]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/exec.c
[PATCH] permission checks for chdir need special treatment only on the last step
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
55 #include <asm/tlb.h>
56
57 #ifdef CONFIG_KMOD
58 #include <linux/kmod.h>
59 #endif
60
61 #ifdef __alpha__
62 /* for /sbin/loader handling in search_binary_handler() */
63 #include <linux/a.out.h>
64 #endif
65
66 int core_uses_pid;
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 int suid_dumpable = 0;
69
70 /* The maximal length of core_pattern is also specified in sysctl.c */
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 int register_binfmt(struct linux_binfmt * fmt)
76 {
77 if (!fmt)
78 return -EINVAL;
79 write_lock(&binfmt_lock);
80 list_add(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 return 0;
83 }
84
85 EXPORT_SYMBOL(register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 module_put(fmt->module);
99 }
100
101 /*
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
104 *
105 * Also note that we take the address to load from from the file itself.
106 */
107 asmlinkage long sys_uselib(const char __user * library)
108 {
109 struct file * file;
110 struct nameidata nd;
111 int error;
112
113 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
114 if (error)
115 goto out;
116
117 error = -EINVAL;
118 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
119 goto exit;
120
121 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
122 if (error)
123 goto exit;
124
125 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
129
130 error = -ENOEXEC;
131 if(file->f_op) {
132 struct linux_binfmt * fmt;
133
134 read_lock(&binfmt_lock);
135 list_for_each_entry(fmt, &formats, lh) {
136 if (!fmt->load_shlib)
137 continue;
138 if (!try_module_get(fmt->module))
139 continue;
140 read_unlock(&binfmt_lock);
141 error = fmt->load_shlib(file);
142 read_lock(&binfmt_lock);
143 put_binfmt(fmt);
144 if (error != -ENOEXEC)
145 break;
146 }
147 read_unlock(&binfmt_lock);
148 }
149 fput(file);
150 out:
151 return error;
152 exit:
153 release_open_intent(&nd);
154 path_put(&nd.path);
155 goto out;
156 }
157
158 #ifdef CONFIG_MMU
159
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 int write)
162 {
163 struct page *page;
164 int ret;
165
166 #ifdef CONFIG_STACK_GROWSUP
167 if (write) {
168 ret = expand_stack_downwards(bprm->vma, pos);
169 if (ret < 0)
170 return NULL;
171 }
172 #endif
173 ret = get_user_pages(current, bprm->mm, pos,
174 1, write, 1, &page, NULL);
175 if (ret <= 0)
176 return NULL;
177
178 if (write) {
179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 struct rlimit *rlim;
181
182 /*
183 * We've historically supported up to 32 pages (ARG_MAX)
184 * of argument strings even with small stacks
185 */
186 if (size <= ARG_MAX)
187 return page;
188
189 /*
190 * Limit to 1/4-th the stack size for the argv+env strings.
191 * This ensures that:
192 * - the remaining binfmt code will not run out of stack space,
193 * - the program will have a reasonable amount of stack left
194 * to work from.
195 */
196 rlim = current->signal->rlim;
197 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
198 put_page(page);
199 return NULL;
200 }
201 }
202
203 return page;
204 }
205
206 static void put_arg_page(struct page *page)
207 {
208 put_page(page);
209 }
210
211 static void free_arg_page(struct linux_binprm *bprm, int i)
212 {
213 }
214
215 static void free_arg_pages(struct linux_binprm *bprm)
216 {
217 }
218
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 struct page *page)
221 {
222 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223 }
224
225 static int __bprm_mm_init(struct linux_binprm *bprm)
226 {
227 int err = -ENOMEM;
228 struct vm_area_struct *vma = NULL;
229 struct mm_struct *mm = bprm->mm;
230
231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 if (!vma)
233 goto err;
234
235 down_write(&mm->mmap_sem);
236 vma->vm_mm = mm;
237
238 /*
239 * Place the stack at the largest stack address the architecture
240 * supports. Later, we'll move this to an appropriate place. We don't
241 * use STACK_TOP because that can depend on attributes which aren't
242 * configured yet.
243 */
244 vma->vm_end = STACK_TOP_MAX;
245 vma->vm_start = vma->vm_end - PAGE_SIZE;
246
247 vma->vm_flags = VM_STACK_FLAGS;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 err = insert_vm_struct(mm, vma);
250 if (err) {
251 up_write(&mm->mmap_sem);
252 goto err;
253 }
254
255 mm->stack_vm = mm->total_vm = 1;
256 up_write(&mm->mmap_sem);
257
258 bprm->p = vma->vm_end - sizeof(void *);
259
260 return 0;
261
262 err:
263 if (vma) {
264 bprm->vma = NULL;
265 kmem_cache_free(vm_area_cachep, vma);
266 }
267
268 return err;
269 }
270
271 static bool valid_arg_len(struct linux_binprm *bprm, long len)
272 {
273 return len <= MAX_ARG_STRLEN;
274 }
275
276 #else
277
278 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
279 int write)
280 {
281 struct page *page;
282
283 page = bprm->page[pos / PAGE_SIZE];
284 if (!page && write) {
285 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
286 if (!page)
287 return NULL;
288 bprm->page[pos / PAGE_SIZE] = page;
289 }
290
291 return page;
292 }
293
294 static void put_arg_page(struct page *page)
295 {
296 }
297
298 static void free_arg_page(struct linux_binprm *bprm, int i)
299 {
300 if (bprm->page[i]) {
301 __free_page(bprm->page[i]);
302 bprm->page[i] = NULL;
303 }
304 }
305
306 static void free_arg_pages(struct linux_binprm *bprm)
307 {
308 int i;
309
310 for (i = 0; i < MAX_ARG_PAGES; i++)
311 free_arg_page(bprm, i);
312 }
313
314 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
315 struct page *page)
316 {
317 }
318
319 static int __bprm_mm_init(struct linux_binprm *bprm)
320 {
321 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
322 return 0;
323 }
324
325 static bool valid_arg_len(struct linux_binprm *bprm, long len)
326 {
327 return len <= bprm->p;
328 }
329
330 #endif /* CONFIG_MMU */
331
332 /*
333 * Create a new mm_struct and populate it with a temporary stack
334 * vm_area_struct. We don't have enough context at this point to set the stack
335 * flags, permissions, and offset, so we use temporary values. We'll update
336 * them later in setup_arg_pages().
