]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/exec.c
HID: pidff: effect can't be NULL
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 BUG_ON(!fmt);
77 if (WARN_ON(!fmt->load_binary))
78 return;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
83 }
84
85 EXPORT_SYMBOL(__register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 module_put(fmt->module);
99 }
100
101 #ifdef CONFIG_USELIB
102 /*
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
105 *
106 * Also note that we take the address to load from from the file itself.
107 */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110 struct linux_binfmt *fmt;
111 struct file *file;
112 struct filename *tmp = getname(library);
113 int error = PTR_ERR(tmp);
114 static const struct open_flags uselib_flags = {
115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 .intent = LOOKUP_OPEN,
118 .lookup_flags = LOOKUP_FOLLOW,
119 };
120
121 if (IS_ERR(tmp))
122 goto out;
123
124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 putname(tmp);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
129
130 error = -EINVAL;
131 if (!S_ISREG(file_inode(file)->i_mode))
132 goto exit;
133
134 error = -EACCES;
135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 goto exit;
137
138 fsnotify_open(file);
139
140 error = -ENOEXEC;
141
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
145 continue;
146 if (!try_module_get(fmt->module))
147 continue;
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
151 put_binfmt(fmt);
152 if (error != -ENOEXEC)
153 break;
154 }
155 read_unlock(&binfmt_lock);
156 exit:
157 fput(file);
158 out:
159 return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162
163 #ifdef CONFIG_MMU
164 /*
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
169 */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172 struct mm_struct *mm = current->mm;
173 long diff = (long)(pages - bprm->vma_pages);
174
175 if (!mm || !diff)
176 return;
177
178 bprm->vma_pages = pages;
179 add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 int write)
184 {
185 struct page *page;
186 int ret;
187
188 #ifdef CONFIG_STACK_GROWSUP
189 if (write) {
190 ret = expand_downwards(bprm->vma, pos);
191 if (ret < 0)
192 return NULL;
193 }
194 #endif
195 ret = get_user_pages(current, bprm->mm, pos,
196 1, write, 1, &page, NULL);
197 if (ret <= 0)
198 return NULL;
199
200 if (write) {
201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 struct rlimit *rlim;
203
204 acct_arg_size(bprm, size / PAGE_SIZE);
205
206 /*
207 * We've historically supported up to 32 pages (ARG_MAX)
208 * of argument strings even with small stacks
209 */
210 if (size <= ARG_MAX)
211 return page;
212
213 /*
214 * Limit to 1/4-th the stack size for the argv+env strings.
215 * This ensures that:
216 * - the remaining binfmt code will not run out of stack space,
217 * - the program will have a reasonable amount of stack left
218 * to work from.
219 */
220 rlim = current->signal->rlim;
221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 put_page(page);
223 return NULL;
224 }
225 }
226
227 return page;
228 }
229
230 static void put_arg_page(struct page *page)
231 {
232 put_page(page);
233 }
234
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 struct page *page)
245 {
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 int err;
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
254
255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 if (!vma)
257 return -ENOMEM;
258
259 down_write(&mm->mmap_sem);
260 vma->vm_mm = mm;
261
262 /*
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
266 * configured yet.
267 */
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275 err = insert_vm_struct(mm, vma);
276 if (err)
277 goto err;
278
279 mm->stack_vm = mm->total_vm = 1;
280 arch_bprm_mm_init(mm, vma);
281 up_write(&mm->mmap_sem);
282 bprm->p = vma->vm_end - sizeof(void *);
283 return 0;
284 err:
285 up_write(&mm->mmap_sem);
286 bprm->vma = NULL;
287 kmem_cache_free(vm_area_cachep, vma);
288 return err;
289 }
290
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293 return len <= MAX_ARG_STRLEN;
294 }
295
296 #else
297
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303 int write)
304 {
305 struct page *page;
306
307 page = bprm->page[pos / PAGE_SIZE];
308 if (!page && write) {
309 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310 if (!page)
311 return NULL;
312 bprm->page[pos / PAGE_SIZE] = page;
313 }
314
315 return page;
316 }
317
318 static void put_arg_page(struct page *page)
319 {
320 }
321
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324 if (bprm->page[i]) {
325 __free_page(bprm->page[i]);
326 bprm->page[i] = NULL;
327 }
328 }
329
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332 int i;
333
334 for (i = 0; i < MAX_ARG_PAGES; i++)
335 free_arg_page(bprm, i);
336 }
337
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339 struct page *page)
340 {
341 }
342
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346 return 0;
347 }
348
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351 return len <= bprm->p;
352 }
353
354 #endif /* CONFIG_MMU */
355
356 /*
357 * Create a new mm_struct and populate it with a temporary stack
358 * vm_area_struct. We don't have enough context at this point to set the stack
359 * flags, permissions, and offset, so we use temporary values. We'll update
360 * them later in setup_arg_pages().
361 */
362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364 int err;
365 struct mm_struct *mm = NULL;
366
367 bprm->mm = mm = mm_alloc();
368 err = -ENOMEM;
369 if (!mm)
370 goto err;
371
372 err = __bprm_mm_init(bprm);
373 if (err)
374 goto err;
375
376 return 0;
377
378 err:
379 if (mm) {
380 bprm->mm = NULL;
381 mmdrop(mm);
382 }
383
384 return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 bool is_compat;
390 #endif
391 union {
392 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 const compat_uptr_t __user *compat;
395 #endif
396 } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401 const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
406
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
409
410 return compat_ptr(compat);
411 }
412 #endif
413
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
416
417 return native;
418 }
419
420 /*
421 * count() counts the number of strings in array ARGV.
