]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/exec.c
mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[mirror_ubuntu-jammy-kernel.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 static int bprm_creds_from_file(struct linux_binprm *bprm);
76
77 int suid_dumpable = 0;
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 BUG_ON(!fmt);
85 if (WARN_ON(!fmt->load_binary))
86 return;
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117 * Note that a shared library must be both readable and executable due to
118 * security reasons.
119 *
120 * Also note that we take the address to load from from the file itself.
121 */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 struct linux_binfmt *fmt;
125 struct file *file;
126 struct filename *tmp = getname(library);
127 int error = PTR_ERR(tmp);
128 static const struct open_flags uselib_flags = {
129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 .acc_mode = MAY_READ | MAY_EXEC,
131 .intent = LOOKUP_OPEN,
132 .lookup_flags = LOOKUP_FOLLOW,
133 };
134
135 if (IS_ERR(tmp))
136 goto out;
137
138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 putname(tmp);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 /*
145 * may_open() has already checked for this, so it should be
146 * impossible to trip now. But we need to be extra cautious
147 * and check again at the very end too.
148 */
149 error = -EACCES;
150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 path_noexec(&file->f_path)))
152 goto exit;
153
154 fsnotify_open(file);
155
156 error = -ENOEXEC;
157
158 read_lock(&binfmt_lock);
159 list_for_each_entry(fmt, &formats, lh) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
170 }
171 read_unlock(&binfmt_lock);
172 exit:
173 fput(file);
174 out:
175 return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178
179 #ifdef CONFIG_MMU
180 /*
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
185 */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 struct mm_struct *mm = current->mm;
189 long diff = (long)(pages - bprm->vma_pages);
190
191 if (!mm || !diff)
192 return;
193
194 bprm->vma_pages = pages;
195 add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 int write)
200 {
201 struct page *page;
202 int ret;
203 unsigned int gup_flags = FOLL_FORCE;
204
205 #ifdef CONFIG_STACK_GROWSUP
206 if (write) {
207 ret = expand_downwards(bprm->vma, pos);
208 if (ret < 0)
209 return NULL;
210 }
211 #endif
212
213 if (write)
214 gup_flags |= FOLL_WRITE;
215
216 /*
217 * We are doing an exec(). 'current' is the process
218 * doing the exec and bprm->mm is the new process's mm.
219 */
220 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
221 &page, NULL, NULL);
222 if (ret <= 0)
223 return NULL;
224
225 if (write)
226 acct_arg_size(bprm, vma_pages(bprm->vma));
227
228 return page;
229 }
230
231 static void put_arg_page(struct page *page)
232 {
233 put_page(page);
234 }
235
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 struct page *page)
242 {
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 int err;
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
251
252 bprm->vma = vma = vm_area_alloc(mm);
253 if (!vma)
254 return -ENOMEM;
255 vma_set_anonymous(vma);
256
257 if (mmap_write_lock_killable(mm)) {
258 err = -EINTR;
259 goto err_free;
260 }
261
262 /*
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
266 * configured yet.
267 */
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273
274 err = insert_vm_struct(mm, vma);
275 if (err)
276 goto err;
277
278 mm->stack_vm = mm->total_vm = 1;
279 mmap_write_unlock(mm);
280 bprm->p = vma->vm_end - sizeof(void *);
281 return 0;
282 err:
283 mmap_write_unlock(mm);
284 err_free:
285 bprm->vma = NULL;
286 vm_area_free(vma);
287 return err;
288 }
289
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292 return len <= MAX_ARG_STRLEN;
293 }
294
295 #else
296
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 int write)
303 {
304 struct page *page;
305
306 page = bprm->page[pos / PAGE_SIZE];
307 if (!page && write) {
308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 if (!page)
310 return NULL;
311 bprm->page[pos / PAGE_SIZE] = page;
312 }
313
314 return page;
315 }
316
317 static void put_arg_page(struct page *page)
318 {
319 }
320
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323 if (bprm->page[i]) {
324 __free_page(bprm->page[i]);
325 bprm->page[i] = NULL;
326 }
327 }
328
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331 int i;
332
333 for (i = 0; i < MAX_ARG_PAGES; i++)
334 free_arg_page(bprm, i);
335 }
336
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 struct page *page)
339 {
340 }
341
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 return 0;
346 }
347
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350 return len <= bprm->p;
351 }
352
353 #endif /* CONFIG_MMU */
354
355 /*
356 * Create a new mm_struct and populate it with a temporary stack
357 * vm_area_struct. We don't have enough context at this point to set the stack
358 * flags, permissions, and offset, so we use temporary values. We'll update
359 * them later in setup_arg_pages().
360 */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363 int err;
364 struct mm_struct *mm = NULL;
365
366 bprm->mm = mm = mm_alloc();
367 err = -ENOMEM;
368 if (!mm)
369 goto err;
370
371 /* Save current stack limit for all calculations made during exec. */
372 task_lock(current->group_leader);
373 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
374 task_unlock(current->group_leader);
375
376 err = __bprm_mm_init(bprm);
377 if (err)
378 goto err;
379
380 return 0;
381
382 err:
383 if (mm) {
384 bprm->mm = NULL;
385 mmdrop(mm);
386 }
387
388 return err;
389 }
390
391 struct user_arg_ptr {
392 #ifdef CONFIG_COMPAT
393 bool is_compat;
394 #endif
395 union {
396 const char __user *const __user *native;
397 #ifdef CONFIG_COMPAT
398 const compat_uptr_t __user *compat;
399 #endif
400 } ptr;
401 };
402
403 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
404 {
405 const char __user *native;
406
407 #ifdef CONFIG_COMPAT
408 if (unlikely(argv.is_compat)) {
409 compat_uptr_t compat;
410
411 if (get_user(compat, argv.ptr.compat + nr))
412 return ERR_PTR(-EFAULT);
413
414 return compat_ptr(compat);
415 }
416 #endif
417
418 if (get_user(native, argv.ptr.native + nr))
419 return ERR_PTR(-EFAULT);
420
421 return native;
422 }
423
424 /*
425 * count() counts the number of strings in array ARGV.
426 */
427 static int count(struct user_arg_ptr argv, int max)
428 {
429 int i = 0;
430
431 if (argv.ptr.native != NULL) {
432 for (;;) {
433 const char __user *p = get_user_arg_ptr(argv, i);
434
435 if (!p)
436 break;
437
438 if (IS_ERR(p))
439 return -EFAULT;
440
441 if (i >= max)
442 return -E2BIG;
443 ++i;
444
445 if (fatal_signal_pending(current))
446 return -ERESTARTNOHAND;
447 cond_resched();
448 }
449 }
450 return i;
451 }
452
453 static int count_strings_kernel(const char *const *argv)
454 {
455 int i;
456
457 if (!argv)
458 return 0;
459
460 for (i = 0; argv[i]; ++i) {
461 if (i >= MAX_ARG_STRINGS)
462 return -E2BIG;
463 if (fatal_signal_pending(current))
464 return -ERESTARTNOHAND;
465 cond_resched();
466 }
467 return i;
468 }
469
470 static int bprm_stack_limits(struct linux_binprm *bprm)
471 {
472 unsigned long limit, ptr_size;
473
474 /*
475 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
476 * (whichever is smaller) for the argv+env strings.
477 * This ensures that:
478 * - the remaining binfmt code will not run out of stack space,
479 * - the program will have a reasonable amount of stack left
480 * to work from.
