
866 goto exit;
867
868 err = deny_write_access(file);
869 if (err)
870 goto exit;
871
872 if (name->name[0] != '\0')
873 fsnotify_open(file);
874
875 trace_open_exec(name->name);
876
877 out:
878 return file;
879
880 exit:
881 fput(file);
882 return ERR_PTR(err);
883 }
884
885 struct file *open_exec(const char *name)
886 {
887 struct filename *filename = getname_kernel(name);
888 struct file *f = ERR_CAST(filename);
889
890 if (!IS_ERR(filename)) {
891 f = do_open_execat(AT_FDCWD, filename, 0);
892 putname(filename);
893 }
894 return f;
895 }
896 EXPORT_SYMBOL(open_exec);
897
898 int kernel_read_file(struct file *file, void **buf, loff_t *size,
899 loff_t max_size, enum kernel_read_file_id id)
900 {
901 loff_t i_size, pos;
902 ssize_t bytes = 0;
903 int ret;
904
905 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
906 return -EINVAL;
907
908 ret = security_kernel_read_file(file, id);
909 if (ret)
910 return ret;
911
912 ret = deny_write_access(file);
913 if (ret)
914 return ret;
915
916 i_size = i_size_read(file_inode(file));
917 if (max_size > 0 && i_size > max_size) {
918 ret = -EFBIG;
919 goto out;
920 }
921 if (i_size <= 0) {
922 ret = -EINVAL;
923 goto out;
924 }
925
926 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
927 *buf = vmalloc(i_size);
928 if (!*buf) {
929 ret = -ENOMEM;
930 goto out;
931 }
932
933 pos = 0;
934 while (pos < i_size) {
935 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
936 if (bytes < 0) {
937 ret = bytes;
938 goto out_free;
939 }
940
941 if (bytes == 0)
942 break;
943 }
944
945 if (pos != i_size) {
946 ret = -EIO;
947 goto out_free;
948 }
949
950 ret = security_kernel_post_read_file(file, *buf, i_size, id);
951 if (!ret)
952 *size = pos;
953
954 out_free:
955 if (ret < 0) {
956 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
957 vfree(*buf);
958 *buf = NULL;
959 }
960 }
961
962 out:
963 allow_write_access(file);
964 return ret;
965 }
966 EXPORT_SYMBOL_GPL(kernel_read_file);
967
968 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
969 loff_t max_size, enum kernel_read_file_id id)
970 {
971 struct file *file;
972 int ret;
973
974 if (!path || !*path)
975 return -EINVAL;
976
977 file = filp_open(path, O_RDONLY, 0);
978 if (IS_ERR(file))
979 return PTR_ERR(file);
980
981 ret = kernel_read_file(file, buf, size, max_size, id);
982 fput(file);
983 return ret;
984 }
985 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
986
987 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
988 enum kernel_read_file_id id)
989 {
990 struct fd f = fdget(fd);
991 int ret = -EBADF;
992
993 if (!f.file)
994 goto out;
995
996 ret = kernel_read_file(f.file, buf, size, max_size, id);
997 out:
998 fdput(f);
999 return ret;
1000 }
1001 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1002
1003 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1004 {
1005 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1006 if (res > 0)
1007 flush_icache_range(addr, addr + len);
1008 return res;
1009 }
1010 EXPORT_SYMBOL(read_code);
1011
1012 static int exec_mmap(struct mm_struct *mm)
1013 {
1014 struct task_struct *tsk;
1015 struct mm_struct *old_mm, *active_mm;
1016
1017 /* Notify parent that we're no longer interested in the old VM */
1018 tsk = current;
1019 old_mm = current->mm;
1020 exec_mm_release(tsk, old_mm);
1021
1022 if (old_mm) {
1023 sync_mm_rss(old_mm);
1024 /*
1025 * Make sure that if there is a core dump in progress
1026 * for the old mm, we get out and die instead of going
1027 * through with the exec. We must hold mmap_sem around
1028 * checking core_state and changing tsk->mm.