422 */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425 int i = 0;
426
427 if (argv.ptr.native != NULL) {
428 for (;;) {
429 const char __user *p = get_user_arg_ptr(argv, i);
430
431 if (!p)
432 break;
433
434 if (IS_ERR(p))
435 return -EFAULT;
436
437 if (i >= max)
438 return -E2BIG;
439 ++i;
440
441 if (fatal_signal_pending(current))
442 return -ERESTARTNOHAND;
443 cond_resched();
444 }
445 }
446 return i;
447 }
448
449 /*
450 * 'copy_strings()' copies argument/environment strings from the old
451 * processes's memory to the new process's stack. The call to get_user_pages()
452 * ensures the destination page is created and not swapped out.
453 */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 struct linux_binprm *bprm)
456 {
457 struct page *kmapped_page = NULL;
458 char *kaddr = NULL;
459 unsigned long kpos = 0;
460 int ret;
461
462 while (argc-- > 0) {
463 const char __user *str;
464 int len;
465 unsigned long pos;
466
467 ret = -EFAULT;
468 str = get_user_arg_ptr(argv, argc);
469 if (IS_ERR(str))
470 goto out;
471
472 len = strnlen_user(str, MAX_ARG_STRLEN);
473 if (!len)
474 goto out;
475
476 ret = -E2BIG;
477 if (!valid_arg_len(bprm, len))
478 goto out;
479
480 /* We're going to work our way backwords. */
481 pos = bprm->p;
482 str += len;
483 bprm->p -= len;
484
485 while (len > 0) {
486 int offset, bytes_to_copy;
487
488 if (fatal_signal_pending(current)) {
489 ret = -ERESTARTNOHAND;
490 goto out;
491 }
492 cond_resched();
493
494 offset = pos % PAGE_SIZE;
495 if (offset == 0)
496 offset = PAGE_SIZE;
497
498 bytes_to_copy = offset;
499 if (bytes_to_copy > len)
500 bytes_to_copy = len;
501
502 offset -= bytes_to_copy;
503 pos -= bytes_to_copy;
504 str -= bytes_to_copy;
505 len -= bytes_to_copy;
506
507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508 struct page *page;
509
510 page = get_arg_page(bprm, pos, 1);
511 if (!page) {
512 ret = -E2BIG;
513 goto out;
514 }
515
516 if (kmapped_page) {
517 flush_kernel_dcache_page(kmapped_page);
518 kunmap(kmapped_page);
519 put_arg_page(kmapped_page);
520 }
521 kmapped_page = page;
522 kaddr = kmap(kmapped_page);
523 kpos = pos & PAGE_MASK;
524 flush_arg_page(bprm, kpos, kmapped_page);
525 }
526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527 ret = -EFAULT;
528 goto out;
529 }
530 }
531 }
532 ret = 0;
533 out:
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
538 }
539 return ret;
540 }
541
542 /*
543 * Like copy_strings, but get argv and its values from kernel memory.
544 */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546 struct linux_binprm *bprm)
547 {
548 int r;
549 mm_segment_t oldfs = get_fs();
550 struct user_arg_ptr argv = {
551 .ptr.native = (const char __user *const __user *)__argv,
552 };
553
554 set_fs(KERNEL_DS);
555 r = copy_strings(argc, argv, bprm);
556 set_fs(oldfs);
557
558 return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561
562 #ifdef CONFIG_MMU
563
564 /*
565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
566 * the binfmt code determines where the new stack should reside, we shift it to
567 * its final location. The process proceeds as follows:
568 *
569 * 1) Use shift to calculate the new vma endpoints.
570 * 2) Extend vma to cover both the old and new ranges. This ensures the
571 * arguments passed to subsequent functions are consistent.
572 * 3) Move vma's page tables to the new range.
573 * 4) Free up any cleared pgd range.
574 * 5) Shrink the vma to cover only the new range.
575 */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long old_start = vma->vm_start;
580 unsigned long old_end = vma->vm_end;
581 unsigned long length = old_end - old_start;
582 unsigned long new_start = old_start - shift;
583 unsigned long new_end = old_end - shift;
584 struct mmu_gather tlb;
585
586 BUG_ON(new_start > new_end);
587
588 /*
589 * ensure there are no vmas between where we want to go
590 * and where we are
591 */
592 if (vma != find_vma(mm, new_start))
593 return -EFAULT;
594
595 /*
596 * cover the whole range: [new_start, old_end)
597 */
598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599 return -ENOMEM;
600
601 /*
602 * move the page tables downwards, on failure we rely on
603 * process cleanup to remove whatever mess we made.
604 */
605 if (length != move_page_tables(vma, old_start,
606 vma, new_start, length, false))
607 return -ENOMEM;
608
609 lru_add_drain();
610 tlb_gather_mmu(&tlb, mm, old_start, old_end);
611 if (new_end > old_start) {
612 /*
613 * when the old and new regions overlap clear from new_end.
614 */
615 free_pgd_range(&tlb, new_end, old_end, new_end,
616 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617 } else {
618 /*
619 * otherwise, clean from old_start; this is done to not touch
620 * the address space in [new_end, old_start) some architectures
621 * have constraints on va-space that make this illegal (IA64) -
622 * for the others its just a little faster.
623 */
624 free_pgd_range(&tlb, old_start, old_end, new_end,
625 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626 }
627 tlb_finish_mmu(&tlb, old_start, old_end);
628
629 /*
630 * Shrink the vma to just the new range. Always succeeds.
