]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/exec.c
Revert "mm: enlarge stack guard gap"
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/user_namespace.h>
60
61 #include <trace/events/fs.h>
62
63 #include <asm/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/tlb.h>
66
67 #include <trace/events/task.h>
68 #include "internal.h"
69
70 #include <trace/events/sched.h>
71
72 int suid_dumpable = 0;
73
74 static LIST_HEAD(formats);
75 static DEFINE_RWLOCK(binfmt_lock);
76
77 void __register_binfmt(struct linux_binfmt * fmt, int insert)
78 {
79 BUG_ON(!fmt);
80 if (WARN_ON(!fmt->load_binary))
81 return;
82 write_lock(&binfmt_lock);
83 insert ? list_add(&fmt->lh, &formats) :
84 list_add_tail(&fmt->lh, &formats);
85 write_unlock(&binfmt_lock);
86 }
87
88 EXPORT_SYMBOL(__register_binfmt);
89
90 void unregister_binfmt(struct linux_binfmt * fmt)
91 {
92 write_lock(&binfmt_lock);
93 list_del(&fmt->lh);
94 write_unlock(&binfmt_lock);
95 }
96
97 EXPORT_SYMBOL(unregister_binfmt);
98
99 static inline void put_binfmt(struct linux_binfmt * fmt)
100 {
101 module_put(fmt->module);
102 }
103
104 bool path_noexec(const struct path *path)
105 {
106 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
107 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 }
109 EXPORT_SYMBOL(path_noexec);
110
111 bool path_nosuid(const struct path *path)
112 {
113 return !mnt_may_suid(path->mnt) ||
114 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
115 }
116 EXPORT_SYMBOL(path_nosuid);
117
118 #ifdef CONFIG_USELIB
119 /*
120 * Note that a shared library must be both readable and executable due to
121 * security reasons.
122 *
123 * Also note that we take the address to load from from the file itself.
124 */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 struct linux_binfmt *fmt;
128 struct file *file;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
136 };
137
138 if (IS_ERR(tmp))
139 goto out;
140
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 putname(tmp);
143 error = PTR_ERR(file);
144 if (IS_ERR(file))
145 goto out;
146
147 error = -EINVAL;
148 if (!S_ISREG(file_inode(file)->i_mode))
149 goto exit;
150
151 error = -EACCES;
152 if (path_noexec(&file->f_path))
153 goto exit;
154
155 fsnotify_open(file);
156
157 error = -ENOEXEC;
158
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
162 continue;
163 if (!try_module_get(fmt->module))
164 continue;
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
168 put_binfmt(fmt);
169 if (error != -ENOEXEC)
170 break;
171 }
172 read_unlock(&binfmt_lock);
173 exit:
174 fput(file);
175 out:
176 return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179
180 #ifdef CONFIG_MMU
181 /*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
191
192 if (!mm || !diff)
193 return;
194
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201 {
202 struct page *page;
203 int ret;
204
205 #ifdef CONFIG_STACK_GROWSUP
206 if (write) {
207 ret = expand_downwards(bprm->vma, pos);
208 if (ret < 0)
209 return NULL;
210 }
211 #endif
212 ret = get_user_pages(current, bprm->mm, pos,
213 1, write, 1, &page, NULL);
214 if (ret <= 0)
215 return NULL;
216
217 if (write) {
218 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
219 struct rlimit *rlim;
220
221 acct_arg_size(bprm, size / PAGE_SIZE);
222
223 /*
224 * We've historically supported up to 32 pages (ARG_MAX)
225 * of argument strings even with small stacks
226 */
227 if (size <= ARG_MAX)
228 return page;
229
230 /*
231 * Limit to 1/4-th the stack size for the argv+env strings.
232 * This ensures that:
233 * - the remaining binfmt code will not run out of stack space,
234 * - the program will have a reasonable amount of stack left
235 * to work from.
236 */
237 rlim = current->signal->rlim;
238 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
239 put_page(page);
240 return NULL;
241 }
242 }
243
244 return page;
245 }
246
247 static void put_arg_page(struct page *page)
248 {
249 put_page(page);
250 }
251
252 static void free_arg_page(struct linux_binprm *bprm, int i)
253 {
254 }
255
256 static void free_arg_pages(struct linux_binprm *bprm)
257 {
258 }
259
260 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
261 struct page *page)
262 {
263 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
264 }
265
266 static int __bprm_mm_init(struct linux_binprm *bprm)
267 {
268 int err;
269 struct vm_area_struct *vma = NULL;
270 struct mm_struct *mm = bprm->mm;
271
272 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
273 if (!vma)
274 return -ENOMEM;
275
276 down_write(&mm->mmap_sem);
277 vma->vm_mm = mm;
278
279 /*
280 * Place the stack at the largest stack address the architecture
281 * supports. Later, we'll move this to an appropriate place. We don't
282 * use STACK_TOP because that can depend on attributes which aren't
283 * configured yet.
284 */
285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 vma->vm_end = STACK_TOP_MAX;
287 vma->vm_start = vma->vm_end - PAGE_SIZE;
288 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 INIT_LIST_HEAD(&vma->anon_vma_chain);
291
292 err = insert_vm_struct(mm, vma);
293 if (err)
294 goto err;
295
296 mm->stack_vm = mm->total_vm = 1;
297 arch_bprm_mm_init(mm, vma);
298 up_write(&mm->mmap_sem);
299 bprm->p = vma->vm_end - sizeof(void *);
300 return 0;
301 err:
302 up_write(&mm->mmap_sem);
303 bprm->vma = NULL;
304 kmem_cache_free(vm_area_cachep, vma);
305 return err;
306 }
307
308 static bool valid_arg_len(struct linux_binprm *bprm, long len)
309 {
310 return len <= MAX_ARG_STRLEN;
311 }
312
313 #else
314
315 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
316 {
317 }
318
319 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
320 int write)
321 {
322 struct page *page;
323
324 page = bprm->page[pos / PAGE_SIZE];
325 if (!page && write) {
326 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
327 if (!page)
328 return NULL;
329 bprm->page[pos / PAGE_SIZE] = page;
330 }
331
332 return page;
333 }
334
335 static void put_arg_page(struct page *page)
336 {
337 }
338
339 static void free_arg_page(struct linux_binprm *bprm, int i)
340 {
341 if (bprm->page[i]) {
342 __free_page(bprm->page[i]);
343 bprm->page[i] = NULL;
344 }
345 }
346
347 static void free_arg_pages(struct linux_binprm *bprm)
348 {
349 int i;
350
351 for (i = 0; i < MAX_ARG_PAGES; i++)
352 free_arg_page(bprm, i);
353 }
354
355 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
356 struct page *page)
357 {
358 }
359
360 static int __bprm_mm_init(struct linux_binprm *bprm)
361 {
362 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
363 return 0;
364 }
365
366 static bool valid_arg_len(struct linux_binprm *bprm, long len)
367 {
368 return len <= bprm->p;
369 }
370
371 #endif /* CONFIG_MMU */
372
373 /*
374 * Create a new mm_struct and populate it with a temporary stack
375 * vm_area_struct. We don't have enough context at this point to set the stack
376 * flags, permissions, and offset, so we use temporary values. We'll update
377 * them later in setup_arg_pages().
