4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
60 #include <linux/kmod.h>
64 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
65 int suid_dumpable
= 0;
67 EXPORT_SYMBOL(suid_dumpable
);
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static LIST_HEAD(formats
);
71 static DEFINE_RWLOCK(binfmt_lock
);
73 int register_binfmt(struct linux_binfmt
* fmt
)
77 write_lock(&binfmt_lock
);
78 list_add(&fmt
->lh
, &formats
);
79 write_unlock(&binfmt_lock
);
83 EXPORT_SYMBOL(register_binfmt
);
85 void unregister_binfmt(struct linux_binfmt
* fmt
)
87 write_lock(&binfmt_lock
);
89 write_unlock(&binfmt_lock
);
92 EXPORT_SYMBOL(unregister_binfmt
);
94 static inline void put_binfmt(struct linux_binfmt
* fmt
)
96 module_put(fmt
->module
);
100 * Note that a shared library must be both readable and executable due to
103 * Also note that we take the address to load from from the file itself.
105 asmlinkage
long sys_uselib(const char __user
* library
)
111 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
116 if (nd
.mnt
->mnt_flags
& MNT_NOEXEC
)
119 if (!S_ISREG(nd
.dentry
->d_inode
->i_mode
))
122 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
126 file
= nameidata_to_filp(&nd
, O_RDONLY
);
127 error
= PTR_ERR(file
);
133 struct linux_binfmt
* fmt
;
135 read_lock(&binfmt_lock
);
136 list_for_each_entry(fmt
, &formats
, lh
) {
137 if (!fmt
->load_shlib
)
139 if (!try_module_get(fmt
->module
))
141 read_unlock(&binfmt_lock
);
142 error
= fmt
->load_shlib(file
);
143 read_lock(&binfmt_lock
);
145 if (error
!= -ENOEXEC
)
148 read_unlock(&binfmt_lock
);
154 release_open_intent(&nd
);
161 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
167 #ifdef CONFIG_STACK_GROWSUP
169 ret
= expand_stack_downwards(bprm
->vma
, pos
);
174 ret
= get_user_pages(current
, bprm
->mm
, pos
,
175 1, write
, 1, &page
, NULL
);
180 struct rlimit
*rlim
= current
->signal
->rlim
;
181 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
184 * Limit to 1/4-th the stack size for the argv+env strings.
186 * - the remaining binfmt code will not run out of stack space,
187 * - the program will have a reasonable amount of stack left
190 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
199 static void put_arg_page(struct page
*page
)
204 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
208 static void free_arg_pages(struct linux_binprm
*bprm
)
212 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
215 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
218 static int __bprm_mm_init(struct linux_binprm
*bprm
)
221 struct vm_area_struct
*vma
= NULL
;
222 struct mm_struct
*mm
= bprm
->mm
;
224 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
228 down_write(&mm
->mmap_sem
);
232 * Place the stack at the largest stack address the architecture
233 * supports. Later, we'll move this to an appropriate place. We don't
234 * use STACK_TOP because that can depend on attributes which aren't
237 vma
->vm_end
= STACK_TOP_MAX
;
238 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
240 vma
->vm_flags
= VM_STACK_FLAGS
;
241 vma
->vm_page_prot
= protection_map
[vma
->vm_flags
& 0x7];
242 err
= insert_vm_struct(mm
, vma
);
244 up_write(&mm
->mmap_sem
);
248 mm
->stack_vm
= mm
->total_vm
= 1;
249 up_write(&mm
->mmap_sem
);
251 bprm
->p
= vma
->vm_end
- sizeof(void *);
258 kmem_cache_free(vm_area_cachep
, vma
);
264 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
266 return len
<= MAX_ARG_STRLEN
;
271 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
276 page
= bprm
->page
[pos
/ PAGE_SIZE
];
277 if (!page
&& write
) {
278 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
281 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
287 static void put_arg_page(struct page
*page
)
291 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
294 __free_page(bprm
->page
[i
]);
295 bprm
->page
[i
] = NULL
;
299 static void free_arg_pages(struct linux_binprm
*bprm
)
303 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
304 free_arg_page(bprm
, i
);
307 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
312 static int __bprm_mm_init(struct linux_binprm
*bprm
)
314 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
318 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
320 return len
<= bprm
->p
;
323 #endif /* CONFIG_MMU */
326 * Create a new mm_struct and populate it with a temporary stack
327 * vm_area_struct. We don't have enough context at this point to set the stack
328 * flags, permissions, and offset, so we use temporary values. We'll update
329 * them later in setup_arg_pages().