1029 */
1030 down_read(&old_mm->mmap_sem);
1031 if (unlikely(old_mm->core_state)) {
1032 up_read(&old_mm->mmap_sem);
1033 return -EINTR;
1034 }
1035 }
1036 task_lock(tsk);
1037 active_mm = tsk->active_mm;
1038 tsk->mm = mm;
1039 tsk->active_mm = mm;
1040 activate_mm(active_mm, mm);
1041 tsk->mm->vmacache_seqnum = 0;
1042 vmacache_flush(tsk);
1043 task_unlock(tsk);
1044 if (old_mm) {
1045 up_read(&old_mm->mmap_sem);
1046 BUG_ON(active_mm != old_mm);
1047 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1048 mm_update_next_owner(old_mm);
1049 mmput(old_mm);
1050 return 0;
1051 }
1052 mmdrop(active_mm);
1053 return 0;
1054 }
1055
1056 /*
1057 * This function makes sure the current process has its own signal table,
1058 * so that flush_signal_handlers can later reset the handlers without
1059 * disturbing other processes. (Other processes might share the signal
1060 * table via the CLONE_SIGHAND option to clone().)
1061 */
1062 static int de_thread(struct task_struct *tsk)
1063 {
1064 struct signal_struct *sig = tsk->signal;
1065 struct sighand_struct *oldsighand = tsk->sighand;
1066 spinlock_t *lock = &oldsighand->siglock;
1067
1068 if (thread_group_empty(tsk))
1069 goto no_thread_group;
1070
1071 /*
1072 * Kill all other threads in the thread group.
1073 */
1074 spin_lock_irq(lock);
1075 if (signal_group_exit(sig)) {
1076 /*
1077 * Another group action in progress, just
1078 * return so that the signal is processed.
1079 */
1080 spin_unlock_irq(lock);
1081 return -EAGAIN;
1082 }
1083
1084 sig->group_exit_task = tsk;
1085 sig->notify_count = zap_other_threads(tsk);
1086 if (!thread_group_leader(tsk))
1087 sig->notify_count--;
1088
1089 while (sig->notify_count) {
1090 __set_current_state(TASK_KILLABLE);
1091 spin_unlock_irq(lock);
1092 schedule();
1093 if (unlikely(__fatal_signal_pending(tsk)))
1094 goto killed;
1095 spin_lock_irq(lock);
1096 }
1097 spin_unlock_irq(lock);
1098
1099 /*
1100 * At this point all other threads have exited, all we have to
1101 * do is to wait for the thread group leader to become inactive,
1102 * and to assume its PID:
1103 */
1104 if (!thread_group_leader(tsk)) {
1105 struct task_struct *leader = tsk->group_leader;
1106
1107 for (;;) {
1108 cgroup_threadgroup_change_begin(tsk);
1109 write_lock_irq(&tasklist_lock);
1110 /*
1111 * Do this under tasklist_lock to ensure that
1112 * exit_notify() can't miss ->group_exit_task
1113 */
1114 sig->notify_count = -1;
1115 if (likely(leader->exit_state))
1116 break;
1117 __set_current_state(TASK_KILLABLE);
1118 write_unlock_irq(&tasklist_lock);
1119 cgroup_threadgroup_change_end(tsk);
1120 schedule();
1121 if (unlikely(__fatal_signal_pending(tsk)))
1122 goto killed;
1123 }
1124
1125 /*
1126 * The only record we have of the real-time age of a
1127 * process, regardless of execs it's done, is start_time.
1128 * All the past CPU time is accumulated in signal_struct
1129 * from sister threads now dead. But in this non-leader
1130 * exec, nothing survives from the original leader thread,
1131 * whose birth marks the true age of this process now.
1132 * When we take on its identity by switching to its PID, we
1133 * also take its birthdate (always earlier than our own).
1134 */
1135 tsk->start_time = leader->start_time;
1136 tsk->real_start_time = leader->real_start_time;
1137
1138 BUG_ON(!same_thread_group(leader, tsk));
1139 BUG_ON(has_group_leader_pid(tsk));
1140 /*
1141 * An exec() starts a new thread group with the
1142 * TGID of the previous thread group. Rehash the
1143 * two threads with a switched PID, and release
1144 * the former thread group leader:
1145 */
1146
1147 /* Become a process group leader with the old leader's pid.
1148 * The old leader becomes a thread of the this thread group.
1149 * Note: The old leader also uses this pid until release_task
1150 * is called. Odd but simple and correct.