378 */
379 static int bprm_mm_init(struct linux_binprm *bprm)
380 {
381 int err;
382 struct mm_struct *mm = NULL;
383
384 bprm->mm = mm = mm_alloc();
385 err = -ENOMEM;
386 if (!mm)
387 goto err;
388
389 err = __bprm_mm_init(bprm);
390 if (err)
391 goto err;
392
393 return 0;
394
395 err:
396 if (mm) {
397 bprm->mm = NULL;
398 mmdrop(mm);
399 }
400
401 return err;
402 }
403
404 struct user_arg_ptr {
405 #ifdef CONFIG_COMPAT
406 bool is_compat;
407 #endif
408 union {
409 const char __user *const __user *native;
410 #ifdef CONFIG_COMPAT
411 const compat_uptr_t __user *compat;
412 #endif
413 } ptr;
414 };
415
416 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
417 {
418 const char __user *native;
419
420 #ifdef CONFIG_COMPAT
421 if (unlikely(argv.is_compat)) {
422 compat_uptr_t compat;
423
424 if (get_user(compat, argv.ptr.compat + nr))
425 return ERR_PTR(-EFAULT);
426
427 return compat_ptr(compat);
428 }
429 #endif
430
431 if (get_user(native, argv.ptr.native + nr))
432 return ERR_PTR(-EFAULT);
433
434 return native;
435 }
436
437 /*
438 * count() counts the number of strings in array ARGV.
439 */
440 static int count(struct user_arg_ptr argv, int max)
441 {
442 int i = 0;
443
444 if (argv.ptr.native != NULL) {
445 for (;;) {
446 const char __user *p = get_user_arg_ptr(argv, i);
447
448 if (!p)
449 break;
450
451 if (IS_ERR(p))
452 return -EFAULT;
453
454 if (i >= max)
455 return -E2BIG;
456 ++i;
457
458 if (fatal_signal_pending(current))
459 return -ERESTARTNOHAND;
460 cond_resched();
461 }
462 }
463 return i;
464 }
465
466 /*
467 * 'copy_strings()' copies argument/environment strings from the old
468 * processes's memory to the new process's stack. The call to get_user_pages()
469 * ensures the destination page is created and not swapped out.
470 */
471 static int copy_strings(int argc, struct user_arg_ptr argv,
472 struct linux_binprm *bprm)
473 {
474 struct page *kmapped_page = NULL;
475 char *kaddr = NULL;
476 unsigned long kpos = 0;
477 int ret;
478
479 while (argc-- > 0) {
480 const char __user *str;
481 int len;
482 unsigned long pos;
483
484 ret = -EFAULT;
485 str = get_user_arg_ptr(argv, argc);
486 if (IS_ERR(str))
487 goto out;
488
489 len = strnlen_user(str, MAX_ARG_STRLEN);
490 if (!len)
491 goto out;
492
493 ret = -E2BIG;
494 if (!valid_arg_len(bprm, len))
495 goto out;
496
497 /* We're going to work our way backwords. */
498 pos = bprm->p;
499 str += len;
500 bprm->p -= len;
501
502 while (len > 0) {
503 int offset, bytes_to_copy;
504
505 if (fatal_signal_pending(current)) {
506 ret = -ERESTARTNOHAND;
507 goto out;
508 }
509 cond_resched();
510
511 offset = pos % PAGE_SIZE;
512 if (offset == 0)
513 offset = PAGE_SIZE;
514
515 bytes_to_copy = offset;
516 if (bytes_to_copy > len)
517 bytes_to_copy = len;
518
519 offset -= bytes_to_copy;
520 pos -= bytes_to_copy;
521 str -= bytes_to_copy;
522 len -= bytes_to_copy;
523
524 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
525 struct page *page;
526
527 page = get_arg_page(bprm, pos, 1);
528 if (!page) {
529 ret = -E2BIG;
530 goto out;
531 }
532
533 if (kmapped_page) {
534 flush_kernel_dcache_page(kmapped_page);
535 kunmap(kmapped_page);
536 put_arg_page(kmapped_page);
537 }
538 kmapped_page = page;
539 kaddr = kmap(kmapped_page);
540 kpos = pos & PAGE_MASK;
541 flush_arg_page(bprm, kpos, kmapped_page);
542 }
543 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
544 ret = -EFAULT;
545 goto out;
546 }
547 }
548 }
549 ret = 0;
550 out:
551 if (kmapped_page) {
552 flush_kernel_dcache_page(kmapped_page);
553 kunmap(kmapped_page);
554 put_arg_page(kmapped_page);
555 }
556 return ret;
557 }
558
559 /*
560 * Like copy_strings, but get argv and its values from kernel memory.
561 */
562 int copy_strings_kernel(int argc, const char *const *__argv,
563 struct linux_binprm *bprm)
564 {
565 int r;
566 mm_segment_t oldfs = get_fs();
567 struct user_arg_ptr argv = {
568 .ptr.native = (const char __user *const __user *)__argv,
569 };
570
571 set_fs(KERNEL_DS);
572 r = copy_strings(argc, argv, bprm);
573 set_fs(oldfs);
574
575 return r;
576 }
577 EXPORT_SYMBOL(copy_strings_kernel);
578
579 #ifdef CONFIG_MMU
580
581 /*
582 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
583 * the binfmt code determines where the new stack should reside, we shift it to
584 * its final location. The process proceeds as follows:
585 *
586 * 1) Use shift to calculate the new vma endpoints.