331 int bprm_mm_init(struct linux_binprm
*bprm
)
334 struct mm_struct
*mm
= NULL
;
336 bprm
->mm
= mm
= mm_alloc();
341 err
= init_new_context(current
, mm
);
345 err
= __bprm_mm_init(bprm
);
361 * count() counts the number of strings in array ARGV.
363 static int count(char __user
* __user
* argv
, int max
)
371 if (get_user(p
, argv
))
385 * 'copy_strings()' copies argument/environment strings from the old
386 * processes's memory to the new process's stack. The call to get_user_pages()
387 * ensures the destination page is created and not swapped out.
389 static int copy_strings(int argc
, char __user
* __user
* argv
,
390 struct linux_binprm
*bprm
)
392 struct page
*kmapped_page
= NULL
;
394 unsigned long kpos
= 0;
402 if (get_user(str
, argv
+argc
) ||
403 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
408 if (!valid_arg_len(bprm
, len
)) {
413 /* We're going to work our way backwords. */
419 int offset
, bytes_to_copy
;
421 offset
= pos
% PAGE_SIZE
;
425 bytes_to_copy
= offset
;
426 if (bytes_to_copy
> len
)
429 offset
-= bytes_to_copy
;
430 pos
-= bytes_to_copy
;
431 str
-= bytes_to_copy
;
432 len
-= bytes_to_copy
;
434 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
437 page
= get_arg_page(bprm
, pos
, 1);
444 flush_kernel_dcache_page(kmapped_page
);
445 kunmap(kmapped_page
);
446 put_arg_page(kmapped_page
);
449 kaddr
= kmap(kmapped_page
);
450 kpos
= pos
& PAGE_MASK
;
451 flush_arg_page(bprm
, kpos
, kmapped_page
);
453 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
462 flush_kernel_dcache_page(kmapped_page
);
463 kunmap(kmapped_page
);
464 put_arg_page(kmapped_page
);
470 * Like copy_strings, but get argv and its values from kernel memory.
472 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
475 mm_segment_t oldfs
= get_fs();
477 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
481 EXPORT_SYMBOL(copy_strings_kernel
);
486 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
487 * the binfmt code determines where the new stack should reside, we shift it to
488 * its final location. The process proceeds as follows:
490 * 1) Use shift to calculate the new vma endpoints.
491 * 2) Extend vma to cover both the old and new ranges. This ensures the
492 * arguments passed to subsequent functions are consistent.
493 * 3) Move vma's page tables to the new range.
494 * 4) Free up any cleared pgd range.
495 * 5) Shrink the vma to cover only the new range.
497 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
499 struct mm_struct
*mm
= vma
->vm_mm
;
500 unsigned long old_start
= vma
->vm_start
;
501 unsigned long old_end
= vma
->vm_end
;
502 unsigned long length
= old_end
- old_start
;
503 unsigned long new_start
= old_start
- shift
;
504 unsigned long new_end
= old_end
- shift
;
505 struct mmu_gather
*tlb
;
507 BUG_ON(new_start
> new_end
);
510 * ensure there are no vmas between where we want to go
513 if (vma
!= find_vma(mm
, new_start
))
517 * cover the whole range: [new_start, old_end)
519 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
522 * move the page tables downwards, on failure we rely on
523 * process cleanup to remove whatever mess we made.
525 if (length
!= move_page_tables(vma
, old_start
,
526 vma
, new_start
, length
))
530 tlb
= tlb_gather_mmu(mm
, 0);
531 if (new_end
> old_start
) {
533 * when the old and new regions overlap clear from new_end.
535 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
536 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
539 * otherwise, clean from old_start; this is done to not touch
540 * the address space in [new_end, old_start) some architectures
541 * have constraints on va-space that make this illegal (IA64) -
542 * for the others its just a little faster.
544 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
545 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
547 tlb_finish_mmu(tlb
, new_end
, old_end
);
550 * shrink the vma to just the new range.
552 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
557 #define EXTRA_STACK_VM_PAGES 20 /* random */
560 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
561 * the stack is optionally relocated, and some extra space is added.