1151 */
1152 tsk->pid = leader->pid;
1153 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1154 transfer_pid(leader, tsk, PIDTYPE_PGID);
1155 transfer_pid(leader, tsk, PIDTYPE_SID);
1156
1157 list_replace_rcu(&leader->tasks, &tsk->tasks);
1158 list_replace_init(&leader->sibling, &tsk->sibling);
1159
1160 tsk->group_leader = tsk;
1161 leader->group_leader = tsk;
1162
1163 tsk->exit_signal = SIGCHLD;
1164 leader->exit_signal = -1;
1165
1166 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1167 leader->exit_state = EXIT_DEAD;
1168
1169 /*
1170 * We are going to release_task()->ptrace_unlink() silently,
1171 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1172 * the tracer wont't block again waiting for this thread.
1173 */
1174 if (unlikely(leader->ptrace))
1175 __wake_up_parent(leader, leader->parent);
1176 write_unlock_irq(&tasklist_lock);
1177 cgroup_threadgroup_change_end(tsk);
1178
1179 release_task(leader);
1180 }
1181
1182 sig->group_exit_task = NULL;
1183 sig->notify_count = 0;
1184
1185 no_thread_group:
1186 /* we have changed execution domain */
1187 tsk->exit_signal = SIGCHLD;
1188
1189 #ifdef CONFIG_POSIX_TIMERS
1190 exit_itimers(sig);
1191 flush_itimer_signals();
1192 #endif
1193
1194 if (atomic_read(&oldsighand->count) != 1) {
1195 struct sighand_struct *newsighand;
1196 /*
1197 * This ->sighand is shared with the CLONE_SIGHAND
1198 * but not CLONE_THREAD task, switch to the new one.
1199 */
1200 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1201 if (!newsighand)
1202 return -ENOMEM;
1203
1204 atomic_set(&newsighand->count, 1);
1205 memcpy(newsighand->action, oldsighand->action,
1206 sizeof(newsighand->action));
1207
1208 write_lock_irq(&tasklist_lock);
1209 spin_lock(&oldsighand->siglock);
1210 rcu_assign_pointer(tsk->sighand, newsighand);
1211 spin_unlock(&oldsighand->siglock);
1212 write_unlock_irq(&tasklist_lock);
1213
1214 __cleanup_sighand(oldsighand);
1215 }
1216
1217 BUG_ON(!thread_group_leader(tsk));
1218 return 0;
1219
1220 killed:
1221 /* protects against exit_notify() and __exit_signal() */
1222 read_lock(&tasklist_lock);
1223 sig->group_exit_task = NULL;
1224 sig->notify_count = 0;
1225 read_unlock(&tasklist_lock);
1226 return -EAGAIN;
1227 }
1228
1229 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1230 {
1231 task_lock(tsk);
1232 strncpy(buf, tsk->comm, buf_size);
1233 task_unlock(tsk);
1234 return buf;
1235 }
1236 EXPORT_SYMBOL_GPL(__get_task_comm);
1237
1238 /*
1239 * These functions flushes out all traces of the currently running executable
1240 * so that a new one can be started
1241 */
1242
1243 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1244 {
1245 task_lock(tsk);
1246 trace_task_rename(tsk, buf);
1247 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1248 task_unlock(tsk);
1249 perf_event_comm(tsk, exec);
1250 }
1251
1252 /*
1253 * Calling this is the point of no return. None of the failures will be
1254 * seen by userspace since either the process is already taking a fatal
1255 * signal (via de_thread() or coredump), or will have SEGV raised
1256 * (after exec_mmap()) by search_binary_handlers (see below).
1257 */
1258 int flush_old_exec(struct linux_binprm * bprm)
1259 {
1260 int retval;
1261
1262 /*
1263 * Make sure we have a private signal table and that
1264 * we are unassociated from the previous thread group.
1265 */
1266 retval = de_thread(current);
1267 if (retval)
1268 goto out;
1269
1270 /*
1271 * Must be called _before_ exec_mmap() as bprm->mm is
1272 * not visibile until then. This also enables the update
1273 * to be lockless.
1274 */
1275 set_mm_exe_file(bprm->mm, bprm->file);
1276
1277 /*
1278 * Release all of the old mmap stuff
1279 */
1280 acct_arg_size(bprm, 0);
1281 retval = exec_mmap(bprm->mm);
1282 if (retval)
1283 goto out;
1284
1285 /*
1286 * After clearing bprm->mm (to mark that current is using the
1287 * prepared mm now), we have nothing left of the original
1288 * process. If anything from here on returns an error, the check
1289 * in search_binary_handler() will SEGV current.
