]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/exec.c
cd2e8c9b12494f6df3f25663f6dbdd6ec19ca8a5
[mirror_ubuntu-bionic-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
55 #include <asm/tlb.h>
56
57 #ifdef CONFIG_KMOD
58 #include <linux/kmod.h>
59 #endif
60
61 #ifdef __alpha__
62 /* for /sbin/loader handling in search_binary_handler() */
63 #include <linux/a.out.h>
64 #endif
65
66 int core_uses_pid;
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 int suid_dumpable = 0;
69
70 /* The maximal length of core_pattern is also specified in sysctl.c */
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 int register_binfmt(struct linux_binfmt * fmt)
76 {
77 if (!fmt)
78 return -EINVAL;
79 write_lock(&binfmt_lock);
80 list_add(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 return 0;
83 }
84
85 EXPORT_SYMBOL(register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 module_put(fmt->module);
99 }
100
101 /*
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
104 *
105 * Also note that we take the address to load from from the file itself.
106 */
107 asmlinkage long sys_uselib(const char __user * library)
108 {
109 struct file * file;
110 struct nameidata nd;
111 int error;
112
113 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
114 if (error)
115 goto out;
116
117 error = -EINVAL;
118 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
119 goto exit;
120
121 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
122 if (error)
123 goto exit;
124
125 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
129
130 error = -ENOEXEC;
131 if(file->f_op) {
132 struct linux_binfmt * fmt;
133
134 read_lock(&binfmt_lock);
135 list_for_each_entry(fmt, &formats, lh) {
136 if (!fmt->load_shlib)
137 continue;
138 if (!try_module_get(fmt->module))
139 continue;
140 read_unlock(&binfmt_lock);
141 error = fmt->load_shlib(file);
142 read_lock(&binfmt_lock);
143 put_binfmt(fmt);
144 if (error != -ENOEXEC)
145 break;
146 }
147 read_unlock(&binfmt_lock);
148 }
149 fput(file);
150 out:
151 return error;
152 exit:
153 release_open_intent(&nd);
154 path_put(&nd.path);
155 goto out;
156 }
157
158 #ifdef CONFIG_MMU
159
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 int write)
162 {
163 struct page *page;
164 int ret;
165
166 #ifdef CONFIG_STACK_GROWSUP
167 if (write) {
168 ret = expand_stack_downwards(bprm->vma, pos);
169 if (ret < 0)
170 return NULL;
171 }
172 #endif
173 ret = get_user_pages(current, bprm->mm, pos,
174 1, write, 1, &page, NULL);
175 if (ret <= 0)
176 return NULL;
177
178 if (write) {
179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 struct rlimit *rlim;
181
182 /*
183 * We've historically supported up to 32 pages (ARG_MAX)
184 * of argument strings even with small stacks
185 */
186 if (size <= ARG_MAX)
187 return page;
188
189 /*
190 * Limit to 1/4-th the stack size for the argv+env strings.
191 * This ensures that:
192 * - the remaining binfmt code will not run out of stack space,
193 * - the program will have a reasonable amount of stack left
194 * to work from.
195 */
196 rlim = current->signal->rlim;
197 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
198 put_page(page);
199 return NULL;
200 }
201 }
202
203 return page;
204 }
205
206 static void put_arg_page(struct page *page)
207 {
208 put_page(page);
209 }
210
211 static void free_arg_page(struct linux_binprm *bprm, int i)
212 {
213 }
214
215 static void free_arg_pages(struct linux_binprm *bprm)
216 {
217 }
218
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 struct page *page)
221 {
222 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223 }
224
225 static int __bprm_mm_init(struct linux_binprm *bprm)
226 {
227 int err = -ENOMEM;
228 struct vm_area_struct *vma = NULL;
229 struct mm_struct *mm = bprm->mm;
230
231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 if (!vma)
233 goto err;
234
235 down_write(&mm->mmap_sem);
236 vma->vm_mm = mm;
237
238 /*
239 * Place the stack at the largest stack address the architecture
240 * supports. Later, we'll move this to an appropriate place. We don't
241 * use STACK_TOP because that can depend on attributes which aren't
242 * configured yet.
243 */
244 vma->vm_end = STACK_TOP_MAX;
245 vma->vm_start = vma->vm_end - PAGE_SIZE;
246
247 vma->vm_flags = VM_STACK_FLAGS;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 err = insert_vm_struct(mm, vma);
250 if (err) {
251 up_write(&mm->mmap_sem);
252 goto err;
253 }
254
255 mm->stack_vm = mm->total_vm = 1;
256 up_write(&mm->mmap_sem);
257
258 bprm->p = vma->vm_end - sizeof(void *);
259
260 return 0;
261
262 err:
263 if (vma) {
264 bprm->vma = NULL;
265 kmem_cache_free(vm_area_cachep, vma);
266 }
267
268 return err;
269 }
270
271 static bool valid_arg_len(struct linux_binprm *bprm, long len)
272 {
273 return len <= MAX_ARG_STRLEN;
274 }
275
276 #else
277
278 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
279 int write)
280 {
281 struct page *page;
282
283 page = bprm->page[pos / PAGE_SIZE];
284 if (!page && write) {
285 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
286 if (!page)
287 return NULL;
288 bprm->page[pos / PAGE_SIZE] = page;
289 }
290
291 return page;
292 }
293
294 static void put_arg_page(struct page *page)
295 {
296 }
297
298 static void free_arg_page(struct linux_binprm *bprm, int i)
299 {
300 if (bprm->page[i]) {
301 __free_page(bprm->page[i]);
302 bprm->page[i] = NULL;
303 }
304 }
305
306 static void free_arg_pages(struct linux_binprm *bprm)
307 {
308 int i;
309
310 for (i = 0; i < MAX_ARG_PAGES; i++)
311 free_arg_page(bprm, i);
312 }
313
314 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
315 struct page *page)
316 {
317 }
318
319 static int __bprm_mm_init(struct linux_binprm *bprm)
320 {
321 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
322 return 0;
323 }
324
325 static bool valid_arg_len(struct linux_binprm *bprm, long len)
326 {
327 return len <= bprm->p;
328 }
329
330 #endif /* CONFIG_MMU */
331
332 /*
333 * Create a new mm_struct and populate it with a temporary stack
334 * vm_area_struct. We don't have enough context at this point to set the stack
335 * flags, permissions, and offset, so we use temporary values. We'll update
336 * them later in setup_arg_pages().