563 int setup_arg_pages(struct linux_binprm
*bprm
,
564 unsigned long stack_top
,
565 int executable_stack
)
568 unsigned long stack_shift
;
569 struct mm_struct
*mm
= current
->mm
;
570 struct vm_area_struct
*vma
= bprm
->vma
;
571 struct vm_area_struct
*prev
= NULL
;
572 unsigned long vm_flags
;
573 unsigned long stack_base
;
575 #ifdef CONFIG_STACK_GROWSUP
576 /* Limit stack size to 1GB */
577 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
578 if (stack_base
> (1 << 30))
579 stack_base
= 1 << 30;
581 /* Make sure we didn't let the argument array grow too large. */
582 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
585 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
587 stack_shift
= vma
->vm_start
- stack_base
;
588 mm
->arg_start
= bprm
->p
- stack_shift
;
589 bprm
->p
= vma
->vm_end
- stack_shift
;
591 stack_top
= arch_align_stack(stack_top
);
592 stack_top
= PAGE_ALIGN(stack_top
);
593 stack_shift
= vma
->vm_end
- stack_top
;
595 bprm
->p
-= stack_shift
;
596 mm
->arg_start
= bprm
->p
;
600 bprm
->loader
-= stack_shift
;
601 bprm
->exec
-= stack_shift
;
603 down_write(&mm
->mmap_sem
);
604 vm_flags
= vma
->vm_flags
;
607 * Adjust stack execute permissions; explicitly enable for
608 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
609 * (arch default) otherwise.
611 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
613 else if (executable_stack
== EXSTACK_DISABLE_X
)
614 vm_flags
&= ~VM_EXEC
;
615 vm_flags
|= mm
->def_flags
;
617 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
623 /* Move stack pages down in memory. */
625 ret
= shift_arg_pages(vma
, stack_shift
);
627 up_write(&mm
->mmap_sem
);
632 #ifdef CONFIG_STACK_GROWSUP
633 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
635 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
637 ret
= expand_stack(vma
, stack_base
);
642 up_write(&mm
->mmap_sem
);
645 EXPORT_SYMBOL(setup_arg_pages
);
647 #endif /* CONFIG_MMU */
649 struct file
*open_exec(const char *name
)
655 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
659 struct inode
*inode
= nd
.dentry
->d_inode
;
660 file
= ERR_PTR(-EACCES
);
661 if (!(nd
.mnt
->mnt_flags
& MNT_NOEXEC
) &&
662 S_ISREG(inode
->i_mode
)) {
663 int err
= vfs_permission(&nd
, MAY_EXEC
);
666 file
= nameidata_to_filp(&nd
, O_RDONLY
);
668 err
= deny_write_access(file
);
678 release_open_intent(&nd
);
684 EXPORT_SYMBOL(open_exec
);
686 int kernel_read(struct file
*file
, unsigned long offset
,
687 char *addr
, unsigned long count
)
695 /* The cast to a user pointer is valid due to the set_fs() */
696 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
701 EXPORT_SYMBOL(kernel_read
);
703 static int exec_mmap(struct mm_struct
*mm
)
705 struct task_struct
*tsk
;
706 struct mm_struct
* old_mm
, *active_mm
;
708 /* Notify parent that we're no longer interested in the old VM */
710 old_mm
= current
->mm
;
711 mm_release(tsk
, old_mm
);
715 * Make sure that if there is a core dump in progress
716 * for the old mm, we get out and die instead of going
717 * through with the exec. We must hold mmap_sem around
718 * checking core_waiters and changing tsk->mm. The
719 * core-inducing thread will increment core_waiters for
720 * each thread whose ->mm == old_mm.
722 down_read(&old_mm
->mmap_sem
);
723 if (unlikely(old_mm
->core_waiters
)) {
724 up_read(&old_mm
->mmap_sem
);
729 active_mm
= tsk
->active_mm
;
732 activate_mm(active_mm
, mm
);
734 arch_pick_mmap_layout(mm
);
736 up_read(&old_mm
->mmap_sem
);
737 BUG_ON(active_mm
!= old_mm
);
746 * This function makes sure the current process has its own signal table,
747 * so that flush_signal_handlers can later reset the handlers without
748 * disturbing other processes. (Other processes might share the signal
749 * table via the CLONE_SIGHAND option to clone().)
751 static int de_thread(struct task_struct
*tsk
)
753 struct signal_struct
*sig
= tsk
->signal
;
754 struct sighand_struct
*newsighand
, *oldsighand
= tsk
->sighand
;
755 spinlock_t
*lock
= &oldsighand
->siglock
;
756 struct task_struct
*leader
= NULL
;
760 * If we don't share sighandlers, then we aren't sharing anything
761 * and we can just re-use it all.
