1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
70 #include <trace/events/task.h>
73 #include <trace/events/sched.h>
75 static int bprm_creds_from_file(struct linux_binprm
*bprm
);
77 int suid_dumpable
= 0;
79 static LIST_HEAD(formats
);
80 static DEFINE_RWLOCK(binfmt_lock
);
82 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
85 if (WARN_ON(!fmt
->load_binary
))
87 write_lock(&binfmt_lock
);
88 insert
? list_add(&fmt
->lh
, &formats
) :
89 list_add_tail(&fmt
->lh
, &formats
);
90 write_unlock(&binfmt_lock
);
93 EXPORT_SYMBOL(__register_binfmt
);
95 void unregister_binfmt(struct linux_binfmt
* fmt
)
97 write_lock(&binfmt_lock
);
99 write_unlock(&binfmt_lock
);
102 EXPORT_SYMBOL(unregister_binfmt
);
104 static inline void put_binfmt(struct linux_binfmt
* fmt
)
106 module_put(fmt
->module
);
109 bool path_noexec(const struct path
*path
)
111 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
112 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
117 * Note that a shared library must be both readable and executable due to
120 * Also note that we take the address to load from from the file itself.
122 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
124 struct linux_binfmt
*fmt
;
126 struct filename
*tmp
= getname(library
);
127 int error
= PTR_ERR(tmp
);
128 static const struct open_flags uselib_flags
= {
129 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
130 .acc_mode
= MAY_READ
| MAY_EXEC
,
131 .intent
= LOOKUP_OPEN
,
132 .lookup_flags
= LOOKUP_FOLLOW
,
138 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
140 error
= PTR_ERR(file
);
145 * may_open() has already checked for this, so it should be
146 * impossible to trip now. But we need to be extra cautious
147 * and check again at the very end too.
150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
) ||
151 path_noexec(&file
->f_path
)))
158 read_lock(&binfmt_lock
);
159 list_for_each_entry(fmt
, &formats
, lh
) {
160 if (!fmt
->load_shlib
)
162 if (!try_module_get(fmt
->module
))
164 read_unlock(&binfmt_lock
);
165 error
= fmt
->load_shlib(file
);
166 read_lock(&binfmt_lock
);
168 if (error
!= -ENOEXEC
)
171 read_unlock(&binfmt_lock
);
177 #endif /* #ifdef CONFIG_USELIB */
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
186 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
188 struct mm_struct
*mm
= current
->mm
;
189 long diff
= (long)(pages
- bprm
->vma_pages
);
194 bprm
->vma_pages
= pages
;
195 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
198 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
203 unsigned int gup_flags
= FOLL_FORCE
;
205 #ifdef CONFIG_STACK_GROWSUP
207 ret
= expand_downwards(bprm
->vma
, pos
);
214 gup_flags
|= FOLL_WRITE
;
217 * We are doing an exec(). 'current' is the process
218 * doing the exec and bprm->mm is the new process's mm.
220 ret
= get_user_pages_remote(bprm
->mm
, pos
, 1, gup_flags
,
226 acct_arg_size(bprm
, vma_pages(bprm
->vma
));
231 static void put_arg_page(struct page
*page
)
236 static void free_arg_pages(struct linux_binprm
*bprm
)
240 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
243 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
246 static int __bprm_mm_init(struct linux_binprm
*bprm
)
249 struct vm_area_struct
*vma
= NULL
;
250 struct mm_struct
*mm
= bprm
->mm
;
252 bprm
->vma
= vma
= vm_area_alloc(mm
);
255 vma_set_anonymous(vma
);
257 if (mmap_write_lock_killable(mm
)) {
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
268 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
269 vma
->vm_end
= STACK_TOP_MAX
;
270 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
271 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
272 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
274 err
= insert_vm_struct(mm
, vma
);
278 mm
->stack_vm
= mm
->total_vm
= 1;
279 mmap_write_unlock(mm
);
280 bprm
->p
= vma
->vm_end
- sizeof(void *);
283 mmap_write_unlock(mm
);
290 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
292 return len
<= MAX_ARG_STRLEN
;
297 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
301 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
306 page
= bprm
->page
[pos
/ PAGE_SIZE
];
307 if (!page
&& write
) {
308 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
311 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
317 static void put_arg_page(struct page
*page
)
321 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
324 __free_page(bprm
->page
[i
]);
325 bprm
->page
[i
] = NULL
;
329 static void free_arg_pages(struct linux_binprm
*bprm
)
333 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
334 free_arg_page(bprm
, i
);
337 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
342 static int __bprm_mm_init(struct linux_binprm
*bprm
)
344 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
348 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
350 return len
<= bprm
->p
;
353 #endif /* CONFIG_MMU */
356 * Create a new mm_struct and populate it with a temporary stack
357 * vm_area_struct. We don't have enough context at this point to set the stack
358 * flags, permissions, and offset, so we use temporary values. We'll update
359 * them later in setup_arg_pages().
361 static int bprm_mm_init(struct linux_binprm
*bprm
)
364 struct mm_struct
*mm
= NULL
;
366 bprm
->mm
= mm
= mm_alloc();
371 /* Save current stack limit for all calculations made during exec. */
372 task_lock(current
->group_leader
);
373 bprm
->rlim_stack
= current
->signal
->rlim
[RLIMIT_STACK
];
374 task_unlock(current
->group_leader
);
376 err
= __bprm_mm_init(bprm
);
391 struct user_arg_ptr
{
396 const char __user
*const __user
*native
;
398 const compat_uptr_t __user
*compat
;
403 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
405 const char __user
*native
;
408 if (unlikely(argv
.is_compat
)) {
409 compat_uptr_t compat
;
411 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
412 return ERR_PTR(-EFAULT
);
414 return compat_ptr(compat
);
418 if (get_user(native
, argv
.ptr
.native
+ nr
))
419 return ERR_PTR(-EFAULT
);
425 * count() counts the number of strings in array ARGV.