1290 */
1291 bprm->mm = NULL;
1292
1293 set_fs(USER_DS);
1294 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1295 PF_NOFREEZE | PF_NO_SETAFFINITY);
1296 flush_thread();
1297 current->personality &= ~bprm->per_clear;
1298
1299 /*
1300 * We have to apply CLOEXEC before we change whether the process is
1301 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1302 * trying to access the should-be-closed file descriptors of a process
1303 * undergoing exec(2).
1304 */
1305 do_close_on_exec(current->files);
1306 return 0;
1307
1308 out:
1309 return retval;
1310 }
1311 EXPORT_SYMBOL(flush_old_exec);
1312
1313 void would_dump(struct linux_binprm *bprm, struct file *file)
1314 {
1315 struct inode *inode = file_inode(file);
1316 if (inode_permission(inode, MAY_READ) < 0) {
1317 struct user_namespace *old, *user_ns;
1318 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1319
1320 /* Ensure mm->user_ns contains the executable */
1321 user_ns = old = bprm->mm->user_ns;
1322 while ((user_ns != &init_user_ns) &&
1323 !privileged_wrt_inode_uidgid(user_ns, inode))
1324 user_ns = user_ns->parent;
1325
1326 if (old != user_ns) {
1327 bprm->mm->user_ns = get_user_ns(user_ns);
1328 put_user_ns(old);
1329 }
1330 }
1331 }
1332 EXPORT_SYMBOL(would_dump);
1333
1334 void setup_new_exec(struct linux_binprm * bprm)
1335 {
1336 /*
1337 * Once here, prepare_binrpm() will not be called any more, so
1338 * the final state of setuid/setgid/fscaps can be merged into the
1339 * secureexec flag.
1340 */
1341 bprm->secureexec |= bprm->cap_elevated;
1342
1343 if (bprm->secureexec) {
1344 /* Make sure parent cannot signal privileged process. */
1345 current->pdeath_signal = 0;
1346
1347 /*
1348 * For secureexec, reset the stack limit to sane default to
1349 * avoid bad behavior from the prior rlimits. This has to
1350 * happen before arch_pick_mmap_layout(), which examines
1351 * RLIMIT_STACK, but after the point of no return to avoid
1352 * needing to clean up the change on failure.
1353 */
1354 if (current->signal->rlim[RLIMIT_STACK].rlim_cur > _STK_LIM)
1355 current->signal->rlim[RLIMIT_STACK].rlim_cur = _STK_LIM;
1356 }
1357
1358 arch_pick_mmap_layout(current->mm);
1359
1360 current->sas_ss_sp = current->sas_ss_size = 0;
1361
1362 /*
1363 * Figure out dumpability. Note that this checking only of current
1364 * is wrong, but userspace depends on it. This should be testing
1365 * bprm->secureexec instead.
1366 */
1367 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1368 !(uid_eq(current_euid(), current_uid()) &&
1369 gid_eq(current_egid(), current_gid())))
1370 set_dumpable(current->mm, suid_dumpable);
1371 else
1372 set_dumpable(current->mm, SUID_DUMP_USER);
1373
1374 arch_setup_new_exec();
1375 perf_event_exec();
1376 __set_task_comm(current, kbasename(bprm->filename), true);
1377
1378 /* Set the new mm task size. We have to do that late because it may
1379 * depend on TIF_32BIT which is only updated in flush_thread() on
1380 * some architectures like powerpc
1381 */
1382 current->mm->task_size = TASK_SIZE;
1383
1384 /* An exec changes our domain. We are no longer part of the thread
1385 group */
1386 current->self_exec_id++;
1387 flush_signal_handlers(current, 0);
1388 }
1389 EXPORT_SYMBOL(setup_new_exec);
1390
1391 /*
1392 * Prepare credentials and lock ->cred_guard_mutex.
1393 * install_exec_creds() commits the new creds and drops the lock.
1394 * Or, if exec fails before, free_bprm() should release ->cred and
1395 * and unlock.