631 */
632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634 return 0;
635 }
636
637 /*
638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639 * the stack is optionally relocated, and some extra space is added.
640 */
641 int setup_arg_pages(struct linux_binprm *bprm,
642 unsigned long stack_top,
643 int executable_stack)
644 {
645 unsigned long ret;
646 unsigned long stack_shift;
647 struct mm_struct *mm = current->mm;
648 struct vm_area_struct *vma = bprm->vma;
649 struct vm_area_struct *prev = NULL;
650 unsigned long vm_flags;
651 unsigned long stack_base;
652 unsigned long stack_size;
653 unsigned long stack_expand;
654 unsigned long rlim_stack;
655
656 #ifdef CONFIG_STACK_GROWSUP
657 /* Limit stack size */
658 stack_base = rlimit_max(RLIMIT_STACK);
659 if (stack_base > STACK_SIZE_MAX)
660 stack_base = STACK_SIZE_MAX;
661
662 /* Make sure we didn't let the argument array grow too large. */
663 if (vma->vm_end - vma->vm_start > stack_base)
664 return -ENOMEM;
665
666 stack_base = PAGE_ALIGN(stack_top - stack_base);
667
668 stack_shift = vma->vm_start - stack_base;
669 mm->arg_start = bprm->p - stack_shift;
670 bprm->p = vma->vm_end - stack_shift;
671 #else
672 stack_top = arch_align_stack(stack_top);
673 stack_top = PAGE_ALIGN(stack_top);
674
675 if (unlikely(stack_top < mmap_min_addr) ||
676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677 return -ENOMEM;
678
679 stack_shift = vma->vm_end - stack_top;
680
681 bprm->p -= stack_shift;
682 mm->arg_start = bprm->p;
683 #endif
684
685 if (bprm->loader)
686 bprm->loader -= stack_shift;
687 bprm->exec -= stack_shift;
688
689 down_write(&mm->mmap_sem);
690 vm_flags = VM_STACK_FLAGS;
691
692 /*
693 * Adjust stack execute permissions; explicitly enable for
694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 * (arch default) otherwise.
696 */
697 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698 vm_flags |= VM_EXEC;
699 else if (executable_stack == EXSTACK_DISABLE_X)
700 vm_flags &= ~VM_EXEC;
701 vm_flags |= mm->def_flags;
702 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703
704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705 vm_flags);
706 if (ret)
707 goto out_unlock;
708 BUG_ON(prev != vma);
709
710 /* Move stack pages down in memory. */
711 if (stack_shift) {
712 ret = shift_arg_pages(vma, stack_shift);
713 if (ret)
714 goto out_unlock;
715 }
716
717 /* mprotect_fixup is overkill to remove the temporary stack flags */
718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719
720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 stack_size = vma->vm_end - vma->vm_start;
722 /*
723 * Align this down to a page boundary as expand_stack
724 * will align it up.
725 */
726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728 if (stack_size + stack_expand > rlim_stack)
729 stack_base = vma->vm_start + rlim_stack;
730 else
731 stack_base = vma->vm_end + stack_expand;
732 #else
733 if (stack_size + stack_expand > rlim_stack)
734 stack_base = vma->vm_end - rlim_stack;
735 else
736 stack_base = vma->vm_start - stack_expand;
737 #endif
738 current->mm->start_stack = bprm->p;
739 ret = expand_stack(vma, stack_base);
740 if (ret)
741 ret = -EFAULT;
742
743 out_unlock:
744 up_write(&mm->mmap_sem);
745 return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748
749 #endif /* CONFIG_MMU */
750
751 static struct file *do_open_execat(int fd, struct filename *name, int flags)
752 {
753 struct file *file;
754 int err;
755 struct open_flags open_exec_flags = {
756 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757 .acc_mode = MAY_EXEC | MAY_OPEN,
758 .intent = LOOKUP_OPEN,
759 .lookup_flags = LOOKUP_FOLLOW,
760 };
761
762 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
763 return ERR_PTR(-EINVAL);
764 if (flags & AT_SYMLINK_NOFOLLOW)
765 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
766 if (flags & AT_EMPTY_PATH)
767 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
768
769 file = do_filp_open(fd, name, &open_exec_flags);
770 if (IS_ERR(file))
771 goto out;
772
773 err = -EACCES;
774 if (!S_ISREG(file_inode(file)->i_mode))
775 goto exit;
776
777 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
778 goto exit;
779
780 err = deny_write_access(file);
781 if (err)
782 goto exit;
783
784 if (name->name[0] != '\0')
785 fsnotify_open(file);
786
787 out:
788 return file;
789
790 exit:
791 fput(file);
792 return ERR_PTR(err);
793 }
794
795 struct file *open_exec(const char *name)
796 {
797 struct filename tmp = { .name = name };
798 return do_open_execat(AT_FDCWD, &tmp, 0);
799 }
800 EXPORT_SYMBOL(open_exec);
801
802 int kernel_read(struct file *file, loff_t offset,
803 char *addr, unsigned long count)
804 {
805 mm_segment_t old_fs;
806 loff_t pos = offset;
807 int result;
808
809 old_fs = get_fs();
810 set_fs(get_ds());
811 /* The cast to a user pointer is valid due to the set_fs() */
812 result = vfs_read(file, (void __user *)addr, count, &pos);
813 set_fs(old_fs);
814 return result;
815 }
816
817 EXPORT_SYMBOL(kernel_read);
818
819 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
820 {
821 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
822 if (res > 0)
823 flush_icache_range(addr, addr + len);
824 return res;
825 }
826 EXPORT_SYMBOL(read_code);
827
828 static int exec_mmap(struct mm_struct *mm)
829 {
830 struct task_struct *tsk;
831 struct mm_struct *old_mm, *active_mm;
832
833 /* Notify parent that we're no longer interested in the old VM */
834 tsk = current;
835 old_mm = current->mm;
836 mm_release(tsk, old_mm);
837
838 if (old_mm) {
839 sync_mm_rss(old_mm);
840 /*
841 * Make sure that if there is a core dump in progress
842 * for the old mm, we get out and die instead of going
843 * through with the exec. We must hold mmap_sem around
844 * checking core_state and changing tsk->mm.