481 */
482 limit = _STK_LIM / 4 * 3;
483 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
484 /*
485 * We've historically supported up to 32 pages (ARG_MAX)
486 * of argument strings even with small stacks
487 */
488 limit = max_t(unsigned long, limit, ARG_MAX);
489 /*
490 * We must account for the size of all the argv and envp pointers to
491 * the argv and envp strings, since they will also take up space in
492 * the stack. They aren't stored until much later when we can't
493 * signal to the parent that the child has run out of stack space.
494 * Instead, calculate it here so it's possible to fail gracefully.
495 */
496 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
497 if (limit <= ptr_size)
498 return -E2BIG;
499 limit -= ptr_size;
500
501 bprm->argmin = bprm->p - limit;
502 return 0;
503 }
504
505 /*
506 * 'copy_strings()' copies argument/environment strings from the old
507 * processes's memory to the new process's stack. The call to get_user_pages()
508 * ensures the destination page is created and not swapped out.
509 */
510 static int copy_strings(int argc, struct user_arg_ptr argv,
511 struct linux_binprm *bprm)
512 {
513 struct page *kmapped_page = NULL;
514 char *kaddr = NULL;
515 unsigned long kpos = 0;
516 int ret;
517
518 while (argc-- > 0) {
519 const char __user *str;
520 int len;
521 unsigned long pos;
522
523 ret = -EFAULT;
524 str = get_user_arg_ptr(argv, argc);
525 if (IS_ERR(str))
526 goto out;
527
528 len = strnlen_user(str, MAX_ARG_STRLEN);
529 if (!len)
530 goto out;
531
532 ret = -E2BIG;
533 if (!valid_arg_len(bprm, len))
534 goto out;
535
536 /* We're going to work our way backwords. */
537 pos = bprm->p;
538 str += len;
539 bprm->p -= len;
540 #ifdef CONFIG_MMU
541 if (bprm->p < bprm->argmin)
542 goto out;
543 #endif
544
545 while (len > 0) {
546 int offset, bytes_to_copy;
547
548 if (fatal_signal_pending(current)) {
549 ret = -ERESTARTNOHAND;
550 goto out;
551 }
552 cond_resched();
553
554 offset = pos % PAGE_SIZE;
555 if (offset == 0)
556 offset = PAGE_SIZE;
557
558 bytes_to_copy = offset;
559 if (bytes_to_copy > len)
560 bytes_to_copy = len;
561
562 offset -= bytes_to_copy;
563 pos -= bytes_to_copy;
564 str -= bytes_to_copy;
565 len -= bytes_to_copy;
566
567 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
568 struct page *page;
569
570 page = get_arg_page(bprm, pos, 1);
571 if (!page) {
572 ret = -E2BIG;
573 goto out;
574 }
575
576 if (kmapped_page) {
577 flush_kernel_dcache_page(kmapped_page);
578 kunmap(kmapped_page);
579 put_arg_page(kmapped_page);
580 }
581 kmapped_page = page;
582 kaddr = kmap(kmapped_page);
583 kpos = pos & PAGE_MASK;
584 flush_arg_page(bprm, kpos, kmapped_page);
585 }
586 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
587 ret = -EFAULT;
588 goto out;
589 }
590 }
591 }
592 ret = 0;
593 out:
594 if (kmapped_page) {
595 flush_kernel_dcache_page(kmapped_page);
596 kunmap(kmapped_page);
597 put_arg_page(kmapped_page);
598 }
599 return ret;
600 }
601
602 /*
603 * Copy and argument/environment string from the kernel to the processes stack.
604 */
605 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
606 {
607 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
608 unsigned long pos = bprm->p;
609
610 if (len == 0)
611 return -EFAULT;
612 if (!valid_arg_len(bprm, len))
613 return -E2BIG;
614
615 /* We're going to work our way backwards. */
616 arg += len;
617 bprm->p -= len;
618 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
619 return -E2BIG;
620
621 while (len > 0) {
622 unsigned int bytes_to_copy = min_t(unsigned int, len,
623 min_not_zero(offset_in_page(pos), PAGE_SIZE));
624 struct page *page;
625 char *kaddr;
626
627 pos -= bytes_to_copy;
628 arg -= bytes_to_copy;
629 len -= bytes_to_copy;
630
631 page = get_arg_page(bprm, pos, 1);
632 if (!page)
633 return -E2BIG;
634 kaddr = kmap_atomic(page);
635 flush_arg_page(bprm, pos & PAGE_MASK, page);
636 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
637 flush_kernel_dcache_page(page);
638 kunmap_atomic(kaddr);
639 put_arg_page(page);
640 }
641
642 return 0;
643 }
644 EXPORT_SYMBOL(copy_string_kernel);
645
646 static int copy_strings_kernel(int argc, const char *const *argv,
647 struct linux_binprm *bprm)
648 {
649 while (argc-- > 0) {
650 int ret = copy_string_kernel(argv[argc], bprm);
651 if (ret < 0)
652 return ret;
653 if (fatal_signal_pending(current))
654 return -ERESTARTNOHAND;
655 cond_resched();
656 }
657 return 0;
658 }
659
660 #ifdef CONFIG_MMU
661
662 /*
663 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
664 * the binfmt code determines where the new stack should reside, we shift it to
665 * its final location. The process proceeds as follows:
666 *
667 * 1) Use shift to calculate the new vma endpoints.
668 * 2) Extend vma to cover both the old and new ranges. This ensures the
669 * arguments passed to subsequent functions are consistent.
670 * 3) Move vma's page tables to the new range.
671 * 4) Free up any cleared pgd range.
672 * 5) Shrink the vma to cover only the new range.
673 */
674 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
675 {
676 struct mm_struct *mm = vma->vm_mm;
677 unsigned long old_start = vma->vm_start;
678 unsigned long old_end = vma->vm_end;
679 unsigned long length = old_end - old_start;
680 unsigned long new_start = old_start - shift;
681 unsigned long new_end = old_end - shift;
682 struct mmu_gather tlb;
683
684 BUG_ON(new_start > new_end);
685
686 /*
687 * ensure there are no vmas between where we want to go
688 * and where we are
689 */
690 if (vma != find_vma(mm, new_start))
691 return -EFAULT;
692
693 /*
694 * cover the whole range: [new_start, old_end)
695 */
696 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
697 return -ENOMEM;
698
699 /*
700 * move the page tables downwards, on failure we rely on
701 * process cleanup to remove whatever mess we made.
702 */
703 if (length != move_page_tables(vma, old_start,
704 vma, new_start, length, false))
705 return -ENOMEM;
706
707 lru_add_drain();
708 tlb_gather_mmu(&tlb, mm, old_start, old_end);
709 if (new_end > old_start) {
710 /*
711 * when the old and new regions overlap clear from new_end.
712 */
713 free_pgd_range(&tlb, new_end, old_end, new_end,
714 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
715 } else {
716 /*
717 * otherwise, clean from old_start; this is done to not touch
718 * the address space in [new_end, old_start) some architectures
719 * have constraints on va-space that make this illegal (IA64) -
720 * for the others its just a little faster.
721 */
722 free_pgd_range(&tlb, old_start, old_end, new_end,
723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
724 }
725 tlb_finish_mmu(&tlb, old_start, old_end);
726
727 /*
728 * Shrink the vma to just the new range. Always succeeds.
729 */
730 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
731
732 return 0;
733 }
734
735 /*
736 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
737 * the stack is optionally relocated, and some extra space is added.
