]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/exec.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/pagemap.h>
40 #include <linux/perf_event.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/key.h>
44 #include <linux/personality.h>
45 #include <linux/binfmts.h>
46 #include <linux/utsname.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/module.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 #include <linux/security.h>
52 #include <linux/syscalls.h>
53 #include <linux/tsacct_kern.h>
54 #include <linux/cn_proc.h>
55 #include <linux/audit.h>
56 #include <linux/tracehook.h>
57 #include <linux/kmod.h>
58 #include <linux/fsnotify.h>
59 #include <linux/fs_struct.h>
60 #include <linux/pipe_fs_i.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64
65 #include <linux/uaccess.h>
66 #include <asm/mmu_context.h>
67 #include <asm/tlb.h>
68
69 #include <trace/events/task.h>
70 #include "internal.h"
71
72 #include <trace/events/sched.h>
73
74 int suid_dumpable = 0;
75
76 static LIST_HEAD(formats);
77 static DEFINE_RWLOCK(binfmt_lock);
78
79 void __register_binfmt(struct linux_binfmt * fmt, int insert)
80 {
81 BUG_ON(!fmt);
82 if (WARN_ON(!fmt->load_binary))
83 return;
84 write_lock(&binfmt_lock);
85 insert ? list_add(&fmt->lh, &formats) :
86 list_add_tail(&fmt->lh, &formats);
87 write_unlock(&binfmt_lock);
88 }
89
90 EXPORT_SYMBOL(__register_binfmt);
91
92 void unregister_binfmt(struct linux_binfmt * fmt)
93 {
94 write_lock(&binfmt_lock);
95 list_del(&fmt->lh);
96 write_unlock(&binfmt_lock);
97 }
98
99 EXPORT_SYMBOL(unregister_binfmt);
100
101 static inline void put_binfmt(struct linux_binfmt * fmt)
102 {
103 module_put(fmt->module);
104 }
105
106 bool path_noexec(const struct path *path)
107 {
108 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
109 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
110 }
111
112 #ifdef CONFIG_USELIB
113 /*
114 * Note that a shared library must be both readable and executable due to
115 * security reasons.
116 *
117 * Also note that we take the address to load from from the file itself.
118 */
119 SYSCALL_DEFINE1(uselib, const char __user *, library)
120 {
121 struct linux_binfmt *fmt;
122 struct file *file;
123 struct filename *tmp = getname(library);
124 int error = PTR_ERR(tmp);
125 static const struct open_flags uselib_flags = {
126 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
127 .acc_mode = MAY_READ | MAY_EXEC,
128 .intent = LOOKUP_OPEN,
129 .lookup_flags = LOOKUP_FOLLOW,
130 };
131
132 if (IS_ERR(tmp))
133 goto out;
134
135 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
136 putname(tmp);
137 error = PTR_ERR(file);
138 if (IS_ERR(file))
139 goto out;
140
141 error = -EINVAL;
142 if (!S_ISREG(file_inode(file)->i_mode))
143 goto exit;
144
145 error = -EACCES;
146 if (path_noexec(&file->f_path))
147 goto exit;
148
149 fsnotify_open(file);
150
151 error = -ENOEXEC;
152
153 read_lock(&binfmt_lock);
154 list_for_each_entry(fmt, &formats, lh) {
155 if (!fmt->load_shlib)
156 continue;
157 if (!try_module_get(fmt->module))
158 continue;
159 read_unlock(&binfmt_lock);
160 error = fmt->load_shlib(file);
161 read_lock(&binfmt_lock);
162 put_binfmt(fmt);
163 if (error != -ENOEXEC)
164 break;
165 }
166 read_unlock(&binfmt_lock);
167 exit:
168 fput(file);
169 out:
170 return error;
171 }
172 #endif /* #ifdef CONFIG_USELIB */
173
174 #ifdef CONFIG_MMU
175 /*
176 * The nascent bprm->mm is not visible until exec_mmap() but it can
177 * use a lot of memory, account these pages in current->mm temporary
178 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
179 * change the counter back via acct_arg_size(0).
180 */
181 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
182 {
183 struct mm_struct *mm = current->mm;
184 long diff = (long)(pages - bprm->vma_pages);
185
186 if (!mm || !diff)
187 return;
188
189 bprm->vma_pages = pages;
190 add_mm_counter(mm, MM_ANONPAGES, diff);
191 }
192
193 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
194 int write)
195 {
196 struct page *page;
197 int ret;
198 unsigned int gup_flags = FOLL_FORCE;
199
200 #ifdef CONFIG_STACK_GROWSUP
201 if (write) {
202 ret = expand_downwards(bprm->vma, pos);
203 if (ret < 0)
204 return NULL;
205 }
206 #endif
207
208 if (write)
209 gup_flags |= FOLL_WRITE;
210
211 /*
212 * We are doing an exec(). 'current' is the process
213 * doing the exec and bprm->mm is the new process's mm.
214 */
215 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
216 &page, NULL, NULL);
217 if (ret <= 0)
218 return NULL;
219
220 if (write) {
221 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
222 struct rlimit *rlim;
223
224 acct_arg_size(bprm, size / PAGE_SIZE);
225
226 /*
227 * We've historically supported up to 32 pages (ARG_MAX)
228 * of argument strings even with small stacks
229 */
230 if (size <= ARG_MAX)
231 return page;
232
233 /*
234 * Limit to 1/4-th the stack size for the argv+env strings.
235 * This ensures that:
236 * - the remaining binfmt code will not run out of stack space,
237 * - the program will have a reasonable amount of stack left
238 * to work from.
239 */
240 rlim = current->signal->rlim;
241 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
242 put_page(page);
243 return NULL;
244 }
245 }
246
247 return page;
248 }
249
250 static void put_arg_page(struct page *page)
251 {
252 put_page(page);
253 }
254
255 static void free_arg_pages(struct linux_binprm *bprm)
256 {
257 }
258
259 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
260 struct page *page)
261 {
262 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
263 }
264
265 static int __bprm_mm_init(struct linux_binprm *bprm)
266 {
267 int err;
268 struct vm_area_struct *vma = NULL;
269 struct mm_struct *mm = bprm->mm;
270
271 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
272 if (!vma)
273 return -ENOMEM;
274
275 if (down_write_killable(&mm->mmap_sem)) {
276 err = -EINTR;
277 goto err_free;
278 }
279 vma->vm_mm = mm;
280
281 /*
282 * Place the stack at the largest stack address the architecture
283 * supports. Later, we'll move this to an appropriate place. We don't
284 * use STACK_TOP because that can depend on attributes which aren't
285 * configured yet.