587 * 2) Extend vma to cover both the old and new ranges. This ensures the
588 * arguments passed to subsequent functions are consistent.
589 * 3) Move vma's page tables to the new range.
590 * 4) Free up any cleared pgd range.
591 * 5) Shrink the vma to cover only the new range.
592 */
593 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
594 {
595 struct mm_struct *mm = vma->vm_mm;
596 unsigned long old_start = vma->vm_start;
597 unsigned long old_end = vma->vm_end;
598 unsigned long length = old_end - old_start;
599 unsigned long new_start = old_start - shift;
600 unsigned long new_end = old_end - shift;
601 struct mmu_gather tlb;
602
603 BUG_ON(new_start > new_end);
604
605 /*
606 * ensure there are no vmas between where we want to go
607 * and where we are
608 */
609 if (vma != find_vma(mm, new_start))
610 return -EFAULT;
611
612 /*
613 * cover the whole range: [new_start, old_end)
614 */
615 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
616 return -ENOMEM;
617
618 /*
619 * move the page tables downwards, on failure we rely on
620 * process cleanup to remove whatever mess we made.
621 */
622 if (length != move_page_tables(vma, old_start,
623 vma, new_start, length, false))
624 return -ENOMEM;
625
626 lru_add_drain();
627 tlb_gather_mmu(&tlb, mm, old_start, old_end);
628 if (new_end > old_start) {
629 /*
630 * when the old and new regions overlap clear from new_end.
631 */
632 free_pgd_range(&tlb, new_end, old_end, new_end,
633 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
634 } else {
635 /*
636 * otherwise, clean from old_start; this is done to not touch
637 * the address space in [new_end, old_start) some architectures
638 * have constraints on va-space that make this illegal (IA64) -
639 * for the others its just a little faster.
640 */
641 free_pgd_range(&tlb, old_start, old_end, new_end,
642 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
643 }
644 tlb_finish_mmu(&tlb, old_start, old_end);
645
646 /*
647 * Shrink the vma to just the new range. Always succeeds.
648 */
649 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
650
651 return 0;
652 }
653
654 /*
655 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
656 * the stack is optionally relocated, and some extra space is added.
657 */
658 int setup_arg_pages(struct linux_binprm *bprm,
659 unsigned long stack_top,
660 int executable_stack)
661 {
662 unsigned long ret;
663 unsigned long stack_shift;
664 struct mm_struct *mm = current->mm;
665 struct vm_area_struct *vma = bprm->vma;
666 struct vm_area_struct *prev = NULL;
667 unsigned long vm_flags;
668 unsigned long stack_base;
669 unsigned long stack_size;
670 unsigned long stack_expand;
671 unsigned long rlim_stack;
672
673 #ifdef CONFIG_STACK_GROWSUP
674 /* Limit stack size */
675 stack_base = rlimit_max(RLIMIT_STACK);
676 if (stack_base > STACK_SIZE_MAX)
677 stack_base = STACK_SIZE_MAX;
678
679 /* Add space for stack randomization. */
680 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
681
682 /* Make sure we didn't let the argument array grow too large. */
683 if (vma->vm_end - vma->vm_start > stack_base)
684 return -ENOMEM;
685
686 stack_base = PAGE_ALIGN(stack_top - stack_base);
687
688 stack_shift = vma->vm_start - stack_base;
689 mm->arg_start = bprm->p - stack_shift;
690 bprm->p = vma->vm_end - stack_shift;
691 #else
692 stack_top = arch_align_stack(stack_top);
693 stack_top = PAGE_ALIGN(stack_top);
694
695 if (unlikely(stack_top < mmap_min_addr) ||
696 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
697 return -ENOMEM;
698
699 stack_shift = vma->vm_end - stack_top;
700
701 bprm->p -= stack_shift;
702 mm->arg_start = bprm->p;
703 #endif
704
705 if (bprm->loader)
706 bprm->loader -= stack_shift;
707 bprm->exec -= stack_shift;
708
709 down_write(&mm->mmap_sem);
710 vm_flags = VM_STACK_FLAGS;
711
712 /*
713 * Adjust stack execute permissions; explicitly enable for
714 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
715 * (arch default) otherwise.
716 */
717 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
718 vm_flags |= VM_EXEC;
719 else if (executable_stack == EXSTACK_DISABLE_X)
720 vm_flags &= ~VM_EXEC;
721 vm_flags |= mm->def_flags;
722 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
723
724 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
725 vm_flags);
726 if (ret)
727 goto out_unlock;
728 BUG_ON(prev != vma);
729
730 /* Move stack pages down in memory. */
731 if (stack_shift) {
732 ret = shift_arg_pages(vma, stack_shift);
733 if (ret)
734 goto out_unlock;
735 }
736
737 /* mprotect_fixup is overkill to remove the temporary stack flags */
738 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
739
740 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
741 stack_size = vma->vm_end - vma->vm_start;
742 /*
743 * Align this down to a page boundary as expand_stack
744 * will align it up.
