]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/exec.c
kill vfs_permission
[mirror_ubuntu-bionic-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 #include "internal.h"
59
60 #ifdef __alpha__
61 /* for /sbin/loader handling in search_binary_handler() */
62 #include <linux/a.out.h>
63 #endif
64
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 int suid_dumpable = 0;
68
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 int register_binfmt(struct linux_binfmt * fmt)
75 {
76 if (!fmt)
77 return -EINVAL;
78 write_lock(&binfmt_lock);
79 list_add(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 return 0;
82 }
83
84 EXPORT_SYMBOL(register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 module_put(fmt->module);
98 }
99
100 /*
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
103 *
104 * Also note that we take the address to load from from the file itself.
105 */
106 asmlinkage long sys_uselib(const char __user * library)
107 {
108 struct file *file;
109 struct nameidata nd;
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
112
113 if (!IS_ERR(tmp)) {
114 error = path_lookup_open(AT_FDCWD, tmp,
115 LOOKUP_FOLLOW, &nd,
116 FMODE_READ|FMODE_EXEC);
117 putname(tmp);
118 }
119 if (error)
120 goto out;
121
122 error = -EINVAL;
123 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
124 goto exit;
125
126 error = -EACCES;
127 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
128 goto exit;
129
130 error = inode_permission(nd.path.dentry->d_inode,
131 MAY_READ | MAY_EXEC | MAY_OPEN);
132 if (error)
133 goto exit;
134
135 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
136 error = PTR_ERR(file);
137 if (IS_ERR(file))
138 goto out;
139
140 error = -ENOEXEC;
141 if(file->f_op) {
142 struct linux_binfmt * fmt;
143
144 read_lock(&binfmt_lock);
145 list_for_each_entry(fmt, &formats, lh) {
146 if (!fmt->load_shlib)
147 continue;
148 if (!try_module_get(fmt->module))
149 continue;
150 read_unlock(&binfmt_lock);
151 error = fmt->load_shlib(file);
152 read_lock(&binfmt_lock);
153 put_binfmt(fmt);
154 if (error != -ENOEXEC)
155 break;
156 }
157 read_unlock(&binfmt_lock);
158 }
159 fput(file);
160 out:
161 return error;
162 exit:
163 release_open_intent(&nd);
164 path_put(&nd.path);
165 goto out;
166 }
167
168 #ifdef CONFIG_MMU
169
170 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
171 int write)
172 {
173 struct page *page;
174 int ret;
175
176 #ifdef CONFIG_STACK_GROWSUP
177 if (write) {
178 ret = expand_stack_downwards(bprm->vma, pos);
179 if (ret < 0)
180 return NULL;
181 }
182 #endif
183 ret = get_user_pages(current, bprm->mm, pos,
184 1, write, 1, &page, NULL);
185 if (ret <= 0)
186 return NULL;
187
188 if (write) {
189 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
190 struct rlimit *rlim;
191
192 /*
193 * We've historically supported up to 32 pages (ARG_MAX)
194 * of argument strings even with small stacks
195 */
196 if (size <= ARG_MAX)
197 return page;
198
199 /*
200 * Limit to 1/4-th the stack size for the argv+env strings.
201 * This ensures that:
202 * - the remaining binfmt code will not run out of stack space,
203 * - the program will have a reasonable amount of stack left
204 * to work from.
205 */
206 rlim = current->signal->rlim;
207 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
208 put_page(page);
209 return NULL;
210 }
211 }
212
213 return page;
214 }
215
216 static void put_arg_page(struct page *page)
217 {
218 put_page(page);
219 }
220
221 static void free_arg_page(struct linux_binprm *bprm, int i)
222 {
223 }
224
225 static void free_arg_pages(struct linux_binprm *bprm)
226 {
227 }
228
229 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
230 struct page *page)
231 {
232 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
233 }
234
235 static int __bprm_mm_init(struct linux_binprm *bprm)
236 {
237 int err = -ENOMEM;
238 struct vm_area_struct *vma = NULL;
239 struct mm_struct *mm = bprm->mm;
240
241 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
242 if (!vma)
243 goto err;
244
245 down_write(&mm->mmap_sem);
246 vma->vm_mm = mm;
247
248 /*
249 * Place the stack at the largest stack address the architecture
250 * supports. Later, we'll move this to an appropriate place. We don't
251 * use STACK_TOP because that can depend on attributes which aren't
252 * configured yet.
253 */
254 vma->vm_end = STACK_TOP_MAX;
255 vma->vm_start = vma->vm_end - PAGE_SIZE;
256
257 vma->vm_flags = VM_STACK_FLAGS;
258 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
259 err = insert_vm_struct(mm, vma);
260 if (err) {
261 up_write(&mm->mmap_sem);
262 goto err;
263 }
264
265 mm->stack_vm = mm->total_vm = 1;
266 up_write(&mm->mmap_sem);
267
268 bprm->p = vma->vm_end - sizeof(void *);
269
270 return 0;
271
272 err:
273 if (vma) {
274 bprm->vma = NULL;
275 kmem_cache_free(vm_area_cachep, vma);
276 }
277
278 return err;
279 }
280
281 static bool valid_arg_len(struct linux_binprm *bprm, long len)
282 {
283 return len <= MAX_ARG_STRLEN;
284 }
285
286 #else
287
288 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
289 int write)
290 {
291 struct page *page;
292
293 page = bprm->page[pos / PAGE_SIZE];
294 if (!page && write) {
295 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
296 if (!page)
297 return NULL;
298 bprm->page[pos / PAGE_SIZE] = page;
299 }
300
301 return page;
302 }
303
304 static void put_arg_page(struct page *page)
305 {
306 }
307
308 static void free_arg_page(struct linux_binprm *bprm, int i)
309 {
310 if (bprm->page[i]) {
311 __free_page(bprm->page[i]);
312 bprm->page[i] = NULL;
313 }
314 }
315
316 static void free_arg_pages(struct linux_binprm *bprm)
317 {
318 int i;
319
320 for (i = 0; i < MAX_ARG_PAGES; i++)
321 free_arg_page(bprm, i);
322 }
323
324 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
325 struct page *page)
326 {
327 }
328
329 static int __bprm_mm_init(struct linux_binprm *bprm)
330 {
331 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
332 return 0;
333 }
334
335 static bool valid_arg_len(struct linux_binprm *bprm, long len)
336 {
337 return len <= bprm->p;
338 }
339
340 #endif /* CONFIG_MMU */
341
342 /*
343 * Create a new mm_struct and populate it with a temporary stack
344 * vm_area_struct. We don't have enough context at this point to set the stack
345 * flags, permissions, and offset, so we use temporary values. We'll update
346 * them later in setup_arg_pages().