286 */
287 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
288 vma->vm_end = STACK_TOP_MAX;
289 vma->vm_start = vma->vm_end - PAGE_SIZE;
290 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
291 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
292 INIT_LIST_HEAD(&vma->anon_vma_chain);
293
294 err = insert_vm_struct(mm, vma);
295 if (err)
296 goto err;
297
298 mm->stack_vm = mm->total_vm = 1;
299 arch_bprm_mm_init(mm, vma);
300 up_write(&mm->mmap_sem);
301 bprm->p = vma->vm_end - sizeof(void *);
302 return 0;
303 err:
304 up_write(&mm->mmap_sem);
305 err_free:
306 bprm->vma = NULL;
307 kmem_cache_free(vm_area_cachep, vma);
308 return err;
309 }
310
311 static bool valid_arg_len(struct linux_binprm *bprm, long len)
312 {
313 return len <= MAX_ARG_STRLEN;
314 }
315
316 #else
317
318 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
319 {
320 }
321
322 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
323 int write)
324 {
325 struct page *page;
326
327 page = bprm->page[pos / PAGE_SIZE];
328 if (!page && write) {
329 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
330 if (!page)
331 return NULL;
332 bprm->page[pos / PAGE_SIZE] = page;
333 }
334
335 return page;
336 }
337
338 static void put_arg_page(struct page *page)
339 {
340 }
341
342 static void free_arg_page(struct linux_binprm *bprm, int i)
343 {
344 if (bprm->page[i]) {
345 __free_page(bprm->page[i]);
346 bprm->page[i] = NULL;
347 }
348 }
349
350 static void free_arg_pages(struct linux_binprm *bprm)
351 {
352 int i;
353
354 for (i = 0; i < MAX_ARG_PAGES; i++)
355 free_arg_page(bprm, i);
356 }
357
358 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
359 struct page *page)
360 {
361 }
362
363 static int __bprm_mm_init(struct linux_binprm *bprm)
364 {
365 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
366 return 0;
367 }
368
369 static bool valid_arg_len(struct linux_binprm *bprm, long len)
370 {
371 return len <= bprm->p;
372 }
373
374 #endif /* CONFIG_MMU */
375
376 /*
377 * Create a new mm_struct and populate it with a temporary stack
378 * vm_area_struct. We don't have enough context at this point to set the stack
379 * flags, permissions, and offset, so we use temporary values. We'll update
380 * them later in setup_arg_pages().
381 */
382 static int bprm_mm_init(struct linux_binprm *bprm)
383 {
384 int err;
385 struct mm_struct *mm = NULL;
386
387 bprm->mm = mm = mm_alloc();
388 err = -ENOMEM;
389 if (!mm)
390 goto err;
391
392 err = __bprm_mm_init(bprm);
393 if (err)
394 goto err;
395
396 return 0;
397
398 err:
399 if (mm) {
400 bprm->mm = NULL;
401 mmdrop(mm);
402 }
403
404 return err;
405 }
406
407 struct user_arg_ptr {
408 #ifdef CONFIG_COMPAT
409 bool is_compat;
410 #endif
411 union {
412 const char __user *const __user *native;
413 #ifdef CONFIG_COMPAT
414 const compat_uptr_t __user *compat;
415 #endif
416 } ptr;
417 };
418
419 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
420 {
421 const char __user *native;
422
423 #ifdef CONFIG_COMPAT
424 if (unlikely(argv.is_compat)) {
425 compat_uptr_t compat;
426
427 if (get_user(compat, argv.ptr.compat + nr))
428 return ERR_PTR(-EFAULT);
429
430 return compat_ptr(compat);
431 }
432 #endif
433
434 if (get_user(native, argv.ptr.native + nr))
435 return ERR_PTR(-EFAULT);
436
437 return native;
438 }
439
440 /*
441 * count() counts the number of strings in array ARGV.
442 */
443 static int count(struct user_arg_ptr argv, int max)
444 {
445 int i = 0;
446
447 if (argv.ptr.native != NULL) {
448 for (;;) {
449 const char __user *p = get_user_arg_ptr(argv, i);
450
451 if (!p)
452 break;
453
454 if (IS_ERR(p))
455 return -EFAULT;
456
457 if (i >= max)
458 return -E2BIG;
459 ++i;
460
461 if (fatal_signal_pending(current))
462 return -ERESTARTNOHAND;
463 cond_resched();
464 }
465 }
466 return i;
467 }
468
469 /*
470 * 'copy_strings()' copies argument/environment strings from the old
471 * processes's memory to the new process's stack. The call to get_user_pages()
472 * ensures the destination page is created and not swapped out.
473 */
474 static int copy_strings(int argc, struct user_arg_ptr argv,
475 struct linux_binprm *bprm)
476 {
477 struct page *kmapped_page = NULL;
478 char *kaddr = NULL;
479 unsigned long kpos = 0;
480 int ret;
481
482 while (argc-- > 0) {
483 const char __user *str;
484 int len;
485 unsigned long pos;
486
487 ret = -EFAULT;
488 str = get_user_arg_ptr(argv, argc);
489 if (IS_ERR(str))
490 goto out;
491
492 len = strnlen_user(str, MAX_ARG_STRLEN);
493 if (!len)
494 goto out;
495
496 ret = -E2BIG;
497 if (!valid_arg_len(bprm, len))
498 goto out;
499
500 /* We're going to work our way backwords. */
501 pos = bprm->p;
502 str += len;
503 bprm->p -= len;
504
505 while (len > 0) {
506 int offset, bytes_to_copy;
507
508 if (fatal_signal_pending(current)) {
509 ret = -ERESTARTNOHAND;
510 goto out;
511 }
512 cond_resched();
513
514 offset = pos % PAGE_SIZE;
515 if (offset == 0)
516 offset = PAGE_SIZE;
517
518 bytes_to_copy = offset;
519 if (bytes_to_copy > len)
520 bytes_to_copy = len;
521
522 offset -= bytes_to_copy;
523 pos -= bytes_to_copy;
524 str -= bytes_to_copy;
525 len -= bytes_to_copy;
526
527 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
528 struct page *page;
529
530 page = get_arg_page(bprm, pos, 1);
531 if (!page) {
532 ret = -E2BIG;
533 goto out;
534 }
535
536 if (kmapped_page) {
537 flush_kernel_dcache_page(kmapped_page);
538 kunmap(kmapped_page);
539 put_arg_page(kmapped_page);
540 }
541 kmapped_page = page;
542 kaddr = kmap(kmapped_page);
543 kpos = pos & PAGE_MASK;
544 flush_arg_page(bprm, kpos, kmapped_page);
545 }
546 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
547 ret = -EFAULT;
548 goto out;
549 }
550 }
551 }
552 ret = 0;
553 out:
554 if (kmapped_page) {
555 flush_kernel_dcache_page(kmapped_page);
556 kunmap(kmapped_page);
557 put_arg_page(kmapped_page);
558 }
559 return ret;
560 }
561
562 /*
563 * Like copy_strings, but get argv and its values from kernel memory.