845 */
846 down_read(&old_mm->mmap_sem);
847 if (unlikely(old_mm->core_state)) {
848 up_read(&old_mm->mmap_sem);
849 return -EINTR;
850 }
851 }
852 task_lock(tsk);
853 active_mm = tsk->active_mm;
854 tsk->mm = mm;
855 tsk->active_mm = mm;
856 activate_mm(active_mm, mm);
857 tsk->mm->vmacache_seqnum = 0;
858 vmacache_flush(tsk);
859 task_unlock(tsk);
860 if (old_mm) {
861 up_read(&old_mm->mmap_sem);
862 BUG_ON(active_mm != old_mm);
863 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
864 mm_update_next_owner(old_mm);
865 mmput(old_mm);
866 return 0;
867 }
868 mmdrop(active_mm);
869 return 0;
870 }
871
872 /*
873 * This function makes sure the current process has its own signal table,
874 * so that flush_signal_handlers can later reset the handlers without
875 * disturbing other processes. (Other processes might share the signal
876 * table via the CLONE_SIGHAND option to clone().)
877 */
878 static int de_thread(struct task_struct *tsk)
879 {
880 struct signal_struct *sig = tsk->signal;
881 struct sighand_struct *oldsighand = tsk->sighand;
882 spinlock_t *lock = &oldsighand->siglock;
883
884 if (thread_group_empty(tsk))
885 goto no_thread_group;
886
887 /*
888 * Kill all other threads in the thread group.
889 */
890 spin_lock_irq(lock);
891 if (signal_group_exit(sig)) {
892 /*
893 * Another group action in progress, just
894 * return so that the signal is processed.
895 */
896 spin_unlock_irq(lock);
897 return -EAGAIN;
898 }
899
900 sig->group_exit_task = tsk;
901 sig->notify_count = zap_other_threads(tsk);
902 if (!thread_group_leader(tsk))
903 sig->notify_count--;
904
905 while (sig->notify_count) {
906 __set_current_state(TASK_KILLABLE);
907 spin_unlock_irq(lock);
908 schedule();
909 if (unlikely(__fatal_signal_pending(tsk)))
910 goto killed;
911 spin_lock_irq(lock);
912 }
913 spin_unlock_irq(lock);
914
915 /*
916 * At this point all other threads have exited, all we have to
917 * do is to wait for the thread group leader to become inactive,
918 * and to assume its PID:
919 */
920 if (!thread_group_leader(tsk)) {
921 struct task_struct *leader = tsk->group_leader;
922
923 sig->notify_count = -1; /* for exit_notify() */
924 for (;;) {
925 threadgroup_change_begin(tsk);
926 write_lock_irq(&tasklist_lock);
927 if (likely(leader->exit_state))
928 break;
929 __set_current_state(TASK_KILLABLE);
930 write_unlock_irq(&tasklist_lock);
931 threadgroup_change_end(tsk);
932 schedule();
933 if (unlikely(__fatal_signal_pending(tsk)))
934 goto killed;
935 }
936
937 /*
938 * The only record we have of the real-time age of a
939 * process, regardless of execs it's done, is start_time.
940 * All the past CPU time is accumulated in signal_struct
941 * from sister threads now dead. But in this non-leader
942 * exec, nothing survives from the original leader thread,
943 * whose birth marks the true age of this process now.
944 * When we take on its identity by switching to its PID, we
945 * also take its birthdate (always earlier than our own).
946 */
947 tsk->start_time = leader->start_time;
948 tsk->real_start_time = leader->real_start_time;
949
950 BUG_ON(!same_thread_group(leader, tsk));
951 BUG_ON(has_group_leader_pid(tsk));
952 /*
953 * An exec() starts a new thread group with the
954 * TGID of the previous thread group. Rehash the
955 * two threads with a switched PID, and release
956 * the former thread group leader:
957 */
958
959 /* Become a process group leader with the old leader's pid.
960 * The old leader becomes a thread of the this thread group.
961 * Note: The old leader also uses this pid until release_task
962 * is called. Odd but simple and correct.
963 */
964 tsk->pid = leader->pid;
965 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
966 transfer_pid(leader, tsk, PIDTYPE_PGID);
967 transfer_pid(leader, tsk, PIDTYPE_SID);
968
969 list_replace_rcu(&leader->tasks, &tsk->tasks);
970 list_replace_init(&leader->sibling, &tsk->sibling);
971
972 tsk->group_leader = tsk;
973 leader->group_leader = tsk;
974
975 tsk->exit_signal = SIGCHLD;
976 leader->exit_signal = -1;
977
978 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
979 leader->exit_state = EXIT_DEAD;
980
981 /*
982 * We are going to release_task()->ptrace_unlink() silently,
983 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
984 * the tracer wont't block again waiting for this thread.
