]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/exec.c
exec: Factor bprm_stack_limits out of prepare_arg_pages
[mirror_ubuntu-kernels.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 static int bprm_creds_from_file(struct linux_binprm *bprm);
76
77 int suid_dumpable = 0;
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 BUG_ON(!fmt);
85 if (WARN_ON(!fmt->load_binary))
86 return;
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117 * Note that a shared library must be both readable and executable due to
118 * security reasons.
119 *
120 * Also note that we take the address to load from from the file itself.
121 */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 struct linux_binfmt *fmt;
125 struct file *file;
126 struct filename *tmp = getname(library);
127 int error = PTR_ERR(tmp);
128 static const struct open_flags uselib_flags = {
129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 .acc_mode = MAY_READ | MAY_EXEC,
131 .intent = LOOKUP_OPEN,
132 .lookup_flags = LOOKUP_FOLLOW,
133 };
134
135 if (IS_ERR(tmp))
136 goto out;
137
138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 putname(tmp);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 error = -EINVAL;
145 if (!S_ISREG(file_inode(file)->i_mode))
146 goto exit;
147
148 error = -EACCES;
149 if (path_noexec(&file->f_path))
150 goto exit;
151
152 fsnotify_open(file);
153
154 error = -ENOEXEC;
155
156 read_lock(&binfmt_lock);
157 list_for_each_entry(fmt, &formats, lh) {
158 if (!fmt->load_shlib)
159 continue;
160 if (!try_module_get(fmt->module))
161 continue;
162 read_unlock(&binfmt_lock);
163 error = fmt->load_shlib(file);
164 read_lock(&binfmt_lock);
165 put_binfmt(fmt);
166 if (error != -ENOEXEC)
167 break;
168 }
169 read_unlock(&binfmt_lock);
170 exit:
171 fput(file);
172 out:
173 return error;
174 }
175 #endif /* #ifdef CONFIG_USELIB */
176
177 #ifdef CONFIG_MMU
178 /*
179 * The nascent bprm->mm is not visible until exec_mmap() but it can
180 * use a lot of memory, account these pages in current->mm temporary
181 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
182 * change the counter back via acct_arg_size(0).
183 */
184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
185 {
186 struct mm_struct *mm = current->mm;
187 long diff = (long)(pages - bprm->vma_pages);
188
189 if (!mm || !diff)
190 return;
191
192 bprm->vma_pages = pages;
193 add_mm_counter(mm, MM_ANONPAGES, diff);
194 }
195
196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
197 int write)
198 {
199 struct page *page;
200 int ret;
201 unsigned int gup_flags = FOLL_FORCE;
202
203 #ifdef CONFIG_STACK_GROWSUP
204 if (write) {
205 ret = expand_downwards(bprm->vma, pos);
206 if (ret < 0)
207 return NULL;
208 }
209 #endif
210
211 if (write)
212 gup_flags |= FOLL_WRITE;
213
214 /*
215 * We are doing an exec(). 'current' is the process
216 * doing the exec and bprm->mm is the new process's mm.
217 */
218 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
219 &page, NULL, NULL);
220 if (ret <= 0)
221 return NULL;
222
223 if (write)
224 acct_arg_size(bprm, vma_pages(bprm->vma));
225
226 return page;
227 }
228
229 static void put_arg_page(struct page *page)
230 {
231 put_page(page);
232 }
233
234 static void free_arg_pages(struct linux_binprm *bprm)
235 {
236 }
237
238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
239 struct page *page)
240 {
241 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
242 }
243
244 static int __bprm_mm_init(struct linux_binprm *bprm)
245 {
246 int err;
247 struct vm_area_struct *vma = NULL;
248 struct mm_struct *mm = bprm->mm;
249
250 bprm->vma = vma = vm_area_alloc(mm);
251 if (!vma)
252 return -ENOMEM;
253 vma_set_anonymous(vma);
254
255 if (mmap_write_lock_killable(mm)) {
256 err = -EINTR;
257 goto err_free;
258 }
259
260 /*
261 * Place the stack at the largest stack address the architecture
262 * supports. Later, we'll move this to an appropriate place. We don't
263 * use STACK_TOP because that can depend on attributes which aren't
264 * configured yet.
265 */
266 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267 vma->vm_end = STACK_TOP_MAX;
268 vma->vm_start = vma->vm_end - PAGE_SIZE;
269 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271
272 err = insert_vm_struct(mm, vma);
273 if (err)
274 goto err;
275
276 mm->stack_vm = mm->total_vm = 1;
277 mmap_write_unlock(mm);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280 err:
281 mmap_write_unlock(mm);
282 err_free:
283 bprm->vma = NULL;
284 vm_area_free(vma);
285 return err;
286 }
287
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290 return len <= MAX_ARG_STRLEN;
291 }
292
293 #else
294
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 int write)
301 {
302 struct page *page;
303
304 page = bprm->page[pos / PAGE_SIZE];
305 if (!page && write) {
306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 if (!page)
308 return NULL;
309 bprm->page[pos / PAGE_SIZE] = page;
310 }
311
312 return page;
313 }
314
315 static void put_arg_page(struct page *page)
316 {
317 }
318
319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321 if (bprm->page[i]) {
322 __free_page(bprm->page[i]);
323 bprm->page[i] = NULL;
324 }
325 }
326
327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329 int i;
330
331 for (i = 0; i < MAX_ARG_PAGES; i++)
332 free_arg_page(bprm, i);
333 }
334
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 struct page *page)
337 {
338 }
339
340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 return 0;
344 }
345
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348 return len <= bprm->p;
349 }
350
351 #endif /* CONFIG_MMU */
352
353 /*
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
358 */
359 static int bprm_mm_init(struct linux_binprm *bprm)
360 {
361 int err;
362 struct mm_struct *mm = NULL;
363
364 bprm->mm = mm = mm_alloc();
365 err = -ENOMEM;
366 if (!mm)
367 goto err;
368
369 /* Save current stack limit for all calculations made during exec. */
370 task_lock(current->group_leader);
371 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 task_unlock(current->group_leader);
373
374 err = __bprm_mm_init(bprm);
375 if (err)
376 goto err;
377
378 return 0;
379
380 err:
381 if (mm) {
382 bprm->mm = NULL;
383 mmdrop(mm);
384 }
385
386 return err;
387 }
388
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 bool is_compat;
392 #endif
393 union {
394 const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 const compat_uptr_t __user *compat;
397 #endif
398 } ptr;
399 };
400
401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403 const char __user *native;
404
405 #ifdef CONFIG_COMPAT
406 if (unlikely(argv.is_compat)) {
407 compat_uptr_t compat;
408
409 if (get_user(compat, argv.ptr.compat + nr))
410 return ERR_PTR(-EFAULT);
411
412 return compat_ptr(compat);
413 }
414 #endif
415
416 if (get_user(native, argv.ptr.native + nr))
417 return ERR_PTR(-EFAULT);
418
419 return native;
420 }
421
422 /*
423 * count() counts the number of strings in array ARGV.