564 */
565 int copy_strings_kernel(int argc, const char *const *__argv,
566 struct linux_binprm *bprm)
567 {
568 int r;
569 mm_segment_t oldfs = get_fs();
570 struct user_arg_ptr argv = {
571 .ptr.native = (const char __user *const __user *)__argv,
572 };
573
574 set_fs(KERNEL_DS);
575 r = copy_strings(argc, argv, bprm);
576 set_fs(oldfs);
577
578 return r;
579 }
580 EXPORT_SYMBOL(copy_strings_kernel);
581
582 #ifdef CONFIG_MMU
583
584 /*
585 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
586 * the binfmt code determines where the new stack should reside, we shift it to
587 * its final location. The process proceeds as follows:
588 *
589 * 1) Use shift to calculate the new vma endpoints.
590 * 2) Extend vma to cover both the old and new ranges. This ensures the
591 * arguments passed to subsequent functions are consistent.
592 * 3) Move vma's page tables to the new range.
593 * 4) Free up any cleared pgd range.
594 * 5) Shrink the vma to cover only the new range.
595 */
596 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
597 {
598 struct mm_struct *mm = vma->vm_mm;
599 unsigned long old_start = vma->vm_start;
600 unsigned long old_end = vma->vm_end;
601 unsigned long length = old_end - old_start;
602 unsigned long new_start = old_start - shift;
603 unsigned long new_end = old_end - shift;
604 struct mmu_gather tlb;
605
606 BUG_ON(new_start > new_end);
607
608 /*
609 * ensure there are no vmas between where we want to go
610 * and where we are
611 */
612 if (vma != find_vma(mm, new_start))
613 return -EFAULT;
614
615 /*
616 * cover the whole range: [new_start, old_end)
617 */
618 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
619 return -ENOMEM;
620
621 /*
622 * move the page tables downwards, on failure we rely on
623 * process cleanup to remove whatever mess we made.
624 */
625 if (length != move_page_tables(vma, old_start,
626 vma, new_start, length, false))
627 return -ENOMEM;
628
629 lru_add_drain();
630 tlb_gather_mmu(&tlb, mm, old_start, old_end);
631 if (new_end > old_start) {
632 /*
633 * when the old and new regions overlap clear from new_end.
634 */
635 free_pgd_range(&tlb, new_end, old_end, new_end,
636 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 } else {
638 /*
639 * otherwise, clean from old_start; this is done to not touch
640 * the address space in [new_end, old_start) some architectures
641 * have constraints on va-space that make this illegal (IA64) -
642 * for the others its just a little faster.
643 */
644 free_pgd_range(&tlb, old_start, old_end, new_end,
645 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
646 }
647 tlb_finish_mmu(&tlb, old_start, old_end);
648
649 /*
650 * Shrink the vma to just the new range. Always succeeds.
651 */
652 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
653
654 return 0;
655 }
656
657 /*
658 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
659 * the stack is optionally relocated, and some extra space is added.
660 */
661 int setup_arg_pages(struct linux_binprm *bprm,
662 unsigned long stack_top,
663 int executable_stack)
664 {
665 unsigned long ret;
666 unsigned long stack_shift;
667 struct mm_struct *mm = current->mm;
668 struct vm_area_struct *vma = bprm->vma;
669 struct vm_area_struct *prev = NULL;
670 unsigned long vm_flags;
671 unsigned long stack_base;
672 unsigned long stack_size;
673 unsigned long stack_expand;
674 unsigned long rlim_stack;
675
676 #ifdef CONFIG_STACK_GROWSUP
677 /* Limit stack size */
678 stack_base = rlimit_max(RLIMIT_STACK);
679 if (stack_base > STACK_SIZE_MAX)
680 stack_base = STACK_SIZE_MAX;
681
682 /* Add space for stack randomization. */
683 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
684
685 /* Make sure we didn't let the argument array grow too large. */
686 if (vma->vm_end - vma->vm_start > stack_base)
687 return -ENOMEM;
688
689 stack_base = PAGE_ALIGN(stack_top - stack_base);
690
691 stack_shift = vma->vm_start - stack_base;
692 mm->arg_start = bprm->p - stack_shift;
693 bprm->p = vma->vm_end - stack_shift;
694 #else
695 stack_top = arch_align_stack(stack_top);
696 stack_top = PAGE_ALIGN(stack_top);
697
698 if (unlikely(stack_top < mmap_min_addr) ||
699 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
700 return -ENOMEM;
701
702 stack_shift = vma->vm_end - stack_top;
703
704 bprm->p -= stack_shift;
705 mm->arg_start = bprm->p;
706 #endif
707
708 if (bprm->loader)
709 bprm->loader -= stack_shift;
710 bprm->exec -= stack_shift;
711
712 if (down_write_killable(&mm->mmap_sem))
713 return -EINTR;
714
715 vm_flags = VM_STACK_FLAGS;
716
717 /*
718 * Adjust stack execute permissions; explicitly enable for
719 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
720 * (arch default) otherwise.
721 */
722 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
723 vm_flags |= VM_EXEC;
724 else if (executable_stack == EXSTACK_DISABLE_X)
725 vm_flags &= ~VM_EXEC;
726 vm_flags |= mm->def_flags;
727 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
728
729 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
730 vm_flags);
731 if (ret)
732 goto out_unlock;
733 BUG_ON(prev != vma);
734
735 /* Move stack pages down in memory. */
736 if (stack_shift) {
737 ret = shift_arg_pages(vma, stack_shift);
738 if (ret)
739 goto out_unlock;
740 }
741
742 /* mprotect_fixup is overkill to remove the temporary stack flags */
743 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
744
745 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
746 stack_size = vma->vm_end - vma->vm_start;
747 /*
748 * Align this down to a page boundary as expand_stack
749 * will align it up.
750 */
751 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
752 #ifdef CONFIG_STACK_GROWSUP
753 if (stack_size + stack_expand > rlim_stack)
754 stack_base = vma->vm_start + rlim_stack;
755 else
756 stack_base = vma->vm_end + stack_expand;
757 #else
758 if (stack_size + stack_expand > rlim_stack)
759 stack_base = vma->vm_end - rlim_stack;
760 else
761 stack_base = vma->vm_start - stack_expand;
762 #endif
763 current->mm->start_stack = bprm->p;
764 ret = expand_stack(vma, stack_base);
765 if (ret)
766 ret = -EFAULT;
767
768 out_unlock:
769 up_write(&mm->mmap_sem);
770 return ret;
771 }
772 EXPORT_SYMBOL(setup_arg_pages);
773
774 #else
775
776 /*
777 * Transfer the program arguments and environment from the holding pages
778 * onto the stack. The provided stack pointer is adjusted accordingly.