337 */
338 int bprm_mm_init(struct linux_binprm *bprm)
339 {
340 int err;
341 struct mm_struct *mm = NULL;
342
343 bprm->mm = mm = mm_alloc();
344 err = -ENOMEM;
345 if (!mm)
346 goto err;
347
348 err = init_new_context(current, mm);
349 if (err)
350 goto err;
351
352 err = __bprm_mm_init(bprm);
353 if (err)
354 goto err;
355
356 return 0;
357
358 err:
359 if (mm) {
360 bprm->mm = NULL;
361 mmdrop(mm);
362 }
363
364 return err;
365 }
366
367 /*
368 * count() counts the number of strings in array ARGV.
369 */
370 static int count(char __user * __user * argv, int max)
371 {
372 int i = 0;
373
374 if (argv != NULL) {
375 for (;;) {
376 char __user * p;
377
378 if (get_user(p, argv))
379 return -EFAULT;
380 if (!p)
381 break;
382 argv++;
383 if(++i > max)
384 return -E2BIG;
385 cond_resched();
386 }
387 }
388 return i;
389 }
390
391 /*
392 * 'copy_strings()' copies argument/environment strings from the old
393 * processes's memory to the new process's stack. The call to get_user_pages()
394 * ensures the destination page is created and not swapped out.
395 */
396 static int copy_strings(int argc, char __user * __user * argv,
397 struct linux_binprm *bprm)
398 {
399 struct page *kmapped_page = NULL;
400 char *kaddr = NULL;
401 unsigned long kpos = 0;
402 int ret;
403
404 while (argc-- > 0) {
405 char __user *str;
406 int len;
407 unsigned long pos;
408
409 if (get_user(str, argv+argc) ||
410 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
411 ret = -EFAULT;
412 goto out;
413 }
414
415 if (!valid_arg_len(bprm, len)) {
416 ret = -E2BIG;
417 goto out;
418 }
419
420 /* We're going to work our way backwords. */
421 pos = bprm->p;
422 str += len;
423 bprm->p -= len;
424
425 while (len > 0) {
426 int offset, bytes_to_copy;
427
428 offset = pos % PAGE_SIZE;
429 if (offset == 0)
430 offset = PAGE_SIZE;
431
432 bytes_to_copy = offset;
433 if (bytes_to_copy > len)
434 bytes_to_copy = len;
435
436 offset -= bytes_to_copy;
437 pos -= bytes_to_copy;
438 str -= bytes_to_copy;
439 len -= bytes_to_copy;
440
441 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
442 struct page *page;
443
444 page = get_arg_page(bprm, pos, 1);
445 if (!page) {
446 ret = -E2BIG;
447 goto out;
448 }
449
450 if (kmapped_page) {
451 flush_kernel_dcache_page(kmapped_page);
452 kunmap(kmapped_page);
453 put_arg_page(kmapped_page);
454 }
455 kmapped_page = page;
456 kaddr = kmap(kmapped_page);
457 kpos = pos & PAGE_MASK;
458 flush_arg_page(bprm, kpos, kmapped_page);
459 }
460 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
461 ret = -EFAULT;
462 goto out;
463 }
464 }
465 }
466 ret = 0;
467 out:
468 if (kmapped_page) {
469 flush_kernel_dcache_page(kmapped_page);
470 kunmap(kmapped_page);
471 put_arg_page(kmapped_page);
472 }
473 return ret;
474 }
475
476 /*
477 * Like copy_strings, but get argv and its values from kernel memory.
478 */
479 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
480 {
481 int r;
482 mm_segment_t oldfs = get_fs();
483 set_fs(KERNEL_DS);
484 r = copy_strings(argc, (char __user * __user *)argv, bprm);
485 set_fs(oldfs);
486 return r;
487 }
488 EXPORT_SYMBOL(copy_strings_kernel);
489
490 #ifdef CONFIG_MMU
491
492 /*
493 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
494 * the binfmt code determines where the new stack should reside, we shift it to
495 * its final location. The process proceeds as follows:
496 *
497 * 1) Use shift to calculate the new vma endpoints.
498 * 2) Extend vma to cover both the old and new ranges. This ensures the
499 * arguments passed to subsequent functions are consistent.
500 * 3) Move vma's page tables to the new range.
501 * 4) Free up any cleared pgd range.
502 * 5) Shrink the vma to cover only the new range.
503 */
504 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
505 {
506 struct mm_struct *mm = vma->vm_mm;
507 unsigned long old_start = vma->vm_start;
508 unsigned long old_end = vma->vm_end;
509 unsigned long length = old_end - old_start;
510 unsigned long new_start = old_start - shift;
511 unsigned long new_end = old_end - shift;
512 struct mmu_gather *tlb;
513
514 BUG_ON(new_start > new_end);
515
516 /*
517 * ensure there are no vmas between where we want to go
518 * and where we are
519 */
520 if (vma != find_vma(mm, new_start))
521 return -EFAULT;
522
523 /*
524 * cover the whole range: [new_start, old_end)
525 */
526 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
527
528 /*
529 * move the page tables downwards, on failure we rely on
530 * process cleanup to remove whatever mess we made.
531 */
532 if (length != move_page_tables(vma, old_start,
533 vma, new_start, length))
534 return -ENOMEM;
535
536 lru_add_drain();
537 tlb = tlb_gather_mmu(mm, 0);
538 if (new_end > old_start) {
539 /*
540 * when the old and new regions overlap clear from new_end.
541 */
542 free_pgd_range(tlb, new_end, old_end, new_end,
543 vma->vm_next ? vma->vm_next->vm_start : 0);
544 } else {
545 /*
546 * otherwise, clean from old_start; this is done to not touch
547 * the address space in [new_end, old_start) some architectures
548 * have constraints on va-space that make this illegal (IA64) -
549 * for the others its just a little faster.
550 */
551 free_pgd_range(tlb, old_start, old_end, new_end,
552 vma->vm_next ? vma->vm_next->vm_start : 0);
553 }
554 tlb_finish_mmu(tlb, new_end, old_end);
555
556 /*
557 * shrink the vma to just the new range.
558 */
559 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
560
561 return 0;
562 }
563
564 #define EXTRA_STACK_VM_PAGES 20 /* random */
565
566 /*
567 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
568 * the stack is optionally relocated, and some extra space is added.