745 */
746 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
747 #ifdef CONFIG_STACK_GROWSUP
748 if (stack_size + stack_expand > rlim_stack)
749 stack_base = vma->vm_start + rlim_stack;
750 else
751 stack_base = vma->vm_end + stack_expand;
752 #else
753 if (stack_size + stack_expand > rlim_stack)
754 stack_base = vma->vm_end - rlim_stack;
755 else
756 stack_base = vma->vm_start - stack_expand;
757 #endif
758 current->mm->start_stack = bprm->p;
759 ret = expand_stack(vma, stack_base);
760 if (ret)
761 ret = -EFAULT;
762
763 out_unlock:
764 up_write(&mm->mmap_sem);
765 return ret;
766 }
767 EXPORT_SYMBOL(setup_arg_pages);
768
769 #endif /* CONFIG_MMU */
770
771 static struct file *do_open_execat(int fd, struct filename *name, int flags)
772 {
773 struct file *file;
774 int err;
775 struct open_flags open_exec_flags = {
776 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
777 .acc_mode = MAY_EXEC | MAY_OPEN,
778 .intent = LOOKUP_OPEN,
779 .lookup_flags = LOOKUP_FOLLOW,
780 };
781
782 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
783 return ERR_PTR(-EINVAL);
784 if (flags & AT_SYMLINK_NOFOLLOW)
785 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
786 if (flags & AT_EMPTY_PATH)
787 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
788
789 file = do_filp_open(fd, name, &open_exec_flags);
790 if (IS_ERR(file))
791 goto out;
792
793 err = -EACCES;
794 if (!S_ISREG(file_inode(file)->i_mode))
795 goto exit;
796
797 if (path_noexec(&file->f_path))
798 goto exit;
799
800 err = deny_write_access(file);
801 if (err)
802 goto exit;
803
804 if (name->name[0] != '\0')
805 fsnotify_open(file);
806
807 trace_open_exec(name->name);
808
809 out:
810 return file;
811
812 exit:
813 fput(file);
814 return ERR_PTR(err);
815 }
816
817 struct file *open_exec(const char *name)
818 {
819 struct filename *filename = getname_kernel(name);
820 struct file *f = ERR_CAST(filename);
821
822 if (!IS_ERR(filename)) {
823 f = do_open_execat(AT_FDCWD, filename, 0);
824 putname(filename);
825 }
826 return f;
827 }
828 EXPORT_SYMBOL(open_exec);
829
830 int kernel_read(struct file *file, loff_t offset,
831 char *addr, unsigned long count)
832 {
833 mm_segment_t old_fs;
834 loff_t pos = offset;
835 int result;
836
837 old_fs = get_fs();
838 set_fs(get_ds());
839 /* The cast to a user pointer is valid due to the set_fs() */
840 result = vfs_read(file, (void __user *)addr, count, &pos);
841 set_fs(old_fs);
842 return result;
843 }
844
845 EXPORT_SYMBOL(kernel_read);
846
847 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
848 {
849 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
850 if (res > 0)
851 flush_icache_range(addr, addr + len);
852 return res;
853 }
854 EXPORT_SYMBOL(read_code);
855
856 static int exec_mmap(struct mm_struct *mm)
857 {
858 struct task_struct *tsk;
859 struct mm_struct *old_mm, *active_mm;
860
861 /* Notify parent that we're no longer interested in the old VM */
862 tsk = current;
863 old_mm = current->mm;
864 mm_release(tsk, old_mm);
865
866 if (old_mm) {
867 sync_mm_rss(old_mm);
868 /*
869 * Make sure that if there is a core dump in progress
870 * for the old mm, we get out and die instead of going
871 * through with the exec. We must hold mmap_sem around
872 * checking core_state and changing tsk->mm.
873 */
874 down_read(&old_mm->mmap_sem);
875 if (unlikely(old_mm->core_state)) {
876 up_read(&old_mm->mmap_sem);
877 return -EINTR;
878 }
879 }
880 task_lock(tsk);
881 active_mm = tsk->active_mm;
882 tsk->mm = mm;
883 tsk->active_mm = mm;
884 activate_mm(active_mm, mm);
885 tsk->mm->vmacache_seqnum = 0;
886 vmacache_flush(tsk);
887 task_unlock(tsk);
888 if (old_mm) {
889 up_read(&old_mm->mmap_sem);
890 BUG_ON(active_mm != old_mm);
891 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
892 mm_update_next_owner(old_mm);
893 mmput(old_mm);
894 return 0;
895 }
896 mmdrop(active_mm);
897 return 0;
898 }
899
900 /*
901 * This function makes sure the current process has its own signal table,
902 * so that flush_signal_handlers can later reset the handlers without
903 * disturbing other processes. (Other processes might share the signal
904 * table via the CLONE_SIGHAND option to clone().)
905 */
906 static int de_thread(struct task_struct *tsk)
907 {
908 struct signal_struct *sig = tsk->signal;
909 struct sighand_struct *oldsighand = tsk->sighand;
910 spinlock_t *lock = &oldsighand->siglock;
911
912 if (thread_group_empty(tsk))
913 goto no_thread_group;
914
915 /*
916 * Kill all other threads in the thread group.
917 */
918 spin_lock_irq(lock);
919 if (signal_group_exit(sig)) {
920 /*
921 * Another group action in progress, just
922 * return so that the signal is processed.
923 */
924 spin_unlock_irq(lock);
925 return -EAGAIN;
926 }
927
928 sig->group_exit_task = tsk;
929 sig->notify_count = zap_other_threads(tsk);
930 if (!thread_group_leader(tsk))
931 sig->notify_count--;
932
933 while (sig->notify_count) {
934 __set_current_state(TASK_KILLABLE);
935 spin_unlock_irq(lock);
936 schedule();
937 if (unlikely(__fatal_signal_pending(tsk)))
938 goto killed;
939 spin_lock_irq(lock);
940 }
941 spin_unlock_irq(lock);
942
943 /*
944 * At this point all other threads have exited, all we have to
945 * do is to wait for the thread group leader to become inactive,
946 * and to assume its PID:
947 */
948 if (!thread_group_leader(tsk)) {
949 struct task_struct *leader = tsk->group_leader;
950
951 for (;;) {
952 threadgroup_change_begin(tsk);
953 write_lock_irq(&tasklist_lock);
954 /*
955 * Do this under tasklist_lock to ensure that
956 * exit_notify() can't miss ->group_exit_task
957 */
958 sig->notify_count = -1;
959 if (likely(leader->exit_state))
960 break;
961 __set_current_state(TASK_KILLABLE);
962 write_unlock_irq(&tasklist_lock);
963 threadgroup_change_end(tsk);
964 schedule();
965 if (unlikely(__fatal_signal_pending(tsk)))
966 goto killed;
967 }
968
969 /*
970 * The only record we have of the real-time age of a
971 * process, regardless of execs it's done, is start_time.
972 * All the past CPU time is accumulated in signal_struct
973 * from sister threads now dead. But in this non-leader
974 * exec, nothing survives from the original leader thread,
975 * whose birth marks the true age of this process now.
976 * When we take on its identity by switching to its PID, we
977 * also take its birthdate (always earlier than our own).
978 */
979 tsk->start_time = leader->start_time;
980 tsk->real_start_time = leader->real_start_time;
981
982 BUG_ON(!same_thread_group(leader, tsk));
983 BUG_ON(has_group_leader_pid(tsk));
984 /*
985 * An exec() starts a new thread group with the
986 * TGID of the previous thread group. Rehash the
987 * two threads with a switched PID, and release
988 * the former thread group leader:
989 */
990
991 /* Become a process group leader with the old leader's pid.