779 */
780 int transfer_args_to_stack(struct linux_binprm *bprm,
781 unsigned long *sp_location)
782 {
783 unsigned long index, stop, sp;
784 int ret = 0;
785
786 stop = bprm->p >> PAGE_SHIFT;
787 sp = *sp_location;
788
789 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
790 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
791 char *src = kmap(bprm->page[index]) + offset;
792 sp -= PAGE_SIZE - offset;
793 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
794 ret = -EFAULT;
795 kunmap(bprm->page[index]);
796 if (ret)
797 goto out;
798 }
799
800 *sp_location = sp;
801
802 out:
803 return ret;
804 }
805 EXPORT_SYMBOL(transfer_args_to_stack);
806
807 #endif /* CONFIG_MMU */
808
809 static struct file *do_open_execat(int fd, struct filename *name, int flags)
810 {
811 struct file *file;
812 int err;
813 struct open_flags open_exec_flags = {
814 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
815 .acc_mode = MAY_EXEC,
816 .intent = LOOKUP_OPEN,
817 .lookup_flags = LOOKUP_FOLLOW,
818 };
819
820 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
821 return ERR_PTR(-EINVAL);
822 if (flags & AT_SYMLINK_NOFOLLOW)
823 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
824 if (flags & AT_EMPTY_PATH)
825 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
826
827 file = do_filp_open(fd, name, &open_exec_flags);
828 if (IS_ERR(file))
829 goto out;
830
831 err = -EACCES;
832 if (!S_ISREG(file_inode(file)->i_mode))
833 goto exit;
834
835 if (path_noexec(&file->f_path))
836 goto exit;
837
838 err = deny_write_access(file);
839 if (err)
840 goto exit;
841
842 if (name->name[0] != '\0')
843 fsnotify_open(file);
844
845 out:
846 return file;
847
848 exit:
849 fput(file);
850 return ERR_PTR(err);
851 }
852
853 struct file *open_exec(const char *name)
854 {
855 struct filename *filename = getname_kernel(name);
856 struct file *f = ERR_CAST(filename);
857
858 if (!IS_ERR(filename)) {
859 f = do_open_execat(AT_FDCWD, filename, 0);
860 putname(filename);
861 }
862 return f;
863 }
864 EXPORT_SYMBOL(open_exec);
865
866 int kernel_read(struct file *file, loff_t offset,
867 char *addr, unsigned long count)
868 {
869 mm_segment_t old_fs;
870 loff_t pos = offset;
871 int result;
872
873 old_fs = get_fs();
874 set_fs(get_ds());
875 /* The cast to a user pointer is valid due to the set_fs() */
876 result = vfs_read(file, (void __user *)addr, count, &pos);
877 set_fs(old_fs);
878 return result;
879 }
880
881 EXPORT_SYMBOL(kernel_read);
882
883 int kernel_read_file(struct file *file, void **buf, loff_t *size,
884 loff_t max_size, enum kernel_read_file_id id)
885 {
886 loff_t i_size, pos;
887 ssize_t bytes = 0;
888 int ret;
889
890 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
891 return -EINVAL;
892
893 ret = security_kernel_read_file(file, id);
894 if (ret)
895 return ret;
896
897 ret = deny_write_access(file);
898 if (ret)
899 return ret;
900
901 i_size = i_size_read(file_inode(file));
902 if (max_size > 0 && i_size > max_size) {
903 ret = -EFBIG;
904 goto out;
905 }
906 if (i_size <= 0) {
907 ret = -EINVAL;
908 goto out;
909 }
910
911 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
912 *buf = vmalloc(i_size);
913 if (!*buf) {
914 ret = -ENOMEM;
915 goto out;
916 }
917
918 pos = 0;
919 while (pos < i_size) {
920 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
921 i_size - pos);
922 if (bytes < 0) {
923 ret = bytes;
924 goto out;
925 }
926
927 if (bytes == 0)
928 break;
929 pos += bytes;
930 }
931
932 if (pos != i_size) {
933 ret = -EIO;
934 goto out_free;
935 }
936
937 ret = security_kernel_post_read_file(file, *buf, i_size, id);
938 if (!ret)
939 *size = pos;
940
941 out_free:
942 if (ret < 0) {
943 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
944 vfree(*buf);
945 *buf = NULL;
946 }
947 }
948
949 out:
950 allow_write_access(file);
951 return ret;
952 }
953 EXPORT_SYMBOL_GPL(kernel_read_file);
954
955 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
956 loff_t max_size, enum kernel_read_file_id id)
957 {
958 struct file *file;
959 int ret;
960
961 if (!path || !*path)
962 return -EINVAL;
963
964 file = filp_open(path, O_RDONLY, 0);
965 if (IS_ERR(file))
966 return PTR_ERR(file);
967
968 ret = kernel_read_file(file, buf, size, max_size, id);
969 fput(file);
970 return ret;
971 }
972 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
973
974 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
975 enum kernel_read_file_id id)
976 {
977 struct fd f = fdget(fd);
978 int ret = -EBADF;
979
980 if (!f.file)
981 goto out;
982
983 ret = kernel_read_file(f.file, buf, size, max_size, id);
984 out:
985 fdput(f);
986 return ret;
987 }
988 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
989
990 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
991 {
992 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
993 if (res > 0)
994 flush_icache_range(addr, addr + len);
995 return res;
996 }
997 EXPORT_SYMBOL(read_code);
998
999 static int exec_mmap(struct mm_struct *mm)
1000 {
1001 struct task_struct *tsk;
1002 struct mm_struct *old_mm, *active_mm;
1003
1004 /* Notify parent that we're no longer interested in the old VM */
1005 tsk = current;
1006 old_mm = current->mm;
1007 mm_release(tsk, old_mm);
1008
1009 if (old_mm) {
1010 sync_mm_rss(old_mm);
1011 /*
1012 * Make sure that if there is a core dump in progress
1013 * for the old mm, we get out and die instead of going
1014 * through with the exec. We must hold mmap_sem around
1015 * checking core_state and changing tsk->mm.
1016 */
1017 down_read(&old_mm->mmap_sem);
1018 if (unlikely(old_mm->core_state)) {
1019 up_read(&old_mm->mmap_sem);
1020 return -EINTR;
1021 }
1022 }
1023 task_lock(tsk);
1024 active_mm = tsk->active_mm;
1025 tsk->mm = mm;
1026 tsk->active_mm = mm;
1027 activate_mm(active_mm, mm);
1028 tsk->mm->vmacache_seqnum = 0;
1029 vmacache_flush(tsk);
1030 task_unlock(tsk);
1031 if (old_mm) {
1032 up_read(&old_mm->mmap_sem);
1033 BUG_ON(active_mm != old_mm);
1034 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1035 mm_update_next_owner(old_mm);
1036 mmput(old_mm);
1037 return 0;
1038 }
1039 mmdrop(active_mm);
1040 return 0;
1041 }
1042
1043 /*
1044 * This function makes sure the current process has its own signal table,
1045 * so that flush_signal_handlers can later reset the handlers without
1046 * disturbing other processes. (Other processes might share the signal
1047 * table via the CLONE_SIGHAND option to clone().)
1048 */
1049 static int de_thread(struct task_struct *tsk)
1050 {
1051 struct signal_struct *sig = tsk->signal;
1052 struct sighand_struct *oldsighand = tsk->sighand;
1053 spinlock_t *lock = &oldsighand->siglock;
1054
1055 if (thread_group_empty(tsk))
1056 goto no_thread_group;
1057
1058 /*
1059 * Kill all other threads in the thread group.
