]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/exec.c
UBUNTU: SAUCE: overlayfs: Propogate nosuid from lower and upper mounts
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <trace/events/fs.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71
72 #include <trace/events/task.h>
73 #include "internal.h"
74
75 #include <trace/events/sched.h>
76
77 int suid_dumpable = 0;
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 BUG_ON(!fmt);
85 if (WARN_ON(!fmt->load_binary))
86 return;
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 bool path_nosuid(const struct path *path)
116 {
117 return !mnt_may_suid(path->mnt) ||
118 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
119 }
120 EXPORT_SYMBOL(path_nosuid);
121
122 #ifdef CONFIG_USELIB
123 /*
124 * Note that a shared library must be both readable and executable due to
125 * security reasons.
126 *
127 * Also note that we take the address to load from from the file itself.
128 */
129 SYSCALL_DEFINE1(uselib, const char __user *, library)
130 {
131 struct linux_binfmt *fmt;
132 struct file *file;
133 struct filename *tmp = getname(library);
134 int error = PTR_ERR(tmp);
135 static const struct open_flags uselib_flags = {
136 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
137 .acc_mode = MAY_READ | MAY_EXEC,
138 .intent = LOOKUP_OPEN,
139 .lookup_flags = LOOKUP_FOLLOW,
140 };
141
142 if (IS_ERR(tmp))
143 goto out;
144
145 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
146 putname(tmp);
147 error = PTR_ERR(file);
148 if (IS_ERR(file))
149 goto out;
150
151 error = -EINVAL;
152 if (!S_ISREG(file_inode(file)->i_mode))
153 goto exit;
154
155 error = -EACCES;
156 if (path_noexec(&file->f_path))
157 goto exit;
158
159 fsnotify_open(file);
160
161 error = -ENOEXEC;
162
163 read_lock(&binfmt_lock);
164 list_for_each_entry(fmt, &formats, lh) {
165 if (!fmt->load_shlib)
166 continue;
167 if (!try_module_get(fmt->module))
168 continue;
169 read_unlock(&binfmt_lock);
170 error = fmt->load_shlib(file);
171 read_lock(&binfmt_lock);
172 put_binfmt(fmt);
173 if (error != -ENOEXEC)
174 break;
175 }
176 read_unlock(&binfmt_lock);
177 exit:
178 fput(file);
179 out:
180 return error;
181 }
182 #endif /* #ifdef CONFIG_USELIB */
183
184 #ifdef CONFIG_MMU
185 /*
186 * The nascent bprm->mm is not visible until exec_mmap() but it can
187 * use a lot of memory, account these pages in current->mm temporary
188 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
189 * change the counter back via acct_arg_size(0).
190 */
191 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
192 {
193 struct mm_struct *mm = current->mm;
194 long diff = (long)(pages - bprm->vma_pages);
195
196 if (!mm || !diff)
197 return;
198
199 bprm->vma_pages = pages;
200 add_mm_counter(mm, MM_ANONPAGES, diff);
201 }
202
203 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
204 int write)
205 {
206 struct page *page;
207 int ret;
208 unsigned int gup_flags = FOLL_FORCE;
209
210 #ifdef CONFIG_STACK_GROWSUP
211 if (write) {
212 ret = expand_downwards(bprm->vma, pos);
213 if (ret < 0)
214 return NULL;
215 }
216 #endif
217
218 if (write)
219 gup_flags |= FOLL_WRITE;
220
221 /*
222 * We are doing an exec(). 'current' is the process
223 * doing the exec and bprm->mm is the new process's mm.
224 */
225 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
226 &page, NULL, NULL);
227 if (ret <= 0)
228 return NULL;
229
230 if (write) {
231 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
232 unsigned long ptr_size, limit;
233
234 /*
235 * Since the stack will hold pointers to the strings, we
236 * must account for them as well.
237 *
238 * The size calculation is the entire vma while each arg page is
239 * built, so each time we get here it's calculating how far it
240 * is currently (rather than each call being just the newly
241 * added size from the arg page). As a result, we need to
242 * always add the entire size of the pointers, so that on the
243 * last call to get_arg_page() we'll actually have the entire
244 * correct size.
245 */
246 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
247 if (ptr_size > ULONG_MAX - size)
248 goto fail;
249 size += ptr_size;
250
251 acct_arg_size(bprm, size / PAGE_SIZE);
252
253 /*
254 * We've historically supported up to 32 pages (ARG_MAX)
255 * of argument strings even with small stacks
256 */
257 if (size <= ARG_MAX)
258 return page;
259
260 /*
261 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
262 * (whichever is smaller) for the argv+env strings.
263 * This ensures that:
264 * - the remaining binfmt code will not run out of stack space,
265 * - the program will have a reasonable amount of stack left
266 * to work from.
267 */
268 limit = _STK_LIM / 4 * 3;
269 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
270 if (size > limit)
271 goto fail;
272 }
273
274 return page;
275
276 fail:
277 put_page(page);
278 return NULL;
279 }
280
281 static void put_arg_page(struct page *page)
282 {
283 put_page(page);
284 }
285
286 static void free_arg_pages(struct linux_binprm *bprm)
287 {
288 }
289
290 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
291 struct page *page)
292 {
293 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
294 }
295
296 static int __bprm_mm_init(struct linux_binprm *bprm)
297 {
298 int err;
299 struct vm_area_struct *vma = NULL;
300 struct mm_struct *mm = bprm->mm;
301
302 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
303 if (!vma)
304 return -ENOMEM;
305
306 if (down_write_killable(&mm->mmap_sem)) {
307 err = -EINTR;
308 goto err_free;
309 }
310 vma->vm_mm = mm;
311
312 /*
313 * Place the stack at the largest stack address the architecture
314 * supports. Later, we'll move this to an appropriate place. We don't
315 * use STACK_TOP because that can depend on attributes which aren't
316 * configured yet.