337 */
338 int bprm_mm_init(struct linux_binprm *bprm)
339 {
340 int err;
341 struct mm_struct *mm = NULL;
342
343 bprm->mm = mm = mm_alloc();
344 err = -ENOMEM;
345 if (!mm)
346 goto err;
347
348 err = init_new_context(current, mm);
349 if (err)
350 goto err;
351
352 err = __bprm_mm_init(bprm);
353 if (err)
354 goto err;
355
356 return 0;
357
358 err:
359 if (mm) {
360 bprm->mm = NULL;
361 mmdrop(mm);
362 }
363
364 return err;
365 }
366
367 /*
368 * count() counts the number of strings in array ARGV.
369 */
370 static int count(char __user * __user * argv, int max)
371 {
372 int i = 0;
373
374 if (argv != NULL) {
375 for (;;) {
376 char __user * p;
377
378 if (get_user(p, argv))
379 return -EFAULT;
380 if (!p)
381 break;
382 argv++;
383 if(++i > max)
384 return -E2BIG;
385 cond_resched();
386 }
387 }
388 return i;
389 }
390
391 /*
392 * 'copy_strings()' copies argument/environment strings from the old
393 * processes's memory to the new process's stack. The call to get_user_pages()
394 * ensures the destination page is created and not swapped out.
395 */
396 static int copy_strings(int argc, char __user * __user * argv,
397 struct linux_binprm *bprm)
398 {
399 struct page *kmapped_page = NULL;
400 char *kaddr = NULL;
401 unsigned long kpos = 0;
402 int ret;
403
404 while (argc-- > 0) {
405 char __user *str;
406 int len;
407 unsigned long pos;
408
409 if (get_user(str, argv+argc) ||
410 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
411 ret = -EFAULT;
412 goto out;
413 }
414
415 if (!valid_arg_len(bprm, len)) {
416 ret = -E2BIG;
417 goto out;
418 }
419
420 /* We're going to work our way backwords. */
421 pos = bprm->p;
422 str += len;
423 bprm->p -= len;
424
425 while (len > 0) {
426 int offset, bytes_to_copy;
427
428 offset = pos % PAGE_SIZE;
429 if (offset == 0)
430 offset = PAGE_SIZE;
431
432 bytes_to_copy = offset;
433 if (bytes_to_copy > len)
434 bytes_to_copy = len;
435
436 offset -= bytes_to_copy;
437 pos -= bytes_to_copy;
438 str -= bytes_to_copy;
439 len -= bytes_to_copy;
440
441 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
442 struct page *page;
443
444 page = get_arg_page(bprm, pos, 1);
445 if (!page) {
446 ret = -E2BIG;
447 goto out;
448 }
449
450 if (kmapped_page) {
451 flush_kernel_dcache_page(kmapped_page);
452 kunmap(kmapped_page);
453 put_arg_page(kmapped_page);
454 }
455 kmapped_page = page;
456 kaddr = kmap(kmapped_page);
457 kpos = pos & PAGE_MASK;
458 flush_arg_page(bprm, kpos, kmapped_page);
459 }
460 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
461 ret = -EFAULT;
462 goto out;
463 }
464 }
465 }
466 ret = 0;
467 out:
468 if (kmapped_page) {
469 flush_kernel_dcache_page(kmapped_page);
470 kunmap(kmapped_page);
471 put_arg_page(kmapped_page);
472 }
473 return ret;
474 }
475
476 /*
477 * Like copy_strings, but get argv and its values from kernel memory.
478 */
479 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
480 {
481 int r;
482 mm_segment_t oldfs = get_fs();
483 set_fs(KERNEL_DS);
484 r = copy_strings(argc, (char __user * __user *)argv, bprm);
485 set_fs(oldfs);
486 return r;
487 }
488 EXPORT_SYMBOL(copy_strings_kernel);
489
490 #ifdef CONFIG_MMU
491
492 /*
493 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
494 * the binfmt code determines where the new stack should reside, we shift it to
495 * its final location. The process proceeds as follows:
496 *
497 * 1) Use shift to calculate the new vma endpoints.
498 * 2) Extend vma to cover both the old and new ranges. This ensures the
499 * arguments passed to subsequent functions are consistent.
500 * 3) Move vma's page tables to the new range.
501 * 4) Free up any cleared pgd range.
502 * 5) Shrink the vma to cover only the new range.
503 */
504 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
505 {
506 struct mm_struct *mm = vma->vm_mm;
507 unsigned long old_start = vma->vm_start;
508 unsigned long old_end = vma->vm_end;
509 unsigned long length = old_end - old_start;
510 unsigned long new_start = old_start - shift;
511 unsigned long new_end = old_end - shift;
512 struct mmu_gather *tlb;
513
514 BUG_ON(new_start > new_end);
515
516 /*
517 * ensure there are no vmas between where we want to go
518 * and where we are
519 */
520 if (vma != find_vma(mm, new_start))
521 return -EFAULT;
522
523 /*
524 * cover the whole range: [new_start, old_end)
525 */
526 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
527
528 /*
529 * move the page tables downwards, on failure we rely on
530 * process cleanup to remove whatever mess we made.
531 */
532 if (length != move_page_tables(vma, old_start,
533 vma, new_start, length))
534 return -ENOMEM;
535
536 lru_add_drain();
537 tlb = tlb_gather_mmu(mm, 0);
538 if (new_end > old_start) {
539 /*
540 * when the old and new regions overlap clear from new_end.
541 */
542 free_pgd_range(tlb, new_end, old_end, new_end,
543 vma->vm_next ? vma->vm_next->vm_start : 0);
544 } else {
545 /*
546 * otherwise, clean from old_start; this is done to not touch
547 * the address space in [new_end, old_start) some architectures
548 * have constraints on va-space that make this illegal (IA64) -
549 * for the others its just a little faster.
550 */
551 free_pgd_range(tlb, old_start, old_end, new_end,
552 vma->vm_next ? vma->vm_next->vm_start : 0);
553 }
554 tlb_finish_mmu(tlb, new_end, old_end);
555
556 /*
557 * shrink the vma to just the new range.
558 */
559 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
560
561 return 0;
562 }
563
564 #define EXTRA_STACK_VM_PAGES 20 /* random */
565
566 /*
567 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
568 * the stack is optionally relocated, and some extra space is added.