569 */
570 int setup_arg_pages(struct linux_binprm *bprm,
571 unsigned long stack_top,
572 int executable_stack)
573 {
574 unsigned long ret;
575 unsigned long stack_shift;
576 struct mm_struct *mm = current->mm;
577 struct vm_area_struct *vma = bprm->vma;
578 struct vm_area_struct *prev = NULL;
579 unsigned long vm_flags;
580 unsigned long stack_base;
581
582 #ifdef CONFIG_STACK_GROWSUP
583 /* Limit stack size to 1GB */
584 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
585 if (stack_base > (1 << 30))
586 stack_base = 1 << 30;
587
588 /* Make sure we didn't let the argument array grow too large. */
589 if (vma->vm_end - vma->vm_start > stack_base)
590 return -ENOMEM;
591
592 stack_base = PAGE_ALIGN(stack_top - stack_base);
593
594 stack_shift = vma->vm_start - stack_base;
595 mm->arg_start = bprm->p - stack_shift;
596 bprm->p = vma->vm_end - stack_shift;
597 #else
598 stack_top = arch_align_stack(stack_top);
599 stack_top = PAGE_ALIGN(stack_top);
600 stack_shift = vma->vm_end - stack_top;
601
602 bprm->p -= stack_shift;
603 mm->arg_start = bprm->p;
604 #endif
605
606 if (bprm->loader)
607 bprm->loader -= stack_shift;
608 bprm->exec -= stack_shift;
609
610 down_write(&mm->mmap_sem);
611 vm_flags = VM_STACK_FLAGS;
612
613 /*
614 * Adjust stack execute permissions; explicitly enable for
615 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
616 * (arch default) otherwise.
617 */
618 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
619 vm_flags |= VM_EXEC;
620 else if (executable_stack == EXSTACK_DISABLE_X)
621 vm_flags &= ~VM_EXEC;
622 vm_flags |= mm->def_flags;
623
624 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
625 vm_flags);
626 if (ret)
627 goto out_unlock;
628 BUG_ON(prev != vma);
629
630 /* Move stack pages down in memory. */
631 if (stack_shift) {
632 ret = shift_arg_pages(vma, stack_shift);
633 if (ret) {
634 up_write(&mm->mmap_sem);
635 return ret;
636 }
637 }
638
639 #ifdef CONFIG_STACK_GROWSUP
640 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
641 #else
642 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
643 #endif
644 ret = expand_stack(vma, stack_base);
645 if (ret)
646 ret = -EFAULT;
647
648 out_unlock:
649 up_write(&mm->mmap_sem);
650 return 0;
651 }
652 EXPORT_SYMBOL(setup_arg_pages);
653
654 #endif /* CONFIG_MMU */
655
656 struct file *open_exec(const char *name)
657 {
658 struct nameidata nd;
659 int err;
660 struct file *file;
661
662 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
663 file = ERR_PTR(err);
664
665 if (!err) {
666 struct inode *inode = nd.path.dentry->d_inode;
667 file = ERR_PTR(-EACCES);
668 if (S_ISREG(inode->i_mode)) {
669 int err = vfs_permission(&nd, MAY_EXEC);
670 file = ERR_PTR(err);
671 if (!err) {
672 file = nameidata_to_filp(&nd,
673 O_RDONLY|O_LARGEFILE);
674 if (!IS_ERR(file)) {
675 err = deny_write_access(file);
676 if (err) {
677 fput(file);
678 file = ERR_PTR(err);
679 }
680 }
681 out:
682 return file;
683 }
684 }
685 release_open_intent(&nd);
686 path_put(&nd.path);
687 }
688 goto out;
689 }
690
691 EXPORT_SYMBOL(open_exec);
692
693 int kernel_read(struct file *file, unsigned long offset,
694 char *addr, unsigned long count)
695 {
696 mm_segment_t old_fs;
697 loff_t pos = offset;
698 int result;
699
700 old_fs = get_fs();
701 set_fs(get_ds());
702 /* The cast to a user pointer is valid due to the set_fs() */
703 result = vfs_read(file, (void __user *)addr, count, &pos);
704 set_fs(old_fs);
705 return result;
706 }
707
708 EXPORT_SYMBOL(kernel_read);
709
710 static int exec_mmap(struct mm_struct *mm)
711 {
712 struct task_struct *tsk;
713 struct mm_struct * old_mm, *active_mm;
714
715 /* Notify parent that we're no longer interested in the old VM */
716 tsk = current;
717 old_mm = current->mm;
718 mm_release(tsk, old_mm);
719
720 if (old_mm) {
721 /*
722 * Make sure that if there is a core dump in progress
723 * for the old mm, we get out and die instead of going
724 * through with the exec. We must hold mmap_sem around
725 * checking core_state and changing tsk->mm.
726 */
727 down_read(&old_mm->mmap_sem);
728 if (unlikely(old_mm->core_state)) {
729 up_read(&old_mm->mmap_sem);
730 return -EINTR;
731 }
732 }
733 task_lock(tsk);
734 active_mm = tsk->active_mm;
735 tsk->mm = mm;
736 tsk->active_mm = mm;
737 activate_mm(active_mm, mm);
738 task_unlock(tsk);
739 mm_update_next_owner(old_mm);
740 arch_pick_mmap_layout(mm);
741 if (old_mm) {
742 up_read(&old_mm->mmap_sem);
743 BUG_ON(active_mm != old_mm);
744 mmput(old_mm);
745 return 0;
746 }
747 mmdrop(active_mm);
748 return 0;
749 }
750
751 /*
752 * This function makes sure the current process has its own signal table,
753 * so that flush_signal_handlers can later reset the handlers without
754 * disturbing other processes. (Other processes might share the signal
755 * table via the CLONE_SIGHAND option to clone().)
756 */
757 static int de_thread(struct task_struct *tsk)
758 {
759 struct signal_struct *sig = tsk->signal;
760 struct sighand_struct *oldsighand = tsk->sighand;
761 spinlock_t *lock = &oldsighand->siglock;
762 struct task_struct *leader = NULL;
763 int count;
764
765 if (thread_group_empty(tsk))
766 goto no_thread_group;
767
768 /*
769 * Kill all other threads in the thread group.
770 */
771 spin_lock_irq(lock);
772 if (signal_group_exit(sig)) {
773 /*
774 * Another group action in progress, just
775 * return so that the signal is processed.