1060 */
1061 spin_lock_irq(lock);
1062 if (signal_group_exit(sig)) {
1063 /*
1064 * Another group action in progress, just
1065 * return so that the signal is processed.
1066 */
1067 spin_unlock_irq(lock);
1068 return -EAGAIN;
1069 }
1070
1071 sig->group_exit_task = tsk;
1072 sig->notify_count = zap_other_threads(tsk);
1073 if (!thread_group_leader(tsk))
1074 sig->notify_count--;
1075
1076 while (sig->notify_count) {
1077 __set_current_state(TASK_KILLABLE);
1078 spin_unlock_irq(lock);
1079 schedule();
1080 if (unlikely(__fatal_signal_pending(tsk)))
1081 goto killed;
1082 spin_lock_irq(lock);
1083 }
1084 spin_unlock_irq(lock);
1085
1086 /*
1087 * At this point all other threads have exited, all we have to
1088 * do is to wait for the thread group leader to become inactive,
1089 * and to assume its PID:
1090 */
1091 if (!thread_group_leader(tsk)) {
1092 struct task_struct *leader = tsk->group_leader;
1093
1094 for (;;) {
1095 cgroup_threadgroup_change_begin(tsk);
1096 write_lock_irq(&tasklist_lock);
1097 /*
1098 * Do this under tasklist_lock to ensure that
1099 * exit_notify() can't miss ->group_exit_task
1100 */
1101 sig->notify_count = -1;
1102 if (likely(leader->exit_state))
1103 break;
1104 __set_current_state(TASK_KILLABLE);
1105 write_unlock_irq(&tasklist_lock);
1106 cgroup_threadgroup_change_end(tsk);
1107 schedule();
1108 if (unlikely(__fatal_signal_pending(tsk)))
1109 goto killed;
1110 }
1111
1112 /*
1113 * The only record we have of the real-time age of a
1114 * process, regardless of execs it's done, is start_time.
1115 * All the past CPU time is accumulated in signal_struct
1116 * from sister threads now dead. But in this non-leader
1117 * exec, nothing survives from the original leader thread,
1118 * whose birth marks the true age of this process now.
1119 * When we take on its identity by switching to its PID, we
1120 * also take its birthdate (always earlier than our own).
1121 */
1122 tsk->start_time = leader->start_time;
1123 tsk->real_start_time = leader->real_start_time;
1124
1125 BUG_ON(!same_thread_group(leader, tsk));
1126 BUG_ON(has_group_leader_pid(tsk));
1127 /*
1128 * An exec() starts a new thread group with the
1129 * TGID of the previous thread group. Rehash the
1130 * two threads with a switched PID, and release
1131 * the former thread group leader:
1132 */
1133
1134 /* Become a process group leader with the old leader's pid.
1135 * The old leader becomes a thread of the this thread group.
1136 * Note: The old leader also uses this pid until release_task
1137 * is called. Odd but simple and correct.
1138 */
1139 tsk->pid = leader->pid;
1140 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1141 transfer_pid(leader, tsk, PIDTYPE_PGID);
1142 transfer_pid(leader, tsk, PIDTYPE_SID);
1143
1144 list_replace_rcu(&leader->tasks, &tsk->tasks);
1145 list_replace_init(&leader->sibling, &tsk->sibling);
1146
1147 tsk->group_leader = tsk;
1148 leader->group_leader = tsk;
1149
1150 tsk->exit_signal = SIGCHLD;
1151 leader->exit_signal = -1;
1152
1153 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1154 leader->exit_state = EXIT_DEAD;
1155
1156 /*
1157 * We are going to release_task()->ptrace_unlink() silently,
1158 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1159 * the tracer wont't block again waiting for this thread.
1160 */
1161 if (unlikely(leader->ptrace))
1162 __wake_up_parent(leader, leader->parent);
1163 write_unlock_irq(&tasklist_lock);
1164 cgroup_threadgroup_change_end(tsk);
1165
1166 release_task(leader);
1167 }
1168
1169 sig->group_exit_task = NULL;
1170 sig->notify_count = 0;
1171
1172 no_thread_group:
1173 /* we have changed execution domain */
1174 tsk->exit_signal = SIGCHLD;
1175
1176 #ifdef CONFIG_POSIX_TIMERS
1177 exit_itimers(sig);
1178 flush_itimer_signals();
1179 #endif
1180
1181 if (atomic_read(&oldsighand->count) != 1) {
1182 struct sighand_struct *newsighand;
1183 /*
1184 * This ->sighand is shared with the CLONE_SIGHAND
1185 * but not CLONE_THREAD task, switch to the new one.
1186 */
1187 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1188 if (!newsighand)
1189 return -ENOMEM;
1190
1191 atomic_set(&newsighand->count, 1);
1192 memcpy(newsighand->action, oldsighand->action,
1193 sizeof(newsighand->action));
1194
1195 write_lock_irq(&tasklist_lock);
1196 spin_lock(&oldsighand->siglock);
1197 rcu_assign_pointer(tsk->sighand, newsighand);
1198 spin_unlock(&oldsighand->siglock);
1199 write_unlock_irq(&tasklist_lock);
1200
1201 __cleanup_sighand(oldsighand);
1202 }
1203
1204 BUG_ON(!thread_group_leader(tsk));
1205 return 0;
1206
1207 killed:
1208 /* protects against exit_notify() and __exit_signal() */
1209 read_lock(&tasklist_lock);
1210 sig->group_exit_task = NULL;
1211 sig->notify_count = 0;
1212 read_unlock(&tasklist_lock);
1213 return -EAGAIN;
1214 }
1215
1216 char *get_task_comm(char *buf, struct task_struct *tsk)
1217 {
1218 /* buf must be at least sizeof(tsk->comm) in size */
1219 task_lock(tsk);
1220 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1221 task_unlock(tsk);
1222 return buf;
1223 }
1224 EXPORT_SYMBOL_GPL(get_task_comm);
1225
1226 /*
1227 * These functions flushes out all traces of the currently running executable
1228 * so that a new one can be started
1229 */
1230
1231 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1232 {
1233 task_lock(tsk);
1234 trace_task_rename(tsk, buf);
1235 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1236 task_unlock(tsk);
1237 perf_event_comm(tsk, exec);
1238 }
1239
1240 int flush_old_exec(struct linux_binprm * bprm)
1241 {
1242 int retval;
1243
1244 /*
1245 * Make sure we have a private signal table and that
1246 * we are unassociated from the previous thread group.
1247 */
1248 retval = de_thread(current);
1249 if (retval)
1250 goto out;
1251
1252 /*
1253 * Must be called _before_ exec_mmap() as bprm->mm is
1254 * not visibile until then. This also enables the update
1255 * to be lockless.