347 */
348 int bprm_mm_init(struct linux_binprm *bprm)
349 {
350 int err;
351 struct mm_struct *mm = NULL;
352
353 bprm->mm = mm = mm_alloc();
354 err = -ENOMEM;
355 if (!mm)
356 goto err;
357
358 err = init_new_context(current, mm);
359 if (err)
360 goto err;
361
362 err = __bprm_mm_init(bprm);
363 if (err)
364 goto err;
365
366 return 0;
367
368 err:
369 if (mm) {
370 bprm->mm = NULL;
371 mmdrop(mm);
372 }
373
374 return err;
375 }
376
377 /*
378 * count() counts the number of strings in array ARGV.
379 */
380 static int count(char __user * __user * argv, int max)
381 {
382 int i = 0;
383
384 if (argv != NULL) {
385 for (;;) {
386 char __user * p;
387
388 if (get_user(p, argv))
389 return -EFAULT;
390 if (!p)
391 break;
392 argv++;
393 if (i++ >= max)
394 return -E2BIG;
395 cond_resched();
396 }
397 }
398 return i;
399 }
400
401 /*
402 * 'copy_strings()' copies argument/environment strings from the old
403 * processes's memory to the new process's stack. The call to get_user_pages()
404 * ensures the destination page is created and not swapped out.
405 */
406 static int copy_strings(int argc, char __user * __user * argv,
407 struct linux_binprm *bprm)
408 {
409 struct page *kmapped_page = NULL;
410 char *kaddr = NULL;
411 unsigned long kpos = 0;
412 int ret;
413
414 while (argc-- > 0) {
415 char __user *str;
416 int len;
417 unsigned long pos;
418
419 if (get_user(str, argv+argc) ||
420 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
421 ret = -EFAULT;
422 goto out;
423 }
424
425 if (!valid_arg_len(bprm, len)) {
426 ret = -E2BIG;
427 goto out;
428 }
429
430 /* We're going to work our way backwords. */
431 pos = bprm->p;
432 str += len;
433 bprm->p -= len;
434
435 while (len > 0) {
436 int offset, bytes_to_copy;
437
438 offset = pos % PAGE_SIZE;
439 if (offset == 0)
440 offset = PAGE_SIZE;
441
442 bytes_to_copy = offset;
443 if (bytes_to_copy > len)
444 bytes_to_copy = len;
445
446 offset -= bytes_to_copy;
447 pos -= bytes_to_copy;
448 str -= bytes_to_copy;
449 len -= bytes_to_copy;
450
451 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
452 struct page *page;
453
454 page = get_arg_page(bprm, pos, 1);
455 if (!page) {
456 ret = -E2BIG;
457 goto out;
458 }
459
460 if (kmapped_page) {
461 flush_kernel_dcache_page(kmapped_page);
462 kunmap(kmapped_page);
463 put_arg_page(kmapped_page);
464 }
465 kmapped_page = page;
466 kaddr = kmap(kmapped_page);
467 kpos = pos & PAGE_MASK;
468 flush_arg_page(bprm, kpos, kmapped_page);
469 }
470 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
471 ret = -EFAULT;
472 goto out;
473 }
474 }
475 }
476 ret = 0;
477 out:
478 if (kmapped_page) {
479 flush_kernel_dcache_page(kmapped_page);
480 kunmap(kmapped_page);
481 put_arg_page(kmapped_page);
482 }
483 return ret;
484 }
485
486 /*
487 * Like copy_strings, but get argv and its values from kernel memory.
488 */
489 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
490 {
491 int r;
492 mm_segment_t oldfs = get_fs();
493 set_fs(KERNEL_DS);
494 r = copy_strings(argc, (char __user * __user *)argv, bprm);
495 set_fs(oldfs);
496 return r;
497 }
498 EXPORT_SYMBOL(copy_strings_kernel);
499
500 #ifdef CONFIG_MMU
501
502 /*
503 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
504 * the binfmt code determines where the new stack should reside, we shift it to
505 * its final location. The process proceeds as follows:
506 *
507 * 1) Use shift to calculate the new vma endpoints.
508 * 2) Extend vma to cover both the old and new ranges. This ensures the
509 * arguments passed to subsequent functions are consistent.
510 * 3) Move vma's page tables to the new range.
511 * 4) Free up any cleared pgd range.
512 * 5) Shrink the vma to cover only the new range.
513 */
514 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
515 {
516 struct mm_struct *mm = vma->vm_mm;
517 unsigned long old_start = vma->vm_start;
518 unsigned long old_end = vma->vm_end;
519 unsigned long length = old_end - old_start;
520 unsigned long new_start = old_start - shift;
521 unsigned long new_end = old_end - shift;
522 struct mmu_gather *tlb;
523
524 BUG_ON(new_start > new_end);
525
526 /*
527 * ensure there are no vmas between where we want to go
528 * and where we are
529 */
530 if (vma != find_vma(mm, new_start))
531 return -EFAULT;
532
533 /*
534 * cover the whole range: [new_start, old_end)
535 */
536 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
537
538 /*
539 * move the page tables downwards, on failure we rely on
540 * process cleanup to remove whatever mess we made.
541 */
542 if (length != move_page_tables(vma, old_start,
543 vma, new_start, length))
544 return -ENOMEM;
545
546 lru_add_drain();
547 tlb = tlb_gather_mmu(mm, 0);
548 if (new_end > old_start) {
549 /*
550 * when the old and new regions overlap clear from new_end.
551 */
552 free_pgd_range(tlb, new_end, old_end, new_end,
553 vma->vm_next ? vma->vm_next->vm_start : 0);
554 } else {
555 /*
556 * otherwise, clean from old_start; this is done to not touch
557 * the address space in [new_end, old_start) some architectures
558 * have constraints on va-space that make this illegal (IA64) -
559 * for the others its just a little faster.
560 */
561 free_pgd_range(tlb, old_start, old_end, new_end,
562 vma->vm_next ? vma->vm_next->vm_start : 0);
563 }
564 tlb_finish_mmu(tlb, new_end, old_end);
565
566 /*
567 * shrink the vma to just the new range.
568 */
569 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
570
571 return 0;
572 }
573
574 #define EXTRA_STACK_VM_PAGES 20 /* random */
575
576 /*
577 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
578 * the stack is optionally relocated, and some extra space is added.