424 */
425 static int count(struct user_arg_ptr argv, int max)
426 {
427 int i = 0;
428
429 if (argv.ptr.native != NULL) {
430 for (;;) {
431 const char __user *p = get_user_arg_ptr(argv, i);
432
433 if (!p)
434 break;
435
436 if (IS_ERR(p))
437 return -EFAULT;
438
439 if (i >= max)
440 return -E2BIG;
441 ++i;
442
443 if (fatal_signal_pending(current))
444 return -ERESTARTNOHAND;
445 cond_resched();
446 }
447 }
448 return i;
449 }
450
451 static int bprm_stack_limits(struct linux_binprm *bprm)
452 {
453 unsigned long limit, ptr_size;
454
455 /*
456 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
457 * (whichever is smaller) for the argv+env strings.
458 * This ensures that:
459 * - the remaining binfmt code will not run out of stack space,
460 * - the program will have a reasonable amount of stack left
461 * to work from.
462 */
463 limit = _STK_LIM / 4 * 3;
464 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
465 /*
466 * We've historically supported up to 32 pages (ARG_MAX)
467 * of argument strings even with small stacks
468 */
469 limit = max_t(unsigned long, limit, ARG_MAX);
470 /*
471 * We must account for the size of all the argv and envp pointers to
472 * the argv and envp strings, since they will also take up space in
473 * the stack. They aren't stored until much later when we can't
474 * signal to the parent that the child has run out of stack space.
475 * Instead, calculate it here so it's possible to fail gracefully.
476 */
477 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
478 if (limit <= ptr_size)
479 return -E2BIG;
480 limit -= ptr_size;
481
482 bprm->argmin = bprm->p - limit;
483 return 0;
484 }
485
486 /*
487 * 'copy_strings()' copies argument/environment strings from the old
488 * processes's memory to the new process's stack. The call to get_user_pages()
489 * ensures the destination page is created and not swapped out.
490 */
491 static int copy_strings(int argc, struct user_arg_ptr argv,
492 struct linux_binprm *bprm)
493 {
494 struct page *kmapped_page = NULL;
495 char *kaddr = NULL;
496 unsigned long kpos = 0;
497 int ret;
498
499 while (argc-- > 0) {
500 const char __user *str;
501 int len;
502 unsigned long pos;
503
504 ret = -EFAULT;
505 str = get_user_arg_ptr(argv, argc);
506 if (IS_ERR(str))
507 goto out;
508
509 len = strnlen_user(str, MAX_ARG_STRLEN);
510 if (!len)
511 goto out;
512
513 ret = -E2BIG;
514 if (!valid_arg_len(bprm, len))
515 goto out;
516
517 /* We're going to work our way backwords. */
518 pos = bprm->p;
519 str += len;
520 bprm->p -= len;
521 #ifdef CONFIG_MMU
522 if (bprm->p < bprm->argmin)
523 goto out;
524 #endif
525
526 while (len > 0) {
527 int offset, bytes_to_copy;
528
529 if (fatal_signal_pending(current)) {
530 ret = -ERESTARTNOHAND;
531 goto out;
532 }
533 cond_resched();
534
535 offset = pos % PAGE_SIZE;
536 if (offset == 0)
537 offset = PAGE_SIZE;
538
539 bytes_to_copy = offset;
540 if (bytes_to_copy > len)
541 bytes_to_copy = len;
542
543 offset -= bytes_to_copy;
544 pos -= bytes_to_copy;
545 str -= bytes_to_copy;
546 len -= bytes_to_copy;
547
548 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
549 struct page *page;
550
551 page = get_arg_page(bprm, pos, 1);
552 if (!page) {
553 ret = -E2BIG;
554 goto out;
555 }
556
557 if (kmapped_page) {
558 flush_kernel_dcache_page(kmapped_page);
559 kunmap(kmapped_page);
560 put_arg_page(kmapped_page);
561 }
562 kmapped_page = page;
563 kaddr = kmap(kmapped_page);
564 kpos = pos & PAGE_MASK;
565 flush_arg_page(bprm, kpos, kmapped_page);
566 }
567 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
568 ret = -EFAULT;
569 goto out;
570 }
571 }
572 }
573 ret = 0;
574 out:
575 if (kmapped_page) {
576 flush_kernel_dcache_page(kmapped_page);
577 kunmap(kmapped_page);
578 put_arg_page(kmapped_page);
579 }
580 return ret;
581 }
582
583 /*
584 * Copy and argument/environment string from the kernel to the processes stack.
585 */
586 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
587 {
588 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
589 unsigned long pos = bprm->p;
590
591 if (len == 0)
592 return -EFAULT;
593 if (!valid_arg_len(bprm, len))
594 return -E2BIG;
595
596 /* We're going to work our way backwards. */
597 arg += len;
598 bprm->p -= len;
599 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
600 return -E2BIG;
601
602 while (len > 0) {
603 unsigned int bytes_to_copy = min_t(unsigned int, len,
604 min_not_zero(offset_in_page(pos), PAGE_SIZE));
605 struct page *page;
606 char *kaddr;
607
608 pos -= bytes_to_copy;
609 arg -= bytes_to_copy;
610 len -= bytes_to_copy;
611
612 page = get_arg_page(bprm, pos, 1);
613 if (!page)
614 return -E2BIG;
615 kaddr = kmap_atomic(page);
616 flush_arg_page(bprm, pos & PAGE_MASK, page);
617 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
618 flush_kernel_dcache_page(page);
619 kunmap_atomic(kaddr);
620 put_arg_page(page);
621 }
622
623 return 0;
624 }
625 EXPORT_SYMBOL(copy_string_kernel);
626
627 #ifdef CONFIG_MMU
628
629 /*
630 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
631 * the binfmt code determines where the new stack should reside, we shift it to
632 * its final location. The process proceeds as follows:
633 *
634 * 1) Use shift to calculate the new vma endpoints.
635 * 2) Extend vma to cover both the old and new ranges. This ensures the
636 * arguments passed to subsequent functions are consistent.
637 * 3) Move vma's page tables to the new range.
638 * 4) Free up any cleared pgd range.
639 * 5) Shrink the vma to cover only the new range.
640 */
641 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
642 {
643 struct mm_struct *mm = vma->vm_mm;
644 unsigned long old_start = vma->vm_start;
645 unsigned long old_end = vma->vm_end;
646 unsigned long length = old_end - old_start;
647 unsigned long new_start = old_start - shift;
648 unsigned long new_end = old_end - shift;
649 struct mmu_gather tlb;
650
651 BUG_ON(new_start > new_end);
652
653 /*
654 * ensure there are no vmas between where we want to go
655 * and where we are
656 */
657 if (vma != find_vma(mm, new_start))
658 return -EFAULT;
659
660 /*
661 * cover the whole range: [new_start, old_end)
662 */
663 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
664 return -ENOMEM;
665
666 /*
667 * move the page tables downwards, on failure we rely on
668 * process cleanup to remove whatever mess we made.
669 */
670 if (length != move_page_tables(vma, old_start,
671 vma, new_start, length, false))
672 return -ENOMEM;
673
674 lru_add_drain();
675 tlb_gather_mmu(&tlb, mm, old_start, old_end);
676 if (new_end > old_start) {
677 /*
678 * when the old and new regions overlap clear from new_end.