1396 */
1397 int prepare_bprm_creds(struct linux_binprm *bprm)
1398 {
1399 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1400 return -ERESTARTNOINTR;
1401
1402 bprm->cred = prepare_exec_creds();
1403 if (likely(bprm->cred))
1404 return 0;
1405
1406 mutex_unlock(&current->signal->cred_guard_mutex);
1407 return -ENOMEM;
1408 }
1409
1410 static void free_bprm(struct linux_binprm *bprm)
1411 {
1412 free_arg_pages(bprm);
1413 if (bprm->cred) {
1414 mutex_unlock(&current->signal->cred_guard_mutex);
1415 abort_creds(bprm->cred);
1416 }
1417 if (bprm->file) {
1418 allow_write_access(bprm->file);
1419 fput(bprm->file);
1420 }
1421 /* If a binfmt changed the interp, free it. */
1422 if (bprm->interp != bprm->filename)
1423 kfree(bprm->interp);
1424 kfree(bprm);
1425 }
1426
1427 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1428 {
1429 /* If a binfmt changed the interp, free it first. */
1430 if (bprm->interp != bprm->filename)
1431 kfree(bprm->interp);
1432 bprm->interp = kstrdup(interp, GFP_KERNEL);
1433 if (!bprm->interp)
1434 return -ENOMEM;
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(bprm_change_interp);
1438
1439 /*
1440 * install the new credentials for this executable
1441 */
1442 void install_exec_creds(struct linux_binprm *bprm)
1443 {
1444 security_bprm_committing_creds(bprm);
1445
1446 commit_creds(bprm->cred);
1447 bprm->cred = NULL;
1448
1449 /*
1450 * Disable monitoring for regular users
1451 * when executing setuid binaries. Must
1452 * wait until new credentials are committed
1453 * by commit_creds() above
1454 */
1455 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1456 perf_event_exit_task(current);
1457 /*
1458 * cred_guard_mutex must be held at least to this point to prevent
1459 * ptrace_attach() from altering our determination of the task's
1460 * credentials; any time after this it may be unlocked.
1461 */
1462 security_bprm_committed_creds(bprm);
1463 mutex_unlock(&current->signal->cred_guard_mutex);
1464 }
1465 EXPORT_SYMBOL(install_exec_creds);
1466
1467 /*
1468 * determine how safe it is to execute the proposed program
1469 * - the caller must hold ->cred_guard_mutex to protect against
1470 * PTRACE_ATTACH or seccomp thread-sync
1471 */
1472 static void check_unsafe_exec(struct linux_binprm *bprm)
1473 {
1474 struct task_struct *p = current, *t;
1475 unsigned n_fs;
1476
1477 if (p->ptrace)
1478 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1479
1480 /*
1481 * This isn't strictly necessary, but it makes it harder for LSMs to
1482 * mess up.
1483 */
1484 if (task_no_new_privs(current))
1485 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1486
1487 t = p;
1488 n_fs = 1;
1489 spin_lock(&p->fs->lock);
1490 rcu_read_lock();
1491 while_each_thread(p, t) {
1492 if (t->fs == p->fs)
1493 n_fs++;
1494 }
1495 rcu_read_unlock();
1496
1497 if (p->fs->users > n_fs)
1498 bprm->unsafe |= LSM_UNSAFE_SHARE;
1499 else
1500 p->fs->in_exec = 1;
1501 spin_unlock(&p->fs->lock);
1502 }
1503
1504 static void bprm_fill_uid(struct linux_binprm *bprm)
1505 {
1506 struct inode *inode;
1507 unsigned int mode;
1508 kuid_t uid;
1509 kgid_t gid;
1510
1511 /*
1512 * Since this can be called multiple times (via prepare_binprm),
1513 * we must clear any previous work done when setting set[ug]id
1514 * bits from any earlier bprm->file uses (for example when run
1515 * first for a setuid script then again for its interpreter).
1516 */
1517 bprm->cred->euid = current_euid();
1518 bprm->cred->egid = current_egid();
1519
1520 if (path_nosuid(&bprm->file->f_path))
1521 return;
1522
1523 if (task_no_new_privs(current))
1524 return;
1525
1526 inode = bprm->file->f_path.dentry->d_inode;
1527 mode = READ_ONCE(inode->i_mode);
1528 if (!(mode & (S_ISUID|S_ISGID)))
1529 return;
1530
1531 /* Be careful if suid/sgid is set */
1532 inode_lock(inode);
1533
1534 /* reload atomically mode/uid/gid now that lock held */
1535 mode = inode->i_mode;
1536 uid = inode->i_uid;
1537 gid = inode->i_gid;
1538 inode_unlock(inode);
1539
1540 /* We ignore suid/sgid if there are no mappings for them in the ns */
1541 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1542 !kgid_has_mapping(bprm->cred->user_ns, gid))
1543 return;
1544
1545 if (mode & S_ISUID) {
1546 bprm->per_clear |= PER_CLEAR_ON_SETID;
1547 bprm->cred->euid = uid;
1548 }
1549
1550 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1551 bprm->per_clear |= PER_CLEAR_ON_SETID;
1552 bprm->cred->egid = gid;
1553 }
1554 }
1555
1556 /*
1557 * Fill the binprm structure from the inode.