579 */
580 int setup_arg_pages(struct linux_binprm *bprm,
581 unsigned long stack_top,
582 int executable_stack)
583 {
584 unsigned long ret;
585 unsigned long stack_shift;
586 struct mm_struct *mm = current->mm;
587 struct vm_area_struct *vma = bprm->vma;
588 struct vm_area_struct *prev = NULL;
589 unsigned long vm_flags;
590 unsigned long stack_base;
591
592 #ifdef CONFIG_STACK_GROWSUP
593 /* Limit stack size to 1GB */
594 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
595 if (stack_base > (1 << 30))
596 stack_base = 1 << 30;
597
598 /* Make sure we didn't let the argument array grow too large. */
599 if (vma->vm_end - vma->vm_start > stack_base)
600 return -ENOMEM;
601
602 stack_base = PAGE_ALIGN(stack_top - stack_base);
603
604 stack_shift = vma->vm_start - stack_base;
605 mm->arg_start = bprm->p - stack_shift;
606 bprm->p = vma->vm_end - stack_shift;
607 #else
608 stack_top = arch_align_stack(stack_top);
609 stack_top = PAGE_ALIGN(stack_top);
610 stack_shift = vma->vm_end - stack_top;
611
612 bprm->p -= stack_shift;
613 mm->arg_start = bprm->p;
614 #endif
615
616 if (bprm->loader)
617 bprm->loader -= stack_shift;
618 bprm->exec -= stack_shift;
619
620 down_write(&mm->mmap_sem);
621 vm_flags = VM_STACK_FLAGS;
622
623 /*
624 * Adjust stack execute permissions; explicitly enable for
625 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
626 * (arch default) otherwise.
627 */
628 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
629 vm_flags |= VM_EXEC;
630 else if (executable_stack == EXSTACK_DISABLE_X)
631 vm_flags &= ~VM_EXEC;
632 vm_flags |= mm->def_flags;
633
634 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
635 vm_flags);
636 if (ret)
637 goto out_unlock;
638 BUG_ON(prev != vma);
639
640 /* Move stack pages down in memory. */
641 if (stack_shift) {
642 ret = shift_arg_pages(vma, stack_shift);
643 if (ret) {
644 up_write(&mm->mmap_sem);
645 return ret;
646 }
647 }
648
649 #ifdef CONFIG_STACK_GROWSUP
650 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
651 #else
652 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
653 #endif
654 ret = expand_stack(vma, stack_base);
655 if (ret)
656 ret = -EFAULT;
657
658 out_unlock:
659 up_write(&mm->mmap_sem);
660 return 0;
661 }
662 EXPORT_SYMBOL(setup_arg_pages);
663
664 #endif /* CONFIG_MMU */
665
666 struct file *open_exec(const char *name)
667 {
668 struct nameidata nd;
669 struct file *file;
670 int err;
671
672 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
673 FMODE_READ|FMODE_EXEC);
674 if (err)
675 goto out;
676
677 err = -EACCES;
678 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
679 goto out_path_put;
680
681 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
682 goto out_path_put;
683
684 err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
685 if (err)
686 goto out_path_put;
687
688 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
689 if (IS_ERR(file))
690 return file;
691
692 err = deny_write_access(file);
693 if (err) {
694 fput(file);
695 goto out;
696 }
697
698 return file;
699
700 out_path_put:
701 release_open_intent(&nd);
702 path_put(&nd.path);
703 out:
704 return ERR_PTR(err);
705 }
706 EXPORT_SYMBOL(open_exec);
707
708 int kernel_read(struct file *file, unsigned long offset,
709 char *addr, unsigned long count)
710 {
711 mm_segment_t old_fs;
712 loff_t pos = offset;
713 int result;
714
715 old_fs = get_fs();
716 set_fs(get_ds());
717 /* The cast to a user pointer is valid due to the set_fs() */
718 result = vfs_read(file, (void __user *)addr, count, &pos);
719 set_fs(old_fs);
720 return result;
721 }
722
723 EXPORT_SYMBOL(kernel_read);
724
725 static int exec_mmap(struct mm_struct *mm)
726 {
727 struct task_struct *tsk;
728 struct mm_struct * old_mm, *active_mm;
729
730 /* Notify parent that we're no longer interested in the old VM */
731 tsk = current;
732 old_mm = current->mm;
733 mm_release(tsk, old_mm);
734
735 if (old_mm) {
736 /*
737 * Make sure that if there is a core dump in progress
738 * for the old mm, we get out and die instead of going
739 * through with the exec. We must hold mmap_sem around
740 * checking core_state and changing tsk->mm.
741 */
742 down_read(&old_mm->mmap_sem);
743 if (unlikely(old_mm->core_state)) {
744 up_read(&old_mm->mmap_sem);
745 return -EINTR;
746 }
747 }
748 task_lock(tsk);
749 active_mm = tsk->active_mm;
750 tsk->mm = mm;
751 tsk->active_mm = mm;
752 activate_mm(active_mm, mm);
753 task_unlock(tsk);
754 arch_pick_mmap_layout(mm);
755 if (old_mm) {
756 up_read(&old_mm->mmap_sem);
757 BUG_ON(active_mm != old_mm);
758 mm_update_next_owner(old_mm);
759 mmput(old_mm);
760 return 0;
761 }
762 mmdrop(active_mm);
763 return 0;
764 }
765
766 /*
767 * This function makes sure the current process has its own signal table,
768 * so that flush_signal_handlers can later reset the handlers without
769 * disturbing other processes. (Other processes might share the signal
770 * table via the CLONE_SIGHAND option to clone().)
771 */
772 static int de_thread(struct task_struct *tsk)
773 {
774 struct signal_struct *sig = tsk->signal;
775 struct sighand_struct *oldsighand = tsk->sighand;
776 spinlock_t *lock = &oldsighand->siglock;
777 int count;
778
779 if (thread_group_empty(tsk))
780 goto no_thread_group;
781
782 /*
783 * Kill all other threads in the thread group.
784 */
785 spin_lock_irq(lock);
786 if (signal_group_exit(sig)) {
787 /*
788 * Another group action in progress, just
789 * return so that the signal is processed.
790 */
791 spin_unlock_irq(lock);
792 return -EAGAIN;
793 }
794 sig->group_exit_task = tsk;
795 zap_other_threads(tsk);
796
797 /* Account for the thread group leader hanging around: */
798 count = thread_group_leader(tsk) ? 1 : 2;
799 sig->notify_count = count;
800 while (atomic_read(&sig->count) > count) {
801 __set_current_state(TASK_UNINTERRUPTIBLE);
802 spin_unlock_irq(lock);
803 schedule();
804 spin_lock_irq(lock);
805 }
806 spin_unlock_irq(lock);
807
808 /*
809 * At this point all other threads have exited, all we have to
810 * do is to wait for the thread group leader to become inactive,
811 * and to assume its PID:
812 */
813 if (!thread_group_leader(tsk)) {
814 struct task_struct *leader = tsk->group_leader;
815
816 sig->notify_count = -1; /* for exit_notify() */
817 for (;;) {
818 write_lock_irq(&tasklist_lock);
819 if (likely(leader->exit_state))
820 break;
821 __set_current_state(TASK_UNINTERRUPTIBLE);
822 write_unlock_irq(&tasklist_lock);
823 schedule();
824 }
825
826 /*
827 * The only record we have of the real-time age of a
828 * process, regardless of execs it's done, is start_time.