738 */
739 int setup_arg_pages(struct linux_binprm *bprm,
740 unsigned long stack_top,
741 int executable_stack)
742 {
743 unsigned long ret;
744 unsigned long stack_shift;
745 struct mm_struct *mm = current->mm;
746 struct vm_area_struct *vma = bprm->vma;
747 struct vm_area_struct *prev = NULL;
748 unsigned long vm_flags;
749 unsigned long stack_base;
750 unsigned long stack_size;
751 unsigned long stack_expand;
752 unsigned long rlim_stack;
753
754 #ifdef CONFIG_STACK_GROWSUP
755 /* Limit stack size */
756 stack_base = bprm->rlim_stack.rlim_max;
757 if (stack_base > STACK_SIZE_MAX)
758 stack_base = STACK_SIZE_MAX;
759
760 /* Add space for stack randomization. */
761 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
762
763 /* Make sure we didn't let the argument array grow too large. */
764 if (vma->vm_end - vma->vm_start > stack_base)
765 return -ENOMEM;
766
767 stack_base = PAGE_ALIGN(stack_top - stack_base);
768
769 stack_shift = vma->vm_start - stack_base;
770 mm->arg_start = bprm->p - stack_shift;
771 bprm->p = vma->vm_end - stack_shift;
772 #else
773 stack_top = arch_align_stack(stack_top);
774 stack_top = PAGE_ALIGN(stack_top);
775
776 if (unlikely(stack_top < mmap_min_addr) ||
777 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
778 return -ENOMEM;
779
780 stack_shift = vma->vm_end - stack_top;
781
782 bprm->p -= stack_shift;
783 mm->arg_start = bprm->p;
784 #endif
785
786 if (bprm->loader)
787 bprm->loader -= stack_shift;
788 bprm->exec -= stack_shift;
789
790 if (mmap_write_lock_killable(mm))
791 return -EINTR;
792
793 vm_flags = VM_STACK_FLAGS;
794
795 /*
796 * Adjust stack execute permissions; explicitly enable for
797 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
798 * (arch default) otherwise.
799 */
800 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
801 vm_flags |= VM_EXEC;
802 else if (executable_stack == EXSTACK_DISABLE_X)
803 vm_flags &= ~VM_EXEC;
804 vm_flags |= mm->def_flags;
805 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
806
807 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
808 vm_flags);
809 if (ret)
810 goto out_unlock;
811 BUG_ON(prev != vma);
812
813 if (unlikely(vm_flags & VM_EXEC)) {
814 pr_warn_once("process '%pD4' started with executable stack\n",
815 bprm->file);
816 }
817
818 /* Move stack pages down in memory. */
819 if (stack_shift) {
820 ret = shift_arg_pages(vma, stack_shift);
821 if (ret)
822 goto out_unlock;
823 }
824
825 /* mprotect_fixup is overkill to remove the temporary stack flags */
826 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
827
828 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
829 stack_size = vma->vm_end - vma->vm_start;
830 /*
831 * Align this down to a page boundary as expand_stack
832 * will align it up.
833 */
834 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
835 #ifdef CONFIG_STACK_GROWSUP
836 if (stack_size + stack_expand > rlim_stack)
837 stack_base = vma->vm_start + rlim_stack;
838 else
839 stack_base = vma->vm_end + stack_expand;
840 #else
841 if (stack_size + stack_expand > rlim_stack)
842 stack_base = vma->vm_end - rlim_stack;
843 else
844 stack_base = vma->vm_start - stack_expand;
845 #endif
846 current->mm->start_stack = bprm->p;
847 ret = expand_stack(vma, stack_base);
848 if (ret)
849 ret = -EFAULT;
850
851 out_unlock:
852 mmap_write_unlock(mm);
853 return ret;
854 }
855 EXPORT_SYMBOL(setup_arg_pages);
856
857 #else
858
859 /*
860 * Transfer the program arguments and environment from the holding pages
861 * onto the stack. The provided stack pointer is adjusted accordingly.
862 */
863 int transfer_args_to_stack(struct linux_binprm *bprm,
864 unsigned long *sp_location)
865 {
866 unsigned long index, stop, sp;
867 int ret = 0;
868
869 stop = bprm->p >> PAGE_SHIFT;
870 sp = *sp_location;
871
872 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
873 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
874 char *src = kmap(bprm->page[index]) + offset;
875 sp -= PAGE_SIZE - offset;
876 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
877 ret = -EFAULT;
878 kunmap(bprm->page[index]);
879 if (ret)
880 goto out;
881 }
882
883 *sp_location = sp;
884
885 out:
886 return ret;
887 }
888 EXPORT_SYMBOL(transfer_args_to_stack);
889
890 #endif /* CONFIG_MMU */
891
892 static struct file *do_open_execat(int fd, struct filename *name, int flags)
893 {
894 struct file *file;
895 int err;
896 struct open_flags open_exec_flags = {
897 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
898 .acc_mode = MAY_EXEC,
899 .intent = LOOKUP_OPEN,
900 .lookup_flags = LOOKUP_FOLLOW,
901 };
902
903 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
904 return ERR_PTR(-EINVAL);
905 if (flags & AT_SYMLINK_NOFOLLOW)
906 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
907 if (flags & AT_EMPTY_PATH)
908 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
909
910 file = do_filp_open(fd, name, &open_exec_flags);
911 if (IS_ERR(file))
912 goto out;
913
914 /*
915 * may_open() has already checked for this, so it should be
916 * impossible to trip now. But we need to be extra cautious
917 * and check again at the very end too.