992 * The old leader becomes a thread of the this thread group.
993 * Note: The old leader also uses this pid until release_task
994 * is called. Odd but simple and correct.
995 */
996 tsk->pid = leader->pid;
997 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
998 transfer_pid(leader, tsk, PIDTYPE_PGID);
999 transfer_pid(leader, tsk, PIDTYPE_SID);
1000
1001 list_replace_rcu(&leader->tasks, &tsk->tasks);
1002 list_replace_init(&leader->sibling, &tsk->sibling);
1003
1004 tsk->group_leader = tsk;
1005 leader->group_leader = tsk;
1006
1007 tsk->exit_signal = SIGCHLD;
1008 leader->exit_signal = -1;
1009
1010 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1011 leader->exit_state = EXIT_DEAD;
1012
1013 /*
1014 * We are going to release_task()->ptrace_unlink() silently,
1015 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1016 * the tracer wont't block again waiting for this thread.
1017 */
1018 if (unlikely(leader->ptrace))
1019 __wake_up_parent(leader, leader->parent);
1020 write_unlock_irq(&tasklist_lock);
1021 threadgroup_change_end(tsk);
1022
1023 release_task(leader);
1024 }
1025
1026 sig->group_exit_task = NULL;
1027 sig->notify_count = 0;
1028
1029 no_thread_group:
1030 /* we have changed execution domain */
1031 tsk->exit_signal = SIGCHLD;
1032
1033 exit_itimers(sig);
1034 flush_itimer_signals();
1035
1036 if (atomic_read(&oldsighand->count) != 1) {
1037 struct sighand_struct *newsighand;
1038 /*
1039 * This ->sighand is shared with the CLONE_SIGHAND
1040 * but not CLONE_THREAD task, switch to the new one.
1041 */
1042 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1043 if (!newsighand)
1044 return -ENOMEM;
1045
1046 atomic_set(&newsighand->count, 1);
1047 memcpy(newsighand->action, oldsighand->action,
1048 sizeof(newsighand->action));
1049
1050 write_lock_irq(&tasklist_lock);
1051 spin_lock(&oldsighand->siglock);
1052 rcu_assign_pointer(tsk->sighand, newsighand);
1053 spin_unlock(&oldsighand->siglock);
1054 write_unlock_irq(&tasklist_lock);
1055
1056 __cleanup_sighand(oldsighand);
1057 }
1058
1059 BUG_ON(!thread_group_leader(tsk));
1060 return 0;
1061
1062 killed:
1063 /* protects against exit_notify() and __exit_signal() */
1064 read_lock(&tasklist_lock);
1065 sig->group_exit_task = NULL;
1066 sig->notify_count = 0;
1067 read_unlock(&tasklist_lock);
1068 return -EAGAIN;
1069 }
1070
1071 char *get_task_comm(char *buf, struct task_struct *tsk)
1072 {
1073 /* buf must be at least sizeof(tsk->comm) in size */
1074 task_lock(tsk);
1075 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1076 task_unlock(tsk);
1077 return buf;
1078 }
1079 EXPORT_SYMBOL_GPL(get_task_comm);
1080
1081 /*
1082 * These functions flushes out all traces of the currently running executable
1083 * so that a new one can be started
1084 */
1085
1086 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1087 {
1088 task_lock(tsk);
1089 trace_task_rename(tsk, buf);
1090 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1091 task_unlock(tsk);
1092 perf_event_comm(tsk, exec);
1093 }
1094
1095 int flush_old_exec(struct linux_binprm * bprm)
1096 {
1097 int retval;
1098
1099 /*
1100 * Make sure we have a private signal table and that
1101 * we are unassociated from the previous thread group.
1102 */
1103 retval = de_thread(current);
1104 if (retval)
1105 goto out;
1106
1107 /*
1108 * Must be called _before_ exec_mmap() as bprm->mm is
1109 * not visibile until then. This also enables the update
1110 * to be lockless.
1111 */
1112 set_mm_exe_file(bprm->mm, bprm->file);
1113
1114 /*
1115 * Release all of the old mmap stuff
1116 */
1117 acct_arg_size(bprm, 0);
1118 retval = exec_mmap(bprm->mm);
1119 if (retval)
1120 goto out;
1121
1122 bprm->mm = NULL; /* We're using it now */
1123
1124 set_fs(USER_DS);
1125 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1126 PF_NOFREEZE | PF_NO_SETAFFINITY);
1127 flush_thread();
1128 current->personality &= ~bprm->per_clear;
1129
1130 /*
1131 * We have to apply CLOEXEC before we change whether the process is
1132 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1133 * trying to access the should-be-closed file descriptors of a process
1134 * undergoing exec(2).
1135 */
1136 do_close_on_exec(current->files);
1137 return 0;
1138
1139 out:
1140 return retval;
1141 }
1142 EXPORT_SYMBOL(flush_old_exec);
1143
1144 void would_dump(struct linux_binprm *bprm, struct file *file)
1145 {
1146 struct inode *inode = file_inode(file);
1147 if (inode_permission(inode, MAY_READ) < 0) {
1148 struct user_namespace *old, *user_ns;
1149 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1150
1151 /* Ensure mm->user_ns contains the executable */
1152 user_ns = old = bprm->mm->user_ns;
1153 while ((user_ns != &init_user_ns) &&
1154 !privileged_wrt_inode_uidgid(user_ns, inode))
1155 user_ns = user_ns->parent;
1156
1157 if (old != user_ns) {
1158 bprm->mm->user_ns = get_user_ns(user_ns);
1159 put_user_ns(old);
1160 }
1161 }
1162 }
1163 EXPORT_SYMBOL(would_dump);
1164
1165 void setup_new_exec(struct linux_binprm * bprm)
1166 {
1167 arch_pick_mmap_layout(current->mm);
1168
1169 /* This is the point of no return */
1170 current->sas_ss_sp = current->sas_ss_size = 0;
1171
1172 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1173 set_dumpable(current->mm, SUID_DUMP_USER);
1174 else
1175 set_dumpable(current->mm, suid_dumpable);
1176
1177 perf_event_exec();
1178 __set_task_comm(current, kbasename(bprm->filename), true);
1179
1180 /* Set the new mm task size. We have to do that late because it may
1181 * depend on TIF_32BIT which is only updated in flush_thread() on
1182 * some architectures like powerpc
1183 */
1184 current->mm->task_size = TASK_SIZE;
1185
1186 /* install the new credentials */
1187 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1188 !gid_eq(bprm->cred->gid, current_egid())) {
1189 current->pdeath_signal = 0;
1190 } else {
1191 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1192 set_dumpable(current->mm, suid_dumpable);
1193 }
1194
1195 /* An exec changes our domain. We are no longer part of the thread
1196 group */
1197 current->self_exec_id++;
1198 flush_signal_handlers(current, 0);
1199 }
1200 EXPORT_SYMBOL(setup_new_exec);
1201
1202 /*
1203 * Prepare credentials and lock ->cred_guard_mutex.