829 * All the past CPU time is accumulated in signal_struct
830 * from sister threads now dead. But in this non-leader
831 * exec, nothing survives from the original leader thread,
832 * whose birth marks the true age of this process now.
833 * When we take on its identity by switching to its PID, we
834 * also take its birthdate (always earlier than our own).
835 */
836 tsk->start_time = leader->start_time;
837
838 BUG_ON(!same_thread_group(leader, tsk));
839 BUG_ON(has_group_leader_pid(tsk));
840 /*
841 * An exec() starts a new thread group with the
842 * TGID of the previous thread group. Rehash the
843 * two threads with a switched PID, and release
844 * the former thread group leader:
845 */
846
847 /* Become a process group leader with the old leader's pid.
848 * The old leader becomes a thread of the this thread group.
849 * Note: The old leader also uses this pid until release_task
850 * is called. Odd but simple and correct.
851 */
852 detach_pid(tsk, PIDTYPE_PID);
853 tsk->pid = leader->pid;
854 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
855 transfer_pid(leader, tsk, PIDTYPE_PGID);
856 transfer_pid(leader, tsk, PIDTYPE_SID);
857 list_replace_rcu(&leader->tasks, &tsk->tasks);
858
859 tsk->group_leader = tsk;
860 leader->group_leader = tsk;
861
862 tsk->exit_signal = SIGCHLD;
863
864 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
865 leader->exit_state = EXIT_DEAD;
866 write_unlock_irq(&tasklist_lock);
867
868 release_task(leader);
869 }
870
871 sig->group_exit_task = NULL;
872 sig->notify_count = 0;
873
874 no_thread_group:
875 exit_itimers(sig);
876 flush_itimer_signals();
877
878 if (atomic_read(&oldsighand->count) != 1) {
879 struct sighand_struct *newsighand;
880 /*
881 * This ->sighand is shared with the CLONE_SIGHAND
882 * but not CLONE_THREAD task, switch to the new one.
883 */
884 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
885 if (!newsighand)
886 return -ENOMEM;
887
888 atomic_set(&newsighand->count, 1);
889 memcpy(newsighand->action, oldsighand->action,
890 sizeof(newsighand->action));
891
892 write_lock_irq(&tasklist_lock);
893 spin_lock(&oldsighand->siglock);
894 rcu_assign_pointer(tsk->sighand, newsighand);
895 spin_unlock(&oldsighand->siglock);
896 write_unlock_irq(&tasklist_lock);
897
898 __cleanup_sighand(oldsighand);
899 }
900
901 BUG_ON(!thread_group_leader(tsk));
902 return 0;
903 }
904
905 /*
906 * These functions flushes out all traces of the currently running executable
907 * so that a new one can be started
908 */
909 static void flush_old_files(struct files_struct * files)
910 {
911 long j = -1;
912 struct fdtable *fdt;
913
914 spin_lock(&files->file_lock);
915 for (;;) {
916 unsigned long set, i;
917
918 j++;
919 i = j * __NFDBITS;
920 fdt = files_fdtable(files);
921 if (i >= fdt->max_fds)
922 break;
923 set = fdt->close_on_exec->fds_bits[j];
924 if (!set)
925 continue;
926 fdt->close_on_exec->fds_bits[j] = 0;
927 spin_unlock(&files->file_lock);
928 for ( ; set ; i++,set >>= 1) {
929 if (set & 1) {
930 sys_close(i);
931 }
932 }
933 spin_lock(&files->file_lock);
934
935 }
936 spin_unlock(&files->file_lock);
937 }
938
939 char *get_task_comm(char *buf, struct task_struct *tsk)
940 {
941 /* buf must be at least sizeof(tsk->comm) in size */
942 task_lock(tsk);
943 strncpy(buf, tsk->comm, sizeof(tsk->comm));
944 task_unlock(tsk);
945 return buf;
946 }
947
948 void set_task_comm(struct task_struct *tsk, char *buf)
949 {
950 task_lock(tsk);
951 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
952 task_unlock(tsk);
953 }
954
955 int flush_old_exec(struct linux_binprm * bprm)
956 {
957 char * name;
958 int i, ch, retval;
959 char tcomm[sizeof(current->comm)];
960
961 /*
962 * Make sure we have a private signal table and that
963 * we are unassociated from the previous thread group.
964 */
965 retval = de_thread(current);
966 if (retval)
967 goto out;
968
969 set_mm_exe_file(bprm->mm, bprm->file);
970
971 /*
972 * Release all of the old mmap stuff
973 */
974 retval = exec_mmap(bprm->mm);
975 if (retval)
976 goto out;
977
978 bprm->mm = NULL; /* We're using it now */
979
980 /* This is the point of no return */
981 current->sas_ss_sp = current->sas_ss_size = 0;
982
983 if (current_euid() == current_uid() && current_egid() == current_gid())
984 set_dumpable(current->mm, 1);
985 else
986 set_dumpable(current->mm, suid_dumpable);
987
988 name = bprm->filename;
989
990 /* Copies the binary name from after last slash */
991 for (i=0; (ch = *(name++)) != '\0';) {
992 if (ch == '/')
993 i = 0; /* overwrite what we wrote */
994 else
995 if (i < (sizeof(tcomm) - 1))
996 tcomm[i++] = ch;
997 }
998 tcomm[i] = '\0';
999 set_task_comm(current, tcomm);
1000
1001 current->flags &= ~PF_RANDOMIZE;
1002 flush_thread();
1003
1004 /* Set the new mm task size. We have to do that late because it may
1005 * depend on TIF_32BIT which is only updated in flush_thread() on
1006 * some architectures like powerpc
1007 */
1008 current->mm->task_size = TASK_SIZE;
1009
1010 /* install the new credentials */
1011 if (bprm->cred->uid != current_euid() ||
1012 bprm->cred->gid != current_egid()) {
1013 current->pdeath_signal = 0;
1014 } else if (file_permission(bprm->file, MAY_READ) ||
1015 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1016 set_dumpable(current->mm, suid_dumpable);
1017 }
1018
1019 current->personality &= ~bprm->per_clear;
1020
1021 /* An exec changes our domain. We are no longer part of the thread
1022 group */
1023
1024 current->self_exec_id++;
1025
1026 flush_signal_handlers(current, 0);
1027 flush_old_files(current->files);
1028
1029 return 0;
1030
1031 out:
1032 return retval;
1033 }
1034
1035 EXPORT_SYMBOL(flush_old_exec);
1036
1037 /*
1038 * install the new credentials for this executable
1039 */
1040 void install_exec_creds(struct linux_binprm *bprm)
1041 {
1042 security_bprm_committing_creds(bprm);
1043
1044 commit_creds(bprm->cred);
1045 bprm->cred = NULL;
1046
1047 /* cred_exec_mutex must be held at least to this point to prevent
1048 * ptrace_attach() from altering our determination of the task's
1049 * credentials; any time after this it may be unlocked */
1050
1051 security_bprm_committed_creds(bprm);
1052 }
1053 EXPORT_SYMBOL(install_exec_creds);
1054
1055 /*
1056 * determine how safe it is to execute the proposed program
1057 * - the caller must hold current->cred_exec_mutex to protect against
1058 * PTRACE_ATTACH
1059 */
1060 void check_unsafe_exec(struct linux_binprm *bprm)
1061 {
1062 struct task_struct *p = current;
1063
1064 bprm->unsafe = tracehook_unsafe_exec(p);
1065
1066 if (atomic_read(&p->fs->count) > 1 ||
1067 atomic_read(&p->files->count) > 1 ||
1068 atomic_read(&p->sighand->count) > 1)
1069 bprm->unsafe |= LSM_UNSAFE_SHARE;
1070 }
1071
1072 /*
1073 * Fill the binprm structure from the inode.