918 */
919 err = -EACCES;
920 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
921 path_noexec(&file->f_path)))
922 goto exit;
923
924 err = deny_write_access(file);
925 if (err)
926 goto exit;
927
928 if (name->name[0] != '\0')
929 fsnotify_open(file);
930
931 out:
932 return file;
933
934 exit:
935 fput(file);
936 return ERR_PTR(err);
937 }
938
939 struct file *open_exec(const char *name)
940 {
941 struct filename *filename = getname_kernel(name);
942 struct file *f = ERR_CAST(filename);
943
944 if (!IS_ERR(filename)) {
945 f = do_open_execat(AT_FDCWD, filename, 0);
946 putname(filename);
947 }
948 return f;
949 }
950 EXPORT_SYMBOL(open_exec);
951
952 int kernel_read_file(struct file *file, void **buf, loff_t *size,
953 loff_t max_size, enum kernel_read_file_id id)
954 {
955 loff_t i_size, pos;
956 ssize_t bytes = 0;
957 int ret;
958
959 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
960 return -EINVAL;
961
962 ret = deny_write_access(file);
963 if (ret)
964 return ret;
965
966 ret = security_kernel_read_file(file, id);
967 if (ret)
968 goto out;
969
970 i_size = i_size_read(file_inode(file));
971 if (i_size <= 0) {
972 ret = -EINVAL;
973 goto out;
974 }
975 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
976 ret = -EFBIG;
977 goto out;
978 }
979
980 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
981 *buf = vmalloc(i_size);
982 if (!*buf) {
983 ret = -ENOMEM;
984 goto out;
985 }
986
987 pos = 0;
988 while (pos < i_size) {
989 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
990 if (bytes < 0) {
991 ret = bytes;
992 goto out_free;
993 }
994
995 if (bytes == 0)
996 break;
997 }
998
999 if (pos != i_size) {
1000 ret = -EIO;
1001 goto out_free;
1002 }
1003
1004 ret = security_kernel_post_read_file(file, *buf, i_size, id);
1005 if (!ret)
1006 *size = pos;
1007
1008 out_free:
1009 if (ret < 0) {
1010 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
1011 vfree(*buf);
1012 *buf = NULL;
1013 }
1014 }
1015
1016 out:
1017 allow_write_access(file);
1018 return ret;
1019 }
1020 EXPORT_SYMBOL_GPL(kernel_read_file);
1021
1022 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1023 loff_t max_size, enum kernel_read_file_id id)
1024 {
1025 struct file *file;
1026 int ret;
1027
1028 if (!path || !*path)
1029 return -EINVAL;
1030
1031 file = filp_open(path, O_RDONLY, 0);
1032 if (IS_ERR(file))
1033 return PTR_ERR(file);
1034
1035 ret = kernel_read_file(file, buf, size, max_size, id);
1036 fput(file);
1037 return ret;
1038 }
1039 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1040
1041 int kernel_read_file_from_path_initns(const char *path, void **buf,
1042 loff_t *size, loff_t max_size,
1043 enum kernel_read_file_id id)
1044 {
1045 struct file *file;
1046 struct path root;
1047 int ret;
1048
1049 if (!path || !*path)
1050 return -EINVAL;
1051
1052 task_lock(&init_task);
1053 get_fs_root(init_task.fs, &root);
1054 task_unlock(&init_task);
1055
1056 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1057 path_put(&root);
1058 if (IS_ERR(file))
1059 return PTR_ERR(file);
1060
1061 ret = kernel_read_file(file, buf, size, max_size, id);
1062 fput(file);
1063 return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1066
1067 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1068 enum kernel_read_file_id id)
1069 {
1070 struct fd f = fdget(fd);
1071 int ret = -EBADF;
1072
1073 if (!f.file)
1074 goto out;
1075
1076 ret = kernel_read_file(f.file, buf, size, max_size, id);
1077 out:
1078 fdput(f);
1079 return ret;
1080 }
1081 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1082
1083 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1084 defined(CONFIG_BINFMT_ELF_FDPIC)
1085 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1086 {
1087 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1088 if (res > 0)
1089 flush_icache_user_range(addr, addr + len);
1090 return res;
1091 }
1092 EXPORT_SYMBOL(read_code);
1093 #endif
1094
1095 /*
1096 * Maps the mm_struct mm into the current task struct.
1097 * On success, this function returns with the mutex
1098 * exec_update_mutex locked.
1099 */
1100 static int exec_mmap(struct mm_struct *mm)
1101 {
1102 struct task_struct *tsk;
1103 struct mm_struct *old_mm, *active_mm;
1104 int ret;
1105
1106 /* Notify parent that we're no longer interested in the old VM */
1107 tsk = current;
1108 old_mm = current->mm;
1109 exec_mm_release(tsk, old_mm);
1110 if (old_mm)
1111 sync_mm_rss(old_mm);
1112
1113 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1114 if (ret)
1115 return ret;
1116
1117 if (old_mm) {
1118 /*
1119 * Make sure that if there is a core dump in progress
1120 * for the old mm, we get out and die instead of going
1121 * through with the exec. We must hold mmap_lock around
1122 * checking core_state and changing tsk->mm.
1123 */
1124 mmap_read_lock(old_mm);
1125 if (unlikely(old_mm->core_state)) {
1126 mmap_read_unlock(old_mm);
1127 mutex_unlock(&tsk->signal->exec_update_mutex);
1128 return -EINTR;
1129 }
1130 }
1131
1132 task_lock(tsk);
1133 membarrier_exec_mmap(mm);
1134
1135 local_irq_disable();
1136 active_mm = tsk->active_mm;
1137 tsk->active_mm = mm;
1138 tsk->mm = mm;
1139 /*
1140 * This prevents preemption while active_mm is being loaded and
1141 * it and mm are being updated, which could cause problems for
1142 * lazy tlb mm refcounting when these are updated by context
1143 * switches. Not all architectures can handle irqs off over
1144 * activate_mm yet.
1145 */
1146 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1147 local_irq_enable();
1148 activate_mm(active_mm, mm);
1149 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1150 local_irq_enable();
1151 tsk->mm->vmacache_seqnum = 0;
1152 vmacache_flush(tsk);
1153 task_unlock(tsk);
1154 if (old_mm) {
1155 mmap_read_unlock(old_mm);
1156 BUG_ON(active_mm != old_mm);
1157 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1158 mm_update_next_owner(old_mm);
1159 mmput(old_mm);
1160 return 0;
1161 }
1162 mmdrop(active_mm);
1163 return 0;
1164 }
1165
1166 static int de_thread(struct task_struct *tsk)
1167 {
1168 struct signal_struct *sig = tsk->signal;
1169 struct sighand_struct *oldsighand = tsk->sighand;
1170 spinlock_t *lock = &oldsighand->siglock;
1171
1172 if (thread_group_empty(tsk))
1173 goto no_thread_group;
1174
1175 /*
1176 * Kill all other threads in the thread group.
1177 */
1178 spin_lock_irq(lock);
1179 if (signal_group_exit(sig)) {
1180 /*
1181 * Another group action in progress, just
1182 * return so that the signal is processed.
1183 */
1184 spin_unlock_irq(lock);
1185 return -EAGAIN;
1186 }
1187
1188 sig->group_exit_task = tsk;
1189 sig->notify_count = zap_other_threads(tsk);
1190 if (!thread_group_leader(tsk))
1191 sig->notify_count--;
1192
1193 while (sig->notify_count) {
1194 __set_current_state(TASK_KILLABLE);
1195 spin_unlock_irq(lock);
1196 schedule();
1197 if (__fatal_signal_pending(tsk))
1198 goto killed;
1199 spin_lock_irq(lock);
1200 }
1201 spin_unlock_irq(lock);
1202
1203 /*
1204 * At this point all other threads have exited, all we have to
1205 * do is to wait for the thread group leader to become inactive,
1206 * and to assume its PID:
1207 */
1208 if (!thread_group_leader(tsk)) {
1209 struct task_struct *leader = tsk->group_leader;
1210
1211 for (;;) {
1212 cgroup_threadgroup_change_begin(tsk);
1213 write_lock_irq(&tasklist_lock);
1214 /*
1215 * Do this under tasklist_lock to ensure that
1216 * exit_notify() can't miss ->group_exit_task
1217 */
1218 sig->notify_count = -1;
1219 if (likely(leader->exit_state))
1220 break;
1221 __set_current_state(TASK_KILLABLE);
1222 write_unlock_irq(&tasklist_lock);
1223 cgroup_threadgroup_change_end(tsk);
1224 schedule();
1225 if (__fatal_signal_pending(tsk))
1226 goto killed;
1227 }
1228
1229 /*
1230 * The only record we have of the real-time age of a
1231 * process, regardless of execs it's done, is start_time.
1232 * All the past CPU time is accumulated in signal_struct
1233 * from sister threads now dead. But in this non-leader
1234 * exec, nothing survives from the original leader thread,
1235 * whose birth marks the true age of this process now.
1236 * When we take on its identity by switching to its PID, we
1237 * also take its birthdate (always earlier than our own).
1238 */
1239 tsk->start_time = leader->start_time;
1240 tsk->start_boottime = leader->start_boottime;
1241
1242 BUG_ON(!same_thread_group(leader, tsk));
1243 /*
1244 * An exec() starts a new thread group with the
1245 * TGID of the previous thread group. Rehash the
1246 * two threads with a switched PID, and release
1247 * the former thread group leader:
1248 */
1249
1250 /* Become a process group leader with the old leader's pid.
