]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/exec.c
Merge tag 'microblaze-v5.15' of git://git.monstr.eu/linux-2.6-microblaze
[mirror_ubuntu-jammy-kernel.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72
73 #include <trace/events/task.h>
74 #include "internal.h"
75
76 #include <trace/events/sched.h>
77
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79
80 int suid_dumpable = 0;
81
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117 * Note that a shared library must be both readable and executable due to
118 * security reasons.
119 *
120 * Also note that we take the address to load from from the file itself.
121 */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 struct linux_binfmt *fmt;
125 struct file *file;
126 struct filename *tmp = getname(library);
127 int error = PTR_ERR(tmp);
128 static const struct open_flags uselib_flags = {
129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 .acc_mode = MAY_READ | MAY_EXEC,
131 .intent = LOOKUP_OPEN,
132 .lookup_flags = LOOKUP_FOLLOW,
133 };
134
135 if (IS_ERR(tmp))
136 goto out;
137
138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 putname(tmp);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 /*
145 * may_open() has already checked for this, so it should be
146 * impossible to trip now. But we need to be extra cautious
147 * and check again at the very end too.
148 */
149 error = -EACCES;
150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 path_noexec(&file->f_path)))
152 goto exit;
153
154 fsnotify_open(file);
155
156 error = -ENOEXEC;
157
158 read_lock(&binfmt_lock);
159 list_for_each_entry(fmt, &formats, lh) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
170 }
171 read_unlock(&binfmt_lock);
172 exit:
173 fput(file);
174 out:
175 return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178
179 #ifdef CONFIG_MMU
180 /*
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
185 */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 struct mm_struct *mm = current->mm;
189 long diff = (long)(pages - bprm->vma_pages);
190
191 if (!mm || !diff)
192 return;
193
194 bprm->vma_pages = pages;
195 add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 int write)
200 {
201 struct page *page;
202 int ret;
203 unsigned int gup_flags = FOLL_FORCE;
204
205 #ifdef CONFIG_STACK_GROWSUP
206 if (write) {
207 ret = expand_downwards(bprm->vma, pos);
208 if (ret < 0)
209 return NULL;
210 }
211 #endif
212
213 if (write)
214 gup_flags |= FOLL_WRITE;
215
216 /*
217 * We are doing an exec(). 'current' is the process
218 * doing the exec and bprm->mm is the new process's mm.
219 */
220 mmap_read_lock(bprm->mm);
221 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 &page, NULL, NULL);
223 mmap_read_unlock(bprm->mm);
224 if (ret <= 0)
225 return NULL;
226
227 if (write)
228 acct_arg_size(bprm, vma_pages(bprm->vma));
229
230 return page;
231 }
232
233 static void put_arg_page(struct page *page)
234 {
235 put_page(page);
236 }
237
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 struct page *page)
244 {
245 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 int err;
251 struct vm_area_struct *vma = NULL;
252 struct mm_struct *mm = bprm->mm;
253
254 bprm->vma = vma = vm_area_alloc(mm);
255 if (!vma)
256 return -ENOMEM;
257 vma_set_anonymous(vma);
258
259 if (mmap_write_lock_killable(mm)) {
260 err = -EINTR;
261 goto err_free;
262 }
263
264 /*
265 * Place the stack at the largest stack address the architecture
266 * supports. Later, we'll move this to an appropriate place. We don't
267 * use STACK_TOP because that can depend on attributes which aren't
268 * configured yet.