985 */
986 if (unlikely(leader->ptrace))
987 __wake_up_parent(leader, leader->parent);
988 write_unlock_irq(&tasklist_lock);
989 threadgroup_change_end(tsk);
990
991 release_task(leader);
992 }
993
994 sig->group_exit_task = NULL;
995 sig->notify_count = 0;
996
997 no_thread_group:
998 /* we have changed execution domain */
999 tsk->exit_signal = SIGCHLD;
1000
1001 exit_itimers(sig);
1002 flush_itimer_signals();
1003
1004 if (atomic_read(&oldsighand->count) != 1) {
1005 struct sighand_struct *newsighand;
1006 /*
1007 * This ->sighand is shared with the CLONE_SIGHAND
1008 * but not CLONE_THREAD task, switch to the new one.
1009 */
1010 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1011 if (!newsighand)
1012 return -ENOMEM;
1013
1014 atomic_set(&newsighand->count, 1);
1015 memcpy(newsighand->action, oldsighand->action,
1016 sizeof(newsighand->action));
1017
1018 write_lock_irq(&tasklist_lock);
1019 spin_lock(&oldsighand->siglock);
1020 rcu_assign_pointer(tsk->sighand, newsighand);
1021 spin_unlock(&oldsighand->siglock);
1022 write_unlock_irq(&tasklist_lock);
1023
1024 __cleanup_sighand(oldsighand);
1025 }
1026
1027 BUG_ON(!thread_group_leader(tsk));
1028 return 0;
1029
1030 killed:
1031 /* protects against exit_notify() and __exit_signal() */
1032 read_lock(&tasklist_lock);
1033 sig->group_exit_task = NULL;
1034 sig->notify_count = 0;
1035 read_unlock(&tasklist_lock);
1036 return -EAGAIN;
1037 }
1038
1039 char *get_task_comm(char *buf, struct task_struct *tsk)
1040 {
1041 /* buf must be at least sizeof(tsk->comm) in size */
1042 task_lock(tsk);
1043 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1044 task_unlock(tsk);
1045 return buf;
1046 }
1047 EXPORT_SYMBOL_GPL(get_task_comm);
1048
1049 /*
1050 * These functions flushes out all traces of the currently running executable
1051 * so that a new one can be started
1052 */
1053
1054 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1055 {
1056 task_lock(tsk);
1057 trace_task_rename(tsk, buf);
1058 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1059 task_unlock(tsk);
1060 perf_event_comm(tsk, exec);
1061 }
1062
1063 int flush_old_exec(struct linux_binprm * bprm)
1064 {
1065 int retval;
1066
1067 /*
1068 * Make sure we have a private signal table and that
1069 * we are unassociated from the previous thread group.
1070 */
1071 retval = de_thread(current);
1072 if (retval)
1073 goto out;
1074
1075 set_mm_exe_file(bprm->mm, bprm->file);
1076 /*
1077 * Release all of the old mmap stuff
1078 */
1079 acct_arg_size(bprm, 0);
1080 retval = exec_mmap(bprm->mm);
1081 if (retval)
1082 goto out;
1083
1084 bprm->mm = NULL; /* We're using it now */
1085
1086 set_fs(USER_DS);
1087 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1088 PF_NOFREEZE | PF_NO_SETAFFINITY);
1089 flush_thread();
1090 current->personality &= ~bprm->per_clear;
1091
1092 return 0;
1093
1094 out:
1095 return retval;
1096 }
1097 EXPORT_SYMBOL(flush_old_exec);
1098
1099 void would_dump(struct linux_binprm *bprm, struct file *file)
1100 {
1101 if (inode_permission(file_inode(file), MAY_READ) < 0)
1102 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1103 }
1104 EXPORT_SYMBOL(would_dump);
1105
1106 void setup_new_exec(struct linux_binprm * bprm)
1107 {
1108 arch_pick_mmap_layout(current->mm);
1109
1110 /* This is the point of no return */
1111 current->sas_ss_sp = current->sas_ss_size = 0;
1112
1113 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1114 set_dumpable(current->mm, SUID_DUMP_USER);
1115 else
1116 set_dumpable(current->mm, suid_dumpable);
1117
1118 perf_event_exec();
1119 __set_task_comm(current, kbasename(bprm->filename), true);
1120
1121 /* Set the new mm task size. We have to do that late because it may
1122 * depend on TIF_32BIT which is only updated in flush_thread() on
1123 * some architectures like powerpc
1124 */
1125 current->mm->task_size = TASK_SIZE;
1126
1127 /* install the new credentials */
1128 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1129 !gid_eq(bprm->cred->gid, current_egid())) {
1130 current->pdeath_signal = 0;
1131 } else {
1132 would_dump(bprm, bprm->file);
1133 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1134 set_dumpable(current->mm, suid_dumpable);
1135 }
1136
1137 /* An exec changes our domain. We are no longer part of the thread
1138 group */
1139 current->self_exec_id++;
1140 flush_signal_handlers(current, 0);
1141 do_close_on_exec(current->files);
1142 }
1143 EXPORT_SYMBOL(setup_new_exec);
1144
1145 /*
1146 * Prepare credentials and lock ->cred_guard_mutex.
1147 * install_exec_creds() commits the new creds and drops the lock.
1148 * Or, if exec fails before, free_bprm() should release ->cred and
1149 * and unlock.