1251 * The old leader becomes a thread of the this thread group.
1252 */
1253 exchange_tids(tsk, leader);
1254 transfer_pid(leader, tsk, PIDTYPE_TGID);
1255 transfer_pid(leader, tsk, PIDTYPE_PGID);
1256 transfer_pid(leader, tsk, PIDTYPE_SID);
1257
1258 list_replace_rcu(&leader->tasks, &tsk->tasks);
1259 list_replace_init(&leader->sibling, &tsk->sibling);
1260
1261 tsk->group_leader = tsk;
1262 leader->group_leader = tsk;
1263
1264 tsk->exit_signal = SIGCHLD;
1265 leader->exit_signal = -1;
1266
1267 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1268 leader->exit_state = EXIT_DEAD;
1269
1270 /*
1271 * We are going to release_task()->ptrace_unlink() silently,
1272 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1273 * the tracer wont't block again waiting for this thread.
1274 */
1275 if (unlikely(leader->ptrace))
1276 __wake_up_parent(leader, leader->parent);
1277 write_unlock_irq(&tasklist_lock);
1278 cgroup_threadgroup_change_end(tsk);
1279
1280 release_task(leader);
1281 }
1282
1283 sig->group_exit_task = NULL;
1284 sig->notify_count = 0;
1285
1286 no_thread_group:
1287 /* we have changed execution domain */
1288 tsk->exit_signal = SIGCHLD;
1289
1290 BUG_ON(!thread_group_leader(tsk));
1291 return 0;
1292
1293 killed:
1294 /* protects against exit_notify() and __exit_signal() */
1295 read_lock(&tasklist_lock);
1296 sig->group_exit_task = NULL;
1297 sig->notify_count = 0;
1298 read_unlock(&tasklist_lock);
1299 return -EAGAIN;
1300 }
1301
1302
1303 /*
1304 * This function makes sure the current process has its own signal table,
1305 * so that flush_signal_handlers can later reset the handlers without
1306 * disturbing other processes. (Other processes might share the signal
1307 * table via the CLONE_SIGHAND option to clone().)
1308 */
1309 static int unshare_sighand(struct task_struct *me)
1310 {
1311 struct sighand_struct *oldsighand = me->sighand;
1312
1313 if (refcount_read(&oldsighand->count) != 1) {
1314 struct sighand_struct *newsighand;
1315 /*
1316 * This ->sighand is shared with the CLONE_SIGHAND
1317 * but not CLONE_THREAD task, switch to the new one.
1318 */
1319 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1320 if (!newsighand)
1321 return -ENOMEM;
1322
1323 refcount_set(&newsighand->count, 1);
1324 memcpy(newsighand->action, oldsighand->action,
1325 sizeof(newsighand->action));
1326
1327 write_lock_irq(&tasklist_lock);
1328 spin_lock(&oldsighand->siglock);
1329 rcu_assign_pointer(me->sighand, newsighand);
1330 spin_unlock(&oldsighand->siglock);
1331 write_unlock_irq(&tasklist_lock);
1332
1333 __cleanup_sighand(oldsighand);
1334 }
1335 return 0;
1336 }
1337
1338 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1339 {
1340 task_lock(tsk);
1341 strncpy(buf, tsk->comm, buf_size);
1342 task_unlock(tsk);
1343 return buf;
1344 }
1345 EXPORT_SYMBOL_GPL(__get_task_comm);
1346
1347 /*
1348 * These functions flushes out all traces of the currently running executable
1349 * so that a new one can be started
1350 */
1351
1352 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1353 {
1354 task_lock(tsk);
1355 trace_task_rename(tsk, buf);
1356 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1357 task_unlock(tsk);
1358 perf_event_comm(tsk, exec);
1359 }
1360
1361 /*
1362 * Calling this is the point of no return. None of the failures will be
1363 * seen by userspace since either the process is already taking a fatal
1364 * signal (via de_thread() or coredump), or will have SEGV raised
1365 * (after exec_mmap()) by search_binary_handler (see below).
1366 */
1367 int begin_new_exec(struct linux_binprm * bprm)
1368 {
1369 struct task_struct *me = current;
1370 int retval;
1371
1372 /* Once we are committed compute the creds */
1373 retval = bprm_creds_from_file(bprm);
1374 if (retval)
1375 return retval;
1376
1377 /*
1378 * Ensure all future errors are fatal.
1379 */
1380 bprm->point_of_no_return = true;
1381
1382 /*
1383 * Make this the only thread in the thread group.
1384 */
1385 retval = de_thread(me);
1386 if (retval)
1387 goto out;
1388
1389 /*
1390 * Must be called _before_ exec_mmap() as bprm->mm is
1391 * not visibile until then. This also enables the update
1392 * to be lockless.
1393 */
1394 set_mm_exe_file(bprm->mm, bprm->file);
1395
1396 /* If the binary is not readable then enforce mm->dumpable=0 */
1397 would_dump(bprm, bprm->file);
1398 if (bprm->have_execfd)
1399 would_dump(bprm, bprm->executable);
1400
1401 /*
1402 * Release all of the old mmap stuff
1403 */
1404 acct_arg_size(bprm, 0);
1405 retval = exec_mmap(bprm->mm);
1406 if (retval)
1407 goto out;
1408
1409 bprm->mm = NULL;
1410
1411 #ifdef CONFIG_POSIX_TIMERS
1412 exit_itimers(me->signal);
1413 flush_itimer_signals();
1414 #endif
1415
1416 /*
1417 * Make the signal table private.
1418 */
1419 retval = unshare_sighand(me);
1420 if (retval)
1421 goto out_unlock;
1422
1423 /*
1424 * Ensure that the uaccess routines can actually operate on userspace
1425 * pointers:
1426 */
1427 force_uaccess_begin();
1428
1429 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1430 PF_NOFREEZE | PF_NO_SETAFFINITY);
1431 flush_thread();
1432 me->personality &= ~bprm->per_clear;
1433
1434 /*
1435 * We have to apply CLOEXEC before we change whether the process is
1436 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1437 * trying to access the should-be-closed file descriptors of a process
1438 * undergoing exec(2).
1439 */
1440 do_close_on_exec(me->files);
1441
1442 if (bprm->secureexec) {
1443 /* Make sure parent cannot signal privileged process. */
1444 me->pdeath_signal = 0;
1445
1446 /*
1447 * For secureexec, reset the stack limit to sane default to
1448 * avoid bad behavior from the prior rlimits. This has to
1449 * happen before arch_pick_mmap_layout(), which examines
1450 * RLIMIT_STACK, but after the point of no return to avoid
1451 * needing to clean up the change on failure.
1452 */
1453 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1454 bprm->rlim_stack.rlim_cur = _STK_LIM;
1455 }
1456
1457 me->sas_ss_sp = me->sas_ss_size = 0;
1458
1459 /*
1460 * Figure out dumpability. Note that this checking only of current
1461 * is wrong, but userspace depends on it. This should be testing
1462 * bprm->secureexec instead.