776 */
777 spin_unlock_irq(lock);
778 return -EAGAIN;
779 }
780 sig->group_exit_task = tsk;
781 zap_other_threads(tsk);
782
783 /* Account for the thread group leader hanging around: */
784 count = thread_group_leader(tsk) ? 1 : 2;
785 sig->notify_count = count;
786 while (atomic_read(&sig->count) > count) {
787 __set_current_state(TASK_UNINTERRUPTIBLE);
788 spin_unlock_irq(lock);
789 schedule();
790 spin_lock_irq(lock);
791 }
792 spin_unlock_irq(lock);
793
794 /*
795 * At this point all other threads have exited, all we have to
796 * do is to wait for the thread group leader to become inactive,
797 * and to assume its PID:
798 */
799 if (!thread_group_leader(tsk)) {
800 leader = tsk->group_leader;
801
802 sig->notify_count = -1; /* for exit_notify() */
803 for (;;) {
804 write_lock_irq(&tasklist_lock);
805 if (likely(leader->exit_state))
806 break;
807 __set_current_state(TASK_UNINTERRUPTIBLE);
808 write_unlock_irq(&tasklist_lock);
809 schedule();
810 }
811
812 if (unlikely(task_child_reaper(tsk) == leader))
813 task_active_pid_ns(tsk)->child_reaper = tsk;
814 /*
815 * The only record we have of the real-time age of a
816 * process, regardless of execs it's done, is start_time.
817 * All the past CPU time is accumulated in signal_struct
818 * from sister threads now dead. But in this non-leader
819 * exec, nothing survives from the original leader thread,
820 * whose birth marks the true age of this process now.
821 * When we take on its identity by switching to its PID, we
822 * also take its birthdate (always earlier than our own).
823 */
824 tsk->start_time = leader->start_time;
825
826 BUG_ON(!same_thread_group(leader, tsk));
827 BUG_ON(has_group_leader_pid(tsk));
828 /*
829 * An exec() starts a new thread group with the
830 * TGID of the previous thread group. Rehash the
831 * two threads with a switched PID, and release
832 * the former thread group leader:
833 */
834
835 /* Become a process group leader with the old leader's pid.
836 * The old leader becomes a thread of the this thread group.
837 * Note: The old leader also uses this pid until release_task
838 * is called. Odd but simple and correct.
839 */
840 detach_pid(tsk, PIDTYPE_PID);
841 tsk->pid = leader->pid;
842 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
843 transfer_pid(leader, tsk, PIDTYPE_PGID);
844 transfer_pid(leader, tsk, PIDTYPE_SID);
845 list_replace_rcu(&leader->tasks, &tsk->tasks);
846
847 tsk->group_leader = tsk;
848 leader->group_leader = tsk;
849
850 tsk->exit_signal = SIGCHLD;
851
852 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
853 leader->exit_state = EXIT_DEAD;
854
855 write_unlock_irq(&tasklist_lock);
856 }
857
858 sig->group_exit_task = NULL;
859 sig->notify_count = 0;
860
861 no_thread_group:
862 exit_itimers(sig);
863 flush_itimer_signals();
864 if (leader)
865 release_task(leader);
866
867 if (atomic_read(&oldsighand->count) != 1) {
868 struct sighand_struct *newsighand;
869 /*
870 * This ->sighand is shared with the CLONE_SIGHAND
871 * but not CLONE_THREAD task, switch to the new one.
872 */
873 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
874 if (!newsighand)
875 return -ENOMEM;
876
877 atomic_set(&newsighand->count, 1);
878 memcpy(newsighand->action, oldsighand->action,
879 sizeof(newsighand->action));
880
881 write_lock_irq(&tasklist_lock);
882 spin_lock(&oldsighand->siglock);
883 rcu_assign_pointer(tsk->sighand, newsighand);
884 spin_unlock(&oldsighand->siglock);
885 write_unlock_irq(&tasklist_lock);
886
887 __cleanup_sighand(oldsighand);
888 }
889
890 BUG_ON(!thread_group_leader(tsk));
891 return 0;
892 }
893
894 /*
895 * These functions flushes out all traces of the currently running executable
896 * so that a new one can be started
897 */
898 static void flush_old_files(struct files_struct * files)
899 {
900 long j = -1;
901 struct fdtable *fdt;
902
903 spin_lock(&files->file_lock);
904 for (;;) {
905 unsigned long set, i;
906
907 j++;
908 i = j * __NFDBITS;
909 fdt = files_fdtable(files);
910 if (i >= fdt->max_fds)
911 break;
912 set = fdt->close_on_exec->fds_bits[j];
913 if (!set)
914 continue;
915 fdt->close_on_exec->fds_bits[j] = 0;
916 spin_unlock(&files->file_lock);
917 for ( ; set ; i++,set >>= 1) {
918 if (set & 1) {
919 sys_close(i);
920 }
921 }
922 spin_lock(&files->file_lock);
923
924 }
925 spin_unlock(&files->file_lock);
926 }
927
928 char *get_task_comm(char *buf, struct task_struct *tsk)
929 {
930 /* buf must be at least sizeof(tsk->comm) in size */
931 task_lock(tsk);
932 strncpy(buf, tsk->comm, sizeof(tsk->comm));
933 task_unlock(tsk);
934 return buf;
935 }
936
937 void set_task_comm(struct task_struct *tsk, char *buf)
938 {
939 task_lock(tsk);
940 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
941 task_unlock(tsk);
942 }
943
944 int flush_old_exec(struct linux_binprm * bprm)
945 {
946 char * name;
947 int i, ch, retval;
948 char tcomm[sizeof(current->comm)];
949
950 /*
951 * Make sure we have a private signal table and that
952 * we are unassociated from the previous thread group.
953 */
954 retval = de_thread(current);
955 if (retval)
956 goto out;
957
958 set_mm_exe_file(bprm->mm, bprm->file);
959
960 /*
961 * Release all of the old mmap stuff
962 */
963 retval = exec_mmap(bprm->mm);
964 if (retval)
965 goto out;
966
967 bprm->mm = NULL; /* We're using it now */
968
969 /* This is the point of no return */
970 current->sas_ss_sp = current->sas_ss_size = 0;
971
972 if (current->euid == current->uid && current->egid == current->gid)
973 set_dumpable(current->mm, 1);
974 else
975 set_dumpable(current->mm, suid_dumpable);
976
977 name = bprm->filename;
978
979 /* Copies the binary name from after last slash */
980 for (i=0; (ch = *(name++)) != '\0';) {
981 if (ch == '/')
982 i = 0; /* overwrite what we wrote */
983 else
984 if (i < (sizeof(tcomm) - 1))
985 tcomm[i++] = ch;
986 }
987 tcomm[i] = '\0';
988 set_task_comm(current, tcomm);
989
990 current->flags &= ~PF_RANDOMIZE;
991 flush_thread();
992
993 /* Set the new mm task size. We have to do that late because it may
994 * depend on TIF_32BIT which is only updated in flush_thread() on
995 * some architectures like powerpc
996 */
997 current->mm->task_size = TASK_SIZE;
998
999 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1000 suid_keys(current);
1001 set_dumpable(current->mm, suid_dumpable);
1002 current->pdeath_signal = 0;
1003 } else if (file_permission(bprm->file, MAY_READ) ||
1004 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1005 suid_keys(current);
1006 set_dumpable(current->mm, suid_dumpable);
1007 }
1008
1009 /* An exec changes our domain. We are no longer part of the thread
1010 group */
1011
1012 current->self_exec_id++;
1013
1014 flush_signal_handlers(current, 0);
1015 flush_old_files(current->files);
1016
1017 return 0;
1018
1019 out:
1020 return retval;
1021 }
1022
1023 EXPORT_SYMBOL(flush_old_exec);
1024
1025 /*
1026 * Fill the binprm structure from the inode.