569 */
570 int setup_arg_pages(struct linux_binprm *bprm,
571 unsigned long stack_top,
572 int executable_stack)
573 {
574 unsigned long ret;
575 unsigned long stack_shift;
576 struct mm_struct *mm = current->mm;
577 struct vm_area_struct *vma = bprm->vma;
578 struct vm_area_struct *prev = NULL;
579 unsigned long vm_flags;
580 unsigned long stack_base;
581
582 #ifdef CONFIG_STACK_GROWSUP
583 /* Limit stack size to 1GB */
584 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
585 if (stack_base > (1 << 30))
586 stack_base = 1 << 30;
587
588 /* Make sure we didn't let the argument array grow too large. */
589 if (vma->vm_end - vma->vm_start > stack_base)
590 return -ENOMEM;
591
592 stack_base = PAGE_ALIGN(stack_top - stack_base);
593
594 stack_shift = vma->vm_start - stack_base;
595 mm->arg_start = bprm->p - stack_shift;
596 bprm->p = vma->vm_end - stack_shift;
597 #else
598 stack_top = arch_align_stack(stack_top);
599 stack_top = PAGE_ALIGN(stack_top);
600 stack_shift = vma->vm_end - stack_top;
601
602 bprm->p -= stack_shift;
603 mm->arg_start = bprm->p;
604 #endif
605
606 if (bprm->loader)
607 bprm->loader -= stack_shift;
608 bprm->exec -= stack_shift;
609
610 down_write(&mm->mmap_sem);
611 vm_flags = VM_STACK_FLAGS;
612
613 /*
614 * Adjust stack execute permissions; explicitly enable for
615 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
616 * (arch default) otherwise.
617 */
618 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
619 vm_flags |= VM_EXEC;
620 else if (executable_stack == EXSTACK_DISABLE_X)
621 vm_flags &= ~VM_EXEC;
622 vm_flags |= mm->def_flags;
623
624 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
625 vm_flags);
626 if (ret)
627 goto out_unlock;
628 BUG_ON(prev != vma);
629
630 /* Move stack pages down in memory. */
631 if (stack_shift) {
632 ret = shift_arg_pages(vma, stack_shift);
633 if (ret) {
634 up_write(&mm->mmap_sem);
635 return ret;
636 }
637 }
638
639 #ifdef CONFIG_STACK_GROWSUP
640 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
641 #else
642 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
643 #endif
644 ret = expand_stack(vma, stack_base);
645 if (ret)
646 ret = -EFAULT;
647
648 out_unlock:
649 up_write(&mm->mmap_sem);
650 return 0;
651 }
652 EXPORT_SYMBOL(setup_arg_pages);
653
654 #endif /* CONFIG_MMU */
655
656 struct file *open_exec(const char *name)
657 {
658 struct nameidata nd;
659 int err;
660 struct file *file;
661
662 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
663 file = ERR_PTR(err);
664
665 if (!err) {
666 struct inode *inode = nd.path.dentry->d_inode;
667 file = ERR_PTR(-EACCES);
668 if (S_ISREG(inode->i_mode)) {
669 int err = vfs_permission(&nd, MAY_EXEC);
670 file = ERR_PTR(err);
671 if (!err) {
672 file = nameidata_to_filp(&nd,
673 O_RDONLY|O_LARGEFILE);
674 if (!IS_ERR(file)) {
675 err = deny_write_access(file);
676 if (err) {
677 fput(file);
678 file = ERR_PTR(err);
679 }
680 }
681 out:
682 return file;
683 }
684 }
685 release_open_intent(&nd);
686 path_put(&nd.path);
687 }
688 goto out;
689 }
690
691 EXPORT_SYMBOL(open_exec);
692
693 int kernel_read(struct file *file, unsigned long offset,
694 char *addr, unsigned long count)
695 {
696 mm_segment_t old_fs;
697 loff_t pos = offset;
698 int result;
699
700 old_fs = get_fs();
701 set_fs(get_ds());
702 /* The cast to a user pointer is valid due to the set_fs() */
703 result = vfs_read(file, (void __user *)addr, count, &pos);
704 set_fs(old_fs);
705 return result;
706 }
707
708 EXPORT_SYMBOL(kernel_read);
709
710 static int exec_mmap(struct mm_struct *mm)
711 {
712 struct task_struct *tsk;
713 struct mm_struct * old_mm, *active_mm;
714
715 /* Notify parent that we're no longer interested in the old VM */
716 tsk = current;
717 old_mm = current->mm;
718 mm_release(tsk, old_mm);
719
720 if (old_mm) {
721 /*
722 * Make sure that if there is a core dump in progress
723 * for the old mm, we get out and die instead of going
724 * through with the exec. We must hold mmap_sem around
725 * checking core_waiters and changing tsk->mm. The
726 * core-inducing thread will increment core_waiters for
727 * each thread whose ->mm == old_mm.
728 */
729 down_read(&old_mm->mmap_sem);
730 if (unlikely(old_mm->core_waiters)) {
731 up_read(&old_mm->mmap_sem);
732 return -EINTR;
733 }
734 }
735 task_lock(tsk);
736 active_mm = tsk->active_mm;
737 tsk->mm = mm;
738 tsk->active_mm = mm;
739 activate_mm(active_mm, mm);
740 task_unlock(tsk);
741 mm_update_next_owner(old_mm);
742 arch_pick_mmap_layout(mm);
743 if (old_mm) {
744 up_read(&old_mm->mmap_sem);
745 BUG_ON(active_mm != old_mm);
746 mmput(old_mm);
747 return 0;
748 }
749 mmdrop(active_mm);
750 return 0;
751 }
752
753 /*
754 * This function makes sure the current process has its own signal table,
755 * so that flush_signal_handlers can later reset the handlers without
756 * disturbing other processes. (Other processes might share the signal
757 * table via the CLONE_SIGHAND option to clone().)
758 */
759 static int de_thread(struct task_struct *tsk)
760 {
761 struct signal_struct *sig = tsk->signal;
762 struct sighand_struct *oldsighand = tsk->sighand;
763 spinlock_t *lock = &oldsighand->siglock;
764 struct task_struct *leader = NULL;
765 int count;
766
767 if (thread_group_empty(tsk))
768 goto no_thread_group;
769
770 /*
771 * Kill all other threads in the thread group.
772 */
773 spin_lock_irq(lock);
774 if (signal_group_exit(sig)) {
775 /*
776 * Another group action in progress, just
777 * return so that the signal is processed.