1074 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1075 *
1076 * This may be called multiple times for binary chains (scripts for example).
1077 */
1078 int prepare_binprm(struct linux_binprm *bprm)
1079 {
1080 umode_t mode;
1081 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1082 int retval;
1083
1084 mode = inode->i_mode;
1085 if (bprm->file->f_op == NULL)
1086 return -EACCES;
1087
1088 /* clear any previous set[ug]id data from a previous binary */
1089 bprm->cred->euid = current_euid();
1090 bprm->cred->egid = current_egid();
1091
1092 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1093 /* Set-uid? */
1094 if (mode & S_ISUID) {
1095 bprm->per_clear |= PER_CLEAR_ON_SETID;
1096 bprm->cred->euid = inode->i_uid;
1097 }
1098
1099 /* Set-gid? */
1100 /*
1101 * If setgid is set but no group execute bit then this
1102 * is a candidate for mandatory locking, not a setgid
1103 * executable.
1104 */
1105 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1106 bprm->per_clear |= PER_CLEAR_ON_SETID;
1107 bprm->cred->egid = inode->i_gid;
1108 }
1109 }
1110
1111 /* fill in binprm security blob */
1112 retval = security_bprm_set_creds(bprm);
1113 if (retval)
1114 return retval;
1115 bprm->cred_prepared = 1;
1116
1117 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1118 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1119 }
1120
1121 EXPORT_SYMBOL(prepare_binprm);
1122
1123 /*
1124 * Arguments are '\0' separated strings found at the location bprm->p
1125 * points to; chop off the first by relocating brpm->p to right after
1126 * the first '\0' encountered.
1127 */
1128 int remove_arg_zero(struct linux_binprm *bprm)
1129 {
1130 int ret = 0;
1131 unsigned long offset;
1132 char *kaddr;
1133 struct page *page;
1134
1135 if (!bprm->argc)
1136 return 0;
1137
1138 do {
1139 offset = bprm->p & ~PAGE_MASK;
1140 page = get_arg_page(bprm, bprm->p, 0);
1141 if (!page) {
1142 ret = -EFAULT;
1143 goto out;
1144 }
1145 kaddr = kmap_atomic(page, KM_USER0);
1146
1147 for (; offset < PAGE_SIZE && kaddr[offset];
1148 offset++, bprm->p++)
1149 ;
1150
1151 kunmap_atomic(kaddr, KM_USER0);
1152 put_arg_page(page);
1153
1154 if (offset == PAGE_SIZE)
1155 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1156 } while (offset == PAGE_SIZE);
1157
1158 bprm->p++;
1159 bprm->argc--;
1160 ret = 0;
1161
1162 out:
1163 return ret;
1164 }
1165 EXPORT_SYMBOL(remove_arg_zero);
1166
1167 /*
1168 * cycle the list of binary formats handler, until one recognizes the image
1169 */
1170 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1171 {
1172 unsigned int depth = bprm->recursion_depth;
1173 int try,retval;
1174 struct linux_binfmt *fmt;
1175 #ifdef __alpha__
1176 /* handle /sbin/loader.. */
1177 {
1178 struct exec * eh = (struct exec *) bprm->buf;
1179
1180 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1181 (eh->fh.f_flags & 0x3000) == 0x3000)
1182 {
1183 struct file * file;
1184 unsigned long loader;
1185
1186 allow_write_access(bprm->file);
1187 fput(bprm->file);
1188 bprm->file = NULL;
1189
1190 loader = bprm->vma->vm_end - sizeof(void *);
1191
1192 file = open_exec("/sbin/loader");
1193 retval = PTR_ERR(file);
1194 if (IS_ERR(file))
1195 return retval;
1196
1197 /* Remember if the application is TASO. */
1198 bprm->taso = eh->ah.entry < 0x100000000UL;
1199
1200 bprm->file = file;
1201 bprm->loader = loader;
1202 retval = prepare_binprm(bprm);
1203 if (retval<0)
1204 return retval;
1205 /* should call search_binary_handler recursively here,
1206 but it does not matter */
1207 }
1208 }
1209 #endif
1210 retval = security_bprm_check(bprm);
1211 if (retval)
1212 return retval;
1213
1214 /* kernel module loader fixup */
1215 /* so we don't try to load run modprobe in kernel space. */
1216 set_fs(USER_DS);
1217
1218 retval = audit_bprm(bprm);
1219 if (retval)
1220 return retval;
1221
1222 retval = -ENOENT;
1223 for (try=0; try<2; try++) {
1224 read_lock(&binfmt_lock);
1225 list_for_each_entry(fmt, &formats, lh) {
1226 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1227 if (!fn)
1228 continue;
1229 if (!try_module_get(fmt->module))
1230 continue;
1231 read_unlock(&binfmt_lock);
1232 retval = fn(bprm, regs);
1233 /*
1234 * Restore the depth counter to its starting value
1235 * in this call, so we don't have to rely on every
1236 * load_binary function to restore it on return.