1204 * install_exec_creds() commits the new creds and drops the lock.
1205 * Or, if exec fails before, free_bprm() should release ->cred and
1206 * and unlock.
1207 */
1208 int prepare_bprm_creds(struct linux_binprm *bprm)
1209 {
1210 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1211 return -ERESTARTNOINTR;
1212
1213 bprm->cred = prepare_exec_creds();
1214 if (likely(bprm->cred))
1215 return 0;
1216
1217 mutex_unlock(&current->signal->cred_guard_mutex);
1218 return -ENOMEM;
1219 }
1220
1221 static void free_bprm(struct linux_binprm *bprm)
1222 {
1223 free_arg_pages(bprm);
1224 if (bprm->cred) {
1225 mutex_unlock(&current->signal->cred_guard_mutex);
1226 abort_creds(bprm->cred);
1227 }
1228 if (bprm->file) {
1229 allow_write_access(bprm->file);
1230 fput(bprm->file);
1231 }
1232 /* If a binfmt changed the interp, free it. */
1233 if (bprm->interp != bprm->filename)
1234 kfree(bprm->interp);
1235 kfree(bprm);
1236 }
1237
1238 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1239 {
1240 /* If a binfmt changed the interp, free it first. */
1241 if (bprm->interp != bprm->filename)
1242 kfree(bprm->interp);
1243 bprm->interp = kstrdup(interp, GFP_KERNEL);
1244 if (!bprm->interp)
1245 return -ENOMEM;
1246 return 0;
1247 }
1248 EXPORT_SYMBOL(bprm_change_interp);
1249
1250 /*
1251 * install the new credentials for this executable
1252 */
1253 void install_exec_creds(struct linux_binprm *bprm)
1254 {
1255 security_bprm_committing_creds(bprm);
1256
1257 commit_creds(bprm->cred);
1258 bprm->cred = NULL;
1259
1260 /*
1261 * Disable monitoring for regular users
1262 * when executing setuid binaries. Must
1263 * wait until new credentials are committed
1264 * by commit_creds() above
1265 */
1266 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1267 perf_event_exit_task(current);
1268 /*
1269 * cred_guard_mutex must be held at least to this point to prevent
1270 * ptrace_attach() from altering our determination of the task's
1271 * credentials; any time after this it may be unlocked.
1272 */
1273 security_bprm_committed_creds(bprm);
1274 mutex_unlock(&current->signal->cred_guard_mutex);
1275 }
1276 EXPORT_SYMBOL(install_exec_creds);
1277
1278 /*
1279 * determine how safe it is to execute the proposed program
1280 * - the caller must hold ->cred_guard_mutex to protect against
1281 * PTRACE_ATTACH or seccomp thread-sync
1282 */
1283 static void check_unsafe_exec(struct linux_binprm *bprm)
1284 {
1285 struct task_struct *p = current, *t;
1286 unsigned n_fs;
1287 bool fs_recheck;
1288
1289 if (p->ptrace) {
1290 if (ptracer_capable(p, current_user_ns()))
1291 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1292 else
1293 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1294 }
1295
1296 /*
1297 * This isn't strictly necessary, but it makes it harder for LSMs to
1298 * mess up.
1299 */
1300 if (task_no_new_privs(current))
1301 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1302
1303 recheck:
1304 fs_recheck = false;
1305 t = p;
1306 n_fs = 1;
1307 spin_lock(&p->fs->lock);
1308 rcu_read_lock();
1309 while_each_thread(p, t) {
1310 if (t->fs == p->fs)
1311 n_fs++;
1312 if (t->flags & (PF_EXITING | PF_FORKNOEXEC))
1313 fs_recheck = true;
1314 }
1315 rcu_read_unlock();
1316
1317 if (p->fs->users > n_fs) {
1318 if (fs_recheck) {
1319 spin_unlock(&p->fs->lock);
1320 goto recheck;
1321 }
1322 bprm->unsafe |= LSM_UNSAFE_SHARE;
1323 } else
1324 p->fs->in_exec = 1;
1325 spin_unlock(&p->fs->lock);
1326 }
1327
1328 static void bprm_fill_uid(struct linux_binprm *bprm)
1329 {
1330 struct inode *inode;
1331 unsigned int mode;
1332 kuid_t uid;
1333 kgid_t gid;
1334
1335 /* clear any previous set[ug]id data from a previous binary */
1336 bprm->cred->euid = current_euid();
1337 bprm->cred->egid = current_egid();
1338
1339 if (path_nosuid(&bprm->file->f_path))
1340 return;
1341
1342 if (task_no_new_privs(current))
1343 return;
1344
1345 inode = file_inode(bprm->file);
1346 mode = READ_ONCE(inode->i_mode);
1347 if (!(mode & (S_ISUID|S_ISGID)))
1348 return;
1349
1350 /* Be careful if suid/sgid is set */
1351 mutex_lock(&inode->i_mutex);
1352
1353 /* reload atomically mode/uid/gid now that lock held */
1354 mode = inode->i_mode;
1355 uid = inode->i_uid;
1356 gid = inode->i_gid;
1357 mutex_unlock(&inode->i_mutex);
1358
1359 /* We ignore suid/sgid if there are no mappings for them in the ns */
1360 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1361 !kgid_has_mapping(bprm->cred->user_ns, gid))
1362 return;
1363
1364 if (mode & S_ISUID) {
1365 bprm->per_clear |= PER_CLEAR_ON_SETID;
1366 bprm->cred->euid = uid;
1367 }
1368
1369 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1370 bprm->per_clear |= PER_CLEAR_ON_SETID;
1371 bprm->cred->egid = gid;
1372 }
1373 }
1374
1375 /*
1376 * Fill the binprm structure from the inode.