679 */
680 free_pgd_range(&tlb, new_end, old_end, new_end,
681 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
682 } else {
683 /*
684 * otherwise, clean from old_start; this is done to not touch
685 * the address space in [new_end, old_start) some architectures
686 * have constraints on va-space that make this illegal (IA64) -
687 * for the others its just a little faster.
688 */
689 free_pgd_range(&tlb, old_start, old_end, new_end,
690 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
691 }
692 tlb_finish_mmu(&tlb, old_start, old_end);
693
694 /*
695 * Shrink the vma to just the new range. Always succeeds.
696 */
697 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
698
699 return 0;
700 }
701
702 /*
703 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
704 * the stack is optionally relocated, and some extra space is added.
705 */
706 int setup_arg_pages(struct linux_binprm *bprm,
707 unsigned long stack_top,
708 int executable_stack)
709 {
710 unsigned long ret;
711 unsigned long stack_shift;
712 struct mm_struct *mm = current->mm;
713 struct vm_area_struct *vma = bprm->vma;
714 struct vm_area_struct *prev = NULL;
715 unsigned long vm_flags;
716 unsigned long stack_base;
717 unsigned long stack_size;
718 unsigned long stack_expand;
719 unsigned long rlim_stack;
720
721 #ifdef CONFIG_STACK_GROWSUP
722 /* Limit stack size */
723 stack_base = bprm->rlim_stack.rlim_max;
724 if (stack_base > STACK_SIZE_MAX)
725 stack_base = STACK_SIZE_MAX;
726
727 /* Add space for stack randomization. */
728 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
729
730 /* Make sure we didn't let the argument array grow too large. */
731 if (vma->vm_end - vma->vm_start > stack_base)
732 return -ENOMEM;
733
734 stack_base = PAGE_ALIGN(stack_top - stack_base);
735
736 stack_shift = vma->vm_start - stack_base;
737 mm->arg_start = bprm->p - stack_shift;
738 bprm->p = vma->vm_end - stack_shift;
739 #else
740 stack_top = arch_align_stack(stack_top);
741 stack_top = PAGE_ALIGN(stack_top);
742
743 if (unlikely(stack_top < mmap_min_addr) ||
744 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
745 return -ENOMEM;
746
747 stack_shift = vma->vm_end - stack_top;
748
749 bprm->p -= stack_shift;
750 mm->arg_start = bprm->p;
751 #endif
752
753 if (bprm->loader)
754 bprm->loader -= stack_shift;
755 bprm->exec -= stack_shift;
756
757 if (mmap_write_lock_killable(mm))
758 return -EINTR;
759
760 vm_flags = VM_STACK_FLAGS;
761
762 /*
763 * Adjust stack execute permissions; explicitly enable for
764 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
765 * (arch default) otherwise.
766 */
767 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
768 vm_flags |= VM_EXEC;
769 else if (executable_stack == EXSTACK_DISABLE_X)
770 vm_flags &= ~VM_EXEC;
771 vm_flags |= mm->def_flags;
772 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
773
774 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
775 vm_flags);
776 if (ret)
777 goto out_unlock;
778 BUG_ON(prev != vma);
779
780 if (unlikely(vm_flags & VM_EXEC)) {
781 pr_warn_once("process '%pD4' started with executable stack\n",
782 bprm->file);
783 }
784
785 /* Move stack pages down in memory. */
786 if (stack_shift) {
787 ret = shift_arg_pages(vma, stack_shift);
788 if (ret)
789 goto out_unlock;
790 }
791
792 /* mprotect_fixup is overkill to remove the temporary stack flags */
793 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
794
795 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
796 stack_size = vma->vm_end - vma->vm_start;
797 /*
798 * Align this down to a page boundary as expand_stack
799 * will align it up.
800 */
801 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
802 #ifdef CONFIG_STACK_GROWSUP
803 if (stack_size + stack_expand > rlim_stack)
804 stack_base = vma->vm_start + rlim_stack;
805 else
806 stack_base = vma->vm_end + stack_expand;
807 #else
808 if (stack_size + stack_expand > rlim_stack)
809 stack_base = vma->vm_end - rlim_stack;
810 else
811 stack_base = vma->vm_start - stack_expand;
812 #endif
813 current->mm->start_stack = bprm->p;
814 ret = expand_stack(vma, stack_base);
815 if (ret)
816 ret = -EFAULT;
817
818 out_unlock:
819 mmap_write_unlock(mm);
820 return ret;
821 }
822 EXPORT_SYMBOL(setup_arg_pages);
823
824 #else
825
826 /*
827 * Transfer the program arguments and environment from the holding pages
828 * onto the stack. The provided stack pointer is adjusted accordingly.
829 */
830 int transfer_args_to_stack(struct linux_binprm *bprm,
831 unsigned long *sp_location)
832 {
833 unsigned long index, stop, sp;
834 int ret = 0;
835
836 stop = bprm->p >> PAGE_SHIFT;
837 sp = *sp_location;
838
839 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
840 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
841 char *src = kmap(bprm->page[index]) + offset;
842 sp -= PAGE_SIZE - offset;
843 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
844 ret = -EFAULT;
845 kunmap(bprm->page[index]);
846 if (ret)
847 goto out;
848 }
849
850 *sp_location = sp;
851
852 out:
853 return ret;
854 }
855 EXPORT_SYMBOL(transfer_args_to_stack);
856
857 #endif /* CONFIG_MMU */
858
859 static struct file *do_open_execat(int fd, struct filename *name, int flags)
860 {
861 struct file *file;
862 int err;
863 struct open_flags open_exec_flags = {
864 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
865 .acc_mode = MAY_EXEC,
866 .intent = LOOKUP_OPEN,
867 .lookup_flags = LOOKUP_FOLLOW,
868 };
869
870 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
871 return ERR_PTR(-EINVAL);
872 if (flags & AT_SYMLINK_NOFOLLOW)
873 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
874 if (flags & AT_EMPTY_PATH)
875 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
876
877 file = do_filp_open(fd, name, &open_exec_flags);
878 if (IS_ERR(file))
879 goto out;
880
881 err = -EACCES;
882 if (!S_ISREG(file_inode(file)->i_mode))
883 goto exit;
884
885 if (path_noexec(&file->f_path))
886 goto exit;
887
888 err = deny_write_access(file);
889 if (err)
890 goto exit;
891
892 if (name->name[0] != '\0')
893 fsnotify_open(file);
894
895 out:
896 return file;
897
898 exit:
899 fput(file);
900 return ERR_PTR(err);
901 }
902
903 struct file *open_exec(const char *name)
904 {
905 struct filename *filename = getname_kernel(name);
906 struct file *f = ERR_CAST(filename);
907
908 if (!IS_ERR(filename)) {
909 f = do_open_execat(AT_FDCWD, filename, 0);
910 putname(filename);
911 }
912 return f;
913 }
914 EXPORT_SYMBOL(open_exec);
915
916 int kernel_read_file(struct file *file, void **buf, loff_t *size,
917 loff_t max_size, enum kernel_read_file_id id)
918 {
919 loff_t i_size, pos;
920 ssize_t bytes = 0;
921 int ret;
922
923 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