317 */
318 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
319 vma->vm_end = STACK_TOP_MAX;
320 vma->vm_start = vma->vm_end - PAGE_SIZE;
321 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
322 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
323 INIT_LIST_HEAD(&vma->anon_vma_chain);
324
325 err = insert_vm_struct(mm, vma);
326 if (err)
327 goto err;
328
329 mm->stack_vm = mm->total_vm = 1;
330 arch_bprm_mm_init(mm, vma);
331 up_write(&mm->mmap_sem);
332 bprm->p = vma->vm_end - sizeof(void *);
333 return 0;
334 err:
335 up_write(&mm->mmap_sem);
336 err_free:
337 bprm->vma = NULL;
338 kmem_cache_free(vm_area_cachep, vma);
339 return err;
340 }
341
342 static bool valid_arg_len(struct linux_binprm *bprm, long len)
343 {
344 return len <= MAX_ARG_STRLEN;
345 }
346
347 #else
348
349 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
350 {
351 }
352
353 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
354 int write)
355 {
356 struct page *page;
357
358 page = bprm->page[pos / PAGE_SIZE];
359 if (!page && write) {
360 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
361 if (!page)
362 return NULL;
363 bprm->page[pos / PAGE_SIZE] = page;
364 }
365
366 return page;
367 }
368
369 static void put_arg_page(struct page *page)
370 {
371 }
372
373 static void free_arg_page(struct linux_binprm *bprm, int i)
374 {
375 if (bprm->page[i]) {
376 __free_page(bprm->page[i]);
377 bprm->page[i] = NULL;
378 }
379 }
380
381 static void free_arg_pages(struct linux_binprm *bprm)
382 {
383 int i;
384
385 for (i = 0; i < MAX_ARG_PAGES; i++)
386 free_arg_page(bprm, i);
387 }
388
389 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
390 struct page *page)
391 {
392 }
393
394 static int __bprm_mm_init(struct linux_binprm *bprm)
395 {
396 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
397 return 0;
398 }
399
400 static bool valid_arg_len(struct linux_binprm *bprm, long len)
401 {
402 return len <= bprm->p;
403 }
404
405 #endif /* CONFIG_MMU */
406
407 /*
408 * Create a new mm_struct and populate it with a temporary stack
409 * vm_area_struct. We don't have enough context at this point to set the stack
410 * flags, permissions, and offset, so we use temporary values. We'll update
411 * them later in setup_arg_pages().
412 */
413 static int bprm_mm_init(struct linux_binprm *bprm)
414 {
415 int err;
416 struct mm_struct *mm = NULL;
417
418 bprm->mm = mm = mm_alloc();
419 err = -ENOMEM;
420 if (!mm)
421 goto err;
422
423 err = __bprm_mm_init(bprm);
424 if (err)
425 goto err;
426
427 return 0;
428
429 err:
430 if (mm) {
431 bprm->mm = NULL;
432 mmdrop(mm);
433 }
434
435 return err;
436 }
437
438 struct user_arg_ptr {
439 #ifdef CONFIG_COMPAT
440 bool is_compat;
441 #endif
442 union {
443 const char __user *const __user *native;
444 #ifdef CONFIG_COMPAT
445 const compat_uptr_t __user *compat;
446 #endif
447 } ptr;
448 };
449
450 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
451 {
452 const char __user *native;
453
454 #ifdef CONFIG_COMPAT
455 if (unlikely(argv.is_compat)) {
456 compat_uptr_t compat;
457
458 if (get_user(compat, argv.ptr.compat + nr))
459 return ERR_PTR(-EFAULT);
460
461 return compat_ptr(compat);
462 }
463 #endif
464
465 if (get_user(native, argv.ptr.native + nr))
466 return ERR_PTR(-EFAULT);
467
468 return native;
469 }
470
471 /*
472 * count() counts the number of strings in array ARGV.
473 */
474 static int count(struct user_arg_ptr argv, int max)
475 {
476 int i = 0;
477
478 if (argv.ptr.native != NULL) {
479 for (;;) {
480 const char __user *p = get_user_arg_ptr(argv, i);
481
482 if (!p)
483 break;
484
485 if (IS_ERR(p))
486 return -EFAULT;
487
488 if (i >= max)
489 return -E2BIG;
490 ++i;
491
492 if (fatal_signal_pending(current))
493 return -ERESTARTNOHAND;
494 cond_resched();
495 }
496 }
497 return i;
498 }
499
500 /*
501 * 'copy_strings()' copies argument/environment strings from the old
502 * processes's memory to the new process's stack. The call to get_user_pages()
503 * ensures the destination page is created and not swapped out.
504 */
505 static int copy_strings(int argc, struct user_arg_ptr argv,
506 struct linux_binprm *bprm)
507 {
508 struct page *kmapped_page = NULL;
509 char *kaddr = NULL;
510 unsigned long kpos = 0;
511 int ret;
512
513 while (argc-- > 0) {
514 const char __user *str;
515 int len;
516 unsigned long pos;
517
518 ret = -EFAULT;
519 str = get_user_arg_ptr(argv, argc);
520 if (IS_ERR(str))
521 goto out;
522
523 len = strnlen_user(str, MAX_ARG_STRLEN);
524 if (!len)
525 goto out;
526
527 ret = -E2BIG;
528 if (!valid_arg_len(bprm, len))
529 goto out;
530
531 /* We're going to work our way backwords. */
532 pos = bprm->p;
533 str += len;
534 bprm->p -= len;
535
536 while (len > 0) {
537 int offset, bytes_to_copy;
538
539 if (fatal_signal_pending(current)) {
540 ret = -ERESTARTNOHAND;
541 goto out;
542 }
543 cond_resched();
544
545 offset = pos % PAGE_SIZE;
546 if (offset == 0)
547 offset = PAGE_SIZE;
548
549 bytes_to_copy = offset;
550 if (bytes_to_copy > len)
551 bytes_to_copy = len;
552
553 offset -= bytes_to_copy;
554 pos -= bytes_to_copy;
555 str -= bytes_to_copy;
556 len -= bytes_to_copy;
557
558 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
559 struct page *page;
560
561 page = get_arg_page(bprm, pos, 1);
562 if (!page) {
563 ret = -E2BIG;
564 goto out;
565 }
566
567 if (kmapped_page) {
568 flush_kernel_dcache_page(kmapped_page);
569 kunmap(kmapped_page);
570 put_arg_page(kmapped_page);
571 }
572 kmapped_page = page;
573 kaddr = kmap(kmapped_page);
574 kpos = pos & PAGE_MASK;
575 flush_arg_page(bprm, kpos, kmapped_page);
576 }
577 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
578 ret = -EFAULT;
579 goto out;
580 }
581 }
582 }
583 ret = 0;
584 out:
585 if (kmapped_page) {
586 flush_kernel_dcache_page(kmapped_page);
587 kunmap(kmapped_page);
588 put_arg_page(kmapped_page);
589 }
590 return ret;
591 }
592
593 /*
594 * Like copy_strings, but get argv and its values from kernel memory.
595 */
596 int copy_strings_kernel(int argc, const char *const *__argv,
597 struct linux_binprm *bprm)
598 {
599 int r;
600 mm_segment_t oldfs = get_fs();
601 struct user_arg_ptr argv = {
602 .ptr.native = (const char __user *const __user *)__argv,
603 };
604
605 set_fs(KERNEL_DS);
606 r = copy_strings(argc, argv, bprm);
607 set_fs(oldfs);
608
609 return r;
610 }
611 EXPORT_SYMBOL(copy_strings_kernel);
612
613 #ifdef CONFIG_MMU
614
615 /*
616 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
617 * the binfmt code determines where the new stack should reside, we shift it to
618 * its final location. The process proceeds as follows:
619 *
620 * 1) Use shift to calculate the new vma endpoints.