1558 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1559 *
1560 * This may be called multiple times for binary chains (scripts for example).
1561 */
1562 int prepare_binprm(struct linux_binprm *bprm)
1563 {
1564 int retval;
1565 loff_t pos = 0;
1566
1567 bprm_fill_uid(bprm);
1568
1569 /* fill in binprm security blob */
1570 retval = security_bprm_set_creds(bprm);
1571 if (retval)
1572 return retval;
1573 bprm->called_set_creds = 1;
1574
1575 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1576 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1577 }
1578
1579 EXPORT_SYMBOL(prepare_binprm);
1580
1581 /*
1582 * Arguments are '\0' separated strings found at the location bprm->p
1583 * points to; chop off the first by relocating brpm->p to right after
1584 * the first '\0' encountered.
1585 */
1586 int remove_arg_zero(struct linux_binprm *bprm)
1587 {
1588 int ret = 0;
1589 unsigned long offset;
1590 char *kaddr;
1591 struct page *page;
1592
1593 if (!bprm->argc)
1594 return 0;
1595
1596 do {
1597 offset = bprm->p & ~PAGE_MASK;
1598 page = get_arg_page(bprm, bprm->p, 0);
1599 if (!page) {
1600 ret = -EFAULT;
1601 goto out;
1602 }
1603 kaddr = kmap_atomic(page);
1604
1605 for (; offset < PAGE_SIZE && kaddr[offset];
1606 offset++, bprm->p++)
1607 ;
1608
1609 kunmap_atomic(kaddr);
1610 put_arg_page(page);
1611 } while (offset == PAGE_SIZE);
1612
1613 bprm->p++;
1614 bprm->argc--;
1615 ret = 0;
1616
1617 out:
1618 return ret;
1619 }
1620 EXPORT_SYMBOL(remove_arg_zero);
1621
1622 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1623 /*
1624 * cycle the list of binary formats handler, until one recognizes the image
1625 */
1626 int search_binary_handler(struct linux_binprm *bprm)
1627 {
1628 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1629 struct linux_binfmt *fmt;
1630 int retval;
1631
1632 /* This allows 4 levels of binfmt rewrites before failing hard. */
1633 if (bprm->recursion_depth > 5)
1634 return -ELOOP;
1635
1636 retval = security_bprm_check(bprm);
1637 if (retval)
1638 return retval;
1639
1640 retval = -ENOENT;
1641 retry:
1642 read_lock(&binfmt_lock);
1643 list_for_each_entry(fmt, &formats, lh) {
1644 if (!try_module_get(fmt->module))
1645 continue;
1646 read_unlock(&binfmt_lock);
1647 bprm->recursion_depth++;
1648 retval = fmt->load_binary(bprm);
1649 read_lock(&binfmt_lock);
1650 put_binfmt(fmt);
1651 bprm->recursion_depth--;
1652 if (retval < 0 && !bprm->mm) {
1653 /* we got to flush_old_exec() and failed after it */
1654 read_unlock(&binfmt_lock);
1655 force_sigsegv(SIGSEGV, current);
1656 return retval;
1657 }
1658 if (retval != -ENOEXEC || !bprm->file) {
1659 read_unlock(&binfmt_lock);
1660 return retval;
1661 }
1662 }
1663 read_unlock(&binfmt_lock);
1664
1665 if (need_retry) {
1666 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1667 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1668 return retval;
1669 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1670 return retval;
1671 need_retry = false;
1672 goto retry;
1673 }
1674
1675 return retval;
1676 }
1677 EXPORT_SYMBOL(search_binary_handler);
1678
1679 static int exec_binprm(struct linux_binprm *bprm)
1680 {
1681 pid_t old_pid, old_vpid;
1682 int ret;
1683
1684 /* Need to fetch pid before load_binary changes it */
1685 old_pid = current->pid;
1686 rcu_read_lock();
1687 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1688 rcu_read_unlock();
1689
1690 ret = search_binary_handler(bprm);
1691 if (ret >= 0) {
1692 audit_bprm(bprm);
1693 trace_sched_process_exec(current, old_pid, bprm);
1694 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1695 proc_exec_connector(current);
1696 }
1697
1698 return ret;
1699 }
1700
1701 /*
1702 * sys_execve() executes a new program.