427 static int count(struct user_arg_ptr argv
, int max
)
431 if (argv
.ptr
.native
!= NULL
) {
433 const char __user
*p
= get_user_arg_ptr(argv
, i
);
445 if (fatal_signal_pending(current
))
446 return -ERESTARTNOHAND
;
453 static int count_strings_kernel(const char *const *argv
)
460 for (i
= 0; argv
[i
]; ++i
) {
461 if (i
>= MAX_ARG_STRINGS
)
463 if (fatal_signal_pending(current
))
464 return -ERESTARTNOHAND
;
470 static int bprm_stack_limits(struct linux_binprm
*bprm
)
472 unsigned long limit
, ptr_size
;
475 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
476 * (whichever is smaller) for the argv+env strings.
478 * - the remaining binfmt code will not run out of stack space,
479 * - the program will have a reasonable amount of stack left
482 limit
= _STK_LIM
/ 4 * 3;
483 limit
= min(limit
, bprm
->rlim_stack
.rlim_cur
/ 4);
485 * We've historically supported up to 32 pages (ARG_MAX)
486 * of argument strings even with small stacks
488 limit
= max_t(unsigned long, limit
, ARG_MAX
);
490 * We must account for the size of all the argv and envp pointers to
491 * the argv and envp strings, since they will also take up space in
492 * the stack. They aren't stored until much later when we can't
493 * signal to the parent that the child has run out of stack space.
494 * Instead, calculate it here so it's possible to fail gracefully.
496 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
497 if (limit
<= ptr_size
)
501 bprm
->argmin
= bprm
->p
- limit
;
506 * 'copy_strings()' copies argument/environment strings from the old
507 * processes's memory to the new process's stack. The call to get_user_pages()
508 * ensures the destination page is created and not swapped out.
510 static int copy_strings(int argc
, struct user_arg_ptr argv
,
511 struct linux_binprm
*bprm
)
513 struct page
*kmapped_page
= NULL
;
515 unsigned long kpos
= 0;
519 const char __user
*str
;
524 str
= get_user_arg_ptr(argv
, argc
);
528 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
533 if (!valid_arg_len(bprm
, len
))
536 /* We're going to work our way backwords. */
541 if (bprm
->p
< bprm
->argmin
)
546 int offset
, bytes_to_copy
;
548 if (fatal_signal_pending(current
)) {
549 ret
= -ERESTARTNOHAND
;
554 offset
= pos
% PAGE_SIZE
;
558 bytes_to_copy
= offset
;
559 if (bytes_to_copy
> len
)
562 offset
-= bytes_to_copy
;
563 pos
-= bytes_to_copy
;
564 str
-= bytes_to_copy
;
565 len
-= bytes_to_copy
;
567 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
570 page
= get_arg_page(bprm
, pos
, 1);
577 flush_kernel_dcache_page(kmapped_page
);
578 kunmap(kmapped_page
);
579 put_arg_page(kmapped_page
);
582 kaddr
= kmap(kmapped_page
);
583 kpos
= pos
& PAGE_MASK
;
584 flush_arg_page(bprm
, kpos
, kmapped_page
);
586 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
595 flush_kernel_dcache_page(kmapped_page
);
596 kunmap(kmapped_page
);
597 put_arg_page(kmapped_page
);
603 * Copy and argument/environment string from the kernel to the processes stack.
605 int copy_string_kernel(const char *arg
, struct linux_binprm
*bprm
)
607 int len
= strnlen(arg
, MAX_ARG_STRLEN
) + 1 /* terminating NUL */;
608 unsigned long pos
= bprm
->p
;
612 if (!valid_arg_len(bprm
, len
))
615 /* We're going to work our way backwards. */
618 if (IS_ENABLED(CONFIG_MMU
) && bprm
->p
< bprm
->argmin
)
622 unsigned int bytes_to_copy
= min_t(unsigned int, len
,
623 min_not_zero(offset_in_page(pos
), PAGE_SIZE
));
627 pos
-= bytes_to_copy
;
628 arg
-= bytes_to_copy
;
629 len
-= bytes_to_copy
;
631 page
= get_arg_page(bprm
, pos
, 1);
634 kaddr
= kmap_atomic(page
);
635 flush_arg_page(bprm
, pos
& PAGE_MASK
, page
);
636 memcpy(kaddr
+ offset_in_page(pos
), arg
, bytes_to_copy
);
637 flush_kernel_dcache_page(page
);
638 kunmap_atomic(kaddr
);
644 EXPORT_SYMBOL(copy_string_kernel
);
646 static int copy_strings_kernel(int argc
, const char *const *argv
,
647 struct linux_binprm
*bprm
)
650 int ret
= copy_string_kernel(argv
[argc
], bprm
);
653 if (fatal_signal_pending(current
))
654 return -ERESTARTNOHAND
;
663 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
664 * the binfmt code determines where the new stack should reside, we shift it to
665 * its final location. The process proceeds as follows:
667 * 1) Use shift to calculate the new vma endpoints.
668 * 2) Extend vma to cover both the old and new ranges. This ensures the
669 * arguments passed to subsequent functions are consistent.
670 * 3) Move vma's page tables to the new range.
671 * 4) Free up any cleared pgd range.
672 * 5) Shrink the vma to cover only the new range.
674 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
676 struct mm_struct
*mm
= vma
->vm_mm
;
677 unsigned long old_start
= vma
->vm_start
;
678 unsigned long old_end
= vma
->vm_end
;
679 unsigned long length
= old_end
- old_start
;
680 unsigned long new_start
= old_start
- shift
;
681 unsigned long new_end
= old_end
- shift
;
682 struct mmu_gather tlb
;
684 BUG_ON(new_start
> new_end
);
687 * ensure there are no vmas between where we want to go
690 if (vma
!= find_vma(mm
, new_start
))
694 * cover the whole range: [new_start, old_end)
696 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
700 * move the page tables downwards, on failure we rely on
701 * process cleanup to remove whatever mess we made.