1237 */
1238 bprm->recursion_depth = depth;
1239 if (retval >= 0) {
1240 if (depth == 0)
1241 tracehook_report_exec(fmt, bprm, regs);
1242 put_binfmt(fmt);
1243 allow_write_access(bprm->file);
1244 if (bprm->file)
1245 fput(bprm->file);
1246 bprm->file = NULL;
1247 current->did_exec = 1;
1248 proc_exec_connector(current);
1249 return retval;
1250 }
1251 read_lock(&binfmt_lock);
1252 put_binfmt(fmt);
1253 if (retval != -ENOEXEC || bprm->mm == NULL)
1254 break;
1255 if (!bprm->file) {
1256 read_unlock(&binfmt_lock);
1257 return retval;
1258 }
1259 }
1260 read_unlock(&binfmt_lock);
1261 if (retval != -ENOEXEC || bprm->mm == NULL) {
1262 break;
1263 #ifdef CONFIG_MODULES
1264 } else {
1265 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1266 if (printable(bprm->buf[0]) &&
1267 printable(bprm->buf[1]) &&
1268 printable(bprm->buf[2]) &&
1269 printable(bprm->buf[3]))
1270 break; /* -ENOEXEC */
1271 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1272 #endif
1273 }
1274 }
1275 return retval;
1276 }
1277
1278 EXPORT_SYMBOL(search_binary_handler);
1279
1280 void free_bprm(struct linux_binprm *bprm)
1281 {
1282 free_arg_pages(bprm);
1283 if (bprm->cred)
1284 abort_creds(bprm->cred);
1285 kfree(bprm);
1286 }
1287
1288 /*
1289 * sys_execve() executes a new program.
1290 */
1291 int do_execve(char * filename,
1292 char __user *__user *argv,
1293 char __user *__user *envp,
1294 struct pt_regs * regs)
1295 {
1296 struct linux_binprm *bprm;
1297 struct file *file;
1298 struct files_struct *displaced;
1299 int retval;
1300
1301 retval = unshare_files(&displaced);
1302 if (retval)
1303 goto out_ret;
1304
1305 retval = -ENOMEM;
1306 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1307 if (!bprm)
1308 goto out_files;
1309
1310 retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1311 if (retval < 0)
1312 goto out_free;
1313
1314 retval = -ENOMEM;
1315 bprm->cred = prepare_exec_creds();
1316 if (!bprm->cred)
1317 goto out_unlock;
1318 check_unsafe_exec(bprm);
1319
1320 file = open_exec(filename);
1321 retval = PTR_ERR(file);
1322 if (IS_ERR(file))
1323 goto out_unlock;
1324
1325 sched_exec();
1326
1327 bprm->file = file;
1328 bprm->filename = filename;
1329 bprm->interp = filename;
1330
1331 retval = bprm_mm_init(bprm);
1332 if (retval)
1333 goto out_file;
1334
1335 bprm->argc = count(argv, MAX_ARG_STRINGS);
1336 if ((retval = bprm->argc) < 0)
1337 goto out;
1338
1339 bprm->envc = count(envp, MAX_ARG_STRINGS);
1340 if ((retval = bprm->envc) < 0)
1341 goto out;
1342
1343 retval = prepare_binprm(bprm);
1344 if (retval < 0)
1345 goto out;
1346
1347 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1348 if (retval < 0)
1349 goto out;
1350
1351 bprm->exec = bprm->p;
1352 retval = copy_strings(bprm->envc, envp, bprm);
1353 if (retval < 0)
1354 goto out;
1355
1356 retval = copy_strings(bprm->argc, argv, bprm);
1357 if (retval < 0)
1358 goto out;
1359
1360 current->flags &= ~PF_KTHREAD;
1361 retval = search_binary_handler(bprm,regs);
1362 if (retval < 0)
1363 goto out;
1364
1365 /* execve succeeded */
1366 mutex_unlock(&current->cred_exec_mutex);
1367 acct_update_integrals(current);
1368 free_bprm(bprm);
1369 if (displaced)
1370 put_files_struct(displaced);
1371 return retval;
1372
1373 out:
1374 if (bprm->mm)
1375 mmput (bprm->mm);
1376
1377 out_file:
1378 if (bprm->file) {
1379 allow_write_access(bprm->file);
1380 fput(bprm->file);
1381 }
1382
1383 out_unlock:
1384 mutex_unlock(&current->cred_exec_mutex);
1385
1386 out_free:
1387 free_bprm(bprm);
1388
1389 out_files:
1390 if (displaced)
1391 reset_files_struct(displaced);
1392 out_ret:
1393 return retval;
1394 }
1395
1396 int set_binfmt(struct linux_binfmt *new)
1397 {
1398 struct linux_binfmt *old = current->binfmt;
1399
1400 if (new) {
1401 if (!try_module_get(new->module))
1402 return -1;
1403 }
1404 current->binfmt = new;
1405 if (old)
1406 module_put(old->module);
1407 return 0;
1408 }
1409
1410 EXPORT_SYMBOL(set_binfmt);
1411
1412 /* format_corename will inspect the pattern parameter, and output a
1413 * name into corename, which must have space for at least
1414 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1415 */
1416 static int format_corename(char *corename, long signr)
1417 {
1418 const struct cred *cred = current_cred();
1419 const char *pat_ptr = core_pattern;
1420 int ispipe = (*pat_ptr == '|');
1421 char *out_ptr = corename;
1422 char *const out_end = corename + CORENAME_MAX_SIZE;
1423 int rc;
1424 int pid_in_pattern = 0;
1425
1426 /* Repeat as long as we have more pattern to process and more output
1427 space */
1428 while (*pat_ptr) {
1429 if (*pat_ptr != '%') {
1430 if (out_ptr == out_end)
1431 goto out;
1432 *out_ptr++ = *pat_ptr++;
1433 } else {
1434 switch (*++pat_ptr) {
1435 case 0:
1436 goto out;
1437 /* Double percent, output one percent */
1438 case '%':
1439 if (out_ptr == out_end)
1440 goto out;
1441 *out_ptr++ = '%';
1442 break;
1443 /* pid */
1444 case 'p':
1445 pid_in_pattern = 1;
1446 rc = snprintf(out_ptr, out_end - out_ptr,
1447 "%d", task_tgid_vnr(current));
1448 if (rc > out_end - out_ptr)
1449 goto out;
1450 out_ptr += rc;
1451 break;
1452 /* uid */
1453 case 'u':
1454 rc = snprintf(out_ptr, out_end - out_ptr,
1455 "%d", cred->uid);
1456 if (rc > out_end - out_ptr)
1457 goto out;
1458 out_ptr += rc;
1459 break;
1460 /* gid */
1461 case 'g':
1462 rc = snprintf(out_ptr, out_end - out_ptr,
1463 "%d", cred->gid);
1464 if (rc > out_end - out_ptr)
1465 goto out;
1466 out_ptr += rc;
1467 break;
1468 /* signal that caused the coredump */
1469 case 's':
1470 rc = snprintf(out_ptr, out_end - out_ptr,
1471 "%ld", signr);