778 */
779 spin_unlock_irq(lock);
780 return -EAGAIN;
781 }
782 sig->group_exit_task = tsk;
783 zap_other_threads(tsk);
784
785 /* Account for the thread group leader hanging around: */
786 count = thread_group_leader(tsk) ? 1 : 2;
787 sig->notify_count = count;
788 while (atomic_read(&sig->count) > count) {
789 __set_current_state(TASK_UNINTERRUPTIBLE);
790 spin_unlock_irq(lock);
791 schedule();
792 spin_lock_irq(lock);
793 }
794 spin_unlock_irq(lock);
795
796 /*
797 * At this point all other threads have exited, all we have to
798 * do is to wait for the thread group leader to become inactive,
799 * and to assume its PID:
800 */
801 if (!thread_group_leader(tsk)) {
802 leader = tsk->group_leader;
803
804 sig->notify_count = -1; /* for exit_notify() */
805 for (;;) {
806 write_lock_irq(&tasklist_lock);
807 if (likely(leader->exit_state))
808 break;
809 __set_current_state(TASK_UNINTERRUPTIBLE);
810 write_unlock_irq(&tasklist_lock);
811 schedule();
812 }
813
814 if (unlikely(task_child_reaper(tsk) == leader))
815 task_active_pid_ns(tsk)->child_reaper = tsk;
816 /*
817 * The only record we have of the real-time age of a
818 * process, regardless of execs it's done, is start_time.
819 * All the past CPU time is accumulated in signal_struct
820 * from sister threads now dead. But in this non-leader
821 * exec, nothing survives from the original leader thread,
822 * whose birth marks the true age of this process now.
823 * When we take on its identity by switching to its PID, we
824 * also take its birthdate (always earlier than our own).
825 */
826 tsk->start_time = leader->start_time;
827
828 BUG_ON(!same_thread_group(leader, tsk));
829 BUG_ON(has_group_leader_pid(tsk));
830 /*
831 * An exec() starts a new thread group with the
832 * TGID of the previous thread group. Rehash the
833 * two threads with a switched PID, and release
834 * the former thread group leader:
835 */
836
837 /* Become a process group leader with the old leader's pid.
838 * The old leader becomes a thread of the this thread group.
839 * Note: The old leader also uses this pid until release_task
840 * is called. Odd but simple and correct.
841 */
842 detach_pid(tsk, PIDTYPE_PID);
843 tsk->pid = leader->pid;
844 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
845 transfer_pid(leader, tsk, PIDTYPE_PGID);
846 transfer_pid(leader, tsk, PIDTYPE_SID);
847 list_replace_rcu(&leader->tasks, &tsk->tasks);
848
849 tsk->group_leader = tsk;
850 leader->group_leader = tsk;
851
852 tsk->exit_signal = SIGCHLD;
853
854 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
855 leader->exit_state = EXIT_DEAD;
856
857 write_unlock_irq(&tasklist_lock);
858 }
859
860 sig->group_exit_task = NULL;
861 sig->notify_count = 0;
862
863 no_thread_group:
864 exit_itimers(sig);
865 flush_itimer_signals();
866 if (leader)
867 release_task(leader);
868
869 if (atomic_read(&oldsighand->count) != 1) {
870 struct sighand_struct *newsighand;
871 /*
872 * This ->sighand is shared with the CLONE_SIGHAND
873 * but not CLONE_THREAD task, switch to the new one.
874 */
875 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
876 if (!newsighand)
877 return -ENOMEM;
878
879 atomic_set(&newsighand->count, 1);
880 memcpy(newsighand->action, oldsighand->action,
881 sizeof(newsighand->action));
882
883 write_lock_irq(&tasklist_lock);
884 spin_lock(&oldsighand->siglock);
885 rcu_assign_pointer(tsk->sighand, newsighand);
886 spin_unlock(&oldsighand->siglock);
887 write_unlock_irq(&tasklist_lock);
888
889 __cleanup_sighand(oldsighand);
890 }
891
892 BUG_ON(!thread_group_leader(tsk));
893 return 0;
894 }
895
896 /*
897 * These functions flushes out all traces of the currently running executable
898 * so that a new one can be started
899 */
900 static void flush_old_files(struct files_struct * files)
901 {
902 long j = -1;
903 struct fdtable *fdt;
904
905 spin_lock(&files->file_lock);
906 for (;;) {
907 unsigned long set, i;
908
909 j++;
910 i = j * __NFDBITS;
911 fdt = files_fdtable(files);
912 if (i >= fdt->max_fds)
913 break;
914 set = fdt->close_on_exec->fds_bits[j];
915 if (!set)
916 continue;
917 fdt->close_on_exec->fds_bits[j] = 0;
918 spin_unlock(&files->file_lock);
919 for ( ; set ; i++,set >>= 1) {
920 if (set & 1) {
921 sys_close(i);
922 }
923 }
924 spin_lock(&files->file_lock);
925
926 }
927 spin_unlock(&files->file_lock);
928 }
929
930 char *get_task_comm(char *buf, struct task_struct *tsk)
931 {
932 /* buf must be at least sizeof(tsk->comm) in size */
933 task_lock(tsk);
934 strncpy(buf, tsk->comm, sizeof(tsk->comm));
935 task_unlock(tsk);
936 return buf;
937 }
938
939 void set_task_comm(struct task_struct *tsk, char *buf)
940 {
941 task_lock(tsk);
942 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
943 task_unlock(tsk);
944 }
945
946 int flush_old_exec(struct linux_binprm * bprm)
947 {
948 char * name;
949 int i, ch, retval;
950 char tcomm[sizeof(current->comm)];
951
952 /*
953 * Make sure we have a private signal table and that
954 * we are unassociated from the previous thread group.