763 if (atomic_read(&oldsighand
->count
) <= 1) {
768 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
772 if (thread_group_empty(tsk
))
773 goto no_thread_group
;
776 * Kill all other threads in the thread group.
777 * We must hold tasklist_lock to call zap_other_threads.
779 read_lock(&tasklist_lock
);
781 if (sig
->flags
& SIGNAL_GROUP_EXIT
) {
783 * Another group action in progress, just
784 * return so that the signal is processed.
786 spin_unlock_irq(lock
);
787 read_unlock(&tasklist_lock
);
788 kmem_cache_free(sighand_cachep
, newsighand
);
793 * child_reaper ignores SIGKILL, change it now.
794 * Reparenting needs write_lock on tasklist_lock,
795 * so it is safe to do it under read_lock.
797 if (unlikely(tsk
->group_leader
== child_reaper(tsk
)))
798 tsk
->nsproxy
->pid_ns
->child_reaper
= tsk
;
800 zap_other_threads(tsk
);
801 read_unlock(&tasklist_lock
);
804 * Account for the thread group leader hanging around:
807 if (!thread_group_leader(tsk
)) {
810 * The SIGALRM timer survives the exec, but needs to point
811 * at us as the new group leader now. We have a race with
812 * a timer firing now getting the old leader, so we need to
813 * synchronize with any firing (by calling del_timer_sync)
814 * before we can safely let the old group leader die.
817 spin_unlock_irq(lock
);
818 if (hrtimer_cancel(&sig
->real_timer
))
819 hrtimer_restart(&sig
->real_timer
);
822 while (atomic_read(&sig
->count
) > count
) {
823 sig
->group_exit_task
= tsk
;
824 sig
->notify_count
= count
;
825 __set_current_state(TASK_UNINTERRUPTIBLE
);
826 spin_unlock_irq(lock
);
830 sig
->group_exit_task
= NULL
;
831 sig
->notify_count
= 0;
832 spin_unlock_irq(lock
);
835 * At this point all other threads have exited, all we have to
836 * do is to wait for the thread group leader to become inactive,
837 * and to assume its PID:
839 if (!thread_group_leader(tsk
)) {
841 * Wait for the thread group leader to be a zombie.
842 * It should already be zombie at this point, most
845 leader
= tsk
->group_leader
;
846 while (leader
->exit_state
!= EXIT_ZOMBIE
)
850 * The only record we have of the real-time age of a
851 * process, regardless of execs it's done, is start_time.
852 * All the past CPU time is accumulated in signal_struct
853 * from sister threads now dead. But in this non-leader
854 * exec, nothing survives from the original leader thread,
855 * whose birth marks the true age of this process now.
856 * When we take on its identity by switching to its PID, we
857 * also take its birthdate (always earlier than our own).
859 tsk
->start_time
= leader
->start_time
;
861 write_lock_irq(&tasklist_lock
);
863 BUG_ON(leader
->tgid
!= tsk
->tgid
);
864 BUG_ON(tsk
->pid
== tsk
->tgid
);
866 * An exec() starts a new thread group with the
867 * TGID of the previous thread group. Rehash the
868 * two threads with a switched PID, and release
869 * the former thread group leader:
872 /* Become a process group leader with the old leader's pid.
873 * The old leader becomes a thread of the this thread group.
874 * Note: The old leader also uses this pid until release_task
875 * is called. Odd but simple and correct.
877 detach_pid(tsk
, PIDTYPE_PID
);
878 tsk
->pid
= leader
->pid
;
879 attach_pid(tsk
, PIDTYPE_PID
, find_pid(tsk
->pid
));
880 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
881 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
882 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
884 tsk
->group_leader
= tsk
;
885 leader
->group_leader
= tsk
;
887 tsk
->exit_signal
= SIGCHLD
;
889 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
890 leader
->exit_state
= EXIT_DEAD
;
892 write_unlock_irq(&tasklist_lock
);
896 * There may be one thread left which is just exiting,
897 * but it's safe to stop telling the group to kill themselves.
904 release_task(leader
);
906 if (atomic_read(&oldsighand
->count
) == 1) {
908 * Now that we nuked the rest of the thread group,
909 * it turns out we are not sharing sighand any more either.
910 * So we can just keep it.