1377 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1378 *
1379 * This may be called multiple times for binary chains (scripts for example).
1380 */
1381 int prepare_binprm(struct linux_binprm *bprm)
1382 {
1383 int retval;
1384
1385 bprm_fill_uid(bprm);
1386
1387 /* fill in binprm security blob */
1388 retval = security_bprm_set_creds(bprm);
1389 if (retval)
1390 return retval;
1391 bprm->cred_prepared = 1;
1392
1393 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1394 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1395 }
1396
1397 EXPORT_SYMBOL(prepare_binprm);
1398
1399 /*
1400 * Arguments are '\0' separated strings found at the location bprm->p
1401 * points to; chop off the first by relocating brpm->p to right after
1402 * the first '\0' encountered.
1403 */
1404 int remove_arg_zero(struct linux_binprm *bprm)
1405 {
1406 int ret = 0;
1407 unsigned long offset;
1408 char *kaddr;
1409 struct page *page;
1410
1411 if (!bprm->argc)
1412 return 0;
1413
1414 do {
1415 offset = bprm->p & ~PAGE_MASK;
1416 page = get_arg_page(bprm, bprm->p, 0);
1417 if (!page) {
1418 ret = -EFAULT;
1419 goto out;
1420 }
1421 kaddr = kmap_atomic(page);
1422
1423 for (; offset < PAGE_SIZE && kaddr[offset];
1424 offset++, bprm->p++)
1425 ;
1426
1427 kunmap_atomic(kaddr);
1428 put_arg_page(page);
1429
1430 if (offset == PAGE_SIZE)
1431 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1432 } while (offset == PAGE_SIZE);
1433
1434 bprm->p++;
1435 bprm->argc--;
1436 ret = 0;
1437
1438 out:
1439 return ret;
1440 }
1441 EXPORT_SYMBOL(remove_arg_zero);
1442
1443 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1444 /*
1445 * cycle the list of binary formats handler, until one recognizes the image
1446 */
1447 int search_binary_handler(struct linux_binprm *bprm)
1448 {
1449 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1450 struct linux_binfmt *fmt;
1451 int retval;
1452
1453 /* This allows 4 levels of binfmt rewrites before failing hard. */
1454 if (bprm->recursion_depth > 5)
1455 return -ELOOP;
1456
1457 retval = security_bprm_check(bprm);
1458 if (retval)
1459 return retval;
1460
1461 retval = -ENOENT;
1462 retry:
1463 read_lock(&binfmt_lock);
1464 list_for_each_entry(fmt, &formats, lh) {
1465 if (!try_module_get(fmt->module))
1466 continue;
1467 read_unlock(&binfmt_lock);
1468 bprm->recursion_depth++;
1469 retval = fmt->load_binary(bprm);
1470 read_lock(&binfmt_lock);
1471 put_binfmt(fmt);
1472 bprm->recursion_depth--;
1473 if (retval < 0 && !bprm->mm) {
1474 /* we got to flush_old_exec() and failed after it */
1475 read_unlock(&binfmt_lock);
1476 force_sigsegv(SIGSEGV, current);
1477 return retval;
1478 }
1479 if (retval != -ENOEXEC || !bprm->file) {
1480 read_unlock(&binfmt_lock);
1481 return retval;
1482 }
1483 }
1484 read_unlock(&binfmt_lock);
1485
1486 if (need_retry) {
1487 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1488 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1489 return retval;
1490 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1491 return retval;
1492 need_retry = false;
1493 goto retry;
1494 }
1495
1496 return retval;
1497 }
1498 EXPORT_SYMBOL(search_binary_handler);
1499
1500 static int exec_binprm(struct linux_binprm *bprm)
1501 {
1502 pid_t old_pid, old_vpid;
1503 int ret;
1504
1505 /* Need to fetch pid before load_binary changes it */
1506 old_pid = current->pid;
1507 rcu_read_lock();
1508 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1509 rcu_read_unlock();
1510
1511 ret = search_binary_handler(bprm);
1512 if (ret >= 0) {
1513 audit_bprm(bprm);
1514 trace_sched_process_exec(current, old_pid, bprm);
1515 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1516 proc_exec_connector(current);
1517 }
1518
1519 return ret;
1520 }
1521
1522 /*
1523 * sys_execve() executes a new program.
1524 */
1525 static int do_execveat_common(int fd, struct filename *filename,
1526 struct user_arg_ptr argv,
1527 struct user_arg_ptr envp,
1528 int flags)
1529 {
1530 char *pathbuf = NULL;
1531 struct linux_binprm *bprm;
1532 struct file *file;
1533 struct files_struct *displaced;
1534 int retval;
1535
1536 if (IS_ERR(filename))
1537 return PTR_ERR(filename);
1538
1539 /*
1540 * We move the actual failure in case of RLIMIT_NPROC excess from
1541 * set*uid() to execve() because too many poorly written programs
1542 * don't check setuid() return code. Here we additionally recheck
1543 * whether NPROC limit is still exceeded.
1544 */
1545 if ((current->flags & PF_NPROC_EXCEEDED) &&
1546 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1547 retval = -EAGAIN;
1548 goto out_ret;
1549 }
1550
1551 /* We're below the limit (still or again), so we don't want to make
1552 * further execve() calls fail. */
1553 current->flags &= ~PF_NPROC_EXCEEDED;
1554
1555 retval = unshare_files(&displaced);
1556 if (retval)
1557 goto out_ret;
1558
1559 retval = -ENOMEM;
1560 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1561 if (!bprm)
1562 goto out_files;
1563
1564 retval = prepare_bprm_creds(bprm);
1565 if (retval)
1566 goto out_free;
1567
1568 check_unsafe_exec(bprm);
1569 current->in_execve = 1;
1570
1571 file = do_open_execat(fd, filename, flags);
1572 retval = PTR_ERR(file);
1573 if (IS_ERR(file))
1574 goto out_unmark;
1575
1576 sched_exec();
1577
1578 bprm->file = file;
1579 if (fd == AT_FDCWD || filename->name[0] == '/') {
1580 bprm->filename = filename->name;
1581 } else {
1582 if (filename->name[0] == '\0')
1583 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1584 else
1585 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1586 fd, filename->name);
1587 if (!pathbuf) {
1588 retval = -ENOMEM;
1589 goto out_unmark;
1590 }
1591 /*
1592 * Record that a name derived from an O_CLOEXEC fd will be
1593 * inaccessible after exec. Relies on having exclusive access to
1594 * current->files (due to unshare_files above).