955 */
956 retval = de_thread(current);
957 if (retval)
958 goto out;
959
960 set_mm_exe_file(bprm->mm, bprm->file);
961
962 /*
963 * Release all of the old mmap stuff
964 */
965 retval = exec_mmap(bprm->mm);
966 if (retval)
967 goto out;
968
969 bprm->mm = NULL; /* We're using it now */
970
971 /* This is the point of no return */
972 current->sas_ss_sp = current->sas_ss_size = 0;
973
974 if (current->euid == current->uid && current->egid == current->gid)
975 set_dumpable(current->mm, 1);
976 else
977 set_dumpable(current->mm, suid_dumpable);
978
979 name = bprm->filename;
980
981 /* Copies the binary name from after last slash */
982 for (i=0; (ch = *(name++)) != '\0';) {
983 if (ch == '/')
984 i = 0; /* overwrite what we wrote */
985 else
986 if (i < (sizeof(tcomm) - 1))
987 tcomm[i++] = ch;
988 }
989 tcomm[i] = '\0';
990 set_task_comm(current, tcomm);
991
992 current->flags &= ~PF_RANDOMIZE;
993 flush_thread();
994
995 /* Set the new mm task size. We have to do that late because it may
996 * depend on TIF_32BIT which is only updated in flush_thread() on
997 * some architectures like powerpc
998 */
999 current->mm->task_size = TASK_SIZE;
1000
1001 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1002 suid_keys(current);
1003 set_dumpable(current->mm, suid_dumpable);
1004 current->pdeath_signal = 0;
1005 } else if (file_permission(bprm->file, MAY_READ) ||
1006 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1007 suid_keys(current);
1008 set_dumpable(current->mm, suid_dumpable);
1009 }
1010
1011 /* An exec changes our domain. We are no longer part of the thread
1012 group */
1013
1014 current->self_exec_id++;
1015
1016 flush_signal_handlers(current, 0);
1017 flush_old_files(current->files);
1018
1019 return 0;
1020
1021 out:
1022 return retval;
1023 }
1024
1025 EXPORT_SYMBOL(flush_old_exec);
1026
1027 /*
1028 * Fill the binprm structure from the inode.
1029 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1030 */
1031 int prepare_binprm(struct linux_binprm *bprm)
1032 {
1033 int mode;
1034 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1035 int retval;
1036
1037 mode = inode->i_mode;
1038 if (bprm->file->f_op == NULL)
1039 return -EACCES;
1040
1041 bprm->e_uid = current->euid;
1042 bprm->e_gid = current->egid;
1043
1044 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1045 /* Set-uid? */
1046 if (mode & S_ISUID) {
1047 current->personality &= ~PER_CLEAR_ON_SETID;
1048 bprm->e_uid = inode->i_uid;
1049 }
1050
1051 /* Set-gid? */
1052 /*
1053 * If setgid is set but no group execute bit then this
1054 * is a candidate for mandatory locking, not a setgid
1055 * executable.
1056 */
1057 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1058 current->personality &= ~PER_CLEAR_ON_SETID;
1059 bprm->e_gid = inode->i_gid;
1060 }
1061 }
1062
1063 /* fill in binprm security blob */
1064 retval = security_bprm_set(bprm);
1065 if (retval)
1066 return retval;
1067
1068 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1069 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1070 }
1071
1072 EXPORT_SYMBOL(prepare_binprm);
1073
1074 static int unsafe_exec(struct task_struct *p)
1075 {
1076 int unsafe = 0;
1077 if (p->ptrace & PT_PTRACED) {
1078 if (p->ptrace & PT_PTRACE_CAP)
1079 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1080 else
1081 unsafe |= LSM_UNSAFE_PTRACE;
1082 }
1083 if (atomic_read(&p->fs->count) > 1 ||
1084 atomic_read(&p->files->count) > 1 ||
1085 atomic_read(&p->sighand->count) > 1)
1086 unsafe |= LSM_UNSAFE_SHARE;
1087
1088 return unsafe;
1089 }
1090
1091 void compute_creds(struct linux_binprm *bprm)
1092 {
1093 int unsafe;
1094
1095 if (bprm->e_uid != current->uid) {
1096 suid_keys(current);
1097 current->pdeath_signal = 0;
1098 }
1099 exec_keys(current);
1100
1101 task_lock(current);
1102 unsafe = unsafe_exec(current);
1103 security_bprm_apply_creds(bprm, unsafe);
1104 task_unlock(current);
1105 security_bprm_post_apply_creds(bprm);
1106 }
1107 EXPORT_SYMBOL(compute_creds);
1108
1109 /*
1110 * Arguments are '\0' separated strings found at the location bprm->p
1111 * points to; chop off the first by relocating brpm->p to right after
1112 * the first '\0' encountered.
1113 */
1114 int remove_arg_zero(struct linux_binprm *bprm)
1115 {
1116 int ret = 0;
1117 unsigned long offset;
1118 char *kaddr;
1119 struct page *page;
1120
1121 if (!bprm->argc)
1122 return 0;
1123
1124 do {
1125 offset = bprm->p & ~PAGE_MASK;
1126 page = get_arg_page(bprm, bprm->p, 0);
1127 if (!page) {
1128 ret = -EFAULT;
1129 goto out;
1130 }
1131 kaddr = kmap_atomic(page, KM_USER0);
1132
1133 for (; offset < PAGE_SIZE && kaddr[offset];
1134 offset++, bprm->p++)
1135 ;
1136
1137 kunmap_atomic(kaddr, KM_USER0);
1138 put_arg_page(page);
1139
1140 if (offset == PAGE_SIZE)
1141 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1142 } while (offset == PAGE_SIZE);
1143
1144 bprm->p++;
1145 bprm->argc--;
1146 ret = 0;
1147
1148 out:
1149 return ret;
1150 }
1151 EXPORT_SYMBOL(remove_arg_zero);
1152
1153 /*
1154 * cycle the list of binary formats handler, until one recognizes the image
1155 */
1156 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1157 {
1158 int try,retval;
1159 struct linux_binfmt *fmt;
1160 #ifdef __alpha__
1161 /* handle /sbin/loader.. */
1162 {
1163 struct exec * eh = (struct exec *) bprm->buf;
1164
1165 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1166 (eh->fh.f_flags & 0x3000) == 0x3000)
1167 {
1168 struct file * file;
1169 unsigned long loader;
1170
1171 allow_write_access(bprm->file);
1172 fput(bprm->file);
1173 bprm->file = NULL;
1174
1175 loader = bprm->vma->vm_end - sizeof(void *);
1176
1177 file = open_exec("/sbin/loader");
1178 retval = PTR_ERR(file);
1179 if (IS_ERR(file))
1180 return retval;
1181
1182 /* Remember if the application is TASO. */
1183 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1184