1703 */
1704 static int do_execveat_common(int fd, struct filename *filename,
1705 struct user_arg_ptr argv,
1706 struct user_arg_ptr envp,
1707 int flags)
1708 {
1709 char *pathbuf = NULL;
1710 struct linux_binprm *bprm;
1711 struct file *file;
1712 struct files_struct *displaced;
1713 int retval;
1714
1715 if (IS_ERR(filename))
1716 return PTR_ERR(filename);
1717
1718 /*
1719 * We move the actual failure in case of RLIMIT_NPROC excess from
1720 * set*uid() to execve() because too many poorly written programs
1721 * don't check setuid() return code. Here we additionally recheck
1722 * whether NPROC limit is still exceeded.
1723 */
1724 if ((current->flags & PF_NPROC_EXCEEDED) &&
1725 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1726 retval = -EAGAIN;
1727 goto out_ret;
1728 }
1729
1730 /* We're below the limit (still or again), so we don't want to make
1731 * further execve() calls fail. */
1732 current->flags &= ~PF_NPROC_EXCEEDED;
1733
1734 retval = unshare_files(&displaced);
1735 if (retval)
1736 goto out_ret;
1737
1738 retval = -ENOMEM;
1739 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1740 if (!bprm)
1741 goto out_files;
1742
1743 retval = prepare_bprm_creds(bprm);
1744 if (retval)
1745 goto out_free;
1746
1747 check_unsafe_exec(bprm);
1748 current->in_execve = 1;
1749
1750 file = do_open_execat(fd, filename, flags);
1751 retval = PTR_ERR(file);
1752 if (IS_ERR(file))
1753 goto out_unmark;
1754
1755 sched_exec();
1756
1757 bprm->file = file;
1758 if (fd == AT_FDCWD || filename->name[0] == '/') {
1759 bprm->filename = filename->name;
1760 } else {
1761 if (filename->name[0] == '\0')
1762 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1763 else
1764 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1765 fd, filename->name);
1766 if (!pathbuf) {
1767 retval = -ENOMEM;
1768 goto out_unmark;
1769 }
1770 /*
1771 * Record that a name derived from an O_CLOEXEC fd will be
1772 * inaccessible after exec. Relies on having exclusive access to
1773 * current->files (due to unshare_files above).
1774 */
1775 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1776 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1777 bprm->filename = pathbuf;
1778 }
1779 bprm->interp = bprm->filename;
1780
1781 retval = bprm_mm_init(bprm);
1782 if (retval)
1783 goto out_unmark;
1784
1785 bprm->argc = count(argv, MAX_ARG_STRINGS);
1786 if ((retval = bprm->argc) < 0)
1787 goto out;
1788
1789 bprm->envc = count(envp, MAX_ARG_STRINGS);
1790 if ((retval = bprm->envc) < 0)
1791 goto out;
1792
1793 retval = prepare_binprm(bprm);
1794 if (retval < 0)
1795 goto out;
1796
1797 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1798 if (retval < 0)
1799 goto out;
1800
1801 bprm->exec = bprm->p;
1802 retval = copy_strings(bprm->envc, envp, bprm);
1803 if (retval < 0)
1804 goto out;
1805
1806 retval = copy_strings(bprm->argc, argv, bprm);
1807 if (retval < 0)
1808 goto out;
1809
1810 would_dump(bprm, bprm->file);
1811
1812 retval = exec_binprm(bprm);
1813 if (retval < 0)
1814 goto out;
1815
1816 /* execve succeeded */
1817 current->fs->in_exec = 0;
1818 current->in_execve = 0;
1819 membarrier_execve(current);
1820 acct_update_integrals(current);
1821 task_numa_free(current, false);
1822 free_bprm(bprm);
1823 kfree(pathbuf);
1824 putname(filename);
1825 if (displaced)
1826 put_files_struct(displaced);
1827 return retval;
1828
1829 out:
1830 if (bprm->mm) {
1831 acct_arg_size(bprm, 0);
1832 mmput(bprm->mm);
1833 }
1834
1835 out_unmark:
1836 current->fs->in_exec = 0;
1837 current->in_execve = 0;
1838
1839 out_free:
1840 free_bprm(bprm);
1841 kfree(pathbuf);
1842
1843 out_files:
1844 if (displaced)
1845 reset_files_struct(displaced);
1846 out_ret:
1847 putname(filename);
1848 return retval;
1849 }
1850
1851 int do_execve(struct filename *filename,
1852 const char __user *const __user *__argv,
1853 const char __user *const __user *__envp)
1854 {
1855 struct user_arg_ptr argv = { .ptr.native = __argv };
1856 struct user_arg_ptr envp = { .ptr.native = __envp };
1857 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1858 }
1859
1860 int do_execveat(int fd, struct filename *filename,
1861 const char __user *const __user *__argv,
1862 const char __user *const __user *__envp,
1863 int flags)
1864 {
1865 struct user_arg_ptr argv = { .ptr.native = __argv };
1866 struct user_arg_ptr envp = { .ptr.native = __envp };
1867
1868 return do_execveat_common(fd, filename, argv, envp, flags);
1869 }
1870
1871 #ifdef CONFIG_COMPAT
1872 static int compat_do_execve(struct filename *filename,
1873 const compat_uptr_t __user *__argv,
1874 const compat_uptr_t __user *__envp)
1875 {
1876 struct user_arg_ptr argv = {
1877 .is_compat = true,
1878 .ptr.compat = __argv,
1879 };
1880 struct user_arg_ptr envp = {
1881 .is_compat = true,
1882 .ptr.compat = __envp,
1883 };
1884 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1885 }
1886
1887 static int compat_do_execveat(int fd, struct filename *filename,
1888 const compat_uptr_t __user *__argv,
1889 const compat_uptr_t __user *__envp,
1890 int flags)
1891 {
1892 struct user_arg_ptr argv = {
1893 .is_compat = true,
1894 .ptr.compat = __argv,
1895 };
1896 struct user_arg_ptr envp = {
1897 .is_compat = true,
1898 .ptr.compat = __envp,
1899 };
1900 return do_execveat_common(fd, filename, argv, envp, flags);
1901 }
1902 #endif
1903
1904 void set_binfmt(struct linux_binfmt *new)
1905 {
1906 struct mm_struct *mm = current->mm;
1907
1908 if (mm->binfmt)
1909 module_put(mm->binfmt->module);
1910
1911 mm->binfmt = new;
1912 if (new)
1913 __module_get(new->module);
1914 }
1915 EXPORT_SYMBOL(set_binfmt);
1916
1917 /*
1918 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1919 */
1920 void set_dumpable(struct mm_struct *mm, int value)
1921 {
1922 unsigned long old, new;
1923
1924 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1925 return;
1926
1927 do {
1928 old = READ_ONCE(mm->flags);
1929 new = (old & ~MMF_DUMPABLE_MASK) | value;
1930 } while (cmpxchg(&mm->flags, old, new) != old);
1931 }
1932
1933 SYSCALL_DEFINE3(execve,
1934 const char __user *, filename,
1935 const char __user *const __user *, argv,
1936 const char __user *const __user *, envp)
1937 {
1938 return do_execve(getname(filename), argv, envp);
1939 }
1940
1941 SYSCALL_DEFINE5(execveat,
1942 int, fd, const char __user *, filename,
1943 const char __user *const __user *, argv,
1944 const char __user *const __user *, envp,
1945 int, flags)
1946 {
1947 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1948
1949 return do_execveat(fd,
1950 getname_flags(filename, lookup_flags, NULL),
1951 argv, envp, flags);
1952 }
1953
1954 #ifdef CONFIG_COMPAT
1955 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1956 const compat_uptr_t __user *, argv,
1957 const compat_uptr_t __user *, envp)
1958 {
1959 return compat_do_execve(getname(filename), argv, envp);
1960 }
1961
1962 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1963 const char __user *, filename,
1964 const compat_uptr_t __user *, argv,
1965 const compat_uptr_t __user *, envp,
1966 int, flags)
1967 {
1968 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1969
1970 return compat_do_execveat(fd,
1971 getname_flags(filename, lookup_flags, NULL),
1972 argv, envp, flags);
1973 }
1974 #endif