1472 if (rc > out_end - out_ptr)
1473 goto out;
1474 out_ptr += rc;
1475 break;
1476 /* UNIX time of coredump */
1477 case 't': {
1478 struct timeval tv;
1479 do_gettimeofday(&tv);
1480 rc = snprintf(out_ptr, out_end - out_ptr,
1481 "%lu", tv.tv_sec);
1482 if (rc > out_end - out_ptr)
1483 goto out;
1484 out_ptr += rc;
1485 break;
1486 }
1487 /* hostname */
1488 case 'h':
1489 down_read(&uts_sem);
1490 rc = snprintf(out_ptr, out_end - out_ptr,
1491 "%s", utsname()->nodename);
1492 up_read(&uts_sem);
1493 if (rc > out_end - out_ptr)
1494 goto out;
1495 out_ptr += rc;
1496 break;
1497 /* executable */
1498 case 'e':
1499 rc = snprintf(out_ptr, out_end - out_ptr,
1500 "%s", current->comm);
1501 if (rc > out_end - out_ptr)
1502 goto out;
1503 out_ptr += rc;
1504 break;
1505 /* core limit size */
1506 case 'c':
1507 rc = snprintf(out_ptr, out_end - out_ptr,
1508 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1509 if (rc > out_end - out_ptr)
1510 goto out;
1511 out_ptr += rc;
1512 break;
1513 default:
1514 break;
1515 }
1516 ++pat_ptr;
1517 }
1518 }
1519 /* Backward compatibility with core_uses_pid:
1520 *
1521 * If core_pattern does not include a %p (as is the default)
1522 * and core_uses_pid is set, then .%pid will be appended to
1523 * the filename. Do not do this for piped commands. */
1524 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1525 rc = snprintf(out_ptr, out_end - out_ptr,
1526 ".%d", task_tgid_vnr(current));
1527 if (rc > out_end - out_ptr)
1528 goto out;
1529 out_ptr += rc;
1530 }
1531 out:
1532 *out_ptr = 0;
1533 return ispipe;
1534 }
1535
1536 static int zap_process(struct task_struct *start)
1537 {
1538 struct task_struct *t;
1539 int nr = 0;
1540
1541 start->signal->flags = SIGNAL_GROUP_EXIT;
1542 start->signal->group_stop_count = 0;
1543
1544 t = start;
1545 do {
1546 if (t != current && t->mm) {
1547 sigaddset(&t->pending.signal, SIGKILL);
1548 signal_wake_up(t, 1);
1549 nr++;
1550 }
1551 } while_each_thread(start, t);
1552
1553 return nr;
1554 }
1555
1556 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1557 struct core_state *core_state, int exit_code)
1558 {
1559 struct task_struct *g, *p;
1560 unsigned long flags;
1561 int nr = -EAGAIN;
1562
1563 spin_lock_irq(&tsk->sighand->siglock);
1564 if (!signal_group_exit(tsk->signal)) {
1565 mm->core_state = core_state;
1566 tsk->signal->group_exit_code = exit_code;
1567 nr = zap_process(tsk);
1568 }
1569 spin_unlock_irq(&tsk->sighand->siglock);
1570 if (unlikely(nr < 0))
1571 return nr;
1572
1573 if (atomic_read(&mm->mm_users) == nr + 1)
1574 goto done;
1575 /*
1576 * We should find and kill all tasks which use this mm, and we should
1577 * count them correctly into ->nr_threads. We don't take tasklist
1578 * lock, but this is safe wrt:
1579 *
1580 * fork:
1581 * None of sub-threads can fork after zap_process(leader). All
1582 * processes which were created before this point should be
1583 * visible to zap_threads() because copy_process() adds the new
1584 * process to the tail of init_task.tasks list, and lock/unlock
1585 * of ->siglock provides a memory barrier.
1586 *
1587 * do_exit:
1588 * The caller holds mm->mmap_sem. This means that the task which
1589 * uses this mm can't pass exit_mm(), so it can't exit or clear
1590 * its ->mm.
1591 *
1592 * de_thread:
1593 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1594 * we must see either old or new leader, this does not matter.
1595 * However, it can change p->sighand, so lock_task_sighand(p)
1596 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1597 * it can't fail.
1598 *
1599 * Note also that "g" can be the old leader with ->mm == NULL
1600 * and already unhashed and thus removed from ->thread_group.
1601 * This is OK, __unhash_process()->list_del_rcu() does not
1602 * clear the ->next pointer, we will find the new leader via
1603 * next_thread().
1604 */
1605 rcu_read_lock();
1606 for_each_process(g) {
1607 if (g == tsk->group_leader)
1608 continue;
1609 if (g->flags & PF_KTHREAD)
1610 continue;
1611 p = g;
1612 do {
1613 if (p->mm) {
1614 if (unlikely(p->mm == mm)) {
1615 lock_task_sighand(p, &flags);
1616 nr += zap_process(p);
1617 unlock_task_sighand(p, &flags);
1618 }
1619 break;
1620 }
1621 } while_each_thread(g, p);
1622 }
1623 rcu_read_unlock();
1624 done:
1625 atomic_set(&core_state->nr_threads, nr);
1626 return nr;
1627 }
1628
1629 static int coredump_wait(int exit_code, struct core_state *core_state)
1630 {
1631 struct task_struct *tsk = current;
1632 struct mm_struct *mm = tsk->mm;
1633 struct completion *vfork_done;
1634 int core_waiters;
1635
1636 init_completion(&core_state->startup);
1637 core_state->dumper.task = tsk;
1638 core_state->dumper.next = NULL;
1639 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1640 up_write(&mm->mmap_sem);
1641
1642 if (unlikely(core_waiters < 0))
1643 goto fail;
1644
1645 /*
1646 * Make sure nobody is waiting for us to release the VM,
1647 * otherwise we can deadlock when we wait on each other
1648 */
1649 vfork_done = tsk->vfork_done;
1650 if (vfork_done) {
1651 tsk->vfork_done = NULL;
1652 complete(vfork_done);
1653 }
1654
1655 if (core_waiters)
1656 wait_for_completion(&core_state->startup);
1657 fail:
1658 return core_waiters;
1659 }
1660
1661 static void coredump_finish(struct mm_struct *mm)
1662 {
1663 struct core_thread *curr, *next;
1664 struct task_struct *task;
1665
1666 next = mm->core_state->dumper.next;
1667 while ((curr = next) != NULL) {
1668 next = curr->next;
1669 task = curr->task;
1670 /*
1671 * see exit_mm(), curr->task must not see
1672 * ->task == NULL before we read ->next.