924 return -EINVAL;
925
926 ret = deny_write_access(file);
927 if (ret)
928 return ret;
929
930 ret = security_kernel_read_file(file, id);
931 if (ret)
932 goto out;
933
934 i_size = i_size_read(file_inode(file));
935 if (i_size <= 0) {
936 ret = -EINVAL;
937 goto out;
938 }
939 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
940 ret = -EFBIG;
941 goto out;
942 }
943
944 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
945 *buf = vmalloc(i_size);
946 if (!*buf) {
947 ret = -ENOMEM;
948 goto out;
949 }
950
951 pos = 0;
952 while (pos < i_size) {
953 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
954 if (bytes < 0) {
955 ret = bytes;
956 goto out_free;
957 }
958
959 if (bytes == 0)
960 break;
961 }
962
963 if (pos != i_size) {
964 ret = -EIO;
965 goto out_free;
966 }
967
968 ret = security_kernel_post_read_file(file, *buf, i_size, id);
969 if (!ret)
970 *size = pos;
971
972 out_free:
973 if (ret < 0) {
974 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
975 vfree(*buf);
976 *buf = NULL;
977 }
978 }
979
980 out:
981 allow_write_access(file);
982 return ret;
983 }
984 EXPORT_SYMBOL_GPL(kernel_read_file);
985
986 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
987 loff_t max_size, enum kernel_read_file_id id)
988 {
989 struct file *file;
990 int ret;
991
992 if (!path || !*path)
993 return -EINVAL;
994
995 file = filp_open(path, O_RDONLY, 0);
996 if (IS_ERR(file))
997 return PTR_ERR(file);
998
999 ret = kernel_read_file(file, buf, size, max_size, id);
1000 fput(file);
1001 return ret;
1002 }
1003 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1004
1005 int kernel_read_file_from_path_initns(const char *path, void **buf,
1006 loff_t *size, loff_t max_size,
1007 enum kernel_read_file_id id)
1008 {
1009 struct file *file;
1010 struct path root;
1011 int ret;
1012
1013 if (!path || !*path)
1014 return -EINVAL;
1015
1016 task_lock(&init_task);
1017 get_fs_root(init_task.fs, &root);
1018 task_unlock(&init_task);
1019
1020 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1021 path_put(&root);
1022 if (IS_ERR(file))
1023 return PTR_ERR(file);
1024
1025 ret = kernel_read_file(file, buf, size, max_size, id);
1026 fput(file);
1027 return ret;
1028 }
1029 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1030
1031 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1032 enum kernel_read_file_id id)
1033 {
1034 struct fd f = fdget(fd);
1035 int ret = -EBADF;
1036
1037 if (!f.file)
1038 goto out;
1039
1040 ret = kernel_read_file(f.file, buf, size, max_size, id);
1041 out:
1042 fdput(f);
1043 return ret;
1044 }
1045 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1046
1047 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1048 defined(CONFIG_BINFMT_ELF_FDPIC)
1049 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1050 {
1051 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1052 if (res > 0)
1053 flush_icache_user_range(addr, addr + len);
1054 return res;
1055 }
1056 EXPORT_SYMBOL(read_code);
1057 #endif
1058
1059 /*
1060 * Maps the mm_struct mm into the current task struct.
1061 * On success, this function returns with the mutex
1062 * exec_update_mutex locked.
1063 */
1064 static int exec_mmap(struct mm_struct *mm)
1065 {
1066 struct task_struct *tsk;
1067 struct mm_struct *old_mm, *active_mm;
1068 int ret;
1069
1070 /* Notify parent that we're no longer interested in the old VM */
1071 tsk = current;
1072 old_mm = current->mm;
1073 exec_mm_release(tsk, old_mm);
1074 if (old_mm)
1075 sync_mm_rss(old_mm);
1076
1077 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1078 if (ret)
1079 return ret;
1080
1081 if (old_mm) {
1082 /*
1083 * Make sure that if there is a core dump in progress
1084 * for the old mm, we get out and die instead of going
1085 * through with the exec. We must hold mmap_lock around
1086 * checking core_state and changing tsk->mm.
1087 */
1088 mmap_read_lock(old_mm);
1089 if (unlikely(old_mm->core_state)) {
1090 mmap_read_unlock(old_mm);
1091 mutex_unlock(&tsk->signal->exec_update_mutex);
1092 return -EINTR;
1093 }
1094 }
1095
1096 task_lock(tsk);
1097 active_mm = tsk->active_mm;
1098 membarrier_exec_mmap(mm);
1099 tsk->mm = mm;
1100 tsk->active_mm = mm;
1101 activate_mm(active_mm, mm);
1102 tsk->mm->vmacache_seqnum = 0;
1103 vmacache_flush(tsk);
1104 task_unlock(tsk);
1105 if (old_mm) {
1106 mmap_read_unlock(old_mm);
1107 BUG_ON(active_mm != old_mm);
1108 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1109 mm_update_next_owner(old_mm);
1110 mmput(old_mm);
1111 return 0;
1112 }
1113 mmdrop(active_mm);
1114 return 0;
1115 }
1116
1117 static int de_thread(struct task_struct *tsk)
1118 {
1119 struct signal_struct *sig = tsk->signal;
1120 struct sighand_struct *oldsighand = tsk->sighand;
1121 spinlock_t *lock = &oldsighand->siglock;
1122
1123 if (thread_group_empty(tsk))
1124 goto no_thread_group;
1125
1126 /*
1127 * Kill all other threads in the thread group.
1128 */
1129 spin_lock_irq(lock);
1130 if (signal_group_exit(sig)) {
1131 /*
1132 * Another group action in progress, just
1133 * return so that the signal is processed.
1134 */
1135 spin_unlock_irq(lock);
1136 return -EAGAIN;
1137 }
1138
1139 sig->group_exit_task = tsk;
1140 sig->notify_count = zap_other_threads(tsk);
1141 if (!thread_group_leader(tsk))
1142 sig->notify_count--;
1143
1144 while (sig->notify_count) {
1145 __set_current_state(TASK_KILLABLE);
1146 spin_unlock_irq(lock);
1147 schedule();
1148 if (__fatal_signal_pending(tsk))
1149 goto killed;
1150 spin_lock_irq(lock);
1151 }
1152 spin_unlock_irq(lock);
1153
1154 /*
1155 * At this point all other threads have exited, all we have to
1156 * do is to wait for the thread group leader to become inactive,
1157 * and to assume its PID:
1158 */
1159 if (!thread_group_leader(tsk)) {
1160 struct task_struct *leader = tsk->group_leader;
1161
1162 for (;;) {
1163 cgroup_threadgroup_change_begin(tsk);
1164 write_lock_irq(&tasklist_lock);
1165 /*
1166 * Do this under tasklist_lock to ensure that
1167 * exit_notify() can't miss ->group_exit_task
1168 */
1169 sig->notify_count = -1;
1170 if (likely(leader->exit_state))
1171 break;
1172 __set_current_state(TASK_KILLABLE);
1173 write_unlock_irq(&tasklist_lock);
1174 cgroup_threadgroup_change_end(tsk);
1175 schedule();
1176 if (__fatal_signal_pending(tsk))
1177 goto killed;
1178 }
1179
1180 /*
1181 * The only record we have of the real-time age of a
1182 * process, regardless of execs it's done, is start_time.
1183 * All the past CPU time is accumulated in signal_struct
1184 * from sister threads now dead. But in this non-leader
1185 * exec, nothing survives from the original leader thread,
1186 * whose birth marks the true age of this process now.