621 * 2) Extend vma to cover both the old and new ranges. This ensures the
622 * arguments passed to subsequent functions are consistent.
623 * 3) Move vma's page tables to the new range.
624 * 4) Free up any cleared pgd range.
625 * 5) Shrink the vma to cover only the new range.
626 */
627 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
628 {
629 struct mm_struct *mm = vma->vm_mm;
630 unsigned long old_start = vma->vm_start;
631 unsigned long old_end = vma->vm_end;
632 unsigned long length = old_end - old_start;
633 unsigned long new_start = old_start - shift;
634 unsigned long new_end = old_end - shift;
635 struct mmu_gather tlb;
636
637 BUG_ON(new_start > new_end);
638
639 /*
640 * ensure there are no vmas between where we want to go
641 * and where we are
642 */
643 if (vma != find_vma(mm, new_start))
644 return -EFAULT;
645
646 /*
647 * cover the whole range: [new_start, old_end)
648 */
649 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
650 return -ENOMEM;
651
652 /*
653 * move the page tables downwards, on failure we rely on
654 * process cleanup to remove whatever mess we made.
655 */
656 if (length != move_page_tables(vma, old_start,
657 vma, new_start, length, false))
658 return -ENOMEM;
659
660 lru_add_drain();
661 tlb_gather_mmu(&tlb, mm, old_start, old_end);
662 if (new_end > old_start) {
663 /*
664 * when the old and new regions overlap clear from new_end.
665 */
666 free_pgd_range(&tlb, new_end, old_end, new_end,
667 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
668 } else {
669 /*
670 * otherwise, clean from old_start; this is done to not touch
671 * the address space in [new_end, old_start) some architectures
672 * have constraints on va-space that make this illegal (IA64) -
673 * for the others its just a little faster.
674 */
675 free_pgd_range(&tlb, old_start, old_end, new_end,
676 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
677 }
678 tlb_finish_mmu(&tlb, old_start, old_end);
679
680 /*
681 * Shrink the vma to just the new range. Always succeeds.
682 */
683 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
684
685 return 0;
686 }
687
688 /*
689 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
690 * the stack is optionally relocated, and some extra space is added.
691 */
692 int setup_arg_pages(struct linux_binprm *bprm,
693 unsigned long stack_top,
694 int executable_stack)
695 {
696 unsigned long ret;
697 unsigned long stack_shift;
698 struct mm_struct *mm = current->mm;
699 struct vm_area_struct *vma = bprm->vma;
700 struct vm_area_struct *prev = NULL;
701 unsigned long vm_flags;
702 unsigned long stack_base;
703 unsigned long stack_size;
704 unsigned long stack_expand;
705 unsigned long rlim_stack;
706
707 #ifdef CONFIG_STACK_GROWSUP
708 /* Limit stack size */
709 stack_base = rlimit_max(RLIMIT_STACK);
710 if (stack_base > STACK_SIZE_MAX)
711 stack_base = STACK_SIZE_MAX;
712
713 /* Add space for stack randomization. */
714 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
715
716 /* Make sure we didn't let the argument array grow too large. */
717 if (vma->vm_end - vma->vm_start > stack_base)
718 return -ENOMEM;
719
720 stack_base = PAGE_ALIGN(stack_top - stack_base);
721
722 stack_shift = vma->vm_start - stack_base;
723 mm->arg_start = bprm->p - stack_shift;
724 bprm->p = vma->vm_end - stack_shift;
725 #else
726 stack_top = arch_align_stack(stack_top);
727 stack_top = PAGE_ALIGN(stack_top);
728
729 if (unlikely(stack_top < mmap_min_addr) ||
730 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
731 return -ENOMEM;
732
733 stack_shift = vma->vm_end - stack_top;
734
735 bprm->p -= stack_shift;
736 mm->arg_start = bprm->p;
737 #endif
738
739 if (bprm->loader)
740 bprm->loader -= stack_shift;
741 bprm->exec -= stack_shift;
742
743 if (down_write_killable(&mm->mmap_sem))
744 return -EINTR;
745
746 vm_flags = VM_STACK_FLAGS;
747
748 /*
749 * Adjust stack execute permissions; explicitly enable for
750 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
751 * (arch default) otherwise.
752 */
753 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
754 vm_flags |= VM_EXEC;
755 else if (executable_stack == EXSTACK_DISABLE_X)
756 vm_flags &= ~VM_EXEC;
757 vm_flags |= mm->def_flags;
758 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
759
760 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
761 vm_flags);
762 if (ret)
763 goto out_unlock;
764 BUG_ON(prev != vma);
765
766 /* Move stack pages down in memory. */
767 if (stack_shift) {
768 ret = shift_arg_pages(vma, stack_shift);
769 if (ret)
770 goto out_unlock;
771 }
772
773 /* mprotect_fixup is overkill to remove the temporary stack flags */
774 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
775
776 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
777 stack_size = vma->vm_end - vma->vm_start;
778 /*
779 * Align this down to a page boundary as expand_stack
780 * will align it up.
781 */
782 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
783 #ifdef CONFIG_STACK_GROWSUP
784 if (stack_size + stack_expand > rlim_stack)
785 stack_base = vma->vm_start + rlim_stack;
786 else
787 stack_base = vma->vm_end + stack_expand;
788 #else
789 if (stack_size + stack_expand > rlim_stack)
790 stack_base = vma->vm_end - rlim_stack;
791 else
792 stack_base = vma->vm_start - stack_expand;
793 #endif
794 current->mm->start_stack = bprm->p;
795 ret = expand_stack(vma, stack_base);
796 if (ret)
797 ret = -EFAULT;
798
799 out_unlock:
800 up_write(&mm->mmap_sem);
801 return ret;
802 }
803 EXPORT_SYMBOL(setup_arg_pages);
804
805 #else
806
807 /*
808 * Transfer the program arguments and environment from the holding pages
809 * onto the stack. The provided stack pointer is adjusted accordingly.