1027 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1028 */
1029 int prepare_binprm(struct linux_binprm *bprm)
1030 {
1031 int mode;
1032 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1033 int retval;
1034
1035 mode = inode->i_mode;
1036 if (bprm->file->f_op == NULL)
1037 return -EACCES;
1038
1039 bprm->e_uid = current->euid;
1040 bprm->e_gid = current->egid;
1041
1042 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1043 /* Set-uid? */
1044 if (mode & S_ISUID) {
1045 current->personality &= ~PER_CLEAR_ON_SETID;
1046 bprm->e_uid = inode->i_uid;
1047 }
1048
1049 /* Set-gid? */
1050 /*
1051 * If setgid is set but no group execute bit then this
1052 * is a candidate for mandatory locking, not a setgid
1053 * executable.
1054 */
1055 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1056 current->personality &= ~PER_CLEAR_ON_SETID;
1057 bprm->e_gid = inode->i_gid;
1058 }
1059 }
1060
1061 /* fill in binprm security blob */
1062 retval = security_bprm_set(bprm);
1063 if (retval)
1064 return retval;
1065
1066 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1067 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1068 }
1069
1070 EXPORT_SYMBOL(prepare_binprm);
1071
1072 static int unsafe_exec(struct task_struct *p)
1073 {
1074 int unsafe = tracehook_unsafe_exec(p);
1075
1076 if (atomic_read(&p->fs->count) > 1 ||
1077 atomic_read(&p->files->count) > 1 ||
1078 atomic_read(&p->sighand->count) > 1)
1079 unsafe |= LSM_UNSAFE_SHARE;
1080
1081 return unsafe;
1082 }
1083
1084 void compute_creds(struct linux_binprm *bprm)
1085 {
1086 int unsafe;
1087
1088 if (bprm->e_uid != current->uid) {
1089 suid_keys(current);
1090 current->pdeath_signal = 0;
1091 }
1092 exec_keys(current);
1093
1094 task_lock(current);
1095 unsafe = unsafe_exec(current);
1096 security_bprm_apply_creds(bprm, unsafe);
1097 task_unlock(current);
1098 security_bprm_post_apply_creds(bprm);
1099 }
1100 EXPORT_SYMBOL(compute_creds);
1101
1102 /*
1103 * Arguments are '\0' separated strings found at the location bprm->p
1104 * points to; chop off the first by relocating brpm->p to right after
1105 * the first '\0' encountered.
1106 */
1107 int remove_arg_zero(struct linux_binprm *bprm)
1108 {
1109 int ret = 0;
1110 unsigned long offset;
1111 char *kaddr;
1112 struct page *page;
1113
1114 if (!bprm->argc)
1115 return 0;
1116
1117 do {
1118 offset = bprm->p & ~PAGE_MASK;
1119 page = get_arg_page(bprm, bprm->p, 0);
1120 if (!page) {
1121 ret = -EFAULT;
1122 goto out;
1123 }
1124 kaddr = kmap_atomic(page, KM_USER0);
1125
1126 for (; offset < PAGE_SIZE && kaddr[offset];
1127 offset++, bprm->p++)
1128 ;
1129
1130 kunmap_atomic(kaddr, KM_USER0);
1131 put_arg_page(page);
1132
1133 if (offset == PAGE_SIZE)
1134 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1135 } while (offset == PAGE_SIZE);
1136
1137 bprm->p++;
1138 bprm->argc--;
1139 ret = 0;
1140
1141 out:
1142 return ret;
1143 }
1144 EXPORT_SYMBOL(remove_arg_zero);
1145
1146 /*
1147 * cycle the list of binary formats handler, until one recognizes the image
1148 */
1149 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1150 {
1151 int try,retval;
1152 struct linux_binfmt *fmt;
1153 #ifdef __alpha__
1154 /* handle /sbin/loader.. */
1155 {
1156 struct exec * eh = (struct exec *) bprm->buf;
1157
1158 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1159 (eh->fh.f_flags & 0x3000) == 0x3000)
1160 {
1161 struct file * file;
1162 unsigned long loader;
1163
1164 allow_write_access(bprm->file);
1165 fput(bprm->file);
1166 bprm->file = NULL;
1167
1168 loader = bprm->vma->vm_end - sizeof(void *);
1169
1170 file = open_exec("/sbin/loader");
1171 retval = PTR_ERR(file);
1172 if (IS_ERR(file))
1173 return retval;
1174
1175 /* Remember if the application is TASO. */
1176 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1177
1178 bprm->file = file;
1179 bprm->loader = loader;
1180 retval = prepare_binprm(bprm);
1181 if (retval<0)
1182 return retval;
1183 /* should call search_binary_handler recursively here,
1184 but it does not matter */
1185 }
1186 }
1187 #endif
1188 retval = security_bprm_check(bprm);
1189 if (retval)
1190 return retval;
1191
1192 /* kernel module loader fixup */
1193 /* so we don't try to load run modprobe in kernel space. */
1194 set_fs(USER_DS);
1195
1196 retval = audit_bprm(bprm);
1197 if (retval)
1198 return retval;
1199
1200 retval = -ENOENT;
1201 for (try=0; try<2; try++) {
1202 read_lock(&binfmt_lock);
1203 list_for_each_entry(fmt, &formats, lh) {
1204 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1205 if (!fn)
1206 continue;
1207 if (!try_module_get(fmt->module))
1208 continue;
1209 read_unlock(&binfmt_lock);
1210 retval = fn(bprm, regs);
1211 if (retval >= 0) {
1212 tracehook_report_exec(fmt, bprm, regs);
1213 put_binfmt(fmt);
1214 allow_write_access(bprm->file);
1215 if (bprm->file)
1216 fput(bprm->file);
1217 bprm->file = NULL;
1218 current->did_exec = 1;
1219 proc_exec_connector(current);
1220 return retval;
1221 }
1222 read_lock(&binfmt_lock);
1223 put_binfmt(fmt);
1224 if (retval != -ENOEXEC || bprm->mm == NULL)
1225 break;
1226 if (!bprm->file) {
1227 read_unlock(&binfmt_lock);
1228 return retval;
1229 }
1230 }
1231 read_unlock(&binfmt_lock);
1232 if (retval != -ENOEXEC || bprm->mm == NULL) {
1233 break;
1234 #ifdef CONFIG_KMOD
1235 }else{
1236 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1237 if (printable(bprm->buf[0]) &&
1238 printable(bprm->buf[1]) &&
1239 printable(bprm->buf[2]) &&
1240 printable(bprm->buf[3]))
1241 break; /* -ENOEXEC */
1242 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1243 #endif
1244 }
1245 }
1246 return retval;
1247 }
1248
1249 EXPORT_SYMBOL(search_binary_handler);
1250
1251 void free_bprm(struct linux_binprm *bprm)
1252 {
1253 free_arg_pages(bprm);
1254 kfree(bprm);
1255 }
1256
1257 /*
1258 * sys_execve() executes a new program.