1256 */
1257 set_mm_exe_file(bprm->mm, bprm->file);
1258
1259 /*
1260 * Release all of the old mmap stuff
1261 */
1262 acct_arg_size(bprm, 0);
1263 retval = exec_mmap(bprm->mm);
1264 if (retval)
1265 goto out;
1266
1267 bprm->mm = NULL; /* We're using it now */
1268
1269 set_fs(USER_DS);
1270 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1271 PF_NOFREEZE | PF_NO_SETAFFINITY);
1272 flush_thread();
1273 current->personality &= ~bprm->per_clear;
1274
1275 /*
1276 * We have to apply CLOEXEC before we change whether the process is
1277 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1278 * trying to access the should-be-closed file descriptors of a process
1279 * undergoing exec(2).
1280 */
1281 do_close_on_exec(current->files);
1282 return 0;
1283
1284 out:
1285 return retval;
1286 }
1287 EXPORT_SYMBOL(flush_old_exec);
1288
1289 void would_dump(struct linux_binprm *bprm, struct file *file)
1290 {
1291 struct inode *inode = file_inode(file);
1292 if (inode_permission(inode, MAY_READ) < 0) {
1293 struct user_namespace *old, *user_ns;
1294 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1295
1296 /* Ensure mm->user_ns contains the executable */
1297 user_ns = old = bprm->mm->user_ns;
1298 while ((user_ns != &init_user_ns) &&
1299 !privileged_wrt_inode_uidgid(user_ns, inode))
1300 user_ns = user_ns->parent;
1301
1302 if (old != user_ns) {
1303 bprm->mm->user_ns = get_user_ns(user_ns);
1304 put_user_ns(old);
1305 }
1306 }
1307 }
1308 EXPORT_SYMBOL(would_dump);
1309
1310 void setup_new_exec(struct linux_binprm * bprm)
1311 {
1312 arch_pick_mmap_layout(current->mm);
1313
1314 /* This is the point of no return */
1315 current->sas_ss_sp = current->sas_ss_size = 0;
1316
1317 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1318 set_dumpable(current->mm, SUID_DUMP_USER);
1319 else
1320 set_dumpable(current->mm, suid_dumpable);
1321
1322 perf_event_exec();
1323 __set_task_comm(current, kbasename(bprm->filename), true);
1324
1325 /* Set the new mm task size. We have to do that late because it may
1326 * depend on TIF_32BIT which is only updated in flush_thread() on
1327 * some architectures like powerpc
1328 */
1329 current->mm->task_size = TASK_SIZE;
1330
1331 /* install the new credentials */
1332 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1333 !gid_eq(bprm->cred->gid, current_egid())) {
1334 current->pdeath_signal = 0;
1335 } else {
1336 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1337 set_dumpable(current->mm, suid_dumpable);
1338 }
1339
1340 /* An exec changes our domain. We are no longer part of the thread
1341 group */
1342 current->self_exec_id++;
1343 flush_signal_handlers(current, 0);
1344 }
1345 EXPORT_SYMBOL(setup_new_exec);
1346
1347 /*
1348 * Prepare credentials and lock ->cred_guard_mutex.
1349 * install_exec_creds() commits the new creds and drops the lock.
1350 * Or, if exec fails before, free_bprm() should release ->cred and
1351 * and unlock.
1352 */
1353 int prepare_bprm_creds(struct linux_binprm *bprm)
1354 {
1355 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1356 return -ERESTARTNOINTR;
1357
1358 bprm->cred = prepare_exec_creds();
1359 if (likely(bprm->cred))
1360 return 0;
1361
1362 mutex_unlock(&current->signal->cred_guard_mutex);
1363 return -ENOMEM;
1364 }
1365
1366 static void free_bprm(struct linux_binprm *bprm)
1367 {
1368 free_arg_pages(bprm);
1369 if (bprm->cred) {
1370 mutex_unlock(&current->signal->cred_guard_mutex);
1371 abort_creds(bprm->cred);
1372 }
1373 if (bprm->file) {
1374 allow_write_access(bprm->file);
1375 fput(bprm->file);
1376 }
1377 /* If a binfmt changed the interp, free it. */
1378 if (bprm->interp != bprm->filename)
1379 kfree(bprm->interp);
1380 kfree(bprm);
1381 }
1382
1383 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1384 {
1385 /* If a binfmt changed the interp, free it first. */
1386 if (bprm->interp != bprm->filename)
1387 kfree(bprm->interp);
1388 bprm->interp = kstrdup(interp, GFP_KERNEL);
1389 if (!bprm->interp)
1390 return -ENOMEM;
1391 return 0;
1392 }
1393 EXPORT_SYMBOL(bprm_change_interp);
1394
1395 /*
1396 * install the new credentials for this executable
1397 */
1398 void install_exec_creds(struct linux_binprm *bprm)
1399 {
1400 security_bprm_committing_creds(bprm);
1401
1402 commit_creds(bprm->cred);
1403 bprm->cred = NULL;
1404
1405 /*
1406 * Disable monitoring for regular users
1407 * when executing setuid binaries. Must
1408 * wait until new credentials are committed
1409 * by commit_creds() above
1410 */
1411 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1412 perf_event_exit_task(current);
1413 /*
1414 * cred_guard_mutex must be held at least to this point to prevent
1415 * ptrace_attach() from altering our determination of the task's
1416 * credentials; any time after this it may be unlocked.
1417 */
1418 security_bprm_committed_creds(bprm);
1419 mutex_unlock(&current->signal->cred_guard_mutex);
1420 }
1421 EXPORT_SYMBOL(install_exec_creds);
1422
1423 /*
1424 * determine how safe it is to execute the proposed program
1425 * - the caller must hold ->cred_guard_mutex to protect against
1426 * PTRACE_ATTACH or seccomp thread-sync
1427 */
1428 static void check_unsafe_exec(struct linux_binprm *bprm)
1429 {
1430 struct task_struct *p = current, *t;
1431 unsigned n_fs;
1432
1433 if (p->ptrace)
1434 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1435
1436 /*
1437 * This isn't strictly necessary, but it makes it harder for LSMs to
1438 * mess up.
1439 */
1440 if (task_no_new_privs(current))
1441 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1442
1443 t = p;
1444 n_fs = 1;
1445 spin_lock(&p->fs->lock);
1446 rcu_read_lock();
1447 while_each_thread(p, t) {
1448 if (t->fs == p->fs)
1449 n_fs++;
1450 }
1451 rcu_read_unlock();
1452
1453 if (p->fs->users > n_fs)
1454 bprm->unsafe |= LSM_UNSAFE_SHARE;
1455 else
1456 p->fs->in_exec = 1;
1457 spin_unlock(&p->fs->lock);
1458 }
1459
1460 static void bprm_fill_uid(struct linux_binprm *bprm)
1461 {
1462 struct inode *inode;
1463 unsigned int mode;
1464 kuid_t uid;
1465 kgid_t gid;
1466
1467 /*
1468 * Since this can be called multiple times (via prepare_binprm),
1469 * we must clear any previous work done when setting set[ug]id
1470 * bits from any earlier bprm->file uses (for example when run
1471 * first for a setuid script then again for its interpreter).