1463 */
1464 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1465 !(uid_eq(current_euid(), current_uid()) &&
1466 gid_eq(current_egid(), current_gid())))
1467 set_dumpable(current->mm, suid_dumpable);
1468 else
1469 set_dumpable(current->mm, SUID_DUMP_USER);
1470
1471 perf_event_exec();
1472 __set_task_comm(me, kbasename(bprm->filename), true);
1473
1474 /* An exec changes our domain. We are no longer part of the thread
1475 group */
1476 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1477 flush_signal_handlers(me, 0);
1478
1479 /*
1480 * install the new credentials for this executable
1481 */
1482 security_bprm_committing_creds(bprm);
1483
1484 commit_creds(bprm->cred);
1485 bprm->cred = NULL;
1486
1487 /*
1488 * Disable monitoring for regular users
1489 * when executing setuid binaries. Must
1490 * wait until new credentials are committed
1491 * by commit_creds() above
1492 */
1493 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1494 perf_event_exit_task(me);
1495 /*
1496 * cred_guard_mutex must be held at least to this point to prevent
1497 * ptrace_attach() from altering our determination of the task's
1498 * credentials; any time after this it may be unlocked.
1499 */
1500 security_bprm_committed_creds(bprm);
1501
1502 /* Pass the opened binary to the interpreter. */
1503 if (bprm->have_execfd) {
1504 retval = get_unused_fd_flags(0);
1505 if (retval < 0)
1506 goto out_unlock;
1507 fd_install(retval, bprm->executable);
1508 bprm->executable = NULL;
1509 bprm->execfd = retval;
1510 }
1511 return 0;
1512
1513 out_unlock:
1514 mutex_unlock(&me->signal->exec_update_mutex);
1515 out:
1516 return retval;
1517 }
1518 EXPORT_SYMBOL(begin_new_exec);
1519
1520 void would_dump(struct linux_binprm *bprm, struct file *file)
1521 {
1522 struct inode *inode = file_inode(file);
1523 if (inode_permission(inode, MAY_READ) < 0) {
1524 struct user_namespace *old, *user_ns;
1525 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1526
1527 /* Ensure mm->user_ns contains the executable */
1528 user_ns = old = bprm->mm->user_ns;
1529 while ((user_ns != &init_user_ns) &&
1530 !privileged_wrt_inode_uidgid(user_ns, inode))
1531 user_ns = user_ns->parent;
1532
1533 if (old != user_ns) {
1534 bprm->mm->user_ns = get_user_ns(user_ns);
1535 put_user_ns(old);
1536 }
1537 }
1538 }
1539 EXPORT_SYMBOL(would_dump);
1540
1541 void setup_new_exec(struct linux_binprm * bprm)
1542 {
1543 /* Setup things that can depend upon the personality */
1544 struct task_struct *me = current;
1545
1546 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1547
1548 arch_setup_new_exec();
1549
1550 /* Set the new mm task size. We have to do that late because it may
1551 * depend on TIF_32BIT which is only updated in flush_thread() on
1552 * some architectures like powerpc
1553 */
1554 me->mm->task_size = TASK_SIZE;
1555 mutex_unlock(&me->signal->exec_update_mutex);
1556 mutex_unlock(&me->signal->cred_guard_mutex);
1557 }
1558 EXPORT_SYMBOL(setup_new_exec);
1559
1560 /* Runs immediately before start_thread() takes over. */
1561 void finalize_exec(struct linux_binprm *bprm)
1562 {
1563 /* Store any stack rlimit changes before starting thread. */
1564 task_lock(current->group_leader);
1565 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1566 task_unlock(current->group_leader);
1567 }
1568 EXPORT_SYMBOL(finalize_exec);
1569
1570 /*
1571 * Prepare credentials and lock ->cred_guard_mutex.
1572 * setup_new_exec() commits the new creds and drops the lock.
1573 * Or, if exec fails before, free_bprm() should release ->cred and
1574 * and unlock.
1575 */
1576 static int prepare_bprm_creds(struct linux_binprm *bprm)
1577 {
1578 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1579 return -ERESTARTNOINTR;
1580
1581 bprm->cred = prepare_exec_creds();
1582 if (likely(bprm->cred))
1583 return 0;
1584
1585 mutex_unlock(&current->signal->cred_guard_mutex);
1586 return -ENOMEM;
1587 }
1588
1589 static void free_bprm(struct linux_binprm *bprm)
1590 {
1591 if (bprm->mm) {
1592 acct_arg_size(bprm, 0);
1593 mmput(bprm->mm);
1594 }
1595 free_arg_pages(bprm);
1596 if (bprm->cred) {
1597 mutex_unlock(&current->signal->cred_guard_mutex);
1598 abort_creds(bprm->cred);
1599 }
1600 if (bprm->file) {
1601 allow_write_access(bprm->file);
1602 fput(bprm->file);
1603 }
1604 if (bprm->executable)
1605 fput(bprm->executable);
1606 /* If a binfmt changed the interp, free it. */
1607 if (bprm->interp != bprm->filename)
1608 kfree(bprm->interp);
1609 kfree(bprm->fdpath);
1610 kfree(bprm);
1611 }
1612
1613 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1614 {
1615 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1616 int retval = -ENOMEM;
1617 if (!bprm)
1618 goto out;
1619
1620 if (fd == AT_FDCWD || filename->name[0] == '/') {
1621 bprm->filename = filename->name;
1622 } else {
1623 if (filename->name[0] == '\0')
1624 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1625 else
1626 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1627 fd, filename->name);
1628 if (!bprm->fdpath)
1629 goto out_free;
1630
1631 bprm->filename = bprm->fdpath;
1632 }
1633 bprm->interp = bprm->filename;
1634
1635 retval = bprm_mm_init(bprm);
1636 if (retval)
1637 goto out_free;
1638 return bprm;
1639
1640 out_free:
1641 free_bprm(bprm);
1642 out:
1643 return ERR_PTR(retval);
1644 }
1645
1646 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1647 {
1648 /* If a binfmt changed the interp, free it first. */
1649 if (bprm->interp != bprm->filename)
1650 kfree(bprm->interp);
1651 bprm->interp = kstrdup(interp, GFP_KERNEL);
1652 if (!bprm->interp)
1653 return -ENOMEM;
1654 return 0;
1655 }
1656 EXPORT_SYMBOL(bprm_change_interp);
1657
1658 /*
1659 * determine how safe it is to execute the proposed program
1660 * - the caller must hold ->cred_guard_mutex to protect against
1661 * PTRACE_ATTACH or seccomp thread-sync
1662 */
1663 static void check_unsafe_exec(struct linux_binprm *bprm)
1664 {
1665 struct task_struct *p = current, *t;
1666 unsigned n_fs;
1667
1668 if (p->ptrace)
1669 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1670
1671 /*
1672 * This isn't strictly necessary, but it makes it harder for LSMs to
1673 * mess up.
1674 */
1675 if (task_no_new_privs(current))
1676 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1677
1678 t = p;
1679 n_fs = 1;
1680 spin_lock(&p->fs->lock);
1681 rcu_read_lock();
1682 while_each_thread(p, t) {
1683 if (t->fs == p->fs)
1684 n_fs++;
1685 }
1686 rcu_read_unlock();
1687
1688 if (p->fs->users > n_fs)
1689 bprm->unsafe |= LSM_UNSAFE_SHARE;
1690 else
1691 p->fs->in_exec = 1;
1692 spin_unlock(&p->fs->lock);
1693 }
1694
1695 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1696 {
1697 /* Handle suid and sgid on files */
1698 struct inode *inode;
1699 unsigned int mode;
1700 kuid_t uid;
1701 kgid_t gid;
1702
1703 if (!mnt_may_suid(file->f_path.mnt))
1704 return;
1705
1706 if (task_no_new_privs(current))
1707 return;
1708
1709 inode = file->f_path.dentry->d_inode;
1710 mode = READ_ONCE(inode->i_mode);
1711 if (!(mode & (S_ISUID|S_ISGID)))
1712 return;
1713
1714 /* Be careful if suid/sgid is set */
1715 inode_lock(inode);
1716
1717 /* reload atomically mode/uid/gid now that lock held */
1718 mode = inode->i_mode;
1719 uid = inode->i_uid;
1720 gid = inode->i_gid;
1721 inode_unlock(inode);
1722
1723 /* We ignore suid/sgid if there are no mappings for them in the ns */
1724 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1725 !kgid_has_mapping(bprm->cred->user_ns, gid))
1726 return;
1727
1728 if (mode & S_ISUID) {
1729 bprm->per_clear |= PER_CLEAR_ON_SETID;
1730 bprm->cred->euid = uid;
1731 }
1732
1733 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1734 bprm->per_clear |= PER_CLEAR_ON_SETID;
1735 bprm->cred->egid = gid;
1736 }
1737 }
1738
1739 /*
1740 * Compute brpm->cred based upon the final binary.