810 */
811 int transfer_args_to_stack(struct linux_binprm *bprm,
812 unsigned long *sp_location)
813 {
814 unsigned long index, stop, sp;
815 int ret = 0;
816
817 stop = bprm->p >> PAGE_SHIFT;
818 sp = *sp_location;
819
820 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
821 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
822 char *src = kmap(bprm->page[index]) + offset;
823 sp -= PAGE_SIZE - offset;
824 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
825 ret = -EFAULT;
826 kunmap(bprm->page[index]);
827 if (ret)
828 goto out;
829 }
830
831 *sp_location = sp;
832
833 out:
834 return ret;
835 }
836 EXPORT_SYMBOL(transfer_args_to_stack);
837
838 #endif /* CONFIG_MMU */
839
840 static struct file *do_open_execat(int fd, struct filename *name, int flags)
841 {
842 struct file *file;
843 int err;
844 struct open_flags open_exec_flags = {
845 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
846 .acc_mode = MAY_EXEC,
847 .intent = LOOKUP_OPEN,
848 .lookup_flags = LOOKUP_FOLLOW,
849 };
850
851 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
852 return ERR_PTR(-EINVAL);
853 if (flags & AT_SYMLINK_NOFOLLOW)
854 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
855 if (flags & AT_EMPTY_PATH)
856 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
857
858 file = do_filp_open(fd, name, &open_exec_flags);
859 if (IS_ERR(file))
860 goto out;
861
862 err = -EACCES;
863 if (!S_ISREG(file_inode(file)->i_mode))
864 goto exit;
865
866 if (path_noexec(&file->f_path))
867 goto exit;
868
869 err = deny_write_access(file);
870 if (err)
871 goto exit;
872
873 if (name->name[0] != '\0')
874 fsnotify_open(file);
875
876 trace_open_exec(name->name);
877
878 out:
879 return file;
880
881 exit:
882 fput(file);
883 return ERR_PTR(err);
884 }
885
886 struct file *open_exec(const char *name)
887 {
888 struct filename *filename = getname_kernel(name);
889 struct file *f = ERR_CAST(filename);
890
891 if (!IS_ERR(filename)) {
892 f = do_open_execat(AT_FDCWD, filename, 0);
893 putname(filename);
894 }
895 return f;
896 }
897 EXPORT_SYMBOL(open_exec);
898
899 int kernel_read(struct file *file, loff_t offset,
900 char *addr, unsigned long count)
901 {
902 mm_segment_t old_fs;
903 loff_t pos = offset;
904 int result;
905
906 old_fs = get_fs();
907 set_fs(get_ds());
908 /* The cast to a user pointer is valid due to the set_fs() */
909 result = vfs_read(file, (void __user *)addr, count, &pos);
910 set_fs(old_fs);
911 return result;
912 }
913
914 EXPORT_SYMBOL(kernel_read);
915
916 int kernel_read_file(struct file *file, void **buf, loff_t *size,
917 loff_t max_size, enum kernel_read_file_id id)
918 {
919 loff_t i_size, pos;
920 ssize_t bytes = 0;
921 int ret;
922
923 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
924 return -EINVAL;
925
926 ret = security_kernel_read_file(file, id);
927 if (ret)
928 return ret;
929
930 ret = deny_write_access(file);
931 if (ret)
932 return ret;
933
934 i_size = i_size_read(file_inode(file));
935 if (max_size > 0 && i_size > max_size) {
936 ret = -EFBIG;
937 goto out;
938 }
939 if (i_size <= 0) {
940 ret = -EINVAL;
941 goto out;
942 }
943
944 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
945 *buf = vmalloc(i_size);
946 if (!*buf) {
947 ret = -ENOMEM;
948 goto out;
949 }
950
951 pos = 0;
952 while (pos < i_size) {
953 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
954 i_size - pos);
955 if (bytes < 0) {
956 ret = bytes;
957 goto out;
958 }
959
960 if (bytes == 0)
961 break;
962 pos += bytes;
963 }
964
965 if (pos != i_size) {
966 ret = -EIO;
967 goto out_free;
968 }
969
970 ret = security_kernel_post_read_file(file, *buf, i_size, id);
971 if (!ret)
972 *size = pos;
973
974 out_free:
975 if (ret < 0) {
976 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
977 vfree(*buf);
978 *buf = NULL;
979 }
980 }
981
982 out:
983 allow_write_access(file);
984 return ret;
985 }
986 EXPORT_SYMBOL_GPL(kernel_read_file);
987
988 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
989 loff_t max_size, enum kernel_read_file_id id)
990 {
991 struct file *file;
992 int ret;
993
994 if (!path || !*path)
995 return -EINVAL;
996
997 file = filp_open(path, O_RDONLY, 0);
998 if (IS_ERR(file))
999 return PTR_ERR(file);
1000
1001 ret = kernel_read_file(file, buf, size, max_size, id);
1002 fput(file);
1003 return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1006
1007 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1008 enum kernel_read_file_id id)
1009 {
1010 struct fd f = fdget(fd);
1011 int ret = -EBADF;
1012
1013 if (!f.file)
1014 goto out;
1015
1016 ret = kernel_read_file(f.file, buf, size, max_size, id);
1017 out:
1018 fdput(f);
1019 return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1022
1023 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1024 {
1025 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1026 if (res > 0)
1027 flush_icache_range(addr, addr + len);
1028 return res;
1029 }
1030 EXPORT_SYMBOL(read_code);
1031
1032 static int exec_mmap(struct mm_struct *mm)
1033 {
1034 struct task_struct *tsk;
1035 struct mm_struct *old_mm, *active_mm;
1036
1037 /* Notify parent that we're no longer interested in the old VM */
1038 tsk = current;
1039 old_mm = current->mm;
1040 mm_release(tsk, old_mm);
1041
1042 if (old_mm) {
1043 sync_mm_rss(old_mm);
1044 /*
1045 * Make sure that if there is a core dump in progress
1046 * for the old mm, we get out and die instead of going
1047 * through with the exec. We must hold mmap_sem around
1048 * checking core_state and changing tsk->mm.
1049 */
1050 down_read(&old_mm->mmap_sem);
1051 if (unlikely(old_mm->core_state)) {
1052 up_read(&old_mm->mmap_sem);
1053 return -EINTR;
1054 }
1055 }
1056 task_lock(tsk);
1057 active_mm = tsk->active_mm;
1058 tsk->mm = mm;
1059 tsk->active_mm = mm;
1060 activate_mm(active_mm, mm);
1061 tsk->mm->vmacache_seqnum = 0;
1062 vmacache_flush(tsk);
1063 task_unlock(tsk);
1064 if (old_mm) {
1065 up_read(&old_mm->mmap_sem);
1066 BUG_ON(active_mm != old_mm);
1067 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1068 mm_update_next_owner(old_mm);
1069 mmput(old_mm);
1070 return 0;
1071 }
1072 mmdrop(active_mm);
1073 return 0;
1074 }
1075
1076 /*
1077 * This function makes sure the current process has its own signal table,
1078 * so that flush_signal_handlers can later reset the handlers without
1079 * disturbing other processes. (Other processes might share the signal
1080 * table via the CLONE_SIGHAND option to clone().)
1081 */
1082 static int de_thread(struct task_struct *tsk)
1083 {
1084 struct signal_struct *sig = tsk->signal;
1085 struct sighand_struct *oldsighand = tsk->sighand;
1086 spinlock_t *lock = &oldsighand->siglock;
1087
1088 if (thread_group_empty(tsk))
1089 goto no_thread_group;
1090
1091 /*
1092 * Kill all other threads in the thread group.
1093 */
1094 spin_lock_irq(lock);
1095 if (signal_group_exit(sig)) {
1096 /*
1097 * Another group action in progress, just
1098 * return so that the signal is processed.