1150 */
1151 int prepare_bprm_creds(struct linux_binprm *bprm)
1152 {
1153 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1154 return -ERESTARTNOINTR;
1155
1156 bprm->cred = prepare_exec_creds();
1157 if (likely(bprm->cred))
1158 return 0;
1159
1160 mutex_unlock(&current->signal->cred_guard_mutex);
1161 return -ENOMEM;
1162 }
1163
1164 static void free_bprm(struct linux_binprm *bprm)
1165 {
1166 free_arg_pages(bprm);
1167 if (bprm->cred) {
1168 mutex_unlock(&current->signal->cred_guard_mutex);
1169 abort_creds(bprm->cred);
1170 }
1171 if (bprm->file) {
1172 allow_write_access(bprm->file);
1173 fput(bprm->file);
1174 }
1175 /* If a binfmt changed the interp, free it. */
1176 if (bprm->interp != bprm->filename)
1177 kfree(bprm->interp);
1178 kfree(bprm);
1179 }
1180
1181 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1182 {
1183 /* If a binfmt changed the interp, free it first. */
1184 if (bprm->interp != bprm->filename)
1185 kfree(bprm->interp);
1186 bprm->interp = kstrdup(interp, GFP_KERNEL);
1187 if (!bprm->interp)
1188 return -ENOMEM;
1189 return 0;
1190 }
1191 EXPORT_SYMBOL(bprm_change_interp);
1192
1193 /*
1194 * install the new credentials for this executable
1195 */
1196 void install_exec_creds(struct linux_binprm *bprm)
1197 {
1198 security_bprm_committing_creds(bprm);
1199
1200 commit_creds(bprm->cred);
1201 bprm->cred = NULL;
1202
1203 /*
1204 * Disable monitoring for regular users
1205 * when executing setuid binaries. Must
1206 * wait until new credentials are committed
1207 * by commit_creds() above
1208 */
1209 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1210 perf_event_exit_task(current);
1211 /*
1212 * cred_guard_mutex must be held at least to this point to prevent
1213 * ptrace_attach() from altering our determination of the task's
1214 * credentials; any time after this it may be unlocked.
1215 */
1216 security_bprm_committed_creds(bprm);
1217 mutex_unlock(&current->signal->cred_guard_mutex);
1218 }
1219 EXPORT_SYMBOL(install_exec_creds);
1220
1221 /*
1222 * determine how safe it is to execute the proposed program
1223 * - the caller must hold ->cred_guard_mutex to protect against
1224 * PTRACE_ATTACH or seccomp thread-sync
1225 */
1226 static void check_unsafe_exec(struct linux_binprm *bprm)
1227 {
1228 struct task_struct *p = current, *t;
1229 unsigned n_fs;
1230
1231 if (p->ptrace) {
1232 if (p->ptrace & PT_PTRACE_CAP)
1233 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1234 else
1235 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1236 }
1237
1238 /*
1239 * This isn't strictly necessary, but it makes it harder for LSMs to
1240 * mess up.
1241 */
1242 if (task_no_new_privs(current))
1243 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1244
1245 t = p;
1246 n_fs = 1;
1247 spin_lock(&p->fs->lock);
1248 rcu_read_lock();
1249 while_each_thread(p, t) {
1250 if (t->fs == p->fs)
1251 n_fs++;
1252 }
1253 rcu_read_unlock();
1254
1255 if (p->fs->users > n_fs)
1256 bprm->unsafe |= LSM_UNSAFE_SHARE;
1257 else
1258 p->fs->in_exec = 1;
1259 spin_unlock(&p->fs->lock);
1260 }
1261
1262 /*
1263 * Fill the binprm structure from the inode.
1264 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1265 *
1266 * This may be called multiple times for binary chains (scripts for example).
1267 */
1268 int prepare_binprm(struct linux_binprm *bprm)
1269 {
1270 struct inode *inode = file_inode(bprm->file);
1271 umode_t mode = inode->i_mode;
1272 int retval;
1273
1274
1275 /* clear any previous set[ug]id data from a previous binary */
1276 bprm->cred->euid = current_euid();
1277 bprm->cred->egid = current_egid();
1278
1279 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1280 !task_no_new_privs(current) &&
1281 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1282 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1283 /* Set-uid? */
1284 if (mode & S_ISUID) {
1285 bprm->per_clear |= PER_CLEAR_ON_SETID;
1286 bprm->cred->euid = inode->i_uid;
1287 }
1288
1289 /* Set-gid? */
1290 /*
1291 * If setgid is set but no group execute bit then this
1292 * is a candidate for mandatory locking, not a setgid
1293 * executable.
1294 */
1295 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1296 bprm->per_clear |= PER_CLEAR_ON_SETID;
1297 bprm->cred->egid = inode->i_gid;
1298 }
1299 }
1300
1301 /* fill in binprm security blob */
1302 retval = security_bprm_set_creds(bprm);
1303 if (retval)
1304 return retval;
1305 bprm->cred_prepared = 1;
1306
1307 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1308 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1309 }
1310
1311 EXPORT_SYMBOL(prepare_binprm);
1312
1313 /*
1314 * Arguments are '\0' separated strings found at the location bprm->p
1315 * points to; chop off the first by relocating brpm->p to right after
1316 * the first '\0' encountered.