912 kmem_cache_free(sighand_cachep
, newsighand
);
915 * Move our state over to newsighand and switch it in.
917 atomic_set(&newsighand
->count
, 1);
918 memcpy(newsighand
->action
, oldsighand
->action
,
919 sizeof(newsighand
->action
));
921 write_lock_irq(&tasklist_lock
);
922 spin_lock(&oldsighand
->siglock
);
923 spin_lock_nested(&newsighand
->siglock
, SINGLE_DEPTH_NESTING
);
925 rcu_assign_pointer(tsk
->sighand
, newsighand
);
928 spin_unlock(&newsighand
->siglock
);
929 spin_unlock(&oldsighand
->siglock
);
930 write_unlock_irq(&tasklist_lock
);
932 __cleanup_sighand(oldsighand
);
935 BUG_ON(!thread_group_leader(tsk
));
940 * These functions flushes out all traces of the currently running executable
941 * so that a new one can be started
944 static void flush_old_files(struct files_struct
* files
)
949 spin_lock(&files
->file_lock
);
951 unsigned long set
, i
;
955 fdt
= files_fdtable(files
);
956 if (i
>= fdt
->max_fds
)
958 set
= fdt
->close_on_exec
->fds_bits
[j
];
961 fdt
->close_on_exec
->fds_bits
[j
] = 0;
962 spin_unlock(&files
->file_lock
);
963 for ( ; set
; i
++,set
>>= 1) {
968 spin_lock(&files
->file_lock
);
971 spin_unlock(&files
->file_lock
);
974 void get_task_comm(char *buf
, struct task_struct
*tsk
)
976 /* buf must be at least sizeof(tsk->comm) in size */
978 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
982 void set_task_comm(struct task_struct
*tsk
, char *buf
)
985 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
989 int flush_old_exec(struct linux_binprm
* bprm
)
993 struct files_struct
*files
;
994 char tcomm
[sizeof(current
->comm
)];
997 * Make sure we have a private signal table and that
998 * we are unassociated from the previous thread group.
1000 retval
= de_thread(current
);
1005 * Make sure we have private file handles. Ask the
1006 * fork helper to do the work for us and the exit
1007 * helper to do the cleanup of the old one.
1009 files
= current
->files
; /* refcounted so safe to hold */
1010 retval
= unshare_files();
1014 * Release all of the old mmap stuff
1016 retval
= exec_mmap(bprm
->mm
);
1020 bprm
->mm
= NULL
; /* We're using it now */
1022 /* This is the point of no return */
1023 put_files_struct(files
);
1025 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1027 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
1028 set_dumpable(current
->mm
, 1);
1030 set_dumpable(current
->mm
, suid_dumpable
);
1032 name
= bprm
->filename
;
1034 /* Copies the binary name from after last slash */
1035 for (i
=0; (ch
= *(name
++)) != '\0';) {
1037 i
= 0; /* overwrite what we wrote */
1039 if (i
< (sizeof(tcomm
) - 1))
1043 set_task_comm(current
, tcomm
);
1045 current
->flags
&= ~PF_RANDOMIZE
;
1048 /* Set the new mm task size. We have to do that late because it may
1049 * depend on TIF_32BIT which is only updated in flush_thread() on
1050 * some architectures like powerpc
1052 current
->mm
->task_size
= TASK_SIZE
;
1054 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1056 set_dumpable(current
->mm
, suid_dumpable
);
1057 current
->pdeath_signal
= 0;
1058 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1059 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1061 set_dumpable(current
->mm
, suid_dumpable
);
1064 /* An exec changes our domain. We are no longer part of the thread
1067 current
->self_exec_id
++;
1069 flush_signal_handlers(current
, 0);
1070 flush_old_files(current
->files
);
1075 reset_files_struct(current
, files
);
1080 EXPORT_SYMBOL(flush_old_exec
);
1083 * Fill the binprm structure from the inode.