1099 */
1100 spin_unlock_irq(lock);
1101 return -EAGAIN;
1102 }
1103
1104 sig->group_exit_task = tsk;
1105 sig->notify_count = zap_other_threads(tsk);
1106 if (!thread_group_leader(tsk))
1107 sig->notify_count--;
1108
1109 while (sig->notify_count) {
1110 __set_current_state(TASK_KILLABLE);
1111 spin_unlock_irq(lock);
1112 schedule();
1113 if (unlikely(__fatal_signal_pending(tsk)))
1114 goto killed;
1115 spin_lock_irq(lock);
1116 }
1117 spin_unlock_irq(lock);
1118
1119 /*
1120 * At this point all other threads have exited, all we have to
1121 * do is to wait for the thread group leader to become inactive,
1122 * and to assume its PID:
1123 */
1124 if (!thread_group_leader(tsk)) {
1125 struct task_struct *leader = tsk->group_leader;
1126
1127 for (;;) {
1128 cgroup_threadgroup_change_begin(tsk);
1129 write_lock_irq(&tasklist_lock);
1130 /*
1131 * Do this under tasklist_lock to ensure that
1132 * exit_notify() can't miss ->group_exit_task
1133 */
1134 sig->notify_count = -1;
1135 if (likely(leader->exit_state))
1136 break;
1137 __set_current_state(TASK_KILLABLE);
1138 write_unlock_irq(&tasklist_lock);
1139 cgroup_threadgroup_change_end(tsk);
1140 schedule();
1141 if (unlikely(__fatal_signal_pending(tsk)))
1142 goto killed;
1143 }
1144
1145 /*
1146 * The only record we have of the real-time age of a
1147 * process, regardless of execs it's done, is start_time.
1148 * All the past CPU time is accumulated in signal_struct
1149 * from sister threads now dead. But in this non-leader
1150 * exec, nothing survives from the original leader thread,
1151 * whose birth marks the true age of this process now.
1152 * When we take on its identity by switching to its PID, we
1153 * also take its birthdate (always earlier than our own).
1154 */
1155 tsk->start_time = leader->start_time;
1156 tsk->real_start_time = leader->real_start_time;
1157
1158 BUG_ON(!same_thread_group(leader, tsk));
1159 BUG_ON(has_group_leader_pid(tsk));
1160 /*
1161 * An exec() starts a new thread group with the
1162 * TGID of the previous thread group. Rehash the
1163 * two threads with a switched PID, and release
1164 * the former thread group leader:
1165 */
1166
1167 /* Become a process group leader with the old leader's pid.
1168 * The old leader becomes a thread of the this thread group.
1169 * Note: The old leader also uses this pid until release_task
1170 * is called. Odd but simple and correct.
1171 */
1172 tsk->pid = leader->pid;
1173 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1174 transfer_pid(leader, tsk, PIDTYPE_PGID);
1175 transfer_pid(leader, tsk, PIDTYPE_SID);
1176
1177 list_replace_rcu(&leader->tasks, &tsk->tasks);
1178 list_replace_init(&leader->sibling, &tsk->sibling);
1179
1180 tsk->group_leader = tsk;
1181 leader->group_leader = tsk;
1182
1183 tsk->exit_signal = SIGCHLD;
1184 leader->exit_signal = -1;
1185
1186 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1187 leader->exit_state = EXIT_DEAD;
1188
1189 /*
1190 * We are going to release_task()->ptrace_unlink() silently,
1191 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1192 * the tracer wont't block again waiting for this thread.
1193 */
1194 if (unlikely(leader->ptrace))
1195 __wake_up_parent(leader, leader->parent);
1196 write_unlock_irq(&tasklist_lock);
1197 cgroup_threadgroup_change_end(tsk);
1198
1199 release_task(leader);
1200 }
1201
1202 sig->group_exit_task = NULL;
1203 sig->notify_count = 0;
1204
1205 no_thread_group:
1206 /* we have changed execution domain */
1207 tsk->exit_signal = SIGCHLD;
1208
1209 #ifdef CONFIG_POSIX_TIMERS
1210 exit_itimers(sig);
1211 flush_itimer_signals();
1212 #endif
1213
1214 if (atomic_read(&oldsighand->count) != 1) {
1215 struct sighand_struct *newsighand;
1216 /*
1217 * This ->sighand is shared with the CLONE_SIGHAND
1218 * but not CLONE_THREAD task, switch to the new one.
1219 */
1220 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1221 if (!newsighand)
1222 return -ENOMEM;
1223
1224 atomic_set(&newsighand->count, 1);
1225 memcpy(newsighand->action, oldsighand->action,
1226 sizeof(newsighand->action));
1227
1228 write_lock_irq(&tasklist_lock);
1229 spin_lock(&oldsighand->siglock);
1230 rcu_assign_pointer(tsk->sighand, newsighand);
1231 spin_unlock(&oldsighand->siglock);
1232 write_unlock_irq(&tasklist_lock);
1233
1234 __cleanup_sighand(oldsighand);
1235 }
1236
1237 BUG_ON(!thread_group_leader(tsk));
1238 return 0;
1239
1240 killed:
1241 /* protects against exit_notify() and __exit_signal() */
1242 read_lock(&tasklist_lock);
1243 sig->group_exit_task = NULL;
1244 sig->notify_count = 0;
1245 read_unlock(&tasklist_lock);
1246 return -EAGAIN;
1247 }
1248
1249 char *get_task_comm(char *buf, struct task_struct *tsk)
1250 {
1251 /* buf must be at least sizeof(tsk->comm) in size */
1252 task_lock(tsk);
1253 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1254 task_unlock(tsk);
1255 return buf;
1256 }
1257 EXPORT_SYMBOL_GPL(get_task_comm);
1258
1259 /*
1260 * These functions flushes out all traces of the currently running executable
1261 * so that a new one can be started
1262 */
1263
1264 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1265 {
1266 task_lock(tsk);
1267 trace_task_rename(tsk, buf);
1268 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1269 task_unlock(tsk);
1270 perf_event_comm(tsk, exec);
1271 }
1272
1273 int flush_old_exec(struct linux_binprm * bprm)
1274 {
1275 int retval;
1276
1277 /*
1278 * Make sure we have a private signal table and that
1279 * we are unassociated from the previous thread group.
1280 */
1281 retval = de_thread(current);
1282 if (retval)
1283 goto out;
1284
1285 /*
1286 * Must be called _before_ exec_mmap() as bprm->mm is
1287 * not visibile until then. This also enables the update
1288 * to be lockless.