1317 */
1318 int remove_arg_zero(struct linux_binprm *bprm)
1319 {
1320 int ret = 0;
1321 unsigned long offset;
1322 char *kaddr;
1323 struct page *page;
1324
1325 if (!bprm->argc)
1326 return 0;
1327
1328 do {
1329 offset = bprm->p & ~PAGE_MASK;
1330 page = get_arg_page(bprm, bprm->p, 0);
1331 if (!page) {
1332 ret = -EFAULT;
1333 goto out;
1334 }
1335 kaddr = kmap_atomic(page);
1336
1337 for (; offset < PAGE_SIZE && kaddr[offset];
1338 offset++, bprm->p++)
1339 ;
1340
1341 kunmap_atomic(kaddr);
1342 put_arg_page(page);
1343
1344 if (offset == PAGE_SIZE)
1345 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1346 } while (offset == PAGE_SIZE);
1347
1348 bprm->p++;
1349 bprm->argc--;
1350 ret = 0;
1351
1352 out:
1353 return ret;
1354 }
1355 EXPORT_SYMBOL(remove_arg_zero);
1356
1357 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1358 /*
1359 * cycle the list of binary formats handler, until one recognizes the image
1360 */
1361 int search_binary_handler(struct linux_binprm *bprm)
1362 {
1363 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1364 struct linux_binfmt *fmt;
1365 int retval;
1366
1367 /* This allows 4 levels of binfmt rewrites before failing hard. */
1368 if (bprm->recursion_depth > 5)
1369 return -ELOOP;
1370
1371 retval = security_bprm_check(bprm);
1372 if (retval)
1373 return retval;
1374
1375 retval = -ENOENT;
1376 retry:
1377 read_lock(&binfmt_lock);
1378 list_for_each_entry(fmt, &formats, lh) {
1379 if (!try_module_get(fmt->module))
1380 continue;
1381 read_unlock(&binfmt_lock);
1382 bprm->recursion_depth++;
1383 retval = fmt->load_binary(bprm);
1384 read_lock(&binfmt_lock);
1385 put_binfmt(fmt);
1386 bprm->recursion_depth--;
1387 if (retval < 0 && !bprm->mm) {
1388 /* we got to flush_old_exec() and failed after it */
1389 read_unlock(&binfmt_lock);
1390 force_sigsegv(SIGSEGV, current);
1391 return retval;
1392 }
1393 if (retval != -ENOEXEC || !bprm->file) {
1394 read_unlock(&binfmt_lock);
1395 return retval;
1396 }
1397 }
1398 read_unlock(&binfmt_lock);
1399
1400 if (need_retry) {
1401 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1402 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1403 return retval;
1404 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1405 return retval;
1406 need_retry = false;
1407 goto retry;
1408 }
1409
1410 return retval;
1411 }
1412 EXPORT_SYMBOL(search_binary_handler);
1413
1414 static int exec_binprm(struct linux_binprm *bprm)
1415 {
1416 pid_t old_pid, old_vpid;
1417 int ret;
1418
1419 /* Need to fetch pid before load_binary changes it */
1420 old_pid = current->pid;
1421 rcu_read_lock();
1422 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1423 rcu_read_unlock();
1424
1425 ret = search_binary_handler(bprm);
1426 if (ret >= 0) {
1427 audit_bprm(bprm);
1428 trace_sched_process_exec(current, old_pid, bprm);
1429 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1430 proc_exec_connector(current);
1431 }
1432
1433 return ret;
1434 }
1435
1436 /*
1437 * sys_execve() executes a new program.
1438 */
1439 static int do_execveat_common(int fd, struct filename *filename,
1440 struct user_arg_ptr argv,
1441 struct user_arg_ptr envp,
1442 int flags)
1443 {
1444 char *pathbuf = NULL;
1445 struct linux_binprm *bprm;
1446 struct file *file;
1447 struct files_struct *displaced;
1448 int retval;
1449
1450 if (IS_ERR(filename))
1451 return PTR_ERR(filename);
1452
1453 /*
1454 * We move the actual failure in case of RLIMIT_NPROC excess from
1455 * set*uid() to execve() because too many poorly written programs
1456 * don't check setuid() return code. Here we additionally recheck
1457 * whether NPROC limit is still exceeded.
1458 */
1459 if ((current->flags & PF_NPROC_EXCEEDED) &&
1460 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1461 retval = -EAGAIN;
1462 goto out_ret;
1463 }
1464
1465 /* We're below the limit (still or again), so we don't want to make
1466 * further execve() calls fail. */
1467 current->flags &= ~PF_NPROC_EXCEEDED;
1468
1469 retval = unshare_files(&displaced);
1470 if (retval)
1471 goto out_ret;
1472
1473 retval = -ENOMEM;
1474 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1475 if (!bprm)
1476 goto out_files;
1477
1478 retval = prepare_bprm_creds(bprm);
1479 if (retval)
1480 goto out_free;
1481
1482 check_unsafe_exec(bprm);
1483 current->in_execve = 1;
1484
1485 file = do_open_execat(fd, filename, flags);
1486 retval = PTR_ERR(file);
1487 if (IS_ERR(file))
1488 goto out_unmark;
1489
1490 sched_exec();
1491
1492 bprm->file = file;
1493 if (fd == AT_FDCWD || filename->name[0] == '/') {
1494 bprm->filename = filename->name;
1495 } else {
1496 if (filename->name[0] == '\0')
1497 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1498 else
1499 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1500 fd, filename->name);
1501 if (!pathbuf) {
1502 retval = -ENOMEM;
1503 goto out_unmark;
1504 }
1505 /*
1506 * Record that a name derived from an O_CLOEXEC fd will be
1507 * inaccessible after exec. Relies on having exclusive access to
1508 * current->files (due to unshare_files above).