269 */
270 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271 vma->vm_end = STACK_TOP_MAX;
272 vma->vm_start = vma->vm_end - PAGE_SIZE;
273 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275
276 err = insert_vm_struct(mm, vma);
277 if (err)
278 goto err;
279
280 mm->stack_vm = mm->total_vm = 1;
281 mmap_write_unlock(mm);
282 bprm->p = vma->vm_end - sizeof(void *);
283 return 0;
284 err:
285 mmap_write_unlock(mm);
286 err_free:
287 bprm->vma = NULL;
288 vm_area_free(vma);
289 return err;
290 }
291
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294 return len <= MAX_ARG_STRLEN;
295 }
296
297 #else
298
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 int write)
305 {
306 struct page *page;
307
308 page = bprm->page[pos / PAGE_SIZE];
309 if (!page && write) {
310 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311 if (!page)
312 return NULL;
313 bprm->page[pos / PAGE_SIZE] = page;
314 }
315
316 return page;
317 }
318
319 static void put_arg_page(struct page *page)
320 {
321 }
322
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325 if (bprm->page[i]) {
326 __free_page(bprm->page[i]);
327 bprm->page[i] = NULL;
328 }
329 }
330
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333 int i;
334
335 for (i = 0; i < MAX_ARG_PAGES; i++)
336 free_arg_page(bprm, i);
337 }
338
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 struct page *page)
341 {
342 }
343
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347 return 0;
348 }
349
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352 return len <= bprm->p;
353 }
354
355 #endif /* CONFIG_MMU */
356
357 /*
358 * Create a new mm_struct and populate it with a temporary stack
359 * vm_area_struct. We don't have enough context at this point to set the stack
360 * flags, permissions, and offset, so we use temporary values. We'll update
361 * them later in setup_arg_pages().
362 */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365 int err;
366 struct mm_struct *mm = NULL;
367
368 bprm->mm = mm = mm_alloc();
369 err = -ENOMEM;
370 if (!mm)
371 goto err;
372
373 /* Save current stack limit for all calculations made during exec. */
374 task_lock(current->group_leader);
375 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376 task_unlock(current->group_leader);
377
378 err = __bprm_mm_init(bprm);
379 if (err)
380 goto err;
381
382 return 0;
383
384 err:
385 if (mm) {
386 bprm->mm = NULL;
387 mmdrop(mm);
388 }
389
390 return err;
391 }
392
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395 bool is_compat;
396 #endif
397 union {
398 const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400 const compat_uptr_t __user *compat;
401 #endif
402 } ptr;
403 };
404
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407 const char __user *native;
408
409 #ifdef CONFIG_COMPAT
410 if (unlikely(argv.is_compat)) {
411 compat_uptr_t compat;
412
413 if (get_user(compat, argv.ptr.compat + nr))
414 return ERR_PTR(-EFAULT);
415
416 return compat_ptr(compat);
417 }
418 #endif
419
420 if (get_user(native, argv.ptr.native + nr))
421 return ERR_PTR(-EFAULT);
422
423 return native;
424 }
425
426 /*
427 * count() counts the number of strings in array ARGV.
428 */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431 int i = 0;
432
433 if (argv.ptr.native != NULL) {
434 for (;;) {
435 const char __user *p = get_user_arg_ptr(argv, i);
436
437 if (!p)
438 break;
439
440 if (IS_ERR(p))
441 return -EFAULT;
442
443 if (i >= max)
444 return -E2BIG;
445 ++i;
446
447 if (fatal_signal_pending(current))
448 return -ERESTARTNOHAND;
449 cond_resched();
450 }
451 }
452 return i;
453 }
454
455 static int count_strings_kernel(const char *const *argv)
456 {
457 int i;
458
459 if (!argv)
460 return 0;
461
462 for (i = 0; argv[i]; ++i) {
463 if (i >= MAX_ARG_STRINGS)
464 return -E2BIG;
465 if (fatal_signal_pending(current))
466 return -ERESTARTNOHAND;
467 cond_resched();
468 }
469 return i;
470 }
471
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474 unsigned long limit, ptr_size;
475
476 /*
477 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 * (whichever is smaller) for the argv+env strings.
479 * This ensures that:
480 * - the remaining binfmt code will not run out of stack space,
481 * - the program will have a reasonable amount of stack left
482 * to work from.
483 */
484 limit = _STK_LIM / 4 * 3;
485 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486 /*
487 * We've historically supported up to 32 pages (ARG_MAX)
488 * of argument strings even with small stacks
489 */
490 limit = max_t(unsigned long, limit, ARG_MAX);
491 /*
492 * We must account for the size of all the argv and envp pointers to
493 * the argv and envp strings, since they will also take up space in
494 * the stack. They aren't stored until much later when we can't
495 * signal to the parent that the child has run out of stack space.
496 * Instead, calculate it here so it's possible to fail gracefully.
497 */
498 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
499 if (limit <= ptr_size)
500 return -E2BIG;
501 limit -= ptr_size;
502
503 bprm->argmin = bprm->p - limit;
504 return 0;
505 }
506
507 /*
508 * 'copy_strings()' copies argument/environment strings from the old
509 * processes's memory to the new process's stack. The call to get_user_pages()
510 * ensures the destination page is created and not swapped out.