1472 */
1473 bprm->cred->euid = current_euid();
1474 bprm->cred->egid = current_egid();
1475
1476 if (!mnt_may_suid(bprm->file->f_path.mnt))
1477 return;
1478
1479 if (task_no_new_privs(current))
1480 return;
1481
1482 inode = bprm->file->f_path.dentry->d_inode;
1483 mode = READ_ONCE(inode->i_mode);
1484 if (!(mode & (S_ISUID|S_ISGID)))
1485 return;
1486
1487 /* Be careful if suid/sgid is set */
1488 inode_lock(inode);
1489
1490 /* reload atomically mode/uid/gid now that lock held */
1491 mode = inode->i_mode;
1492 uid = inode->i_uid;
1493 gid = inode->i_gid;
1494 inode_unlock(inode);
1495
1496 /* We ignore suid/sgid if there are no mappings for them in the ns */
1497 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1498 !kgid_has_mapping(bprm->cred->user_ns, gid))
1499 return;
1500
1501 if (mode & S_ISUID) {
1502 bprm->per_clear |= PER_CLEAR_ON_SETID;
1503 bprm->cred->euid = uid;
1504 }
1505
1506 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1507 bprm->per_clear |= PER_CLEAR_ON_SETID;
1508 bprm->cred->egid = gid;
1509 }
1510 }
1511
1512 /*
1513 * Fill the binprm structure from the inode.
1514 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1515 *
1516 * This may be called multiple times for binary chains (scripts for example).
1517 */
1518 int prepare_binprm(struct linux_binprm *bprm)
1519 {
1520 int retval;
1521
1522 bprm_fill_uid(bprm);
1523
1524 /* fill in binprm security blob */
1525 retval = security_bprm_set_creds(bprm);
1526 if (retval)
1527 return retval;
1528 bprm->cred_prepared = 1;
1529
1530 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1531 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1532 }
1533
1534 EXPORT_SYMBOL(prepare_binprm);
1535
1536 /*
1537 * Arguments are '\0' separated strings found at the location bprm->p
1538 * points to; chop off the first by relocating brpm->p to right after
1539 * the first '\0' encountered.
1540 */
1541 int remove_arg_zero(struct linux_binprm *bprm)
1542 {
1543 int ret = 0;
1544 unsigned long offset;
1545 char *kaddr;
1546 struct page *page;
1547
1548 if (!bprm->argc)
1549 return 0;
1550
1551 do {
1552 offset = bprm->p & ~PAGE_MASK;
1553 page = get_arg_page(bprm, bprm->p, 0);
1554 if (!page) {
1555 ret = -EFAULT;
1556 goto out;
1557 }
1558 kaddr = kmap_atomic(page);
1559
1560 for (; offset < PAGE_SIZE && kaddr[offset];
1561 offset++, bprm->p++)
1562 ;
1563
1564 kunmap_atomic(kaddr);
1565 put_arg_page(page);
1566 } while (offset == PAGE_SIZE);
1567
1568 bprm->p++;
1569 bprm->argc--;
1570 ret = 0;
1571
1572 out:
1573 return ret;
1574 }
1575 EXPORT_SYMBOL(remove_arg_zero);
1576
1577 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1578 /*
1579 * cycle the list of binary formats handler, until one recognizes the image
1580 */
1581 int search_binary_handler(struct linux_binprm *bprm)
1582 {
1583 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1584 struct linux_binfmt *fmt;
1585 int retval;
1586
1587 /* This allows 4 levels of binfmt rewrites before failing hard. */
1588 if (bprm->recursion_depth > 5)
1589 return -ELOOP;
1590
1591 retval = security_bprm_check(bprm);
1592 if (retval)
1593 return retval;
1594
1595 retval = -ENOENT;
1596 retry:
1597 read_lock(&binfmt_lock);
1598 list_for_each_entry(fmt, &formats, lh) {
1599 if (!try_module_get(fmt->module))
1600 continue;
1601 read_unlock(&binfmt_lock);
1602 bprm->recursion_depth++;
1603 retval = fmt->load_binary(bprm);
1604 read_lock(&binfmt_lock);
1605 put_binfmt(fmt);
1606 bprm->recursion_depth--;
1607 if (retval < 0 && !bprm->mm) {
1608 /* we got to flush_old_exec() and failed after it */
1609 read_unlock(&binfmt_lock);
1610 force_sigsegv(SIGSEGV, current);
1611 return retval;
1612 }
1613 if (retval != -ENOEXEC || !bprm->file) {
1614 read_unlock(&binfmt_lock);
1615 return retval;
1616 }
1617 }
1618 read_unlock(&binfmt_lock);
1619
1620 if (need_retry) {
1621 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1622 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1623 return retval;
1624 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1625 return retval;
1626 need_retry = false;
1627 goto retry;
1628 }
1629
1630 return retval;
1631 }
1632 EXPORT_SYMBOL(search_binary_handler);
1633
1634 static int exec_binprm(struct linux_binprm *bprm)
1635 {
1636 pid_t old_pid, old_vpid;
1637 int ret;
1638
1639 /* Need to fetch pid before load_binary changes it */
1640 old_pid = current->pid;
1641 rcu_read_lock();
1642 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1643 rcu_read_unlock();
1644
1645 ret = search_binary_handler(bprm);
1646 if (ret >= 0) {
1647 audit_bprm(bprm);
1648 trace_sched_process_exec(current, old_pid, bprm);
1649 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1650 proc_exec_connector(current);
1651 }
1652
1653 return ret;
1654 }
1655
1656 /*
1657 * sys_execve() executes a new program.
1658 */
1659 static int do_execveat_common(int fd, struct filename *filename,
1660 struct user_arg_ptr argv,
1661 struct user_arg_ptr envp,
1662 int flags)
1663 {
1664 char *pathbuf = NULL;
1665 struct linux_binprm *bprm;
1666 struct file *file;
1667 struct files_struct *displaced;
1668 int retval;
1669
1670 if (IS_ERR(filename))
1671 return PTR_ERR(filename);
1672
1673 /*
1674 * We move the actual failure in case of RLIMIT_NPROC excess from
1675 * set*uid() to execve() because too many poorly written programs
1676 * don't check setuid() return code. Here we additionally recheck
1677 * whether NPROC limit is still exceeded.