1185 bprm->file = file;
1186 bprm->loader = loader;
1187 retval = prepare_binprm(bprm);
1188 if (retval<0)
1189 return retval;
1190 /* should call search_binary_handler recursively here,
1191 but it does not matter */
1192 }
1193 }
1194 #endif
1195 retval = security_bprm_check(bprm);
1196 if (retval)
1197 return retval;
1198
1199 /* kernel module loader fixup */
1200 /* so we don't try to load run modprobe in kernel space. */
1201 set_fs(USER_DS);
1202
1203 retval = audit_bprm(bprm);
1204 if (retval)
1205 return retval;
1206
1207 retval = -ENOENT;
1208 for (try=0; try<2; try++) {
1209 read_lock(&binfmt_lock);
1210 list_for_each_entry(fmt, &formats, lh) {
1211 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1212 if (!fn)
1213 continue;
1214 if (!try_module_get(fmt->module))
1215 continue;
1216 read_unlock(&binfmt_lock);
1217 retval = fn(bprm, regs);
1218 if (retval >= 0) {
1219 put_binfmt(fmt);
1220 allow_write_access(bprm->file);
1221 if (bprm->file)
1222 fput(bprm->file);
1223 bprm->file = NULL;
1224 current->did_exec = 1;
1225 proc_exec_connector(current);
1226 return retval;
1227 }
1228 read_lock(&binfmt_lock);
1229 put_binfmt(fmt);
1230 if (retval != -ENOEXEC || bprm->mm == NULL)
1231 break;
1232 if (!bprm->file) {
1233 read_unlock(&binfmt_lock);
1234 return retval;
1235 }
1236 }
1237 read_unlock(&binfmt_lock);
1238 if (retval != -ENOEXEC || bprm->mm == NULL) {
1239 break;
1240 #ifdef CONFIG_KMOD
1241 }else{
1242 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1243 if (printable(bprm->buf[0]) &&
1244 printable(bprm->buf[1]) &&
1245 printable(bprm->buf[2]) &&
1246 printable(bprm->buf[3]))
1247 break; /* -ENOEXEC */
1248 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1249 #endif
1250 }
1251 }
1252 return retval;
1253 }
1254
1255 EXPORT_SYMBOL(search_binary_handler);
1256
1257 void free_bprm(struct linux_binprm *bprm)
1258 {
1259 free_arg_pages(bprm);
1260 kfree(bprm);
1261 }
1262
1263 /*
1264 * sys_execve() executes a new program.
1265 */
1266 int do_execve(char * filename,
1267 char __user *__user *argv,
1268 char __user *__user *envp,
1269 struct pt_regs * regs)
1270 {
1271 struct linux_binprm *bprm;
1272 struct file *file;
1273 struct files_struct *displaced;
1274 int retval;
1275
1276 retval = unshare_files(&displaced);
1277 if (retval)
1278 goto out_ret;
1279
1280 retval = -ENOMEM;
1281 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1282 if (!bprm)
1283 goto out_files;
1284
1285 file = open_exec(filename);
1286 retval = PTR_ERR(file);
1287 if (IS_ERR(file))
1288 goto out_kfree;
1289
1290 sched_exec();
1291
1292 bprm->file = file;
1293 bprm->filename = filename;
1294 bprm->interp = filename;
1295
1296 retval = bprm_mm_init(bprm);
1297 if (retval)
1298 goto out_file;
1299
1300 bprm->argc = count(argv, MAX_ARG_STRINGS);
1301 if ((retval = bprm->argc) < 0)
1302 goto out_mm;
1303
1304 bprm->envc = count(envp, MAX_ARG_STRINGS);
1305 if ((retval = bprm->envc) < 0)
1306 goto out_mm;
1307
1308 retval = security_bprm_alloc(bprm);
1309 if (retval)
1310 goto out;
1311
1312 retval = prepare_binprm(bprm);
1313 if (retval < 0)
1314 goto out;
1315
1316 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1317 if (retval < 0)
1318 goto out;
1319
1320 bprm->exec = bprm->p;
1321 retval = copy_strings(bprm->envc, envp, bprm);
1322 if (retval < 0)
1323 goto out;
1324
1325 retval = copy_strings(bprm->argc, argv, bprm);
1326 if (retval < 0)
1327 goto out;
1328
1329 current->flags &= ~PF_KTHREAD;
1330 retval = search_binary_handler(bprm,regs);
1331 if (retval >= 0) {
1332 /* execve success */
1333 security_bprm_free(bprm);
1334 acct_update_integrals(current);
1335 free_bprm(bprm);
1336 if (displaced)
1337 put_files_struct(displaced);
1338 return retval;
1339 }
1340
1341 out:
1342 if (bprm->security)
1343 security_bprm_free(bprm);
1344
1345 out_mm:
1346 if (bprm->mm)
1347 mmput (bprm->mm);
1348
1349 out_file:
1350 if (bprm->file) {
1351 allow_write_access(bprm->file);
1352 fput(bprm->file);
1353 }
1354 out_kfree:
1355 free_bprm(bprm);
1356
1357 out_files:
1358 if (displaced)
1359 reset_files_struct(displaced);
1360 out_ret:
1361 return retval;
1362 }
1363
1364 int set_binfmt(struct linux_binfmt *new)
1365 {
1366 struct linux_binfmt *old = current->binfmt;
1367
1368 if (new) {
1369 if (!try_module_get(new->module))
1370 return -1;
1371 }
1372 current->binfmt = new;
1373 if (old)
1374 module_put(old->module);
1375 return 0;
1376 }
1377
1378 EXPORT_SYMBOL(set_binfmt);
1379
1380 /* format_corename will inspect the pattern parameter, and output a
1381 * name into corename, which must have space for at least
1382 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1383 */
1384 static int format_corename(char *corename, const char *pattern, long signr)
1385 {
1386 const char *pat_ptr = pattern;
1387 char *out_ptr = corename;
1388 char *const out_end = corename + CORENAME_MAX_SIZE;
1389 int rc;
1390 int pid_in_pattern = 0;
1391 int ispipe = 0;
1392
1393 if (*pattern == '|')
1394 ispipe = 1;
1395
1396 /* Repeat as long as we have more pattern to process and more output
1397 space */
1398 while (*pat_ptr) {
1399 if (*pat_ptr != '%') {
1400 if (out_ptr == out_end)
1401 goto out;
1402 *out_ptr++ = *pat_ptr++;
1403 } else {
1404 switch (*++pat_ptr) {
1405 case 0:
1406 goto out;
1407 /* Double percent, output one percent */
1408 case '%':
1409 if (out_ptr == out_end)
1410 goto out;
1411 *out_ptr++ = '%';
1412 break;
1413 /* pid */
1414 case 'p':
1415 pid_in_pattern = 1;
1416 rc = snprintf(out_ptr, out_end - out_ptr,
1417 "%d", task_tgid_vnr(current));
1418 if (rc > out_end - out_ptr)
1419 goto out;
1420 out_ptr += rc;
1421 break;
1422 /* uid */
1423 case 'u':
1424 rc = snprintf(out_ptr, out_end - out_ptr,
1425 "%d", current->uid);
1426 if (rc > out_end - out_ptr)
1427 goto out;
1428 out_ptr += rc;
1429 break;