1084 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1086 int prepare_binprm(struct linux_binprm
*bprm
)
1089 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1092 mode
= inode
->i_mode
;
1093 if (bprm
->file
->f_op
== NULL
)
1096 bprm
->e_uid
= current
->euid
;
1097 bprm
->e_gid
= current
->egid
;
1099 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1101 if (mode
& S_ISUID
) {
1102 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1103 bprm
->e_uid
= inode
->i_uid
;
1108 * If setgid is set but no group execute bit then this
1109 * is a candidate for mandatory locking, not a setgid
1112 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1113 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1114 bprm
->e_gid
= inode
->i_gid
;
1118 /* fill in binprm security blob */
1119 retval
= security_bprm_set(bprm
);
1123 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1124 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1127 EXPORT_SYMBOL(prepare_binprm
);
1129 static int unsafe_exec(struct task_struct
*p
)
1132 if (p
->ptrace
& PT_PTRACED
) {
1133 if (p
->ptrace
& PT_PTRACE_CAP
)
1134 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1136 unsafe
|= LSM_UNSAFE_PTRACE
;
1138 if (atomic_read(&p
->fs
->count
) > 1 ||
1139 atomic_read(&p
->files
->count
) > 1 ||
1140 atomic_read(&p
->sighand
->count
) > 1)
1141 unsafe
|= LSM_UNSAFE_SHARE
;
1146 void compute_creds(struct linux_binprm
*bprm
)
1150 if (bprm
->e_uid
!= current
->uid
) {
1152 current
->pdeath_signal
= 0;
1157 unsafe
= unsafe_exec(current
);
1158 security_bprm_apply_creds(bprm
, unsafe
);
1159 task_unlock(current
);
1160 security_bprm_post_apply_creds(bprm
);
1162 EXPORT_SYMBOL(compute_creds
);
1165 * Arguments are '\0' separated strings found at the location bprm->p
1166 * points to; chop off the first by relocating brpm->p to right after
1167 * the first '\0' encountered.
1169 int remove_arg_zero(struct linux_binprm
*bprm
)
1172 unsigned long offset
;
1180 offset
= bprm
->p
& ~PAGE_MASK
;
1181 page
= get_arg_page(bprm
, bprm
->p
, 0);
1186 kaddr
= kmap_atomic(page
, KM_USER0
);
1188 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1189 offset
++, bprm
->p
++)
1192 kunmap_atomic(kaddr
, KM_USER0
);
1195 if (offset
== PAGE_SIZE
)
1196 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1197 } while (offset
== PAGE_SIZE
);
1206 EXPORT_SYMBOL(remove_arg_zero
);
1209 * cycle the list of binary formats handler, until one recognizes the image
1211 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1214 struct linux_binfmt
*fmt
;
1216 /* handle /sbin/loader.. */
1218 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1220 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1221 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1224 unsigned long loader
;
1226 allow_write_access(bprm
->file
);
1230 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1232 file
= open_exec("/sbin/loader");
1233 retval
= PTR_ERR(file
);
1237 /* Remember if the application is TASO. */
1238 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1241 bprm
->loader
= loader
;
1242 retval
= prepare_binprm(bprm
);
1245 /* should call search_binary_handler recursively here,
1246 but it does not matter */
1250 retval
= security_bprm_check(bprm
);
1254 /* kernel module loader fixup */
1255 /* so we don't try to load run modprobe in kernel space. */
1258 retval
= audit_bprm(bprm
);
1263 for (try=0; try<2; try++) {
1264 read_lock(&binfmt_lock
);
1265 list_for_each_entry(fmt
, &formats
, lh
) {
1266 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1269 if (!try_module_get(fmt
->module
))
1271 read_unlock(&binfmt_lock
);
1272 retval
= fn(bprm
, regs
);
1275 allow_write_access(bprm
->file
);
1279 current
->did_exec
= 1;
1280 proc_exec_connector(current
);
1283 read_lock(&binfmt_lock
);
1285 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1288 read_unlock(&binfmt_lock
);
1292 read_unlock(&binfmt_lock
);
1293 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1297 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1298 if (printable(bprm
->buf
[0]) &&
1299 printable(bprm
->buf
[1]) &&
1300 printable(bprm
->buf
[2]) &&
1301 printable(bprm
->buf
[3]))
1302 break; /* -ENOEXEC */
1303 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1310 EXPORT_SYMBOL(search_binary_handler
);
1313 * sys_execve() executes a new program.