703 if (length
!= move_page_tables(vma
, old_start
,
704 vma
, new_start
, length
, false))
708 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
709 if (new_end
> old_start
) {
711 * when the old and new regions overlap clear from new_end.
713 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
714 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
717 * otherwise, clean from old_start; this is done to not touch
718 * the address space in [new_end, old_start) some architectures
719 * have constraints on va-space that make this illegal (IA64) -
720 * for the others its just a little faster.
722 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
723 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
725 tlb_finish_mmu(&tlb
, old_start
, old_end
);
728 * Shrink the vma to just the new range. Always succeeds.
730 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
736 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
737 * the stack is optionally relocated, and some extra space is added.
739 int setup_arg_pages(struct linux_binprm
*bprm
,
740 unsigned long stack_top
,
741 int executable_stack
)
744 unsigned long stack_shift
;
745 struct mm_struct
*mm
= current
->mm
;
746 struct vm_area_struct
*vma
= bprm
->vma
;
747 struct vm_area_struct
*prev
= NULL
;
748 unsigned long vm_flags
;
749 unsigned long stack_base
;
750 unsigned long stack_size
;
751 unsigned long stack_expand
;
752 unsigned long rlim_stack
;
754 #ifdef CONFIG_STACK_GROWSUP
755 /* Limit stack size */
756 stack_base
= bprm
->rlim_stack
.rlim_max
;
757 if (stack_base
> STACK_SIZE_MAX
)
758 stack_base
= STACK_SIZE_MAX
;
760 /* Add space for stack randomization. */
761 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
763 /* Make sure we didn't let the argument array grow too large. */
764 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
767 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
769 stack_shift
= vma
->vm_start
- stack_base
;
770 mm
->arg_start
= bprm
->p
- stack_shift
;
771 bprm
->p
= vma
->vm_end
- stack_shift
;
773 stack_top
= arch_align_stack(stack_top
);
774 stack_top
= PAGE_ALIGN(stack_top
);
776 if (unlikely(stack_top
< mmap_min_addr
) ||
777 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
780 stack_shift
= vma
->vm_end
- stack_top
;
782 bprm
->p
-= stack_shift
;
783 mm
->arg_start
= bprm
->p
;
787 bprm
->loader
-= stack_shift
;
788 bprm
->exec
-= stack_shift
;
790 if (mmap_write_lock_killable(mm
))
793 vm_flags
= VM_STACK_FLAGS
;
796 * Adjust stack execute permissions; explicitly enable for
797 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
798 * (arch default) otherwise.
800 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
802 else if (executable_stack
== EXSTACK_DISABLE_X
)
803 vm_flags
&= ~VM_EXEC
;
804 vm_flags
|= mm
->def_flags
;
805 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
807 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
813 if (unlikely(vm_flags
& VM_EXEC
)) {
814 pr_warn_once("process '%pD4' started with executable stack\n",
818 /* Move stack pages down in memory. */
820 ret
= shift_arg_pages(vma
, stack_shift
);
825 /* mprotect_fixup is overkill to remove the temporary stack flags */
826 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
828 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
829 stack_size
= vma
->vm_end
- vma
->vm_start
;
831 * Align this down to a page boundary as expand_stack
834 rlim_stack
= bprm
->rlim_stack
.rlim_cur
& PAGE_MASK
;
835 #ifdef CONFIG_STACK_GROWSUP
836 if (stack_size
+ stack_expand
> rlim_stack
)
837 stack_base
= vma
->vm_start
+ rlim_stack
;
839 stack_base
= vma
->vm_end
+ stack_expand
;
841 if (stack_size
+ stack_expand
> rlim_stack
)
842 stack_base
= vma
->vm_end
- rlim_stack
;
844 stack_base
= vma
->vm_start
- stack_expand
;
846 current
->mm
->start_stack
= bprm
->p
;
847 ret
= expand_stack(vma
, stack_base
);
852 mmap_write_unlock(mm
);
855 EXPORT_SYMBOL(setup_arg_pages
);
860 * Transfer the program arguments and environment from the holding pages
861 * onto the stack. The provided stack pointer is adjusted accordingly.
863 int transfer_args_to_stack(struct linux_binprm
*bprm
,
864 unsigned long *sp_location
)
866 unsigned long index
, stop
, sp
;
869 stop
= bprm
->p
>> PAGE_SHIFT
;
872 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
873 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
874 char *src
= kmap(bprm
->page
[index
]) + offset
;
875 sp
-= PAGE_SIZE
- offset
;
876 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
878 kunmap(bprm
->page
[index
]);
888 EXPORT_SYMBOL(transfer_args_to_stack
);
890 #endif /* CONFIG_MMU */
892 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
896 struct open_flags open_exec_flags
= {
897 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
898 .acc_mode
= MAY_EXEC
,
899 .intent
= LOOKUP_OPEN
,
900 .lookup_flags
= LOOKUP_FOLLOW
,
903 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
904 return ERR_PTR(-EINVAL
);
905 if (flags
& AT_SYMLINK_NOFOLLOW
)
906 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
907 if (flags
& AT_EMPTY_PATH
)
908 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
910 file
= do_filp_open(fd
, name
, &open_exec_flags
);
915 * may_open() has already checked for this, so it should be
916 * impossible to trip now. But we need to be extra cautious
917 * and check again at the very end too.