1430 /* gid */
1431 case 'g':
1432 rc = snprintf(out_ptr, out_end - out_ptr,
1433 "%d", current->gid);
1434 if (rc > out_end - out_ptr)
1435 goto out;
1436 out_ptr += rc;
1437 break;
1438 /* signal that caused the coredump */
1439 case 's':
1440 rc = snprintf(out_ptr, out_end - out_ptr,
1441 "%ld", signr);
1442 if (rc > out_end - out_ptr)
1443 goto out;
1444 out_ptr += rc;
1445 break;
1446 /* UNIX time of coredump */
1447 case 't': {
1448 struct timeval tv;
1449 do_gettimeofday(&tv);
1450 rc = snprintf(out_ptr, out_end - out_ptr,
1451 "%lu", tv.tv_sec);
1452 if (rc > out_end - out_ptr)
1453 goto out;
1454 out_ptr += rc;
1455 break;
1456 }
1457 /* hostname */
1458 case 'h':
1459 down_read(&uts_sem);
1460 rc = snprintf(out_ptr, out_end - out_ptr,
1461 "%s", utsname()->nodename);
1462 up_read(&uts_sem);
1463 if (rc > out_end - out_ptr)
1464 goto out;
1465 out_ptr += rc;
1466 break;
1467 /* executable */
1468 case 'e':
1469 rc = snprintf(out_ptr, out_end - out_ptr,
1470 "%s", current->comm);
1471 if (rc > out_end - out_ptr)
1472 goto out;
1473 out_ptr += rc;
1474 break;
1475 /* core limit size */
1476 case 'c':
1477 rc = snprintf(out_ptr, out_end - out_ptr,
1478 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1479 if (rc > out_end - out_ptr)
1480 goto out;
1481 out_ptr += rc;
1482 break;
1483 default:
1484 break;
1485 }
1486 ++pat_ptr;
1487 }
1488 }
1489 /* Backward compatibility with core_uses_pid:
1490 *
1491 * If core_pattern does not include a %p (as is the default)
1492 * and core_uses_pid is set, then .%pid will be appended to
1493 * the filename. Do not do this for piped commands. */
1494 if (!ispipe && !pid_in_pattern
1495 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1496 rc = snprintf(out_ptr, out_end - out_ptr,
1497 ".%d", task_tgid_vnr(current));
1498 if (rc > out_end - out_ptr)
1499 goto out;
1500 out_ptr += rc;
1501 }
1502 out:
1503 *out_ptr = 0;
1504 return ispipe;
1505 }
1506
1507 static void zap_process(struct task_struct *start)
1508 {
1509 struct task_struct *t;
1510
1511 start->signal->flags = SIGNAL_GROUP_EXIT;
1512 start->signal->group_stop_count = 0;
1513
1514 t = start;
1515 do {
1516 if (t != current && t->mm) {
1517 t->mm->core_waiters++;
1518 sigaddset(&t->pending.signal, SIGKILL);
1519 signal_wake_up(t, 1);
1520 }
1521 } while_each_thread(start, t);
1522 }
1523
1524 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1525 int exit_code)
1526 {
1527 struct task_struct *g, *p;
1528 unsigned long flags;
1529 int err = -EAGAIN;
1530
1531 spin_lock_irq(&tsk->sighand->siglock);
1532 if (!signal_group_exit(tsk->signal)) {
1533 tsk->signal->group_exit_code = exit_code;
1534 zap_process(tsk);
1535 err = 0;
1536 }
1537 spin_unlock_irq(&tsk->sighand->siglock);
1538 if (err)
1539 return err;
1540
1541 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1542 goto done;
1543 /*
1544 * We should find and kill all tasks which use this mm, and we should
1545 * count them correctly into mm->core_waiters. We don't take tasklist
1546 * lock, but this is safe wrt:
1547 *
1548 * fork:
1549 * None of sub-threads can fork after zap_process(leader). All
1550 * processes which were created before this point should be
1551 * visible to zap_threads() because copy_process() adds the new
1552 * process to the tail of init_task.tasks list, and lock/unlock
1553 * of ->siglock provides a memory barrier.
1554 *
1555 * do_exit:
1556 * The caller holds mm->mmap_sem. This means that the task which
1557 * uses this mm can't pass exit_mm(), so it can't exit or clear
1558 * its ->mm.
1559 *
1560 * de_thread:
1561 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1562 * we must see either old or new leader, this does not matter.
1563 * However, it can change p->sighand, so lock_task_sighand(p)
1564 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1565 * it can't fail.
1566 *
1567 * Note also that "g" can be the old leader with ->mm == NULL
1568 * and already unhashed and thus removed from ->thread_group.
1569 * This is OK, __unhash_process()->list_del_rcu() does not
1570 * clear the ->next pointer, we will find the new leader via
1571 * next_thread().
1572 */
1573 rcu_read_lock();
1574 for_each_process(g) {
1575 if (g == tsk->group_leader)
1576 continue;
1577
1578 p = g;
1579 do {
1580 if (p->mm) {
1581 if (p->mm == mm) {
1582 lock_task_sighand(p, &flags);
1583 zap_process(p);
1584 unlock_task_sighand(p, &flags);
1585 }
1586 break;
1587 }
1588 } while_each_thread(g, p);
1589 }
1590 rcu_read_unlock();
1591 done:
1592 return mm->core_waiters;
1593 }
1594
1595 static int coredump_wait(int exit_code)
1596 {
1597 struct task_struct *tsk = current;
1598 struct mm_struct *mm = tsk->mm;
1599 struct completion startup_done;
1600 struct completion *vfork_done;
1601 int core_waiters;
1602
1603 init_completion(&mm->core_done);
1604 init_completion(&startup_done);
1605 mm->core_startup_done = &startup_done;
1606
1607 core_waiters = zap_threads(tsk, mm, exit_code);
1608 up_write(&mm->mmap_sem);
1609
1610 if (unlikely(core_waiters < 0))
1611 goto fail;
1612
1613 /*
1614 * Make sure nobody is waiting for us to release the VM,
1615 * otherwise we can deadlock when we wait on each other
1616 */
1617 vfork_done = tsk->vfork_done;
1618 if (vfork_done) {
1619 tsk->vfork_done = NULL;
1620 complete(vfork_done);
1621 }
1622
1623 if (core_waiters)
1624 wait_for_completion(&startup_done);
1625 fail:
1626 BUG_ON(mm->core_waiters);
1627 return core_waiters;
1628 }
1629
1630 /*
1631 * set_dumpable converts traditional three-value dumpable to two flags and
1632 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1633 * these bits are not changed atomically. So get_dumpable can observe the
1634 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1635 * return either old dumpable or new one by paying attention to the order of
1636 * modifying the bits.