1678 */
1679 if ((current->flags & PF_NPROC_EXCEEDED) &&
1680 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1681 retval = -EAGAIN;
1682 goto out_ret;
1683 }
1684
1685 /* We're below the limit (still or again), so we don't want to make
1686 * further execve() calls fail. */
1687 current->flags &= ~PF_NPROC_EXCEEDED;
1688
1689 retval = unshare_files(&displaced);
1690 if (retval)
1691 goto out_ret;
1692
1693 retval = -ENOMEM;
1694 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1695 if (!bprm)
1696 goto out_files;
1697
1698 retval = prepare_bprm_creds(bprm);
1699 if (retval)
1700 goto out_free;
1701
1702 check_unsafe_exec(bprm);
1703 current->in_execve = 1;
1704
1705 file = do_open_execat(fd, filename, flags);
1706 retval = PTR_ERR(file);
1707 if (IS_ERR(file))
1708 goto out_unmark;
1709
1710 sched_exec();
1711
1712 bprm->file = file;
1713 if (fd == AT_FDCWD || filename->name[0] == '/') {
1714 bprm->filename = filename->name;
1715 } else {
1716 if (filename->name[0] == '\0')
1717 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1718 else
1719 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1720 fd, filename->name);
1721 if (!pathbuf) {
1722 retval = -ENOMEM;
1723 goto out_unmark;
1724 }
1725 /*
1726 * Record that a name derived from an O_CLOEXEC fd will be
1727 * inaccessible after exec. Relies on having exclusive access to
1728 * current->files (due to unshare_files above).
1729 */
1730 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1731 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1732 bprm->filename = pathbuf;
1733 }
1734 bprm->interp = bprm->filename;
1735
1736 retval = bprm_mm_init(bprm);
1737 if (retval)
1738 goto out_unmark;
1739
1740 bprm->argc = count(argv, MAX_ARG_STRINGS);
1741 if ((retval = bprm->argc) < 0)
1742 goto out;
1743
1744 bprm->envc = count(envp, MAX_ARG_STRINGS);
1745 if ((retval = bprm->envc) < 0)
1746 goto out;
1747
1748 retval = prepare_binprm(bprm);
1749 if (retval < 0)
1750 goto out;
1751
1752 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1753 if (retval < 0)
1754 goto out;
1755
1756 bprm->exec = bprm->p;
1757 retval = copy_strings(bprm->envc, envp, bprm);
1758 if (retval < 0)
1759 goto out;
1760
1761 retval = copy_strings(bprm->argc, argv, bprm);
1762 if (retval < 0)
1763 goto out;
1764
1765 would_dump(bprm, bprm->file);
1766
1767 retval = exec_binprm(bprm);
1768 if (retval < 0)
1769 goto out;
1770
1771 /* execve succeeded */
1772 current->fs->in_exec = 0;
1773 current->in_execve = 0;
1774 acct_update_integrals(current);
1775 task_numa_free(current);
1776 free_bprm(bprm);
1777 kfree(pathbuf);
1778 putname(filename);
1779 if (displaced)
1780 put_files_struct(displaced);
1781 return retval;
1782
1783 out:
1784 if (bprm->mm) {
1785 acct_arg_size(bprm, 0);
1786 mmput(bprm->mm);
1787 }
1788
1789 out_unmark:
1790 current->fs->in_exec = 0;
1791 current->in_execve = 0;
1792
1793 out_free:
1794 free_bprm(bprm);
1795 kfree(pathbuf);
1796
1797 out_files:
1798 if (displaced)
1799 reset_files_struct(displaced);
1800 out_ret:
1801 putname(filename);
1802 return retval;
1803 }
1804
1805 int do_execve(struct filename *filename,
1806 const char __user *const __user *__argv,
1807 const char __user *const __user *__envp)
1808 {
1809 struct user_arg_ptr argv = { .ptr.native = __argv };
1810 struct user_arg_ptr envp = { .ptr.native = __envp };
1811 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1812 }
1813
1814 int do_execveat(int fd, struct filename *filename,
1815 const char __user *const __user *__argv,
1816 const char __user *const __user *__envp,
1817 int flags)
1818 {
1819 struct user_arg_ptr argv = { .ptr.native = __argv };
1820 struct user_arg_ptr envp = { .ptr.native = __envp };
1821
1822 return do_execveat_common(fd, filename, argv, envp, flags);
1823 }
1824
1825 #ifdef CONFIG_COMPAT
1826 static int compat_do_execve(struct filename *filename,
1827 const compat_uptr_t __user *__argv,
1828 const compat_uptr_t __user *__envp)
1829 {
1830 struct user_arg_ptr argv = {
1831 .is_compat = true,
1832 .ptr.compat = __argv,
1833 };
1834 struct user_arg_ptr envp = {
1835 .is_compat = true,
1836 .ptr.compat = __envp,
1837 };
1838 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1839 }
1840
1841 static int compat_do_execveat(int fd, struct filename *filename,
1842 const compat_uptr_t __user *__argv,
1843 const compat_uptr_t __user *__envp,
1844 int flags)
1845 {
1846 struct user_arg_ptr argv = {
1847 .is_compat = true,
1848 .ptr.compat = __argv,
1849 };
1850 struct user_arg_ptr envp = {
1851 .is_compat = true,
1852 .ptr.compat = __envp,
1853 };
1854 return do_execveat_common(fd, filename, argv, envp, flags);
1855 }
1856 #endif
1857
1858 void set_binfmt(struct linux_binfmt *new)
1859 {
1860 struct mm_struct *mm = current->mm;
1861
1862 if (mm->binfmt)
1863 module_put(mm->binfmt->module);
1864
1865 mm->binfmt = new;
1866 if (new)
1867 __module_get(new->module);
1868 }
1869 EXPORT_SYMBOL(set_binfmt);
1870
1871 /*
1872 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1873 */
1874 void set_dumpable(struct mm_struct *mm, int value)
1875 {
1876 unsigned long old, new;
1877
1878 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1879 return;
1880
1881 do {
1882 old = ACCESS_ONCE(mm->flags);
1883 new = (old & ~MMF_DUMPABLE_MASK) | value;
1884 } while (cmpxchg(&mm->flags, old, new) != old);
1885 }
1886
1887 SYSCALL_DEFINE3(execve,
1888 const char __user *, filename,
1889 const char __user *const __user *, argv,
1890 const char __user *const __user *, envp)
1891 {
1892 return do_execve(getname(filename), argv, envp);
1893 }
1894
1895 SYSCALL_DEFINE5(execveat,
1896 int, fd, const char __user *, filename,
1897 const char __user *const __user *, argv,
1898 const char __user *const __user *, envp,
1899 int, flags)
1900 {
1901 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1902
1903 return do_execveat(fd,
1904 getname_flags(filename, lookup_flags, NULL),
1905 argv, envp, flags);
1906 }
1907
1908 #ifdef CONFIG_COMPAT
1909 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1910 const compat_uptr_t __user *, argv,
1911 const compat_uptr_t __user *, envp)
1912 {
1913 return compat_do_execve(getname(filename), argv, envp);
1914 }
1915
1916 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1917 const char __user *, filename,
1918 const compat_uptr_t __user *, argv,
1919 const compat_uptr_t __user *, envp,
1920 int, flags)
1921 {
1922 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1923
1924 return compat_do_execveat(fd,
1925 getname_flags(filename, lookup_flags, NULL),
1926 argv, envp, flags);
1927 }
1928 #endif