1187 * When we take on its identity by switching to its PID, we
1188 * also take its birthdate (always earlier than our own).
1189 */
1190 tsk->start_time = leader->start_time;
1191 tsk->start_boottime = leader->start_boottime;
1192
1193 BUG_ON(!same_thread_group(leader, tsk));
1194 /*
1195 * An exec() starts a new thread group with the
1196 * TGID of the previous thread group. Rehash the
1197 * two threads with a switched PID, and release
1198 * the former thread group leader:
1199 */
1200
1201 /* Become a process group leader with the old leader's pid.
1202 * The old leader becomes a thread of the this thread group.
1203 */
1204 exchange_tids(tsk, leader);
1205 transfer_pid(leader, tsk, PIDTYPE_TGID);
1206 transfer_pid(leader, tsk, PIDTYPE_PGID);
1207 transfer_pid(leader, tsk, PIDTYPE_SID);
1208
1209 list_replace_rcu(&leader->tasks, &tsk->tasks);
1210 list_replace_init(&leader->sibling, &tsk->sibling);
1211
1212 tsk->group_leader = tsk;
1213 leader->group_leader = tsk;
1214
1215 tsk->exit_signal = SIGCHLD;
1216 leader->exit_signal = -1;
1217
1218 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1219 leader->exit_state = EXIT_DEAD;
1220
1221 /*
1222 * We are going to release_task()->ptrace_unlink() silently,
1223 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1224 * the tracer wont't block again waiting for this thread.
1225 */
1226 if (unlikely(leader->ptrace))
1227 __wake_up_parent(leader, leader->parent);
1228 write_unlock_irq(&tasklist_lock);
1229 cgroup_threadgroup_change_end(tsk);
1230
1231 release_task(leader);
1232 }
1233
1234 sig->group_exit_task = NULL;
1235 sig->notify_count = 0;
1236
1237 no_thread_group:
1238 /* we have changed execution domain */
1239 tsk->exit_signal = SIGCHLD;
1240
1241 BUG_ON(!thread_group_leader(tsk));
1242 return 0;
1243
1244 killed:
1245 /* protects against exit_notify() and __exit_signal() */
1246 read_lock(&tasklist_lock);
1247 sig->group_exit_task = NULL;
1248 sig->notify_count = 0;
1249 read_unlock(&tasklist_lock);
1250 return -EAGAIN;
1251 }
1252
1253
1254 /*
1255 * This function makes sure the current process has its own signal table,
1256 * so that flush_signal_handlers can later reset the handlers without
1257 * disturbing other processes. (Other processes might share the signal
1258 * table via the CLONE_SIGHAND option to clone().)
1259 */
1260 static int unshare_sighand(struct task_struct *me)
1261 {
1262 struct sighand_struct *oldsighand = me->sighand;
1263
1264 if (refcount_read(&oldsighand->count) != 1) {
1265 struct sighand_struct *newsighand;
1266 /*
1267 * This ->sighand is shared with the CLONE_SIGHAND
1268 * but not CLONE_THREAD task, switch to the new one.
1269 */
1270 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1271 if (!newsighand)
1272 return -ENOMEM;
1273
1274 refcount_set(&newsighand->count, 1);
1275 memcpy(newsighand->action, oldsighand->action,
1276 sizeof(newsighand->action));
1277
1278 write_lock_irq(&tasklist_lock);
1279 spin_lock(&oldsighand->siglock);
1280 rcu_assign_pointer(me->sighand, newsighand);
1281 spin_unlock(&oldsighand->siglock);
1282 write_unlock_irq(&tasklist_lock);
1283
1284 __cleanup_sighand(oldsighand);
1285 }
1286 return 0;
1287 }
1288
1289 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1290 {
1291 task_lock(tsk);
1292 strncpy(buf, tsk->comm, buf_size);
1293 task_unlock(tsk);
1294 return buf;
1295 }
1296 EXPORT_SYMBOL_GPL(__get_task_comm);
1297
1298 /*
1299 * These functions flushes out all traces of the currently running executable
1300 * so that a new one can be started
1301 */
1302
1303 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1304 {
1305 task_lock(tsk);
1306 trace_task_rename(tsk, buf);
1307 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1308 task_unlock(tsk);
1309 perf_event_comm(tsk, exec);
1310 }
1311
1312 /*
1313 * Calling this is the point of no return. None of the failures will be
1314 * seen by userspace since either the process is already taking a fatal
1315 * signal (via de_thread() or coredump), or will have SEGV raised
1316 * (after exec_mmap()) by search_binary_handler (see below).
1317 */
1318 int begin_new_exec(struct linux_binprm * bprm)
1319 {
1320 struct task_struct *me = current;
1321 int retval;
1322
1323 /* Once we are committed compute the creds */
1324 retval = bprm_creds_from_file(bprm);
1325 if (retval)
1326 return retval;
1327
1328 /*
1329 * Ensure all future errors are fatal.
1330 */
1331 bprm->point_of_no_return = true;
1332
1333 /*
1334 * Make this the only thread in the thread group.
1335 */
1336 retval = de_thread(me);
1337 if (retval)
1338 goto out;
1339
1340 /*
1341 * Must be called _before_ exec_mmap() as bprm->mm is
1342 * not visibile until then. This also enables the update
1343 * to be lockless.
1344 */
1345 set_mm_exe_file(bprm->mm, bprm->file);
1346
1347 /* If the binary is not readable then enforce mm->dumpable=0 */
1348 would_dump(bprm, bprm->file);
1349 if (bprm->have_execfd)
1350 would_dump(bprm, bprm->executable);
1351
1352 /*
1353 * Release all of the old mmap stuff
1354 */
1355 acct_arg_size(bprm, 0);
1356 retval = exec_mmap(bprm->mm);
1357 if (retval)
1358 goto out;
1359
1360 bprm->mm = NULL;
1361
1362 #ifdef CONFIG_POSIX_TIMERS
1363 exit_itimers(me->signal);
1364 flush_itimer_signals();
1365 #endif
1366
1367 /*
1368 * Make the signal table private.
1369 */
1370 retval = unshare_sighand(me);
1371 if (retval)
1372 goto out_unlock;
1373
1374 set_fs(USER_DS);
1375 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1376 PF_NOFREEZE | PF_NO_SETAFFINITY);
1377 flush_thread();
1378 me->personality &= ~bprm->per_clear;
1379
1380 /*
1381 * We have to apply CLOEXEC before we change whether the process is
1382 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1383 * trying to access the should-be-closed file descriptors of a process
1384 * undergoing exec(2).
1385 */
1386 do_close_on_exec(me->files);
1387
1388 if (bprm->secureexec) {
1389 /* Make sure parent cannot signal privileged process. */
1390 me->pdeath_signal = 0;
1391
1392 /*
1393 * For secureexec, reset the stack limit to sane default to
1394 * avoid bad behavior from the prior rlimits. This has to
1395 * happen before arch_pick_mmap_layout(), which examines
1396 * RLIMIT_STACK, but after the point of no return to avoid
1397 * needing to clean up the change on failure.