1637 *
1638 * dumpable | mm->flags (binary)
1639 * old new | initial interim final
1640 * ---------+-----------------------
1641 * 0 1 | 00 01 01
1642 * 0 2 | 00 10(*) 11
1643 * 1 0 | 01 00 00
1644 * 1 2 | 01 11 11
1645 * 2 0 | 11 10(*) 00
1646 * 2 1 | 11 11 01
1647 *
1648 * (*) get_dumpable regards interim value of 10 as 11.
1649 */
1650 void set_dumpable(struct mm_struct *mm, int value)
1651 {
1652 switch (value) {
1653 case 0:
1654 clear_bit(MMF_DUMPABLE, &mm->flags);
1655 smp_wmb();
1656 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1657 break;
1658 case 1:
1659 set_bit(MMF_DUMPABLE, &mm->flags);
1660 smp_wmb();
1661 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1662 break;
1663 case 2:
1664 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1665 smp_wmb();
1666 set_bit(MMF_DUMPABLE, &mm->flags);
1667 break;
1668 }
1669 }
1670
1671 int get_dumpable(struct mm_struct *mm)
1672 {
1673 int ret;
1674
1675 ret = mm->flags & 0x3;
1676 return (ret >= 2) ? 2 : ret;
1677 }
1678
1679 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1680 {
1681 char corename[CORENAME_MAX_SIZE + 1];
1682 struct mm_struct *mm = current->mm;
1683 struct linux_binfmt * binfmt;
1684 struct inode * inode;
1685 struct file * file;
1686 int retval = 0;
1687 int fsuid = current->fsuid;
1688 int flag = 0;
1689 int ispipe = 0;
1690 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1691 char **helper_argv = NULL;
1692 int helper_argc = 0;
1693 char *delimit;
1694
1695 audit_core_dumps(signr);
1696
1697 binfmt = current->binfmt;
1698 if (!binfmt || !binfmt->core_dump)
1699 goto fail;
1700 down_write(&mm->mmap_sem);
1701 /*
1702 * If another thread got here first, or we are not dumpable, bail out.
1703 */
1704 if (mm->core_waiters || !get_dumpable(mm)) {
1705 up_write(&mm->mmap_sem);
1706 goto fail;
1707 }
1708
1709 /*
1710 * We cannot trust fsuid as being the "true" uid of the
1711 * process nor do we know its entire history. We only know it
1712 * was tainted so we dump it as root in mode 2.
1713 */
1714 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1715 flag = O_EXCL; /* Stop rewrite attacks */
1716 current->fsuid = 0; /* Dump root private */
1717 }
1718
1719 retval = coredump_wait(exit_code);
1720 if (retval < 0)
1721 goto fail;
1722
1723 /*
1724 * Clear any false indication of pending signals that might
1725 * be seen by the filesystem code called to write the core file.
1726 */
1727 clear_thread_flag(TIF_SIGPENDING);
1728
1729 /*
1730 * lock_kernel() because format_corename() is controlled by sysctl, which
1731 * uses lock_kernel()
1732 */
1733 lock_kernel();
1734 ispipe = format_corename(corename, core_pattern, signr);
1735 unlock_kernel();
1736 /*
1737 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1738 * to a pipe. Since we're not writing directly to the filesystem
1739 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1740 * created unless the pipe reader choses to write out the core file
1741 * at which point file size limits and permissions will be imposed
1742 * as it does with any other process
1743 */
1744 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1745 goto fail_unlock;
1746
1747 if (ispipe) {
1748 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1749 /* Terminate the string before the first option */
1750 delimit = strchr(corename, ' ');
1751 if (delimit)
1752 *delimit = '\0';
1753 delimit = strrchr(helper_argv[0], '/');
1754 if (delimit)
1755 delimit++;
1756 else
1757 delimit = helper_argv[0];
1758 if (!strcmp(delimit, current->comm)) {
1759 printk(KERN_NOTICE "Recursive core dump detected, "
1760 "aborting\n");
1761 goto fail_unlock;
1762 }
1763
1764 core_limit = RLIM_INFINITY;
1765
1766 /* SIGPIPE can happen, but it's just never processed */
1767 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1768 &file)) {
1769 printk(KERN_INFO "Core dump to %s pipe failed\n",
1770 corename);
1771 goto fail_unlock;
1772 }
1773 } else
1774 file = filp_open(corename,
1775 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1776 0600);
1777 if (IS_ERR(file))
1778 goto fail_unlock;
1779 inode = file->f_path.dentry->d_inode;
1780 if (inode->i_nlink > 1)
1781 goto close_fail; /* multiple links - don't dump */
1782 if (!ispipe && d_unhashed(file->f_path.dentry))
1783 goto close_fail;
1784
1785 /* AK: actually i see no reason to not allow this for named pipes etc.,
1786 but keep the previous behaviour for now. */
1787 if (!ispipe && !S_ISREG(inode->i_mode))
1788 goto close_fail;
1789 /*
1790 * Dont allow local users get cute and trick others to coredump
1791 * into their pre-created files:
1792 */
1793 if (inode->i_uid != current->fsuid)
1794 goto close_fail;
1795 if (!file->f_op)
1796 goto close_fail;
1797 if (!file->f_op->write)
1798 goto close_fail;
1799 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1800 goto close_fail;
1801
1802 retval = binfmt->core_dump(signr, regs, file, core_limit);
1803
1804 if (retval)
1805 current->signal->group_exit_code |= 0x80;
1806 close_fail:
1807 filp_close(file, NULL);
1808 fail_unlock:
1809 if (helper_argv)
1810 argv_free(helper_argv);
1811
1812 current->fsuid = fsuid;
1813 complete_all(&mm->core_done);
1814 fail:
1815 return retval;
1816 }