1259 */
1260 int do_execve(char * filename,
1261 char __user *__user *argv,
1262 char __user *__user *envp,
1263 struct pt_regs * regs)
1264 {
1265 struct linux_binprm *bprm;
1266 struct file *file;
1267 struct files_struct *displaced;
1268 int retval;
1269
1270 retval = unshare_files(&displaced);
1271 if (retval)
1272 goto out_ret;
1273
1274 retval = -ENOMEM;
1275 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1276 if (!bprm)
1277 goto out_files;
1278
1279 file = open_exec(filename);
1280 retval = PTR_ERR(file);
1281 if (IS_ERR(file))
1282 goto out_kfree;
1283
1284 sched_exec();
1285
1286 bprm->file = file;
1287 bprm->filename = filename;
1288 bprm->interp = filename;
1289
1290 retval = bprm_mm_init(bprm);
1291 if (retval)
1292 goto out_file;
1293
1294 bprm->argc = count(argv, MAX_ARG_STRINGS);
1295 if ((retval = bprm->argc) < 0)
1296 goto out_mm;
1297
1298 bprm->envc = count(envp, MAX_ARG_STRINGS);
1299 if ((retval = bprm->envc) < 0)
1300 goto out_mm;
1301
1302 retval = security_bprm_alloc(bprm);
1303 if (retval)
1304 goto out;
1305
1306 retval = prepare_binprm(bprm);
1307 if (retval < 0)
1308 goto out;
1309
1310 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1311 if (retval < 0)
1312 goto out;
1313
1314 bprm->exec = bprm->p;
1315 retval = copy_strings(bprm->envc, envp, bprm);
1316 if (retval < 0)
1317 goto out;
1318
1319 retval = copy_strings(bprm->argc, argv, bprm);
1320 if (retval < 0)
1321 goto out;
1322
1323 current->flags &= ~PF_KTHREAD;
1324 retval = search_binary_handler(bprm,regs);
1325 if (retval >= 0) {
1326 /* execve success */
1327 security_bprm_free(bprm);
1328 acct_update_integrals(current);
1329 free_bprm(bprm);
1330 if (displaced)
1331 put_files_struct(displaced);
1332 return retval;
1333 }
1334
1335 out:
1336 if (bprm->security)
1337 security_bprm_free(bprm);
1338
1339 out_mm:
1340 if (bprm->mm)
1341 mmput (bprm->mm);
1342
1343 out_file:
1344 if (bprm->file) {
1345 allow_write_access(bprm->file);
1346 fput(bprm->file);
1347 }
1348 out_kfree:
1349 free_bprm(bprm);
1350
1351 out_files:
1352 if (displaced)
1353 reset_files_struct(displaced);
1354 out_ret:
1355 return retval;
1356 }
1357
1358 int set_binfmt(struct linux_binfmt *new)
1359 {
1360 struct linux_binfmt *old = current->binfmt;
1361
1362 if (new) {
1363 if (!try_module_get(new->module))
1364 return -1;
1365 }
1366 current->binfmt = new;
1367 if (old)
1368 module_put(old->module);
1369 return 0;
1370 }
1371
1372 EXPORT_SYMBOL(set_binfmt);
1373
1374 /* format_corename will inspect the pattern parameter, and output a
1375 * name into corename, which must have space for at least
1376 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1377 */
1378 static int format_corename(char *corename, int nr_threads, long signr)
1379 {
1380 const char *pat_ptr = core_pattern;
1381 int ispipe = (*pat_ptr == '|');
1382 char *out_ptr = corename;
1383 char *const out_end = corename + CORENAME_MAX_SIZE;
1384 int rc;
1385 int pid_in_pattern = 0;
1386
1387 /* Repeat as long as we have more pattern to process and more output
1388 space */
1389 while (*pat_ptr) {
1390 if (*pat_ptr != '%') {
1391 if (out_ptr == out_end)
1392 goto out;
1393 *out_ptr++ = *pat_ptr++;
1394 } else {
1395 switch (*++pat_ptr) {
1396 case 0:
1397 goto out;
1398 /* Double percent, output one percent */
1399 case '%':
1400 if (out_ptr == out_end)
1401 goto out;
1402 *out_ptr++ = '%';
1403 break;
1404 /* pid */
1405 case 'p':
1406 pid_in_pattern = 1;
1407 rc = snprintf(out_ptr, out_end - out_ptr,
1408 "%d", task_tgid_vnr(current));
1409 if (rc > out_end - out_ptr)
1410 goto out;
1411 out_ptr += rc;
1412 break;
1413 /* uid */
1414 case 'u':
1415 rc = snprintf(out_ptr, out_end - out_ptr,
1416 "%d", current->uid);
1417 if (rc > out_end - out_ptr)
1418 goto out;
1419 out_ptr += rc;
1420 break;
1421 /* gid */
1422 case 'g':
1423 rc = snprintf(out_ptr, out_end - out_ptr,
1424 "%d", current->gid);
1425 if (rc > out_end - out_ptr)
1426 goto out;
1427 out_ptr += rc;
1428 break;
1429 /* signal that caused the coredump */
1430 case 's':
1431 rc = snprintf(out_ptr, out_end - out_ptr,
1432 "%ld", signr);
1433 if (rc > out_end - out_ptr)
1434 goto out;
1435 out_ptr += rc;
1436 break;
1437 /* UNIX time of coredump */
1438 case 't': {
1439 struct timeval tv;
1440 do_gettimeofday(&tv);
1441 rc = snprintf(out_ptr, out_end - out_ptr,
1442 "%lu", tv.tv_sec);
1443 if (rc > out_end - out_ptr)
1444 goto out;
1445 out_ptr += rc;
1446 break;
1447 }
1448 /* hostname */
1449 case 'h':
1450 down_read(&uts_sem);
1451 rc = snprintf(out_ptr, out_end - out_ptr,
1452 "%s", utsname()->nodename);
1453 up_read(&uts_sem);
1454 if (rc > out_end - out_ptr)
1455 goto out;
1456 out_ptr += rc;
1457 break;
1458 /* executable */
1459 case 'e':
1460 rc = snprintf(out_ptr, out_end - out_ptr,
1461 "%s", current->comm);
1462 if (rc > out_end - out_ptr)
1463 goto out;
1464 out_ptr += rc;