1289 */
1290 set_mm_exe_file(bprm->mm, bprm->file);
1291
1292 /*
1293 * Release all of the old mmap stuff
1294 */
1295 acct_arg_size(bprm, 0);
1296 retval = exec_mmap(bprm->mm);
1297 if (retval)
1298 goto out;
1299
1300 bprm->mm = NULL; /* We're using it now */
1301
1302 set_fs(USER_DS);
1303 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1304 PF_NOFREEZE | PF_NO_SETAFFINITY);
1305 flush_thread();
1306 current->personality &= ~bprm->per_clear;
1307
1308 /*
1309 * We have to apply CLOEXEC before we change whether the process is
1310 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1311 * trying to access the should-be-closed file descriptors of a process
1312 * undergoing exec(2).
1313 */
1314 do_close_on_exec(current->files);
1315 return 0;
1316
1317 out:
1318 return retval;
1319 }
1320 EXPORT_SYMBOL(flush_old_exec);
1321
1322 void would_dump(struct linux_binprm *bprm, struct file *file)
1323 {
1324 struct inode *inode = file_inode(file);
1325 if (inode_permission(inode, MAY_READ) < 0) {
1326 struct user_namespace *old, *user_ns;
1327 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1328
1329 /* Ensure mm->user_ns contains the executable */
1330 user_ns = old = bprm->mm->user_ns;
1331 while ((user_ns != &init_user_ns) &&
1332 !privileged_wrt_inode_uidgid(user_ns, inode))
1333 user_ns = user_ns->parent;
1334
1335 if (old != user_ns) {
1336 bprm->mm->user_ns = get_user_ns(user_ns);
1337 put_user_ns(old);
1338 }
1339 }
1340 }
1341 EXPORT_SYMBOL(would_dump);
1342
1343 void setup_new_exec(struct linux_binprm * bprm)
1344 {
1345 arch_pick_mmap_layout(current->mm);
1346
1347 /* This is the point of no return */
1348 current->sas_ss_sp = current->sas_ss_size = 0;
1349
1350 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1351 set_dumpable(current->mm, SUID_DUMP_USER);
1352 else
1353 set_dumpable(current->mm, suid_dumpable);
1354
1355 arch_setup_new_exec();
1356 perf_event_exec();
1357 __set_task_comm(current, kbasename(bprm->filename), true);
1358
1359 /* Set the new mm task size. We have to do that late because it may
1360 * depend on TIF_32BIT which is only updated in flush_thread() on
1361 * some architectures like powerpc
1362 */
1363 current->mm->task_size = TASK_SIZE;
1364
1365 /* install the new credentials */
1366 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1367 !gid_eq(bprm->cred->gid, current_egid())) {
1368 current->pdeath_signal = 0;
1369 } else {
1370 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1371 set_dumpable(current->mm, suid_dumpable);
1372 }
1373
1374 /* An exec changes our domain. We are no longer part of the thread
1375 group */
1376 current->self_exec_id++;
1377 flush_signal_handlers(current, 0);
1378 }
1379 EXPORT_SYMBOL(setup_new_exec);
1380
1381 /*
1382 * Prepare credentials and lock ->cred_guard_mutex.
1383 * install_exec_creds() commits the new creds and drops the lock.
1384 * Or, if exec fails before, free_bprm() should release ->cred and
1385 * and unlock.
1386 */
1387 int prepare_bprm_creds(struct linux_binprm *bprm)
1388 {
1389 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1390 return -ERESTARTNOINTR;
1391
1392 bprm->cred = prepare_exec_creds();
1393 if (likely(bprm->cred))
1394 return 0;
1395
1396 mutex_unlock(&current->signal->cred_guard_mutex);
1397 return -ENOMEM;
1398 }
1399
1400 static void free_bprm(struct linux_binprm *bprm)
1401 {
1402 free_arg_pages(bprm);
1403 if (bprm->cred) {
1404 mutex_unlock(&current->signal->cred_guard_mutex);
1405 abort_creds(bprm->cred);
1406 }
1407 if (bprm->file) {
1408 allow_write_access(bprm->file);
1409 fput(bprm->file);
1410 }
1411 /* If a binfmt changed the interp, free it. */
1412 if (bprm->interp != bprm->filename)
1413 kfree(bprm->interp);
1414 kfree(bprm);
1415 }
1416
1417 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1418 {
1419 /* If a binfmt changed the interp, free it first. */
1420 if (bprm->interp != bprm->filename)
1421 kfree(bprm->interp);
1422 bprm->interp = kstrdup(interp, GFP_KERNEL);
1423 if (!bprm->interp)
1424 return -ENOMEM;
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(bprm_change_interp);
1428
1429 /*
1430 * install the new credentials for this executable
1431 */
1432 void install_exec_creds(struct linux_binprm *bprm)
1433 {
1434 security_bprm_committing_creds(bprm);
1435
1436 commit_creds(bprm->cred);
1437 bprm->cred = NULL;
1438
1439 /*
1440 * Disable monitoring for regular users
1441 * when executing setuid binaries. Must
1442 * wait until new credentials are committed
1443 * by commit_creds() above
1444 */
1445 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1446 perf_event_exit_task(current);
1447 /*
1448 * cred_guard_mutex must be held at least to this point to prevent
1449 * ptrace_attach() from altering our determination of the task's
1450 * credentials; any time after this it may be unlocked.
1451 */
1452 security_bprm_committed_creds(bprm);
1453 mutex_unlock(&current->signal->cred_guard_mutex);
1454 }
1455 EXPORT_SYMBOL(install_exec_creds);
1456
1457 /*
1458 * determine how safe it is to execute the proposed program
1459 * - the caller must hold ->cred_guard_mutex to protect against
1460 * PTRACE_ATTACH or seccomp thread-sync
1461 */
1462 static void check_unsafe_exec(struct linux_binprm *bprm)
1463 {
1464 struct task_struct *p = current, *t;
1465 unsigned n_fs;
1466
1467 if (p->ptrace)
1468 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1469
1470 /*
1471 * This isn't strictly necessary, but it makes it harder for LSMs to
1472 * mess up.
1473 */
1474 if (task_no_new_privs(current))
1475 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1476
1477 t = p;
1478 n_fs = 1;
1479 spin_lock(&p->fs->lock);
1480 rcu_read_lock();
1481 while_each_thread(p, t) {
1482 if (t->fs == p->fs)
1483 n_fs++;
1484 }
1485 rcu_read_unlock();
1486
1487 if (p->fs->users > n_fs)
1488 bprm->unsafe |= LSM_UNSAFE_SHARE;
1489 else
1490 p->fs->in_exec = 1;
1491 spin_unlock(&p->fs->lock);
1492 }
1493
1494 static void bprm_fill_uid(struct linux_binprm *bprm)
1495 {
1496 struct inode *inode;
1497 unsigned int mode;
1498 kuid_t uid;
1499 kgid_t gid;
1500
1501 /*
1502 * Since this can be called multiple times (via prepare_binprm),
1503 * we must clear any previous work done when setting set[ug]id
1504 * bits from any earlier bprm->file uses (for example when run
1505 * first for a setuid script then again for its interpreter).