1741 */
1742 static int bprm_creds_from_file(struct linux_binprm *bprm)
1743 {
1744 /* Compute creds based on which file? */
1745 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1746
1747 bprm_fill_uid(bprm, file);
1748 return security_bprm_creds_from_file(bprm, file);
1749 }
1750
1751 /*
1752 * Fill the binprm structure from the inode.
1753 * Read the first BINPRM_BUF_SIZE bytes
1754 *
1755 * This may be called multiple times for binary chains (scripts for example).
1756 */
1757 static int prepare_binprm(struct linux_binprm *bprm)
1758 {
1759 loff_t pos = 0;
1760
1761 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1762 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1763 }
1764
1765 /*
1766 * Arguments are '\0' separated strings found at the location bprm->p
1767 * points to; chop off the first by relocating brpm->p to right after
1768 * the first '\0' encountered.
1769 */
1770 int remove_arg_zero(struct linux_binprm *bprm)
1771 {
1772 int ret = 0;
1773 unsigned long offset;
1774 char *kaddr;
1775 struct page *page;
1776
1777 if (!bprm->argc)
1778 return 0;
1779
1780 do {
1781 offset = bprm->p & ~PAGE_MASK;
1782 page = get_arg_page(bprm, bprm->p, 0);
1783 if (!page) {
1784 ret = -EFAULT;
1785 goto out;
1786 }
1787 kaddr = kmap_atomic(page);
1788
1789 for (; offset < PAGE_SIZE && kaddr[offset];
1790 offset++, bprm->p++)
1791 ;
1792
1793 kunmap_atomic(kaddr);
1794 put_arg_page(page);
1795 } while (offset == PAGE_SIZE);
1796
1797 bprm->p++;
1798 bprm->argc--;
1799 ret = 0;
1800
1801 out:
1802 return ret;
1803 }
1804 EXPORT_SYMBOL(remove_arg_zero);
1805
1806 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1807 /*
1808 * cycle the list of binary formats handler, until one recognizes the image
1809 */
1810 static int search_binary_handler(struct linux_binprm *bprm)
1811 {
1812 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1813 struct linux_binfmt *fmt;
1814 int retval;
1815
1816 retval = prepare_binprm(bprm);
1817 if (retval < 0)
1818 return retval;
1819
1820 retval = security_bprm_check(bprm);
1821 if (retval)
1822 return retval;
1823
1824 retval = -ENOENT;
1825 retry:
1826 read_lock(&binfmt_lock);
1827 list_for_each_entry(fmt, &formats, lh) {
1828 if (!try_module_get(fmt->module))
1829 continue;
1830 read_unlock(&binfmt_lock);
1831
1832 retval = fmt->load_binary(bprm);
1833
1834 read_lock(&binfmt_lock);
1835 put_binfmt(fmt);
1836 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1837 read_unlock(&binfmt_lock);
1838 return retval;
1839 }
1840 }
1841 read_unlock(&binfmt_lock);
1842
1843 if (need_retry) {
1844 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1845 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1846 return retval;
1847 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1848 return retval;
1849 need_retry = false;
1850 goto retry;
1851 }
1852
1853 return retval;
1854 }
1855
1856 static int exec_binprm(struct linux_binprm *bprm)
1857 {
1858 pid_t old_pid, old_vpid;
1859 int ret, depth;
1860
1861 /* Need to fetch pid before load_binary changes it */
1862 old_pid = current->pid;
1863 rcu_read_lock();
1864 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1865 rcu_read_unlock();
1866
1867 /* This allows 4 levels of binfmt rewrites before failing hard. */
1868 for (depth = 0;; depth++) {
1869 struct file *exec;
1870 if (depth > 5)
1871 return -ELOOP;
1872
1873 ret = search_binary_handler(bprm);
1874 if (ret < 0)
1875 return ret;
1876 if (!bprm->interpreter)
1877 break;
1878
1879 exec = bprm->file;
1880 bprm->file = bprm->interpreter;
1881 bprm->interpreter = NULL;
1882
1883 allow_write_access(exec);
1884 if (unlikely(bprm->have_execfd)) {
1885 if (bprm->executable) {
1886 fput(exec);
1887 return -ENOEXEC;
1888 }
1889 bprm->executable = exec;
1890 } else
1891 fput(exec);
1892 }
1893
1894 audit_bprm(bprm);
1895 trace_sched_process_exec(current, old_pid, bprm);
1896 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1897 proc_exec_connector(current);
1898 return 0;
1899 }
1900
1901 /*
1902 * sys_execve() executes a new program.
1903 */
1904 static int bprm_execve(struct linux_binprm *bprm,
1905 int fd, struct filename *filename, int flags)
1906 {
1907 struct file *file;
1908 struct files_struct *displaced;
1909 int retval;
1910
1911 retval = unshare_files(&displaced);
1912 if (retval)
1913 return retval;
1914
1915 retval = prepare_bprm_creds(bprm);
1916 if (retval)
1917 goto out_files;
1918
1919 check_unsafe_exec(bprm);
1920 current->in_execve = 1;
1921
1922 file = do_open_execat(fd, filename, flags);
1923 retval = PTR_ERR(file);
1924 if (IS_ERR(file))
1925 goto out_unmark;
1926
1927 sched_exec();
1928
1929 bprm->file = file;
1930 /*
1931 * Record that a name derived from an O_CLOEXEC fd will be
1932 * inaccessible after exec. Relies on having exclusive access to
1933 * current->files (due to unshare_files above).
1934 */
1935 if (bprm->fdpath &&
1936 close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1937 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1938
1939 /* Set the unchanging part of bprm->cred */
1940 retval = security_bprm_creds_for_exec(bprm);
1941 if (retval)
1942 goto out;
1943
1944 retval = exec_binprm(bprm);
1945 if (retval < 0)
1946 goto out;
1947
1948 /* execve succeeded */
1949 current->fs->in_exec = 0;
1950 current->in_execve = 0;
1951 rseq_execve(current);
1952 acct_update_integrals(current);
1953 task_numa_free(current, false);
1954 if (displaced)
1955 put_files_struct(displaced);
1956 return retval;
1957
1958 out:
1959 /*
1960 * If past the point of no return ensure the the code never
1961 * returns to the userspace process. Use an existing fatal
1962 * signal if present otherwise terminate the process with
1963 * SIGSEGV.