1465 break;
1466 /* core limit size */
1467 case 'c':
1468 rc = snprintf(out_ptr, out_end - out_ptr,
1469 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1470 if (rc > out_end - out_ptr)
1471 goto out;
1472 out_ptr += rc;
1473 break;
1474 default:
1475 break;
1476 }
1477 ++pat_ptr;
1478 }
1479 }
1480 /* Backward compatibility with core_uses_pid:
1481 *
1482 * If core_pattern does not include a %p (as is the default)
1483 * and core_uses_pid is set, then .%pid will be appended to
1484 * the filename. Do not do this for piped commands. */
1485 if (!ispipe && !pid_in_pattern
1486 && (core_uses_pid || nr_threads)) {
1487 rc = snprintf(out_ptr, out_end - out_ptr,
1488 ".%d", task_tgid_vnr(current));
1489 if (rc > out_end - out_ptr)
1490 goto out;
1491 out_ptr += rc;
1492 }
1493 out:
1494 *out_ptr = 0;
1495 return ispipe;
1496 }
1497
1498 static int zap_process(struct task_struct *start)
1499 {
1500 struct task_struct *t;
1501 int nr = 0;
1502
1503 start->signal->flags = SIGNAL_GROUP_EXIT;
1504 start->signal->group_stop_count = 0;
1505
1506 t = start;
1507 do {
1508 if (t != current && t->mm) {
1509 sigaddset(&t->pending.signal, SIGKILL);
1510 signal_wake_up(t, 1);
1511 nr++;
1512 }
1513 } while_each_thread(start, t);
1514
1515 return nr;
1516 }
1517
1518 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1519 struct core_state *core_state, int exit_code)
1520 {
1521 struct task_struct *g, *p;
1522 unsigned long flags;
1523 int nr = -EAGAIN;
1524
1525 spin_lock_irq(&tsk->sighand->siglock);
1526 if (!signal_group_exit(tsk->signal)) {
1527 mm->core_state = core_state;
1528 tsk->signal->group_exit_code = exit_code;
1529 nr = zap_process(tsk);
1530 }
1531 spin_unlock_irq(&tsk->sighand->siglock);
1532 if (unlikely(nr < 0))
1533 return nr;
1534
1535 if (atomic_read(&mm->mm_users) == nr + 1)
1536 goto done;
1537 /*
1538 * We should find and kill all tasks which use this mm, and we should
1539 * count them correctly into ->nr_threads. We don't take tasklist
1540 * lock, but this is safe wrt:
1541 *
1542 * fork:
1543 * None of sub-threads can fork after zap_process(leader). All
1544 * processes which were created before this point should be
1545 * visible to zap_threads() because copy_process() adds the new
1546 * process to the tail of init_task.tasks list, and lock/unlock
1547 * of ->siglock provides a memory barrier.
1548 *
1549 * do_exit:
1550 * The caller holds mm->mmap_sem. This means that the task which
1551 * uses this mm can't pass exit_mm(), so it can't exit or clear
1552 * its ->mm.
1553 *
1554 * de_thread:
1555 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1556 * we must see either old or new leader, this does not matter.
1557 * However, it can change p->sighand, so lock_task_sighand(p)
1558 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1559 * it can't fail.
1560 *
1561 * Note also that "g" can be the old leader with ->mm == NULL
1562 * and already unhashed and thus removed from ->thread_group.
1563 * This is OK, __unhash_process()->list_del_rcu() does not
1564 * clear the ->next pointer, we will find the new leader via
1565 * next_thread().
1566 */
1567 rcu_read_lock();
1568 for_each_process(g) {
1569 if (g == tsk->group_leader)
1570 continue;
1571 if (g->flags & PF_KTHREAD)
1572 continue;
1573 p = g;
1574 do {
1575 if (p->mm) {
1576 if (unlikely(p->mm == mm)) {
1577 lock_task_sighand(p, &flags);
1578 nr += zap_process(p);
1579 unlock_task_sighand(p, &flags);
1580 }
1581 break;
1582 }
1583 } while_each_thread(g, p);
1584 }
1585 rcu_read_unlock();
1586 done:
1587 atomic_set(&core_state->nr_threads, nr);
1588 return nr;
1589 }
1590
1591 static int coredump_wait(int exit_code, struct core_state *core_state)
1592 {
1593 struct task_struct *tsk = current;
1594 struct mm_struct *mm = tsk->mm;
1595 struct completion *vfork_done;
1596 int core_waiters;
1597
1598 init_completion(&core_state->startup);
1599 core_state->dumper.task = tsk;
1600 core_state->dumper.next = NULL;
1601 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1602 up_write(&mm->mmap_sem);
1603
1604 if (unlikely(core_waiters < 0))
1605 goto fail;
1606
1607 /*
1608 * Make sure nobody is waiting for us to release the VM,
1609 * otherwise we can deadlock when we wait on each other
1610 */
1611 vfork_done = tsk->vfork_done;
1612 if (vfork_done) {
1613 tsk->vfork_done = NULL;
1614 complete(vfork_done);
1615 }
1616
1617 if (core_waiters)
1618 wait_for_completion(&core_state->startup);
1619 fail:
1620 return core_waiters;
1621 }
1622
1623 static void coredump_finish(struct mm_struct *mm)
1624 {
1625 struct core_thread *curr, *next;
1626 struct task_struct *task;
1627
1628 next = mm->core_state->dumper.next;
1629 while ((curr = next) != NULL) {
1630 next = curr->next;
1631 task = curr->task;
1632 /*
1633 * see exit_mm(), curr->task must not see
1634 * ->task == NULL before we read ->next.