920 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
) ||
921 path_noexec(&file
->f_path
)))
924 err
= deny_write_access(file
);
928 if (name
->name
[0] != '\0')
939 struct file
*open_exec(const char *name
)
941 struct filename
*filename
= getname_kernel(name
);
942 struct file
*f
= ERR_CAST(filename
);
944 if (!IS_ERR(filename
)) {
945 f
= do_open_execat(AT_FDCWD
, filename
, 0);
950 EXPORT_SYMBOL(open_exec
);
952 int kernel_read_file(struct file
*file
, void **buf
, loff_t
*size
,
953 loff_t max_size
, enum kernel_read_file_id id
)
959 if (!S_ISREG(file_inode(file
)->i_mode
) || max_size
< 0)
962 ret
= deny_write_access(file
);
966 ret
= security_kernel_read_file(file
, id
);
970 i_size
= i_size_read(file_inode(file
));
975 if (i_size
> SIZE_MAX
|| (max_size
> 0 && i_size
> max_size
)) {
980 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
)
981 *buf
= vmalloc(i_size
);
988 while (pos
< i_size
) {
989 bytes
= kernel_read(file
, *buf
+ pos
, i_size
- pos
, &pos
);
1004 ret
= security_kernel_post_read_file(file
, *buf
, i_size
, id
);
1010 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
) {
1017 allow_write_access(file
);
1020 EXPORT_SYMBOL_GPL(kernel_read_file
);
1022 int kernel_read_file_from_path(const char *path
, void **buf
, loff_t
*size
,
1023 loff_t max_size
, enum kernel_read_file_id id
)
1028 if (!path
|| !*path
)
1031 file
= filp_open(path
, O_RDONLY
, 0);
1033 return PTR_ERR(file
);
1035 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
1039 EXPORT_SYMBOL_GPL(kernel_read_file_from_path
);
1041 int kernel_read_file_from_path_initns(const char *path
, void **buf
,
1042 loff_t
*size
, loff_t max_size
,
1043 enum kernel_read_file_id id
)
1049 if (!path
|| !*path
)
1052 task_lock(&init_task
);
1053 get_fs_root(init_task
.fs
, &root
);
1054 task_unlock(&init_task
);
1056 file
= file_open_root(root
.dentry
, root
.mnt
, path
, O_RDONLY
, 0);
1059 return PTR_ERR(file
);
1061 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
1065 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns
);
1067 int kernel_read_file_from_fd(int fd
, void **buf
, loff_t
*size
, loff_t max_size
,
1068 enum kernel_read_file_id id
)
1070 struct fd f
= fdget(fd
);
1076 ret
= kernel_read_file(f
.file
, buf
, size
, max_size
, id
);
1081 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd
);
1083 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1084 defined(CONFIG_BINFMT_ELF_FDPIC)
1085 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
1087 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
1089 flush_icache_user_range(addr
, addr
+ len
);
1092 EXPORT_SYMBOL(read_code
);
1096 * Maps the mm_struct mm into the current task struct.
1097 * On success, this function returns with the mutex
1098 * exec_update_mutex locked.
1100 static int exec_mmap(struct mm_struct
*mm
)
1102 struct task_struct
*tsk
;
1103 struct mm_struct
*old_mm
, *active_mm
;
1106 /* Notify parent that we're no longer interested in the old VM */
1108 old_mm
= current
->mm
;
1109 exec_mm_release(tsk
, old_mm
);
1111 sync_mm_rss(old_mm
);
1113 ret
= mutex_lock_killable(&tsk
->signal
->exec_update_mutex
);
1119 * Make sure that if there is a core dump in progress
1120 * for the old mm, we get out and die instead of going
1121 * through with the exec. We must hold mmap_lock around
1122 * checking core_state and changing tsk->mm.
1124 mmap_read_lock(old_mm
);
1125 if (unlikely(old_mm
->core_state
)) {
1126 mmap_read_unlock(old_mm
);
1127 mutex_unlock(&tsk
->signal
->exec_update_mutex
);
1133 membarrier_exec_mmap(mm
);
1135 local_irq_disable();
1136 active_mm
= tsk
->active_mm
;
1137 tsk
->active_mm
= mm
;
1140 * This prevents preemption while active_mm is being loaded and
1141 * it and mm are being updated, which could cause problems for
1142 * lazy tlb mm refcounting when these are updated by context
1143 * switches. Not all architectures can handle irqs off over
1146 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1148 activate_mm(active_mm
, mm
);
1149 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1151 tsk
->mm
->vmacache_seqnum
= 0;
1152 vmacache_flush(tsk
);
1155 mmap_read_unlock(old_mm
);
1156 BUG_ON(active_mm
!= old_mm
);
1157 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1158 mm_update_next_owner(old_mm
);
1166 static int de_thread(struct task_struct
*tsk
)
1168 struct signal_struct
*sig
= tsk
->signal
;
1169 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1170 spinlock_t
*lock
= &oldsighand
->siglock
;
1172 if (thread_group_empty(tsk
))
1173 goto no_thread_group
;
1176 * Kill all other threads in the thread group.
1178 spin_lock_irq(lock
);
1179 if (signal_group_exit(sig
)) {
1181 * Another group action in progress, just
1182 * return so that the signal is processed.
1184 spin_unlock_irq(lock
);
1188 sig
->group_exit_task
= tsk
;
1189 sig
->notify_count
= zap_other_threads(tsk
);
1190 if (!thread_group_leader(tsk
))
1191 sig
->notify_count
--;
1193 while (sig
->notify_count
) {
1194 __set_current_state(TASK_KILLABLE
);
1195 spin_unlock_irq(lock
);
1197 if (__fatal_signal_pending(tsk
))
1199 spin_lock_irq(lock
);
1201 spin_unlock_irq(lock
);
1204 * At this point all other threads have exited, all we have to
1205 * do is to wait for the thread group leader to become inactive,
1206 * and to assume its PID:
1208 if (!thread_group_leader(tsk
)) {
1209 struct task_struct
*leader
= tsk
->group_leader
;
1212 cgroup_threadgroup_change_begin(tsk
);
1213 write_lock_irq(&tasklist_lock
);
1215 * Do this under tasklist_lock to ensure that
1216 * exit_notify() can't miss ->group_exit_task
1218 sig
->notify_count
= -1;
1219 if (likely(leader
->exit_state
))
1221 __set_current_state(TASK_KILLABLE
);
1222 write_unlock_irq(&tasklist_lock
);
1223 cgroup_threadgroup_change_end(tsk
);
1225 if (__fatal_signal_pending(tsk
))
1230 * The only record we have of the real-time age of a
1231 * process, regardless of execs it's done, is start_time.