1964 */
1965 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1966 force_sigsegv(SIGSEGV);
1967
1968 out_unmark:
1969 current->fs->in_exec = 0;
1970 current->in_execve = 0;
1971
1972 out_files:
1973 if (displaced)
1974 reset_files_struct(displaced);
1975
1976 return retval;
1977 }
1978
1979 static int do_execveat_common(int fd, struct filename *filename,
1980 struct user_arg_ptr argv,
1981 struct user_arg_ptr envp,
1982 int flags)
1983 {
1984 struct linux_binprm *bprm;
1985 int retval;
1986
1987 if (IS_ERR(filename))
1988 return PTR_ERR(filename);
1989
1990 /*
1991 * We move the actual failure in case of RLIMIT_NPROC excess from
1992 * set*uid() to execve() because too many poorly written programs
1993 * don't check setuid() return code. Here we additionally recheck
1994 * whether NPROC limit is still exceeded.
1995 */
1996 if ((current->flags & PF_NPROC_EXCEEDED) &&
1997 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1998 retval = -EAGAIN;
1999 goto out_ret;
2000 }
2001
2002 /* We're below the limit (still or again), so we don't want to make
2003 * further execve() calls fail. */
2004 current->flags &= ~PF_NPROC_EXCEEDED;
2005
2006 bprm = alloc_bprm(fd, filename);
2007 if (IS_ERR(bprm)) {
2008 retval = PTR_ERR(bprm);
2009 goto out_ret;
2010 }
2011
2012 retval = count(argv, MAX_ARG_STRINGS);
2013 if (retval < 0)
2014 goto out_free;
2015 bprm->argc = retval;
2016
2017 retval = count(envp, MAX_ARG_STRINGS);
2018 if (retval < 0)
2019 goto out_free;
2020 bprm->envc = retval;
2021
2022 retval = bprm_stack_limits(bprm);
2023 if (retval < 0)
2024 goto out_free;
2025
2026 retval = copy_string_kernel(bprm->filename, bprm);
2027 if (retval < 0)
2028 goto out_free;
2029 bprm->exec = bprm->p;
2030
2031 retval = copy_strings(bprm->envc, envp, bprm);
2032 if (retval < 0)
2033 goto out_free;
2034
2035 retval = copy_strings(bprm->argc, argv, bprm);
2036 if (retval < 0)
2037 goto out_free;
2038
2039 retval = bprm_execve(bprm, fd, filename, flags);
2040 out_free:
2041 free_bprm(bprm);
2042
2043 out_ret:
2044 putname(filename);
2045 return retval;
2046 }
2047
2048 int kernel_execve(const char *kernel_filename,
2049 const char *const *argv, const char *const *envp)
2050 {
2051 struct filename *filename;
2052 struct linux_binprm *bprm;
2053 int fd = AT_FDCWD;
2054 int retval;
2055
2056 filename = getname_kernel(kernel_filename);
2057 if (IS_ERR(filename))
2058 return PTR_ERR(filename);
2059
2060 bprm = alloc_bprm(fd, filename);
2061 if (IS_ERR(bprm)) {
2062 retval = PTR_ERR(bprm);
2063 goto out_ret;
2064 }
2065
2066 retval = count_strings_kernel(argv);
2067 if (retval < 0)
2068 goto out_free;
2069 bprm->argc = retval;
2070
2071 retval = count_strings_kernel(envp);
2072 if (retval < 0)
2073 goto out_free;
2074 bprm->envc = retval;
2075
2076 retval = bprm_stack_limits(bprm);
2077 if (retval < 0)
2078 goto out_free;
2079
2080 retval = copy_string_kernel(bprm->filename, bprm);
2081 if (retval < 0)
2082 goto out_free;
2083 bprm->exec = bprm->p;
2084
2085 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2086 if (retval < 0)
2087 goto out_free;
2088
2089 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2090 if (retval < 0)
2091 goto out_free;
2092
2093 retval = bprm_execve(bprm, fd, filename, 0);
2094 out_free:
2095 free_bprm(bprm);
2096 out_ret:
2097 putname(filename);
2098 return retval;
2099 }
2100
2101 static int do_execve(struct filename *filename,
2102 const char __user *const __user *__argv,
2103 const char __user *const __user *__envp)
2104 {
2105 struct user_arg_ptr argv = { .ptr.native = __argv };
2106 struct user_arg_ptr envp = { .ptr.native = __envp };
2107 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2108 }
2109
2110 static int do_execveat(int fd, struct filename *filename,
2111 const char __user *const __user *__argv,
2112 const char __user *const __user *__envp,
2113 int flags)
2114 {
2115 struct user_arg_ptr argv = { .ptr.native = __argv };
2116 struct user_arg_ptr envp = { .ptr.native = __envp };
2117
2118 return do_execveat_common(fd, filename, argv, envp, flags);
2119 }
2120
2121 #ifdef CONFIG_COMPAT
2122 static int compat_do_execve(struct filename *filename,
2123 const compat_uptr_t __user *__argv,
2124 const compat_uptr_t __user *__envp)
2125 {
2126 struct user_arg_ptr argv = {
2127 .is_compat = true,
2128 .ptr.compat = __argv,
2129 };
2130 struct user_arg_ptr envp = {
2131 .is_compat = true,
2132 .ptr.compat = __envp,
2133 };
2134 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2135 }
2136
2137 static int compat_do_execveat(int fd, struct filename *filename,
2138 const compat_uptr_t __user *__argv,
2139 const compat_uptr_t __user *__envp,
2140 int flags)
2141 {
2142 struct user_arg_ptr argv = {
2143 .is_compat = true,
2144 .ptr.compat = __argv,
2145 };
2146 struct user_arg_ptr envp = {
2147 .is_compat = true,
2148 .ptr.compat = __envp,
2149 };
2150 return do_execveat_common(fd, filename, argv, envp, flags);
2151 }
2152 #endif
2153
2154 void set_binfmt(struct linux_binfmt *new)
2155 {
2156 struct mm_struct *mm = current->mm;
2157
2158 if (mm->binfmt)
2159 module_put(mm->binfmt->module);
2160
2161 mm->binfmt = new;
2162 if (new)
2163 __module_get(new->module);
2164 }
2165 EXPORT_SYMBOL(set_binfmt);
2166
2167 /*
2168 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2169 */
2170 void set_dumpable(struct mm_struct *mm, int value)
2171 {
2172 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2173 return;
2174
2175 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2176 }
2177
2178 SYSCALL_DEFINE3(execve,
2179 const char __user *, filename,
2180 const char __user *const __user *, argv,
2181 const char __user *const __user *, envp)
2182 {
2183 return do_execve(getname(filename), argv, envp);
2184 }
2185
2186 SYSCALL_DEFINE5(execveat,
2187 int, fd, const char __user *, filename,
2188 const char __user *const __user *, argv,
2189 const char __user *const __user *, envp,
2190 int, flags)
2191 {
2192 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2193
2194 return do_execveat(fd,
2195 getname_flags(filename, lookup_flags, NULL),
2196 argv, envp, flags);
2197 }
2198
2199 #ifdef CONFIG_COMPAT
2200 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2201 const compat_uptr_t __user *, argv,
2202 const compat_uptr_t __user *, envp)
2203 {
2204 return compat_do_execve(getname(filename), argv, envp);
2205 }
2206
2207 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2208 const char __user *, filename,
2209 const compat_uptr_t __user *, argv,
2210 const compat_uptr_t __user *, envp,
2211 int, flags)
2212 {
2213 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2214
2215 return compat_do_execveat(fd,
2216 getname_flags(filename, lookup_flags, NULL),
2217 argv, envp, flags);
2218 }
2219 #endif