1635 */
1636 smp_mb();
1637 curr->task = NULL;
1638 wake_up_process(task);
1639 }
1640
1641 mm->core_state = NULL;
1642 }
1643
1644 /*
1645 * set_dumpable converts traditional three-value dumpable to two flags and
1646 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1647 * these bits are not changed atomically. So get_dumpable can observe the
1648 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1649 * return either old dumpable or new one by paying attention to the order of
1650 * modifying the bits.
1651 *
1652 * dumpable | mm->flags (binary)
1653 * old new | initial interim final
1654 * ---------+-----------------------
1655 * 0 1 | 00 01 01
1656 * 0 2 | 00 10(*) 11
1657 * 1 0 | 01 00 00
1658 * 1 2 | 01 11 11
1659 * 2 0 | 11 10(*) 00
1660 * 2 1 | 11 11 01
1661 *
1662 * (*) get_dumpable regards interim value of 10 as 11.
1663 */
1664 void set_dumpable(struct mm_struct *mm, int value)
1665 {
1666 switch (value) {
1667 case 0:
1668 clear_bit(MMF_DUMPABLE, &mm->flags);
1669 smp_wmb();
1670 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1671 break;
1672 case 1:
1673 set_bit(MMF_DUMPABLE, &mm->flags);
1674 smp_wmb();
1675 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1676 break;
1677 case 2:
1678 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1679 smp_wmb();
1680 set_bit(MMF_DUMPABLE, &mm->flags);
1681 break;
1682 }
1683 }
1684
1685 int get_dumpable(struct mm_struct *mm)
1686 {
1687 int ret;
1688
1689 ret = mm->flags & 0x3;
1690 return (ret >= 2) ? 2 : ret;
1691 }
1692
1693 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1694 {
1695 struct core_state core_state;
1696 char corename[CORENAME_MAX_SIZE + 1];
1697 struct mm_struct *mm = current->mm;
1698 struct linux_binfmt * binfmt;
1699 struct inode * inode;
1700 struct file * file;
1701 int retval = 0;
1702 int fsuid = current->fsuid;
1703 int flag = 0;
1704 int ispipe = 0;
1705 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1706 char **helper_argv = NULL;
1707 int helper_argc = 0;
1708 char *delimit;
1709
1710 audit_core_dumps(signr);
1711
1712 binfmt = current->binfmt;
1713 if (!binfmt || !binfmt->core_dump)
1714 goto fail;
1715 down_write(&mm->mmap_sem);
1716 /*
1717 * If another thread got here first, or we are not dumpable, bail out.
1718 */
1719 if (mm->core_state || !get_dumpable(mm)) {
1720 up_write(&mm->mmap_sem);
1721 goto fail;
1722 }
1723
1724 /*
1725 * We cannot trust fsuid as being the "true" uid of the
1726 * process nor do we know its entire history. We only know it
1727 * was tainted so we dump it as root in mode 2.
1728 */
1729 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1730 flag = O_EXCL; /* Stop rewrite attacks */
1731 current->fsuid = 0; /* Dump root private */
1732 }
1733
1734 retval = coredump_wait(exit_code, &core_state);
1735 if (retval < 0)
1736 goto fail;
1737
1738 /*
1739 * Clear any false indication of pending signals that might
1740 * be seen by the filesystem code called to write the core file.
1741 */
1742 clear_thread_flag(TIF_SIGPENDING);
1743
1744 /*
1745 * lock_kernel() because format_corename() is controlled by sysctl, which
1746 * uses lock_kernel()
1747 */
1748 lock_kernel();
1749 ispipe = format_corename(corename, retval, signr);
1750 unlock_kernel();
1751 /*
1752 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1753 * to a pipe. Since we're not writing directly to the filesystem
1754 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1755 * created unless the pipe reader choses to write out the core file
1756 * at which point file size limits and permissions will be imposed
1757 * as it does with any other process
1758 */
1759 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1760 goto fail_unlock;
1761
1762 if (ispipe) {
1763 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1764 /* Terminate the string before the first option */
1765 delimit = strchr(corename, ' ');
1766 if (delimit)
1767 *delimit = '\0';
1768 delimit = strrchr(helper_argv[0], '/');
1769 if (delimit)
1770 delimit++;
1771 else
1772 delimit = helper_argv[0];
1773 if (!strcmp(delimit, current->comm)) {
1774 printk(KERN_NOTICE "Recursive core dump detected, "
1775 "aborting\n");
1776 goto fail_unlock;
1777 }
1778
1779 core_limit = RLIM_INFINITY;
1780
1781 /* SIGPIPE can happen, but it's just never processed */
1782 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1783 &file)) {
1784 printk(KERN_INFO "Core dump to %s pipe failed\n",
1785 corename);
1786 goto fail_unlock;
1787 }
1788 } else
1789 file = filp_open(corename,
1790 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1791 0600);
1792 if (IS_ERR(file))
1793 goto fail_unlock;
1794 inode = file->f_path.dentry->d_inode;
1795 if (inode->i_nlink > 1)
1796 goto close_fail; /* multiple links - don't dump */
1797 if (!ispipe && d_unhashed(file->f_path.dentry))
1798 goto close_fail;
1799
1800 /* AK: actually i see no reason to not allow this for named pipes etc.,
1801 but keep the previous behaviour for now. */
1802 if (!ispipe && !S_ISREG(inode->i_mode))
1803 goto close_fail;
1804 /*
1805 * Dont allow local users get cute and trick others to coredump
1806 * into their pre-created files:
1807 */
1808 if (inode->i_uid != current->fsuid)
1809 goto close_fail;
1810 if (!file->f_op)
1811 goto close_fail;
1812 if (!file->f_op->write)
1813 goto close_fail;
1814 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1815 goto close_fail;
1816
1817 retval = binfmt->core_dump(signr, regs, file, core_limit);
1818
1819 if (retval)
1820 current->signal->group_exit_code |= 0x80;
1821 close_fail:
1822 filp_close(file, NULL);
1823 fail_unlock:
1824 if (helper_argv)
1825 argv_free(helper_argv);
1826
1827 current->fsuid = fsuid;
1828 coredump_finish(mm);
1829 fail:
1830 return retval;
1831 }