1232 * All the past CPU time is accumulated in signal_struct
1233 * from sister threads now dead. But in this non-leader
1234 * exec, nothing survives from the original leader thread,
1235 * whose birth marks the true age of this process now.
1236 * When we take on its identity by switching to its PID, we
1237 * also take its birthdate (always earlier than our own).
1239 tsk
->start_time
= leader
->start_time
;
1240 tsk
->start_boottime
= leader
->start_boottime
;
1242 BUG_ON(!same_thread_group(leader
, tsk
));
1244 * An exec() starts a new thread group with the
1245 * TGID of the previous thread group. Rehash the
1246 * two threads with a switched PID, and release
1247 * the former thread group leader:
1250 /* Become a process group leader with the old leader's pid.
1251 * The old leader becomes a thread of the this thread group.
1253 exchange_tids(tsk
, leader
);
1254 transfer_pid(leader
, tsk
, PIDTYPE_TGID
);
1255 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1256 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1258 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1259 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1261 tsk
->group_leader
= tsk
;
1262 leader
->group_leader
= tsk
;
1264 tsk
->exit_signal
= SIGCHLD
;
1265 leader
->exit_signal
= -1;
1267 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1268 leader
->exit_state
= EXIT_DEAD
;
1271 * We are going to release_task()->ptrace_unlink() silently,
1272 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1273 * the tracer wont't block again waiting for this thread.
1275 if (unlikely(leader
->ptrace
))
1276 __wake_up_parent(leader
, leader
->parent
);
1277 write_unlock_irq(&tasklist_lock
);
1278 cgroup_threadgroup_change_end(tsk
);
1280 release_task(leader
);
1283 sig
->group_exit_task
= NULL
;
1284 sig
->notify_count
= 0;
1287 /* we have changed execution domain */
1288 tsk
->exit_signal
= SIGCHLD
;
1290 BUG_ON(!thread_group_leader(tsk
));
1294 /* protects against exit_notify() and __exit_signal() */
1295 read_lock(&tasklist_lock
);
1296 sig
->group_exit_task
= NULL
;
1297 sig
->notify_count
= 0;
1298 read_unlock(&tasklist_lock
);
1304 * This function makes sure the current process has its own signal table,
1305 * so that flush_signal_handlers can later reset the handlers without
1306 * disturbing other processes. (Other processes might share the signal
1307 * table via the CLONE_SIGHAND option to clone().)
1309 static int unshare_sighand(struct task_struct
*me
)
1311 struct sighand_struct
*oldsighand
= me
->sighand
;
1313 if (refcount_read(&oldsighand
->count
) != 1) {
1314 struct sighand_struct
*newsighand
;
1316 * This ->sighand is shared with the CLONE_SIGHAND
1317 * but not CLONE_THREAD task, switch to the new one.
1319 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1323 refcount_set(&newsighand
->count
, 1);
1324 memcpy(newsighand
->action
, oldsighand
->action
,
1325 sizeof(newsighand
->action
));
1327 write_lock_irq(&tasklist_lock
);
1328 spin_lock(&oldsighand
->siglock
);
1329 rcu_assign_pointer(me
->sighand
, newsighand
);
1330 spin_unlock(&oldsighand
->siglock
);
1331 write_unlock_irq(&tasklist_lock
);
1333 __cleanup_sighand(oldsighand
);
1338 char *__get_task_comm(char *buf
, size_t buf_size
, struct task_struct
*tsk
)
1341 strncpy(buf
, tsk
->comm
, buf_size
);
1345 EXPORT_SYMBOL_GPL(__get_task_comm
);
1348 * These functions flushes out all traces of the currently running executable
1349 * so that a new one can be started
1352 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1355 trace_task_rename(tsk
, buf
);
1356 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1358 perf_event_comm(tsk
, exec
);
1362 * Calling this is the point of no return. None of the failures will be
1363 * seen by userspace since either the process is already taking a fatal
1364 * signal (via de_thread() or coredump), or will have SEGV raised
1365 * (after exec_mmap()) by search_binary_handler (see below).
1367 int begin_new_exec(struct linux_binprm
* bprm
)
1369 struct task_struct
*me
= current
;
1372 /* Once we are committed compute the creds */
1373 retval
= bprm_creds_from_file(bprm
);
1378 * Ensure all future errors are fatal.
1380 bprm
->point_of_no_return
= true;
1383 * Make this the only thread in the thread group.
1385 retval
= de_thread(me
);
1390 * Must be called _before_ exec_mmap() as bprm->mm is
1391 * not visibile until then. This also enables the update
1394 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1396 /* If the binary is not readable then enforce mm->dumpable=0 */
1397 would_dump(bprm
, bprm
->file
);
1398 if (bprm
->have_execfd
)
1399 would_dump(bprm
, bprm
->executable
);
1402 * Release all of the old mmap stuff
1404 acct_arg_size(bprm
, 0);
1405 retval
= exec_mmap(bprm
->mm
);
1411 #ifdef CONFIG_POSIX_TIMERS
1412 exit_itimers(me
->signal
);
1413 flush_itimer_signals();
1417 * Make the signal table private.
1419 retval
= unshare_sighand(me
);
1424 * Ensure that the uaccess routines can actually operate on userspace
1427 force_uaccess_begin();
1429 me
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1430 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1432 me
->personality
&= ~bprm
->per_clear
;
1435 * We have to apply CLOEXEC before we change whether the process is
1436 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1437 * trying to access the should-be-closed file descriptors of a process
1438 * undergoing exec(2).