1315 int do_execve(char * filename
,
1316 char __user
*__user
*argv
,
1317 char __user
*__user
*envp
,
1318 struct pt_regs
* regs
)
1320 struct linux_binprm
*bprm
;
1322 unsigned long env_p
;
1326 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1330 file
= open_exec(filename
);
1331 retval
= PTR_ERR(file
);
1338 bprm
->filename
= filename
;
1339 bprm
->interp
= filename
;
1341 retval
= bprm_mm_init(bprm
);
1345 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1346 if ((retval
= bprm
->argc
) < 0)
1349 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1350 if ((retval
= bprm
->envc
) < 0)
1353 retval
= security_bprm_alloc(bprm
);
1357 retval
= prepare_binprm(bprm
);
1361 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1365 bprm
->exec
= bprm
->p
;
1366 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1371 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1374 bprm
->argv_len
= env_p
- bprm
->p
;
1376 retval
= search_binary_handler(bprm
,regs
);
1378 /* execve success */
1379 free_arg_pages(bprm
);
1380 security_bprm_free(bprm
);
1381 acct_update_integrals(current
);
1387 free_arg_pages(bprm
);
1389 security_bprm_free(bprm
);
1397 allow_write_access(bprm
->file
);
1407 int set_binfmt(struct linux_binfmt
*new)
1409 struct linux_binfmt
*old
= current
->binfmt
;
1412 if (!try_module_get(new->module
))
1415 current
->binfmt
= new;
1417 module_put(old
->module
);
1421 EXPORT_SYMBOL(set_binfmt
);
1423 /* format_corename will inspect the pattern parameter, and output a
1424 * name into corename, which must have space for at least
1425 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1427 static int format_corename(char *corename
, const char *pattern
, long signr
)
1429 const char *pat_ptr
= pattern
;
1430 char *out_ptr
= corename
;
1431 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1433 int pid_in_pattern
= 0;
1436 if (*pattern
== '|')
1439 /* Repeat as long as we have more pattern to process and more output
1442 if (*pat_ptr
!= '%') {
1443 if (out_ptr
== out_end
)
1445 *out_ptr
++ = *pat_ptr
++;
1447 switch (*++pat_ptr
) {
1450 /* Double percent, output one percent */
1452 if (out_ptr
== out_end
)
1459 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1460 "%d", current
->tgid
);
1461 if (rc
> out_end
- out_ptr
)
1467 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1468 "%d", current
->uid
);
1469 if (rc
> out_end
- out_ptr
)
1475 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1476 "%d", current
->gid
);
1477 if (rc
> out_end
- out_ptr
)
1481 /* signal that caused the coredump */
1483 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1485 if (rc
> out_end
- out_ptr
)
1489 /* UNIX time of coredump */
1492 do_gettimeofday(&tv
);
1493 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1495 if (rc
> out_end
- out_ptr
)
1502 down_read(&uts_sem
);
1503 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1504 "%s", utsname()->nodename
);
1506 if (rc
> out_end
- out_ptr
)
1512 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1513 "%s", current
->comm
);
1514 if (rc
> out_end
- out_ptr
)
1518 /* core limit size */
1520 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1521 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1522 if (rc
> out_end
- out_ptr
)
1532 /* Backward compatibility with core_uses_pid:
1534 * If core_pattern does not include a %p (as is the default)
1535 * and core_uses_pid is set, then .%pid will be appended to
1536 * the filename. Do not do this for piped commands. */
1537 if (!ispipe
&& !pid_in_pattern
1538 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1539 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1540 ".%d", current
->tgid
);
1541 if (rc
> out_end
- out_ptr
)
1550 static void zap_process(struct task_struct
*start
)
1552 struct task_struct
*t
;
1554 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1555 start
->signal
->group_stop_count
= 0;
1559 if (t
!= current
&& t
->mm
) {
1560 t
->mm
->core_waiters
++;
1561 sigaddset(&t
->pending
.signal
, SIGKILL
);
1562 signal_wake_up(t
, 1);
1564 } while ((t
= next_thread(t
)) != start
);
1567 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1570 struct task_struct
*g
, *p
;
1571 unsigned long flags
;
1574 spin_lock_irq(&tsk
->sighand
->siglock
);
1575 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)) {
1576 tsk
->signal
->group_exit_code
= exit_code
;
1580 spin_unlock_irq(&tsk
->sighand
->siglock
);
1584 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1588 for_each_process(g
) {
1589 if (g
== tsk
->group_leader
)
1597 * p->sighand can't disappear, but
1598 * may be changed by de_thread()
1600 lock_task_sighand(p
, &flags
);
1602 unlock_task_sighand(p
, &flags
);
1606 } while ((p
= next_thread(p
)) != g
);
1610 return mm
->core_waiters
;
1613 static int coredump_wait(int exit_code
)
1615 struct task_struct
*tsk
= current
;
1616 struct mm_struct
*mm
= tsk
->mm
;
1617 struct completion startup_done
;
1618 struct completion
*vfork_done
;
1621 init_completion(&mm
->core_done
);
1622 init_completion(&startup_done
);
1623 mm
->core_startup_done
= &startup_done
;
1625 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1626 up_write(&mm
->mmap_sem
);
1628 if (unlikely(core_waiters
< 0))
1632 * Make sure nobody is waiting for us to release the VM,
1633 * otherwise we can deadlock when we wait on each other
1635 vfork_done
= tsk
->vfork_done
;
1637 tsk
->vfork_done
= NULL
;
1638 complete(vfork_done
);
1642 wait_for_completion(&startup_done
);
1644 BUG_ON(mm
->core_waiters
);
1645 return core_waiters
;
1649 * set_dumpable converts traditional three-value dumpable to two flags and
1650 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1651 * these bits are not changed atomically. So get_dumpable can observe the
1652 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1653 * return either old dumpable or new one by paying attention to the order of
1654 * modifying the bits.