1673 */
1674 smp_mb();
1675 curr->task = NULL;
1676 wake_up_process(task);
1677 }
1678
1679 mm->core_state = NULL;
1680 }
1681
1682 /*
1683 * set_dumpable converts traditional three-value dumpable to two flags and
1684 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1685 * these bits are not changed atomically. So get_dumpable can observe the
1686 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1687 * return either old dumpable or new one by paying attention to the order of
1688 * modifying the bits.
1689 *
1690 * dumpable | mm->flags (binary)
1691 * old new | initial interim final
1692 * ---------+-----------------------
1693 * 0 1 | 00 01 01
1694 * 0 2 | 00 10(*) 11
1695 * 1 0 | 01 00 00
1696 * 1 2 | 01 11 11
1697 * 2 0 | 11 10(*) 00
1698 * 2 1 | 11 11 01
1699 *
1700 * (*) get_dumpable regards interim value of 10 as 11.
1701 */
1702 void set_dumpable(struct mm_struct *mm, int value)
1703 {
1704 switch (value) {
1705 case 0:
1706 clear_bit(MMF_DUMPABLE, &mm->flags);
1707 smp_wmb();
1708 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1709 break;
1710 case 1:
1711 set_bit(MMF_DUMPABLE, &mm->flags);
1712 smp_wmb();
1713 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1714 break;
1715 case 2:
1716 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1717 smp_wmb();
1718 set_bit(MMF_DUMPABLE, &mm->flags);
1719 break;
1720 }
1721 }
1722
1723 int get_dumpable(struct mm_struct *mm)
1724 {
1725 int ret;
1726
1727 ret = mm->flags & 0x3;
1728 return (ret >= 2) ? 2 : ret;
1729 }
1730
1731 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1732 {
1733 struct core_state core_state;
1734 char corename[CORENAME_MAX_SIZE + 1];
1735 struct mm_struct *mm = current->mm;
1736 struct linux_binfmt * binfmt;
1737 struct inode * inode;
1738 struct file * file;
1739 const struct cred *old_cred;
1740 struct cred *cred;
1741 int retval = 0;
1742 int flag = 0;
1743 int ispipe = 0;
1744 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1745 char **helper_argv = NULL;
1746 int helper_argc = 0;
1747 char *delimit;
1748
1749 audit_core_dumps(signr);
1750
1751 binfmt = current->binfmt;
1752 if (!binfmt || !binfmt->core_dump)
1753 goto fail;
1754
1755 cred = prepare_creds();
1756 if (!cred) {
1757 retval = -ENOMEM;
1758 goto fail;
1759 }
1760
1761 down_write(&mm->mmap_sem);
1762 /*
1763 * If another thread got here first, or we are not dumpable, bail out.
1764 */
1765 if (mm->core_state || !get_dumpable(mm)) {
1766 up_write(&mm->mmap_sem);
1767 put_cred(cred);
1768 goto fail;
1769 }
1770
1771 /*
1772 * We cannot trust fsuid as being the "true" uid of the
1773 * process nor do we know its entire history. We only know it
1774 * was tainted so we dump it as root in mode 2.
1775 */
1776 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1777 flag = O_EXCL; /* Stop rewrite attacks */
1778 cred->fsuid = 0; /* Dump root private */
1779 }
1780
1781 retval = coredump_wait(exit_code, &core_state);
1782 if (retval < 0) {
1783 put_cred(cred);
1784 goto fail;
1785 }
1786
1787 old_cred = override_creds(cred);
1788
1789 /*
1790 * Clear any false indication of pending signals that might
1791 * be seen by the filesystem code called to write the core file.
1792 */
1793 clear_thread_flag(TIF_SIGPENDING);
1794
1795 /*
1796 * lock_kernel() because format_corename() is controlled by sysctl, which
1797 * uses lock_kernel()
1798 */
1799 lock_kernel();
1800 ispipe = format_corename(corename, signr);
1801 unlock_kernel();
1802 /*
1803 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1804 * to a pipe. Since we're not writing directly to the filesystem
1805 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1806 * created unless the pipe reader choses to write out the core file
1807 * at which point file size limits and permissions will be imposed
1808 * as it does with any other process
1809 */
1810 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1811 goto fail_unlock;
1812
1813 if (ispipe) {
1814 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1815 /* Terminate the string before the first option */
1816 delimit = strchr(corename, ' ');
1817 if (delimit)
1818 *delimit = '\0';
1819 delimit = strrchr(helper_argv[0], '/');
1820 if (delimit)
1821 delimit++;
1822 else
1823 delimit = helper_argv[0];
1824 if (!strcmp(delimit, current->comm)) {
1825 printk(KERN_NOTICE "Recursive core dump detected, "
1826 "aborting\n");
1827 goto fail_unlock;
1828 }
1829
1830 core_limit = RLIM_INFINITY;
1831
1832 /* SIGPIPE can happen, but it's just never processed */
1833 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1834 &file)) {
1835 printk(KERN_INFO "Core dump to %s pipe failed\n",
1836 corename);
1837 goto fail_unlock;
1838 }
1839 } else
1840 file = filp_open(corename,
1841 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1842 0600);
1843 if (IS_ERR(file))
1844 goto fail_unlock;
1845 inode = file->f_path.dentry->d_inode;
1846 if (inode->i_nlink > 1)
1847 goto close_fail; /* multiple links - don't dump */
1848 if (!ispipe && d_unhashed(file->f_path.dentry))
1849 goto close_fail;
1850
1851 /* AK: actually i see no reason to not allow this for named pipes etc.,
1852 but keep the previous behaviour for now. */
1853 if (!ispipe && !S_ISREG(inode->i_mode))
1854 goto close_fail;
1855 /*
1856 * Dont allow local users get cute and trick others to coredump
1857 * into their pre-created files:
1858 */
1859 if (inode->i_uid != current_fsuid())
1860 goto close_fail;
1861 if (!file->f_op)
1862 goto close_fail;
1863 if (!file->f_op->write)
1864 goto close_fail;
1865 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1866 goto close_fail;
1867
1868 retval = binfmt->core_dump(signr, regs, file, core_limit);
1869
1870 if (retval)
1871 current->signal->group_exit_code |= 0x80;
1872 close_fail:
1873 filp_close(file, NULL);
1874 fail_unlock:
1875 if (helper_argv)
1876 argv_free(helper_argv);
1877
1878 revert_creds(old_cred);
1879 put_cred(cred);
1880 coredump_finish(mm);
1881 fail:
1882 return retval;
1883 }