1398 */
1399 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1400 bprm->rlim_stack.rlim_cur = _STK_LIM;
1401 }
1402
1403 me->sas_ss_sp = me->sas_ss_size = 0;
1404
1405 /*
1406 * Figure out dumpability. Note that this checking only of current
1407 * is wrong, but userspace depends on it. This should be testing
1408 * bprm->secureexec instead.
1409 */
1410 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1411 !(uid_eq(current_euid(), current_uid()) &&
1412 gid_eq(current_egid(), current_gid())))
1413 set_dumpable(current->mm, suid_dumpable);
1414 else
1415 set_dumpable(current->mm, SUID_DUMP_USER);
1416
1417 perf_event_exec();
1418 __set_task_comm(me, kbasename(bprm->filename), true);
1419
1420 /* An exec changes our domain. We are no longer part of the thread
1421 group */
1422 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1423 flush_signal_handlers(me, 0);
1424
1425 /*
1426 * install the new credentials for this executable
1427 */
1428 security_bprm_committing_creds(bprm);
1429
1430 commit_creds(bprm->cred);
1431 bprm->cred = NULL;
1432
1433 /*
1434 * Disable monitoring for regular users
1435 * when executing setuid binaries. Must
1436 * wait until new credentials are committed
1437 * by commit_creds() above
1438 */
1439 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1440 perf_event_exit_task(me);
1441 /*
1442 * cred_guard_mutex must be held at least to this point to prevent
1443 * ptrace_attach() from altering our determination of the task's
1444 * credentials; any time after this it may be unlocked.
1445 */
1446 security_bprm_committed_creds(bprm);
1447
1448 /* Pass the opened binary to the interpreter. */
1449 if (bprm->have_execfd) {
1450 retval = get_unused_fd_flags(0);
1451 if (retval < 0)
1452 goto out_unlock;
1453 fd_install(retval, bprm->executable);
1454 bprm->executable = NULL;
1455 bprm->execfd = retval;
1456 }
1457 return 0;
1458
1459 out_unlock:
1460 mutex_unlock(&me->signal->exec_update_mutex);
1461 out:
1462 return retval;
1463 }
1464 EXPORT_SYMBOL(begin_new_exec);
1465
1466 void would_dump(struct linux_binprm *bprm, struct file *file)
1467 {
1468 struct inode *inode = file_inode(file);
1469 if (inode_permission(inode, MAY_READ) < 0) {
1470 struct user_namespace *old, *user_ns;
1471 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1472
1473 /* Ensure mm->user_ns contains the executable */
1474 user_ns = old = bprm->mm->user_ns;
1475 while ((user_ns != &init_user_ns) &&
1476 !privileged_wrt_inode_uidgid(user_ns, inode))
1477 user_ns = user_ns->parent;
1478
1479 if (old != user_ns) {
1480 bprm->mm->user_ns = get_user_ns(user_ns);
1481 put_user_ns(old);
1482 }
1483 }
1484 }
1485 EXPORT_SYMBOL(would_dump);
1486
1487 void setup_new_exec(struct linux_binprm * bprm)
1488 {
1489 /* Setup things that can depend upon the personality */
1490 struct task_struct *me = current;
1491
1492 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1493
1494 arch_setup_new_exec();
1495
1496 /* Set the new mm task size. We have to do that late because it may
1497 * depend on TIF_32BIT which is only updated in flush_thread() on
1498 * some architectures like powerpc
1499 */
1500 me->mm->task_size = TASK_SIZE;
1501 mutex_unlock(&me->signal->exec_update_mutex);
1502 mutex_unlock(&me->signal->cred_guard_mutex);
1503 }
1504 EXPORT_SYMBOL(setup_new_exec);
1505
1506 /* Runs immediately before start_thread() takes over. */
1507 void finalize_exec(struct linux_binprm *bprm)
1508 {
1509 /* Store any stack rlimit changes before starting thread. */
1510 task_lock(current->group_leader);
1511 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1512 task_unlock(current->group_leader);
1513 }
1514 EXPORT_SYMBOL(finalize_exec);
1515
1516 /*
1517 * Prepare credentials and lock ->cred_guard_mutex.
1518 * setup_new_exec() commits the new creds and drops the lock.
1519 * Or, if exec fails before, free_bprm() should release ->cred and
1520 * and unlock.
1521 */
1522 static int prepare_bprm_creds(struct linux_binprm *bprm)
1523 {
1524 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1525 return -ERESTARTNOINTR;
1526
1527 bprm->cred = prepare_exec_creds();
1528 if (likely(bprm->cred))
1529 return 0;
1530
1531 mutex_unlock(&current->signal->cred_guard_mutex);
1532 return -ENOMEM;
1533 }
1534
1535 static void free_bprm(struct linux_binprm *bprm)
1536 {
1537 if (bprm->mm) {
1538 acct_arg_size(bprm, 0);
1539 mmput(bprm->mm);
1540 }
1541 free_arg_pages(bprm);
1542 if (bprm->cred) {
1543 mutex_unlock(&current->signal->cred_guard_mutex);
1544 abort_creds(bprm->cred);
1545 }
1546 if (bprm->file) {
1547 allow_write_access(bprm->file);
1548 fput(bprm->file);
1549 }
1550 if (bprm->executable)
1551 fput(bprm->executable);
1552 /* If a binfmt changed the interp, free it. */
1553 if (bprm->interp != bprm->filename)
1554 kfree(bprm->interp);
1555 kfree(bprm->fdpath);
1556 kfree(bprm);
1557 }
1558
1559 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1560 {
1561 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1562 int retval = -ENOMEM;
1563 if (!bprm)
1564 goto out;
1565
1566 if (fd == AT_FDCWD || filename->name[0] == '/') {
1567 bprm->filename = filename->name;
1568 } else {
1569 if (filename->name[0] == '\0')
1570 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1571 else
1572 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1573 fd, filename->name);
1574 if (!bprm->fdpath)
1575 goto out_free;
1576
1577 bprm->filename = bprm->fdpath;
1578 }
1579 bprm->interp = bprm->filename;
1580
1581 retval = bprm_mm_init(bprm);
1582 if (retval)
1583 goto out_free;
1584 return bprm;
1585
1586 out_free:
1587 free_bprm(bprm);
1588 out:
1589 return ERR_PTR(retval);
1590 }
1591
1592 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1593 {
1594 /* If a binfmt changed the interp, free it first. */
1595 if (bprm->interp != bprm->filename)
1596 kfree(bprm->interp);
1597 bprm->interp = kstrdup(interp, GFP_KERNEL);
1598 if (!bprm->interp)
1599 return -ENOMEM;
1600 return 0;
1601 }
1602 EXPORT_SYMBOL(bprm_change_interp);
1603
1604 /*
1605 * determine how safe it is to execute the proposed program
1606 * - the caller must hold ->cred_guard_mutex to protect against
1607 * PTRACE_ATTACH or seccomp thread-sync
1608 */
1609 static void check_unsafe_exec(struct linux_binprm *bprm)
1610 {
1611 struct task_struct *p = current, *t;
1612 unsigned n_fs;
1613
1614 if (p->ptrace)
1615 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1616
1617 /*
1618 * This isn't strictly necessary, but it makes it harder for LSMs to
1619 * mess up.