1656 * dumpable | mm->flags (binary)
1657 * old new | initial interim final
1658 * ---------+-----------------------
1666 * (*) get_dumpable regards interim value of 10 as 11.
1668 void set_dumpable(struct mm_struct
*mm
, int value
)
1672 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1674 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1677 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1679 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1682 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1684 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1688 EXPORT_SYMBOL_GPL(set_dumpable
);
1690 int get_dumpable(struct mm_struct
*mm
)
1694 ret
= mm
->flags
& 0x3;
1695 return (ret
>= 2) ? 2 : ret
;
1698 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1700 char corename
[CORENAME_MAX_SIZE
+ 1];
1701 struct mm_struct
*mm
= current
->mm
;
1702 struct linux_binfmt
* binfmt
;
1703 struct inode
* inode
;
1706 int fsuid
= current
->fsuid
;
1709 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1710 char **helper_argv
= NULL
;
1711 int helper_argc
= 0;
1714 audit_core_dumps(signr
);
1716 binfmt
= current
->binfmt
;
1717 if (!binfmt
|| !binfmt
->core_dump
)
1719 down_write(&mm
->mmap_sem
);
1720 if (!get_dumpable(mm
)) {
1721 up_write(&mm
->mmap_sem
);
1726 * We cannot trust fsuid as being the "true" uid of the
1727 * process nor do we know its entire history. We only know it
1728 * was tainted so we dump it as root in mode 2.
1730 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1731 flag
= O_EXCL
; /* Stop rewrite attacks */
1732 current
->fsuid
= 0; /* Dump root private */
1734 set_dumpable(mm
, 0);
1736 retval
= coredump_wait(exit_code
);
1741 * Clear any false indication of pending signals that might
1742 * be seen by the filesystem code called to write the core file.
1744 clear_thread_flag(TIF_SIGPENDING
);
1747 * lock_kernel() because format_corename() is controlled by sysctl, which
1748 * uses lock_kernel()
1751 ispipe
= format_corename(corename
, core_pattern
, signr
);
1754 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1755 * to a pipe. Since we're not writing directly to the filesystem
1756 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1757 * created unless the pipe reader choses to write out the core file
1758 * at which point file size limits and permissions will be imposed
1759 * as it does with any other process
1761 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1765 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1766 /* Terminate the string before the first option */
1767 delimit
= strchr(corename
, ' ');
1770 delimit
= strrchr(helper_argv
[0], '/');
1774 delimit
= helper_argv
[0];
1775 if (!strcmp(delimit
, current
->comm
)) {
1776 printk(KERN_NOTICE
"Recursive core dump detected, "
1781 core_limit
= RLIM_INFINITY
;
1783 /* SIGPIPE can happen, but it's just never processed */
1784 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1786 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1791 file
= filp_open(corename
,
1792 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1796 inode
= file
->f_path
.dentry
->d_inode
;
1797 if (inode
->i_nlink
> 1)
1798 goto close_fail
; /* multiple links - don't dump */
1799 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1802 /* AK: actually i see no reason to not allow this for named pipes etc.,
1803 but keep the previous behaviour for now. */
1804 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1808 if (!file
->f_op
->write
)
1810 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1813 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1816 current
->signal
->group_exit_code
|= 0x80;
1818 filp_close(file
, NULL
);
1821 argv_free(helper_argv
);
1823 current
->fsuid
= fsuid
;
1824 complete_all(&mm
->core_done
);