1506 */
1507 bprm->cred->euid = current_euid();
1508 bprm->cred->egid = current_egid();
1509
1510 if (path_nosuid(&bprm->file->f_path))
1511 return;
1512
1513 if (task_no_new_privs(current))
1514 return;
1515
1516 inode = bprm->file->f_path.dentry->d_inode;
1517 mode = READ_ONCE(inode->i_mode);
1518 if (!(mode & (S_ISUID|S_ISGID)))
1519 return;
1520
1521 /* Be careful if suid/sgid is set */
1522 inode_lock(inode);
1523
1524 /* reload atomically mode/uid/gid now that lock held */
1525 mode = inode->i_mode;
1526 uid = inode->i_uid;
1527 gid = inode->i_gid;
1528 inode_unlock(inode);
1529
1530 /* We ignore suid/sgid if there are no mappings for them in the ns */
1531 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1532 !kgid_has_mapping(bprm->cred->user_ns, gid))
1533 return;
1534
1535 if (mode & S_ISUID) {
1536 bprm->per_clear |= PER_CLEAR_ON_SETID;
1537 bprm->cred->euid = uid;
1538 }
1539
1540 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1541 bprm->per_clear |= PER_CLEAR_ON_SETID;
1542 bprm->cred->egid = gid;
1543 }
1544 }
1545
1546 /*
1547 * Fill the binprm structure from the inode.
1548 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1549 *
1550 * This may be called multiple times for binary chains (scripts for example).
1551 */
1552 int prepare_binprm(struct linux_binprm *bprm)
1553 {
1554 int retval;
1555
1556 bprm_fill_uid(bprm);
1557
1558 /* fill in binprm security blob */
1559 retval = security_bprm_set_creds(bprm);
1560 if (retval)
1561 return retval;
1562 bprm->cred_prepared = 1;
1563
1564 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1565 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1566 }
1567
1568 EXPORT_SYMBOL(prepare_binprm);
1569
1570 /*
1571 * Arguments are '\0' separated strings found at the location bprm->p
1572 * points to; chop off the first by relocating brpm->p to right after
1573 * the first '\0' encountered.
1574 */
1575 int remove_arg_zero(struct linux_binprm *bprm)
1576 {
1577 int ret = 0;
1578 unsigned long offset;
1579 char *kaddr;
1580 struct page *page;
1581
1582 if (!bprm->argc)
1583 return 0;
1584
1585 do {
1586 offset = bprm->p & ~PAGE_MASK;
1587 page = get_arg_page(bprm, bprm->p, 0);
1588 if (!page) {
1589 ret = -EFAULT;
1590 goto out;
1591 }
1592 kaddr = kmap_atomic(page);
1593
1594 for (; offset < PAGE_SIZE && kaddr[offset];
1595 offset++, bprm->p++)
1596 ;
1597
1598 kunmap_atomic(kaddr);
1599 put_arg_page(page);
1600 } while (offset == PAGE_SIZE);
1601
1602 bprm->p++;
1603 bprm->argc--;
1604 ret = 0;
1605
1606 out:
1607 return ret;
1608 }
1609 EXPORT_SYMBOL(remove_arg_zero);
1610
1611 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1612 /*
1613 * cycle the list of binary formats handler, until one recognizes the image
1614 */
1615 int search_binary_handler(struct linux_binprm *bprm)
1616 {
1617 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1618 struct linux_binfmt *fmt;
1619 int retval;
1620
1621 /* This allows 4 levels of binfmt rewrites before failing hard. */
1622 if (bprm->recursion_depth > 5)
1623 return -ELOOP;
1624
1625 retval = security_bprm_check(bprm);
1626 if (retval)
1627 return retval;
1628
1629 retval = -ENOENT;
1630 retry:
1631 read_lock(&binfmt_lock);
1632 list_for_each_entry(fmt, &formats, lh) {
1633 if (!try_module_get(fmt->module))
1634 continue;
1635 read_unlock(&binfmt_lock);
1636 bprm->recursion_depth++;
1637 retval = fmt->load_binary(bprm);
1638 read_lock(&binfmt_lock);
1639 put_binfmt(fmt);
1640 bprm->recursion_depth--;
1641 if (retval < 0 && !bprm->mm) {
1642 /* we got to flush_old_exec() and failed after it */
1643 read_unlock(&binfmt_lock);
1644 force_sigsegv(SIGSEGV, current);
1645 return retval;
1646 }
1647 if (retval != -ENOEXEC || !bprm->file) {
1648 read_unlock(&binfmt_lock);
1649 return retval;
1650 }
1651 }
1652 read_unlock(&binfmt_lock);
1653
1654 if (need_retry) {
1655 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1656 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1657 return retval;
1658 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1659 return retval;
1660 need_retry = false;
1661 goto retry;
1662 }
1663
1664 return retval;
1665 }
1666 EXPORT_SYMBOL(search_binary_handler);
1667
1668 static int exec_binprm(struct linux_binprm *bprm)
1669 {
1670 pid_t old_pid, old_vpid;
1671 int ret;
1672
1673 /* Need to fetch pid before load_binary changes it */
1674 old_pid = current->pid;
1675 rcu_read_lock();
1676 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1677 rcu_read_unlock();
1678
1679 ret = search_binary_handler(bprm);
1680 if (ret >= 0) {
1681 audit_bprm(bprm);
1682 trace_sched_process_exec(current, old_pid, bprm);
1683 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1684 proc_exec_connector(current);
1685 }
1686
1687 return ret;
1688 }
1689
1690 /*
1691 * sys_execve() executes a new program.
1692 */
1693 static int do_execveat_common(int fd, struct filename *filename,
1694 struct user_arg_ptr argv,
1695 struct user_arg_ptr envp,
1696 int flags)
1697 {
1698 char *pathbuf = NULL;
1699 struct linux_binprm *bprm;
1700 struct file *file;
1701 struct files_struct *displaced;
1702 int retval;
1703
1704 if (IS_ERR(filename))
1705 return PTR_ERR(filename);
1706
1707 /*
1708 * We move the actual failure in case of RLIMIT_NPROC excess from
1709 * set*uid() to execve() because too many poorly written programs
1710 * don't check setuid() return code. Here we additionally recheck
1711 * whether NPROC limit is still exceeded.