1620 */
1621 if (task_no_new_privs(current))
1622 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1623
1624 t = p;
1625 n_fs = 1;
1626 spin_lock(&p->fs->lock);
1627 rcu_read_lock();
1628 while_each_thread(p, t) {
1629 if (t->fs == p->fs)
1630 n_fs++;
1631 }
1632 rcu_read_unlock();
1633
1634 if (p->fs->users > n_fs)
1635 bprm->unsafe |= LSM_UNSAFE_SHARE;
1636 else
1637 p->fs->in_exec = 1;
1638 spin_unlock(&p->fs->lock);
1639 }
1640
1641 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1642 {
1643 /* Handle suid and sgid on files */
1644 struct inode *inode;
1645 unsigned int mode;
1646 kuid_t uid;
1647 kgid_t gid;
1648
1649 if (!mnt_may_suid(file->f_path.mnt))
1650 return;
1651
1652 if (task_no_new_privs(current))
1653 return;
1654
1655 inode = file->f_path.dentry->d_inode;
1656 mode = READ_ONCE(inode->i_mode);
1657 if (!(mode & (S_ISUID|S_ISGID)))
1658 return;
1659
1660 /* Be careful if suid/sgid is set */
1661 inode_lock(inode);
1662
1663 /* reload atomically mode/uid/gid now that lock held */
1664 mode = inode->i_mode;
1665 uid = inode->i_uid;
1666 gid = inode->i_gid;
1667 inode_unlock(inode);
1668
1669 /* We ignore suid/sgid if there are no mappings for them in the ns */
1670 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1671 !kgid_has_mapping(bprm->cred->user_ns, gid))
1672 return;
1673
1674 if (mode & S_ISUID) {
1675 bprm->per_clear |= PER_CLEAR_ON_SETID;
1676 bprm->cred->euid = uid;
1677 }
1678
1679 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1680 bprm->per_clear |= PER_CLEAR_ON_SETID;
1681 bprm->cred->egid = gid;
1682 }
1683 }
1684
1685 /*
1686 * Compute brpm->cred based upon the final binary.
1687 */
1688 static int bprm_creds_from_file(struct linux_binprm *bprm)
1689 {
1690 /* Compute creds based on which file? */
1691 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1692
1693 bprm_fill_uid(bprm, file);
1694 return security_bprm_creds_from_file(bprm, file);
1695 }
1696
1697 /*
1698 * Fill the binprm structure from the inode.
1699 * Read the first BINPRM_BUF_SIZE bytes
1700 *
1701 * This may be called multiple times for binary chains (scripts for example).
1702 */
1703 static int prepare_binprm(struct linux_binprm *bprm)
1704 {
1705 loff_t pos = 0;
1706
1707 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1708 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1709 }
1710
1711 /*
1712 * Arguments are '\0' separated strings found at the location bprm->p
1713 * points to; chop off the first by relocating brpm->p to right after
1714 * the first '\0' encountered.
1715 */
1716 int remove_arg_zero(struct linux_binprm *bprm)
1717 {
1718 int ret = 0;
1719 unsigned long offset;
1720 char *kaddr;
1721 struct page *page;
1722
1723 if (!bprm->argc)
1724 return 0;
1725
1726 do {
1727 offset = bprm->p & ~PAGE_MASK;
1728 page = get_arg_page(bprm, bprm->p, 0);
1729 if (!page) {
1730 ret = -EFAULT;
1731 goto out;
1732 }
1733 kaddr = kmap_atomic(page);
1734
1735 for (; offset < PAGE_SIZE && kaddr[offset];
1736 offset++, bprm->p++)
1737 ;
1738
1739 kunmap_atomic(kaddr);
1740 put_arg_page(page);
1741 } while (offset == PAGE_SIZE);
1742
1743 bprm->p++;
1744 bprm->argc--;
1745 ret = 0;
1746
1747 out:
1748 return ret;
1749 }
1750 EXPORT_SYMBOL(remove_arg_zero);
1751
1752 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1753 /*
1754 * cycle the list of binary formats handler, until one recognizes the image
1755 */
1756 static int search_binary_handler(struct linux_binprm *bprm)
1757 {
1758 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1759 struct linux_binfmt *fmt;
1760 int retval;
1761
1762 retval = prepare_binprm(bprm);
1763 if (retval < 0)
1764 return retval;
1765
1766 retval = security_bprm_check(bprm);
1767 if (retval)
1768 return retval;
1769
1770 retval = -ENOENT;
1771 retry:
1772 read_lock(&binfmt_lock);
1773 list_for_each_entry(fmt, &formats, lh) {
1774 if (!try_module_get(fmt->module))
1775 continue;
1776 read_unlock(&binfmt_lock);
1777
1778 retval = fmt->load_binary(bprm);
1779
1780 read_lock(&binfmt_lock);
1781 put_binfmt(fmt);
1782 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1783 read_unlock(&binfmt_lock);
1784 return retval;
1785 }
1786 }
1787 read_unlock(&binfmt_lock);
1788
1789 if (need_retry) {
1790 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1791 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1792 return retval;
1793 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1794 return retval;
1795 need_retry = false;
1796 goto retry;
1797 }
1798
1799 return retval;
1800 }
1801
1802 static int exec_binprm(struct linux_binprm *bprm)
1803 {
1804 pid_t old_pid, old_vpid;
1805 int ret, depth;
1806
1807 /* Need to fetch pid before load_binary changes it */
1808 old_pid = current->pid;
1809 rcu_read_lock();
1810 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1811 rcu_read_unlock();
1812
1813 /* This allows 4 levels of binfmt rewrites before failing hard. */
1814 for (depth = 0;; depth++) {
1815 struct file *exec;
1816 if (depth > 5)
1817 return -ELOOP;
1818
1819 ret = search_binary_handler(bprm);
1820 if (ret < 0)
1821 return ret;
1822 if (!bprm->interpreter)
1823 break;
1824
1825 exec = bprm->file;
1826 bprm->file = bprm->interpreter;
1827 bprm->interpreter = NULL;
1828
1829 allow_write_access(exec);
1830 if (unlikely(bprm->have_execfd)) {
1831 if (bprm->executable) {
1832 fput(exec);
1833 return -ENOEXEC;
1834 }
1835 bprm->executable = exec;
1836 } else
1837 fput(exec);
1838 }
1839
1840 audit_bprm(bprm);
1841 trace_sched_process_exec(current, old_pid, bprm);
1842 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1843 proc_exec_connector(current);
1844 return 0;
1845 }
1846
1847 /*
1848 * sys_execve() executes a new program.
1849 */
1850 static int bprm_execve(struct linux_binprm *bprm,
1851 int fd, struct filename *filename, int flags)
1852 {
1853 struct file *file;
1854 struct files_struct *displaced;
1855 int retval;
1856
1857 retval = unshare_files(&displaced);
1858 if (retval)
1859 return retval;
1860
1861 retval = prepare_bprm_creds(bprm);
1862 if (retval)
1863 goto out_files;
1864
1865 check_unsafe_exec(bprm);
1866 current->in_execve = 1;
1867
1868 file = do_open_execat(fd, filename, flags);
1869 retval = PTR_ERR(file);
1870 if (IS_ERR(file))
1871 goto out_unmark;
1872
1873 sched_exec();
1874
1875 bprm->file = file;
1876 /*
1877 * Record that a name derived from an O_CLOEXEC fd will be
1878 * inaccessible after exec. Relies on having exclusive access to
1879 * current->files (due to unshare_files above).