1440 do_close_on_exec(me
->files
);
1442 if (bprm
->secureexec
) {
1443 /* Make sure parent cannot signal privileged process. */
1444 me
->pdeath_signal
= 0;
1447 * For secureexec, reset the stack limit to sane default to
1448 * avoid bad behavior from the prior rlimits. This has to
1449 * happen before arch_pick_mmap_layout(), which examines
1450 * RLIMIT_STACK, but after the point of no return to avoid
1451 * needing to clean up the change on failure.
1453 if (bprm
->rlim_stack
.rlim_cur
> _STK_LIM
)
1454 bprm
->rlim_stack
.rlim_cur
= _STK_LIM
;
1457 me
->sas_ss_sp
= me
->sas_ss_size
= 0;
1460 * Figure out dumpability. Note that this checking only of current
1461 * is wrong, but userspace depends on it. This should be testing
1462 * bprm->secureexec instead.
1464 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
||
1465 !(uid_eq(current_euid(), current_uid()) &&
1466 gid_eq(current_egid(), current_gid())))
1467 set_dumpable(current
->mm
, suid_dumpable
);
1469 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1472 __set_task_comm(me
, kbasename(bprm
->filename
), true);
1474 /* An exec changes our domain. We are no longer part of the thread
1476 WRITE_ONCE(me
->self_exec_id
, me
->self_exec_id
+ 1);
1477 flush_signal_handlers(me
, 0);
1480 * install the new credentials for this executable
1482 security_bprm_committing_creds(bprm
);
1484 commit_creds(bprm
->cred
);
1488 * Disable monitoring for regular users
1489 * when executing setuid binaries. Must
1490 * wait until new credentials are committed
1491 * by commit_creds() above
1493 if (get_dumpable(me
->mm
) != SUID_DUMP_USER
)
1494 perf_event_exit_task(me
);
1496 * cred_guard_mutex must be held at least to this point to prevent
1497 * ptrace_attach() from altering our determination of the task's
1498 * credentials; any time after this it may be unlocked.
1500 security_bprm_committed_creds(bprm
);
1502 /* Pass the opened binary to the interpreter. */
1503 if (bprm
->have_execfd
) {
1504 retval
= get_unused_fd_flags(0);
1507 fd_install(retval
, bprm
->executable
);
1508 bprm
->executable
= NULL
;
1509 bprm
->execfd
= retval
;
1514 mutex_unlock(&me
->signal
->exec_update_mutex
);
1518 EXPORT_SYMBOL(begin_new_exec
);
1520 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1522 struct inode
*inode
= file_inode(file
);
1523 if (inode_permission(inode
, MAY_READ
) < 0) {
1524 struct user_namespace
*old
, *user_ns
;
1525 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1527 /* Ensure mm->user_ns contains the executable */
1528 user_ns
= old
= bprm
->mm
->user_ns
;
1529 while ((user_ns
!= &init_user_ns
) &&
1530 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1531 user_ns
= user_ns
->parent
;
1533 if (old
!= user_ns
) {
1534 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1539 EXPORT_SYMBOL(would_dump
);
1541 void setup_new_exec(struct linux_binprm
* bprm
)
1543 /* Setup things that can depend upon the personality */
1544 struct task_struct
*me
= current
;
1546 arch_pick_mmap_layout(me
->mm
, &bprm
->rlim_stack
);
1548 arch_setup_new_exec();
1550 /* Set the new mm task size. We have to do that late because it may
1551 * depend on TIF_32BIT which is only updated in flush_thread() on
1552 * some architectures like powerpc
1554 me
->mm
->task_size
= TASK_SIZE
;
1555 mutex_unlock(&me
->signal
->exec_update_mutex
);
1556 mutex_unlock(&me
->signal
->cred_guard_mutex
);
1558 EXPORT_SYMBOL(setup_new_exec
);
1560 /* Runs immediately before start_thread() takes over. */
1561 void finalize_exec(struct linux_binprm
*bprm
)
1563 /* Store any stack rlimit changes before starting thread. */
1564 task_lock(current
->group_leader
);
1565 current
->signal
->rlim
[RLIMIT_STACK
] = bprm
->rlim_stack
;
1566 task_unlock(current
->group_leader
);
1568 EXPORT_SYMBOL(finalize_exec
);
1571 * Prepare credentials and lock ->cred_guard_mutex.
1572 * setup_new_exec() commits the new creds and drops the lock.