1509 */
1510 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1511 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1512 bprm->filename = pathbuf;
1513 }
1514 bprm->interp = bprm->filename;
1515
1516 retval = bprm_mm_init(bprm);
1517 if (retval)
1518 goto out_unmark;
1519
1520 bprm->argc = count(argv, MAX_ARG_STRINGS);
1521 if ((retval = bprm->argc) < 0)
1522 goto out;
1523
1524 bprm->envc = count(envp, MAX_ARG_STRINGS);
1525 if ((retval = bprm->envc) < 0)
1526 goto out;
1527
1528 retval = prepare_binprm(bprm);
1529 if (retval < 0)
1530 goto out;
1531
1532 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1533 if (retval < 0)
1534 goto out;
1535
1536 bprm->exec = bprm->p;
1537 retval = copy_strings(bprm->envc, envp, bprm);
1538 if (retval < 0)
1539 goto out;
1540
1541 retval = copy_strings(bprm->argc, argv, bprm);
1542 if (retval < 0)
1543 goto out;
1544
1545 retval = exec_binprm(bprm);
1546 if (retval < 0)
1547 goto out;
1548
1549 /* execve succeeded */
1550 current->fs->in_exec = 0;
1551 current->in_execve = 0;
1552 acct_update_integrals(current);
1553 task_numa_free(current);
1554 free_bprm(bprm);
1555 kfree(pathbuf);
1556 putname(filename);
1557 if (displaced)
1558 put_files_struct(displaced);
1559 return retval;
1560
1561 out:
1562 if (bprm->mm) {
1563 acct_arg_size(bprm, 0);
1564 mmput(bprm->mm);
1565 }
1566
1567 out_unmark:
1568 current->fs->in_exec = 0;
1569 current->in_execve = 0;
1570
1571 out_free:
1572 free_bprm(bprm);
1573 kfree(pathbuf);
1574
1575 out_files:
1576 if (displaced)
1577 reset_files_struct(displaced);
1578 out_ret:
1579 putname(filename);
1580 return retval;
1581 }
1582
1583 int do_execve(struct filename *filename,
1584 const char __user *const __user *__argv,
1585 const char __user *const __user *__envp)
1586 {
1587 struct user_arg_ptr argv = { .ptr.native = __argv };
1588 struct user_arg_ptr envp = { .ptr.native = __envp };
1589 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1590 }
1591
1592 int do_execveat(int fd, struct filename *filename,
1593 const char __user *const __user *__argv,
1594 const char __user *const __user *__envp,
1595 int flags)
1596 {
1597 struct user_arg_ptr argv = { .ptr.native = __argv };
1598 struct user_arg_ptr envp = { .ptr.native = __envp };
1599
1600 return do_execveat_common(fd, filename, argv, envp, flags);
1601 }
1602
1603 #ifdef CONFIG_COMPAT
1604 static int compat_do_execve(struct filename *filename,
1605 const compat_uptr_t __user *__argv,
1606 const compat_uptr_t __user *__envp)
1607 {
1608 struct user_arg_ptr argv = {
1609 .is_compat = true,
1610 .ptr.compat = __argv,
1611 };
1612 struct user_arg_ptr envp = {
1613 .is_compat = true,
1614 .ptr.compat = __envp,
1615 };
1616 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1617 }
1618
1619 static int compat_do_execveat(int fd, struct filename *filename,
1620 const compat_uptr_t __user *__argv,
1621 const compat_uptr_t __user *__envp,
1622 int flags)
1623 {
1624 struct user_arg_ptr argv = {
1625 .is_compat = true,
1626 .ptr.compat = __argv,
1627 };
1628 struct user_arg_ptr envp = {
1629 .is_compat = true,
1630 .ptr.compat = __envp,
1631 };
1632 return do_execveat_common(fd, filename, argv, envp, flags);
1633 }
1634 #endif
1635
1636 void set_binfmt(struct linux_binfmt *new)
1637 {
1638 struct mm_struct *mm = current->mm;
1639
1640 if (mm->binfmt)
1641 module_put(mm->binfmt->module);
1642
1643 mm->binfmt = new;
1644 if (new)
1645 __module_get(new->module);
1646 }
1647 EXPORT_SYMBOL(set_binfmt);
1648
1649 /*
1650 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1651 */
1652 void set_dumpable(struct mm_struct *mm, int value)
1653 {
1654 unsigned long old, new;
1655
1656 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1657 return;
1658
1659 do {
1660 old = ACCESS_ONCE(mm->flags);
1661 new = (old & ~MMF_DUMPABLE_MASK) | value;
1662 } while (cmpxchg(&mm->flags, old, new) != old);
1663 }
1664
1665 SYSCALL_DEFINE3(execve,
1666 const char __user *, filename,
1667 const char __user *const __user *, argv,
1668 const char __user *const __user *, envp)
1669 {
1670 return do_execve(getname(filename), argv, envp);
1671 }
1672
1673 SYSCALL_DEFINE5(execveat,
1674 int, fd, const char __user *, filename,
1675 const char __user *const __user *, argv,
1676 const char __user *const __user *, envp,
1677 int, flags)
1678 {
1679 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1680
1681 return do_execveat(fd,
1682 getname_flags(filename, lookup_flags, NULL),
1683 argv, envp, flags);
1684 }
1685
1686 #ifdef CONFIG_COMPAT
1687 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1688 const compat_uptr_t __user *, argv,
1689 const compat_uptr_t __user *, envp)
1690 {
1691 return compat_do_execve(getname(filename), argv, envp);
1692 }
1693
1694 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1695 const char __user *, filename,
1696 const compat_uptr_t __user *, argv,
1697 const compat_uptr_t __user *, envp,
1698 int, flags)
1699 {
1700 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1701
1702 return compat_do_execveat(fd,
1703 getname_flags(filename, lookup_flags, NULL),
1704 argv, envp, flags);
1705 }
1706 #endif