1712 */
1713 if ((current->flags & PF_NPROC_EXCEEDED) &&
1714 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1715 retval = -EAGAIN;
1716 goto out_ret;
1717 }
1718
1719 /* We're below the limit (still or again), so we don't want to make
1720 * further execve() calls fail. */
1721 current->flags &= ~PF_NPROC_EXCEEDED;
1722
1723 retval = unshare_files(&displaced);
1724 if (retval)
1725 goto out_ret;
1726
1727 retval = -ENOMEM;
1728 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1729 if (!bprm)
1730 goto out_files;
1731
1732 retval = prepare_bprm_creds(bprm);
1733 if (retval)
1734 goto out_free;
1735
1736 check_unsafe_exec(bprm);
1737 current->in_execve = 1;
1738
1739 file = do_open_execat(fd, filename, flags);
1740 retval = PTR_ERR(file);
1741 if (IS_ERR(file))
1742 goto out_unmark;
1743
1744 sched_exec();
1745
1746 bprm->file = file;
1747 if (fd == AT_FDCWD || filename->name[0] == '/') {
1748 bprm->filename = filename->name;
1749 } else {
1750 if (filename->name[0] == '\0')
1751 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1752 else
1753 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1754 fd, filename->name);
1755 if (!pathbuf) {
1756 retval = -ENOMEM;
1757 goto out_unmark;
1758 }
1759 /*
1760 * Record that a name derived from an O_CLOEXEC fd will be
1761 * inaccessible after exec. Relies on having exclusive access to
1762 * current->files (due to unshare_files above).
1763 */
1764 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1765 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1766 bprm->filename = pathbuf;
1767 }
1768 bprm->interp = bprm->filename;
1769
1770 retval = bprm_mm_init(bprm);
1771 if (retval)
1772 goto out_unmark;
1773
1774 bprm->argc = count(argv, MAX_ARG_STRINGS);
1775 if ((retval = bprm->argc) < 0)
1776 goto out;
1777
1778 bprm->envc = count(envp, MAX_ARG_STRINGS);
1779 if ((retval = bprm->envc) < 0)
1780 goto out;
1781
1782 retval = prepare_binprm(bprm);
1783 if (retval < 0)
1784 goto out;
1785
1786 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1787 if (retval < 0)
1788 goto out;
1789
1790 bprm->exec = bprm->p;
1791 retval = copy_strings(bprm->envc, envp, bprm);
1792 if (retval < 0)
1793 goto out;
1794
1795 retval = copy_strings(bprm->argc, argv, bprm);
1796 if (retval < 0)
1797 goto out;
1798
1799 would_dump(bprm, bprm->file);
1800
1801 retval = exec_binprm(bprm);
1802 if (retval < 0)
1803 goto out;
1804
1805 /* execve succeeded */
1806 current->fs->in_exec = 0;
1807 current->in_execve = 0;
1808 acct_update_integrals(current);
1809 task_numa_free(current);
1810 free_bprm(bprm);
1811 kfree(pathbuf);
1812 putname(filename);
1813 if (displaced)
1814 put_files_struct(displaced);
1815 return retval;
1816
1817 out:
1818 if (bprm->mm) {
1819 acct_arg_size(bprm, 0);
1820 mmput(bprm->mm);
1821 }
1822
1823 out_unmark:
1824 current->fs->in_exec = 0;
1825 current->in_execve = 0;
1826
1827 out_free:
1828 free_bprm(bprm);
1829 kfree(pathbuf);
1830
1831 out_files:
1832 if (displaced)
1833 reset_files_struct(displaced);
1834 out_ret:
1835 putname(filename);
1836 return retval;
1837 }
1838
1839 int do_execve(struct filename *filename,
1840 const char __user *const __user *__argv,
1841 const char __user *const __user *__envp)
1842 {
1843 struct user_arg_ptr argv = { .ptr.native = __argv };
1844 struct user_arg_ptr envp = { .ptr.native = __envp };
1845 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1846 }
1847
1848 int do_execveat(int fd, struct filename *filename,
1849 const char __user *const __user *__argv,
1850 const char __user *const __user *__envp,
1851 int flags)
1852 {
1853 struct user_arg_ptr argv = { .ptr.native = __argv };
1854 struct user_arg_ptr envp = { .ptr.native = __envp };
1855
1856 return do_execveat_common(fd, filename, argv, envp, flags);
1857 }
1858
1859 #ifdef CONFIG_COMPAT
1860 static int compat_do_execve(struct filename *filename,
1861 const compat_uptr_t __user *__argv,
1862 const compat_uptr_t __user *__envp)
1863 {
1864 struct user_arg_ptr argv = {
1865 .is_compat = true,
1866 .ptr.compat = __argv,
1867 };
1868 struct user_arg_ptr envp = {
1869 .is_compat = true,
1870 .ptr.compat = __envp,
1871 };
1872 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1873 }
1874
1875 static int compat_do_execveat(int fd, struct filename *filename,
1876 const compat_uptr_t __user *__argv,
1877 const compat_uptr_t __user *__envp,
1878 int flags)
1879 {
1880 struct user_arg_ptr argv = {
1881 .is_compat = true,
1882 .ptr.compat = __argv,
1883 };
1884 struct user_arg_ptr envp = {
1885 .is_compat = true,
1886 .ptr.compat = __envp,
1887 };
1888 return do_execveat_common(fd, filename, argv, envp, flags);
1889 }
1890 #endif
1891
1892 void set_binfmt(struct linux_binfmt *new)
1893 {
1894 struct mm_struct *mm = current->mm;
1895
1896 if (mm->binfmt)
1897 module_put(mm->binfmt->module);
1898
1899 mm->binfmt = new;
1900 if (new)
1901 __module_get(new->module);
1902 }
1903 EXPORT_SYMBOL(set_binfmt);
1904
1905 /*
1906 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1907 */
1908 void set_dumpable(struct mm_struct *mm, int value)
1909 {
1910 unsigned long old, new;
1911
1912 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1913 return;
1914
1915 do {
1916 old = ACCESS_ONCE(mm->flags);
1917 new = (old & ~MMF_DUMPABLE_MASK) | value;
1918 } while (cmpxchg(&mm->flags, old, new) != old);
1919 }
1920
1921 SYSCALL_DEFINE3(execve,
1922 const char __user *, filename,
1923 const char __user *const __user *, argv,
1924 const char __user *const __user *, envp)
1925 {
1926 return do_execve(getname(filename), argv, envp);
1927 }
1928
1929 SYSCALL_DEFINE5(execveat,
1930 int, fd, const char __user *, filename,
1931 const char __user *const __user *, argv,
1932 const char __user *const __user *, envp,
1933 int, flags)
1934 {
1935 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1936
1937 return do_execveat(fd,
1938 getname_flags(filename, lookup_flags, NULL),
1939 argv, envp, flags);
1940 }
1941
1942 #ifdef CONFIG_COMPAT
1943 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1944 const compat_uptr_t __user *, argv,
1945 const compat_uptr_t __user *, envp)
1946 {
1947 return compat_do_execve(getname(filename), argv, envp);
1948 }
1949
1950 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1951 const char __user *, filename,
1952 const compat_uptr_t __user *, argv,
1953 const compat_uptr_t __user *, envp,
1954 int, flags)
1955 {
1956 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1957
1958 return compat_do_execveat(fd,
1959 getname_flags(filename, lookup_flags, NULL),
1960 argv, envp, flags);
1961 }
1962 #endif