1573 * Or, if exec fails before, free_bprm() should release ->cred and
1576 static int prepare_bprm_creds(struct linux_binprm
*bprm
)
1578 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1579 return -ERESTARTNOINTR
;
1581 bprm
->cred
= prepare_exec_creds();
1582 if (likely(bprm
->cred
))
1585 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1589 static void free_bprm(struct linux_binprm
*bprm
)
1592 acct_arg_size(bprm
, 0);
1595 free_arg_pages(bprm
);
1597 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1598 abort_creds(bprm
->cred
);
1601 allow_write_access(bprm
->file
);
1604 if (bprm
->executable
)
1605 fput(bprm
->executable
);
1606 /* If a binfmt changed the interp, free it. */
1607 if (bprm
->interp
!= bprm
->filename
)
1608 kfree(bprm
->interp
);
1609 kfree(bprm
->fdpath
);
1613 static struct linux_binprm
*alloc_bprm(int fd
, struct filename
*filename
)
1615 struct linux_binprm
*bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1616 int retval
= -ENOMEM
;
1620 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1621 bprm
->filename
= filename
->name
;
1623 if (filename
->name
[0] == '\0')
1624 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d", fd
);
1626 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d/%s",
1627 fd
, filename
->name
);
1631 bprm
->filename
= bprm
->fdpath
;
1633 bprm
->interp
= bprm
->filename
;
1635 retval
= bprm_mm_init(bprm
);
1643 return ERR_PTR(retval
);
1646 int bprm_change_interp(const char *interp
, struct linux_binprm
*bprm
)
1648 /* If a binfmt changed the interp, free it first. */
1649 if (bprm
->interp
!= bprm
->filename
)
1650 kfree(bprm
->interp
);
1651 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1656 EXPORT_SYMBOL(bprm_change_interp
);
1659 * determine how safe it is to execute the proposed program
1660 * - the caller must hold ->cred_guard_mutex to protect against
1661 * PTRACE_ATTACH or seccomp thread-sync
1663 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1665 struct task_struct
*p
= current
, *t
;
1669 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1672 * This isn't strictly necessary, but it makes it harder for LSMs to
1675 if (task_no_new_privs(current
))
1676 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1680 spin_lock(&p
->fs
->lock
);
1682 while_each_thread(p
, t
) {
1688 if (p
->fs
->users
> n_fs
)
1689 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1692 spin_unlock(&p
->fs
->lock
);
1695 static void bprm_fill_uid(struct linux_binprm
*bprm
, struct file
*file
)
1697 /* Handle suid and sgid on files */
1698 struct inode
*inode
;
1703 if (!mnt_may_suid(file
->f_path
.mnt
))
1706 if (task_no_new_privs(current
))
1709 inode
= file
->f_path
.dentry
->d_inode
;
1710 mode
= READ_ONCE(inode
->i_mode
);
1711 if (!(mode
& (S_ISUID
|S_ISGID
)))
1714 /* Be careful if suid/sgid is set */
1717 /* reload atomically mode/uid/gid now that lock held */
1718 mode
= inode
->i_mode
;
1721 inode_unlock(inode
);
1723 /* We ignore suid/sgid if there are no mappings for them in the ns */
1724 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1725 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1728 if (mode
& S_ISUID
) {
1729 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1730 bprm
->cred
->euid
= uid
;
1733 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1734 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1735 bprm
->cred
->egid
= gid
;
1740 * Compute brpm->cred based upon the final binary.
1742 static int bprm_creds_from_file(struct linux_binprm
*bprm
)
1744 /* Compute creds based on which file? */
1745 struct file
*file
= bprm
->execfd_creds
? bprm
->executable
: bprm
->file
;
1747 bprm_fill_uid(bprm
, file
);
1748 return security_bprm_creds_from_file(bprm
, file
);
1752 * Fill the binprm structure from the inode.
1753 * Read the first BINPRM_BUF_SIZE bytes
1755 * This may be called multiple times for binary chains (scripts for example).
1757 static int prepare_binprm(struct linux_binprm
*bprm
)
1761 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1762 return kernel_read(bprm
->file
, bprm
->buf
, BINPRM_BUF_SIZE
, &pos
);
1766 * Arguments are '\0' separated strings found at the location bprm->p
1767 * points to; chop off the first by relocating brpm->p to right after
1768 * the first '\0' encountered.
1770 int remove_arg_zero(struct linux_binprm
*bprm
)
1773 unsigned long offset
;
1781 offset
= bprm
->p
& ~PAGE_MASK
;
1782 page
= get_arg_page(bprm
, bprm
->p
, 0);
1787 kaddr
= kmap_atomic(page
);
1789 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1790 offset
++, bprm
->p
++)
1793 kunmap_atomic(kaddr
);
1795 } while (offset
== PAGE_SIZE
);
1804 EXPORT_SYMBOL(remove_arg_zero
);
1806 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1808 * cycle the list of binary formats handler, until one recognizes the image
1810 static int search_binary_handler(struct linux_binprm
*bprm
)
1812 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1813 struct linux_binfmt
*fmt
;
1816 retval
= prepare_binprm(bprm
);
1820 retval
= security_bprm_check(bprm
);
1826 read_lock(&binfmt_lock
);
1827 list_for_each_entry(fmt
, &formats
, lh
) {
1828 if (!try_module_get(fmt
->module
))
1830 read_unlock(&binfmt_lock
);
1832 retval
= fmt
->load_binary(bprm
);
1834 read_lock(&binfmt_lock
);
1836 if (bprm
->point_of_no_return
|| (retval
!= -ENOEXEC
)) {
1837 read_unlock(&binfmt_lock
);
1841 read_unlock(&binfmt_lock
);
1844 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1845 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1847 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1856 static int exec_binprm(struct linux_binprm
*bprm
)
1858 pid_t old_pid
, old_vpid
;
1861 /* Need to fetch pid before load_binary changes it */
1862 old_pid
= current
->pid
;
1864 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1867 /* This allows 4 levels of binfmt rewrites before failing hard. */
1868 for (depth
= 0;; depth
++) {
1873 ret
= search_binary_handler(bprm
);
1876 if (!bprm
->interpreter
)
1880 bprm
->file
= bprm
->interpreter
;
1881 bprm
->interpreter
= NULL
;
1883 allow_write_access(exec
);
1884 if (unlikely(bprm
->have_execfd
)) {
1885 if (bprm
->executable
) {
1889 bprm
->executable
= exec
;
1895 trace_sched_process_exec(current
, old_pid
, bprm
);
1896 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1897 proc_exec_connector(current
);
1902 * sys_execve() executes a new program.
1904 static int bprm_execve(struct linux_binprm
*bprm
,
1905 int fd
, struct filename
*filename
, int flags
)
1908 struct files_struct
*displaced
;
1911 retval
= unshare_files(&displaced
);
1915 retval
= prepare_bprm_creds(bprm
);
1919 check_unsafe_exec(bprm
);
1920 current
->in_execve
= 1;
1922 file
= do_open_execat(fd
, filename
, flags
);
1923 retval
= PTR_ERR(file
);
1931 * Record that a name derived from an O_CLOEXEC fd will be
1932 * inaccessible after exec. Relies on having exclusive access to
1933 * current->files (due to unshare_files above).