1880 */
1881 if (bprm->fdpath &&
1882 close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1883 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1884
1885 /* Set the unchanging part of bprm->cred */
1886 retval = security_bprm_creds_for_exec(bprm);
1887 if (retval)
1888 goto out;
1889
1890 retval = exec_binprm(bprm);
1891 if (retval < 0)
1892 goto out;
1893
1894 /* execve succeeded */
1895 current->fs->in_exec = 0;
1896 current->in_execve = 0;
1897 rseq_execve(current);
1898 acct_update_integrals(current);
1899 task_numa_free(current, false);
1900 if (displaced)
1901 put_files_struct(displaced);
1902 return retval;
1903
1904 out:
1905 /*
1906 * If past the point of no return ensure the the code never
1907 * returns to the userspace process. Use an existing fatal
1908 * signal if present otherwise terminate the process with
1909 * SIGSEGV.
1910 */
1911 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1912 force_sigsegv(SIGSEGV);
1913
1914 out_unmark:
1915 current->fs->in_exec = 0;
1916 current->in_execve = 0;
1917
1918 out_files:
1919 if (displaced)
1920 reset_files_struct(displaced);
1921
1922 return retval;
1923 }
1924
1925 static int do_execveat_common(int fd, struct filename *filename,
1926 struct user_arg_ptr argv,
1927 struct user_arg_ptr envp,
1928 int flags)
1929 {
1930 struct linux_binprm *bprm;
1931 int retval;
1932
1933 if (IS_ERR(filename))
1934 return PTR_ERR(filename);
1935
1936 /*
1937 * We move the actual failure in case of RLIMIT_NPROC excess from
1938 * set*uid() to execve() because too many poorly written programs
1939 * don't check setuid() return code. Here we additionally recheck
1940 * whether NPROC limit is still exceeded.
1941 */
1942 if ((current->flags & PF_NPROC_EXCEEDED) &&
1943 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1944 retval = -EAGAIN;
1945 goto out_ret;
1946 }
1947
1948 /* We're below the limit (still or again), so we don't want to make
1949 * further execve() calls fail. */
1950 current->flags &= ~PF_NPROC_EXCEEDED;
1951
1952 bprm = alloc_bprm(fd, filename);
1953 if (IS_ERR(bprm)) {
1954 retval = PTR_ERR(bprm);
1955 goto out_ret;
1956 }
1957
1958 retval = count(argv, MAX_ARG_STRINGS);
1959 if (retval < 0)
1960 goto out_free;
1961 bprm->argc = retval;
1962
1963 retval = count(envp, MAX_ARG_STRINGS);
1964 if (retval < 0)
1965 goto out_free;
1966 bprm->envc = retval;
1967
1968 retval = bprm_stack_limits(bprm);
1969 if (retval < 0)
1970 goto out_free;
1971
1972 retval = copy_string_kernel(bprm->filename, bprm);
1973 if (retval < 0)
1974 goto out_free;
1975 bprm->exec = bprm->p;
1976
1977 retval = copy_strings(bprm->envc, envp, bprm);
1978 if (retval < 0)
1979 goto out_free;
1980
1981 retval = copy_strings(bprm->argc, argv, bprm);
1982 if (retval < 0)
1983 goto out_free;
1984
1985 retval = bprm_execve(bprm, fd, filename, flags);
1986 out_free:
1987 free_bprm(bprm);
1988
1989 out_ret:
1990 putname(filename);
1991 return retval;
1992 }
1993
1994 int do_execve(struct filename *filename,
1995 const char __user *const __user *__argv,
1996 const char __user *const __user *__envp)
1997 {
1998 struct user_arg_ptr argv = { .ptr.native = __argv };
1999 struct user_arg_ptr envp = { .ptr.native = __envp };
2000 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2001 }
2002
2003 int do_execveat(int fd, struct filename *filename,
2004 const char __user *const __user *__argv,
2005 const char __user *const __user *__envp,
2006 int flags)
2007 {
2008 struct user_arg_ptr argv = { .ptr.native = __argv };
2009 struct user_arg_ptr envp = { .ptr.native = __envp };
2010
2011 return do_execveat_common(fd, filename, argv, envp, flags);
2012 }
2013
2014 #ifdef CONFIG_COMPAT
2015 static int compat_do_execve(struct filename *filename,
2016 const compat_uptr_t __user *__argv,
2017 const compat_uptr_t __user *__envp)
2018 {
2019 struct user_arg_ptr argv = {
2020 .is_compat = true,
2021 .ptr.compat = __argv,
2022 };
2023 struct user_arg_ptr envp = {
2024 .is_compat = true,
2025 .ptr.compat = __envp,
2026 };
2027 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2028 }
2029
2030 static int compat_do_execveat(int fd, struct filename *filename,
2031 const compat_uptr_t __user *__argv,
2032 const compat_uptr_t __user *__envp,
2033 int flags)
2034 {
2035 struct user_arg_ptr argv = {
2036 .is_compat = true,
2037 .ptr.compat = __argv,
2038 };
2039 struct user_arg_ptr envp = {
2040 .is_compat = true,
2041 .ptr.compat = __envp,
2042 };
2043 return do_execveat_common(fd, filename, argv, envp, flags);
2044 }
2045 #endif
2046
2047 void set_binfmt(struct linux_binfmt *new)
2048 {
2049 struct mm_struct *mm = current->mm;
2050
2051 if (mm->binfmt)
2052 module_put(mm->binfmt->module);
2053
2054 mm->binfmt = new;
2055 if (new)
2056 __module_get(new->module);
2057 }
2058 EXPORT_SYMBOL(set_binfmt);
2059
2060 /*
2061 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2062 */
2063 void set_dumpable(struct mm_struct *mm, int value)
2064 {
2065 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2066 return;
2067
2068 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2069 }
2070
2071 SYSCALL_DEFINE3(execve,
2072 const char __user *, filename,
2073 const char __user *const __user *, argv,
2074 const char __user *const __user *, envp)
2075 {
2076 return do_execve(getname(filename), argv, envp);
2077 }
2078
2079 SYSCALL_DEFINE5(execveat,
2080 int, fd, const char __user *, filename,
2081 const char __user *const __user *, argv,
2082 const char __user *const __user *, envp,
2083 int, flags)
2084 {
2085 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2086
2087 return do_execveat(fd,
2088 getname_flags(filename, lookup_flags, NULL),
2089 argv, envp, flags);
2090 }
2091
2092 #ifdef CONFIG_COMPAT
2093 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2094 const compat_uptr_t __user *, argv,
2095 const compat_uptr_t __user *, envp)
2096 {
2097 return compat_do_execve(getname(filename), argv, envp);
2098 }
2099
2100 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2101 const char __user *, filename,
2102 const compat_uptr_t __user *, argv,
2103 const compat_uptr_t __user *, envp,
2104 int, flags)
2105 {
2106 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2107
2108 return compat_do_execveat(fd,
2109 getname_flags(filename, lookup_flags, NULL),
2110 argv, envp, flags);
2111 }
2112 #endif