1595 */
1596 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1597 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1598 bprm->filename = pathbuf;
1599 }
1600 bprm->interp = bprm->filename;
1601
1602 retval = bprm_mm_init(bprm);
1603 if (retval)
1604 goto out_unmark;
1605
1606 bprm->argc = count(argv, MAX_ARG_STRINGS);
1607 if ((retval = bprm->argc) < 0)
1608 goto out;
1609
1610 bprm->envc = count(envp, MAX_ARG_STRINGS);
1611 if ((retval = bprm->envc) < 0)
1612 goto out;
1613
1614 retval = prepare_binprm(bprm);
1615 if (retval < 0)
1616 goto out;
1617
1618 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1619 if (retval < 0)
1620 goto out;
1621
1622 bprm->exec = bprm->p;
1623 retval = copy_strings(bprm->envc, envp, bprm);
1624 if (retval < 0)
1625 goto out;
1626
1627 retval = copy_strings(bprm->argc, argv, bprm);
1628 if (retval < 0)
1629 goto out;
1630
1631 would_dump(bprm, bprm->file);
1632
1633 retval = exec_binprm(bprm);
1634 if (retval < 0)
1635 goto out;
1636
1637 /* execve succeeded */
1638 current->fs->in_exec = 0;
1639 current->in_execve = 0;
1640 acct_update_integrals(current);
1641 task_numa_free(current);
1642 free_bprm(bprm);
1643 kfree(pathbuf);
1644 putname(filename);
1645 if (displaced)
1646 put_files_struct(displaced);
1647 return retval;
1648
1649 out:
1650 if (bprm->mm) {
1651 acct_arg_size(bprm, 0);
1652 mmput(bprm->mm);
1653 }
1654
1655 out_unmark:
1656 current->fs->in_exec = 0;
1657 current->in_execve = 0;
1658
1659 out_free:
1660 free_bprm(bprm);
1661 kfree(pathbuf);
1662
1663 out_files:
1664 if (displaced)
1665 reset_files_struct(displaced);
1666 out_ret:
1667 putname(filename);
1668 return retval;
1669 }
1670
1671 int do_execve(struct filename *filename,
1672 const char __user *const __user *__argv,
1673 const char __user *const __user *__envp)
1674 {
1675 struct user_arg_ptr argv = { .ptr.native = __argv };
1676 struct user_arg_ptr envp = { .ptr.native = __envp };
1677 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1678 }
1679
1680 int do_execveat(int fd, struct filename *filename,
1681 const char __user *const __user *__argv,
1682 const char __user *const __user *__envp,
1683 int flags)
1684 {
1685 struct user_arg_ptr argv = { .ptr.native = __argv };
1686 struct user_arg_ptr envp = { .ptr.native = __envp };
1687
1688 return do_execveat_common(fd, filename, argv, envp, flags);
1689 }
1690
1691 #ifdef CONFIG_COMPAT
1692 static int compat_do_execve(struct filename *filename,
1693 const compat_uptr_t __user *__argv,
1694 const compat_uptr_t __user *__envp)
1695 {
1696 struct user_arg_ptr argv = {
1697 .is_compat = true,
1698 .ptr.compat = __argv,
1699 };
1700 struct user_arg_ptr envp = {
1701 .is_compat = true,
1702 .ptr.compat = __envp,
1703 };
1704 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1705 }
1706
1707 static int compat_do_execveat(int fd, struct filename *filename,
1708 const compat_uptr_t __user *__argv,
1709 const compat_uptr_t __user *__envp,
1710 int flags)
1711 {
1712 struct user_arg_ptr argv = {
1713 .is_compat = true,
1714 .ptr.compat = __argv,
1715 };
1716 struct user_arg_ptr envp = {
1717 .is_compat = true,
1718 .ptr.compat = __envp,
1719 };
1720 return do_execveat_common(fd, filename, argv, envp, flags);
1721 }
1722 #endif
1723
1724 void set_binfmt(struct linux_binfmt *new)
1725 {
1726 struct mm_struct *mm = current->mm;
1727
1728 if (mm->binfmt)
1729 module_put(mm->binfmt->module);
1730
1731 mm->binfmt = new;
1732 if (new)
1733 __module_get(new->module);
1734 }
1735 EXPORT_SYMBOL(set_binfmt);
1736
1737 /*
1738 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1739 */
1740 void set_dumpable(struct mm_struct *mm, int value)
1741 {
1742 unsigned long old, new;
1743
1744 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1745 return;
1746
1747 do {
1748 old = ACCESS_ONCE(mm->flags);
1749 new = (old & ~MMF_DUMPABLE_MASK) | value;
1750 } while (cmpxchg(&mm->flags, old, new) != old);
1751 }
1752
1753 SYSCALL_DEFINE3(execve,
1754 const char __user *, filename,
1755 const char __user *const __user *, argv,
1756 const char __user *const __user *, envp)
1757 {
1758 return do_execve(getname(filename), argv, envp);
1759 }
1760
1761 SYSCALL_DEFINE5(execveat,
1762 int, fd, const char __user *, filename,
1763 const char __user *const __user *, argv,
1764 const char __user *const __user *, envp,
1765 int, flags)
1766 {
1767 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1768
1769 return do_execveat(fd,
1770 getname_flags(filename, lookup_flags, NULL),
1771 argv, envp, flags);
1772 }
1773
1774 #ifdef CONFIG_COMPAT
1775 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1776 const compat_uptr_t __user *, argv,
1777 const compat_uptr_t __user *, envp)
1778 {
1779 return compat_do_execve(getname(filename), argv, envp);
1780 }
1781
1782 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1783 const char __user *, filename,
1784 const compat_uptr_t __user *, argv,
1785 const compat_uptr_t __user *, envp,
1786 int, flags)
1787 {
1788 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1789
1790 return compat_do_execveat(fd,
1791 getname_flags(filename, lookup_flags, NULL),
1792 argv, envp, flags);
1793 }
1794 #endif