1936 close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1937 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1939 /* Set the unchanging part of bprm->cred */
1940 retval
= security_bprm_creds_for_exec(bprm
);
1944 retval
= exec_binprm(bprm
);
1948 /* execve succeeded */
1949 current
->fs
->in_exec
= 0;
1950 current
->in_execve
= 0;
1951 rseq_execve(current
);
1952 acct_update_integrals(current
);
1953 task_numa_free(current
, false);
1955 put_files_struct(displaced
);
1960 * If past the point of no return ensure the the code never
1961 * returns to the userspace process. Use an existing fatal
1962 * signal if present otherwise terminate the process with
1965 if (bprm
->point_of_no_return
&& !fatal_signal_pending(current
))
1966 force_sigsegv(SIGSEGV
);
1969 current
->fs
->in_exec
= 0;
1970 current
->in_execve
= 0;
1974 reset_files_struct(displaced
);
1979 static int do_execveat_common(int fd
, struct filename
*filename
,
1980 struct user_arg_ptr argv
,
1981 struct user_arg_ptr envp
,
1984 struct linux_binprm
*bprm
;
1987 if (IS_ERR(filename
))
1988 return PTR_ERR(filename
);
1991 * We move the actual failure in case of RLIMIT_NPROC excess from
1992 * set*uid() to execve() because too many poorly written programs
1993 * don't check setuid() return code. Here we additionally recheck
1994 * whether NPROC limit is still exceeded.
1996 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1997 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
2002 /* We're below the limit (still or again), so we don't want to make
2003 * further execve() calls fail. */
2004 current
->flags
&= ~PF_NPROC_EXCEEDED
;
2006 bprm
= alloc_bprm(fd
, filename
);
2008 retval
= PTR_ERR(bprm
);
2012 retval
= count(argv
, MAX_ARG_STRINGS
);
2015 bprm
->argc
= retval
;
2017 retval
= count(envp
, MAX_ARG_STRINGS
);
2020 bprm
->envc
= retval
;
2022 retval
= bprm_stack_limits(bprm
);
2026 retval
= copy_string_kernel(bprm
->filename
, bprm
);
2029 bprm
->exec
= bprm
->p
;
2031 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
2035 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
2039 retval
= bprm_execve(bprm
, fd
, filename
, flags
);
2048 int kernel_execve(const char *kernel_filename
,
2049 const char *const *argv
, const char *const *envp
)
2051 struct filename
*filename
;
2052 struct linux_binprm
*bprm
;
2056 filename
= getname_kernel(kernel_filename
);
2057 if (IS_ERR(filename
))
2058 return PTR_ERR(filename
);
2060 bprm
= alloc_bprm(fd
, filename
);
2062 retval
= PTR_ERR(bprm
);
2066 retval
= count_strings_kernel(argv
);
2069 bprm
->argc
= retval
;
2071 retval
= count_strings_kernel(envp
);
2074 bprm
->envc
= retval
;
2076 retval
= bprm_stack_limits(bprm
);
2080 retval
= copy_string_kernel(bprm
->filename
, bprm
);
2083 bprm
->exec
= bprm
->p
;
2085 retval
= copy_strings_kernel(bprm
->envc
, envp
, bprm
);
2089 retval
= copy_strings_kernel(bprm
->argc
, argv
, bprm
);
2093 retval
= bprm_execve(bprm
, fd
, filename
, 0);
2101 static int do_execve(struct filename
*filename
,
2102 const char __user
*const __user
*__argv
,
2103 const char __user
*const __user
*__envp
)
2105 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
2106 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
2107 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
2110 static int do_execveat(int fd
, struct filename
*filename
,
2111 const char __user
*const __user
*__argv
,
2112 const char __user
*const __user
*__envp
,
2115 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
2116 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
2118 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
2121 #ifdef CONFIG_COMPAT
2122 static int compat_do_execve(struct filename
*filename
,
2123 const compat_uptr_t __user
*__argv
,
2124 const compat_uptr_t __user
*__envp
)
2126 struct user_arg_ptr argv
= {
2128 .ptr
.compat
= __argv
,
2130 struct user_arg_ptr envp
= {
2132 .ptr
.compat
= __envp
,
2134 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
2137 static int compat_do_execveat(int fd
, struct filename
*filename
,
2138 const compat_uptr_t __user
*__argv
,
2139 const compat_uptr_t __user
*__envp
,
2142 struct user_arg_ptr argv
= {
2144 .ptr
.compat
= __argv
,
2146 struct user_arg_ptr envp
= {
2148 .ptr
.compat
= __envp
,
2150 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
2154 void set_binfmt(struct linux_binfmt
*new)
2156 struct mm_struct
*mm
= current
->mm
;
2159 module_put(mm
->binfmt
->module
);
2163 __module_get(new->module
);
2165 EXPORT_SYMBOL(set_binfmt
);
2168 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2170 void set_dumpable(struct mm_struct
*mm
, int value
)
2172 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
2175 set_mask_bits(&mm
->flags
, MMF_DUMPABLE_MASK
, value
);
2178 SYSCALL_DEFINE3(execve
,
2179 const char __user
*, filename
,
2180 const char __user
*const __user
*, argv
,
2181 const char __user
*const __user
*, envp
)
2183 return do_execve(getname(filename
), argv
, envp
);
2186 SYSCALL_DEFINE5(execveat
,
2187 int, fd
, const char __user
*, filename
,
2188 const char __user
*const __user
*, argv
,
2189 const char __user
*const __user
*, envp
,
2192 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
2194 return do_execveat(fd
,
2195 getname_flags(filename
, lookup_flags
, NULL
),
2199 #ifdef CONFIG_COMPAT
2200 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
2201 const compat_uptr_t __user
*, argv
,
2202 const compat_uptr_t __user
*, envp
)
2204 return compat_do_execve(getname(filename
), argv
, envp
);
2207 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
2208 const char __user
*, filename
,
2209 const compat_uptr_t __user
*, argv
,
2210 const compat_uptr_t __user
*, envp
,
2213 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
2215 return compat_do_execveat(fd
,
2216 getname_flags(filename
, lookup_flags
, NULL
),