511 */
512 static int copy_strings(int argc, struct user_arg_ptr argv,
513 struct linux_binprm *bprm)
514 {
515 struct page *kmapped_page = NULL;
516 char *kaddr = NULL;
517 unsigned long kpos = 0;
518 int ret;
519
520 while (argc-- > 0) {
521 const char __user *str;
522 int len;
523 unsigned long pos;
524
525 ret = -EFAULT;
526 str = get_user_arg_ptr(argv, argc);
527 if (IS_ERR(str))
528 goto out;
529
530 len = strnlen_user(str, MAX_ARG_STRLEN);
531 if (!len)
532 goto out;
533
534 ret = -E2BIG;
535 if (!valid_arg_len(bprm, len))
536 goto out;
537
538 /* We're going to work our way backwords. */
539 pos = bprm->p;
540 str += len;
541 bprm->p -= len;
542 #ifdef CONFIG_MMU
543 if (bprm->p < bprm->argmin)
544 goto out;
545 #endif
546
547 while (len > 0) {
548 int offset, bytes_to_copy;
549
550 if (fatal_signal_pending(current)) {
551 ret = -ERESTARTNOHAND;
552 goto out;
553 }
554 cond_resched();
555
556 offset = pos % PAGE_SIZE;
557 if (offset == 0)
558 offset = PAGE_SIZE;
559
560 bytes_to_copy = offset;
561 if (bytes_to_copy > len)
562 bytes_to_copy = len;
563
564 offset -= bytes_to_copy;
565 pos -= bytes_to_copy;
566 str -= bytes_to_copy;
567 len -= bytes_to_copy;
568
569 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
570 struct page *page;
571
572 page = get_arg_page(bprm, pos, 1);
573 if (!page) {
574 ret = -E2BIG;
575 goto out;
576 }
577
578 if (kmapped_page) {
579 flush_dcache_page(kmapped_page);
580 kunmap(kmapped_page);
581 put_arg_page(kmapped_page);
582 }
583 kmapped_page = page;
584 kaddr = kmap(kmapped_page);
585 kpos = pos & PAGE_MASK;
586 flush_arg_page(bprm, kpos, kmapped_page);
587 }
588 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
589 ret = -EFAULT;
590 goto out;
591 }
592 }
593 }
594 ret = 0;
595 out:
596 if (kmapped_page) {
597 flush_dcache_page(kmapped_page);
598 kunmap(kmapped_page);
599 put_arg_page(kmapped_page);
600 }
601 return ret;
602 }
603
604 /*
605 * Copy and argument/environment string from the kernel to the processes stack.
606 */
607 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
608 {
609 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
610 unsigned long pos = bprm->p;
611
612 if (len == 0)
613 return -EFAULT;
614 if (!valid_arg_len(bprm, len))
615 return -E2BIG;
616
617 /* We're going to work our way backwards. */
618 arg += len;
619 bprm->p -= len;
620 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
621 return -E2BIG;
622
623 while (len > 0) {
624 unsigned int bytes_to_copy = min_t(unsigned int, len,
625 min_not_zero(offset_in_page(pos), PAGE_SIZE));
626 struct page *page;
627 char *kaddr;
628
629 pos -= bytes_to_copy;
630 arg -= bytes_to_copy;
631 len -= bytes_to_copy;
632
633 page = get_arg_page(bprm, pos, 1);
634 if (!page)
635 return -E2BIG;
636 kaddr = kmap_atomic(page);
637 flush_arg_page(bprm, pos & PAGE_MASK, page);
638 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
639 flush_dcache_page(page);
640 kunmap_atomic(kaddr);
641 put_arg_page(page);
642 }
643
644 return 0;
645 }
646 EXPORT_SYMBOL(copy_string_kernel);
647
648 static int copy_strings_kernel(int argc, const char *const *argv,
649 struct linux_binprm *bprm)
650 {
651 while (argc-- > 0) {
652 int ret = copy_string_kernel(argv[argc], bprm);
653 if (ret < 0)
654 return ret;
655 if (fatal_signal_pending(current))
656 return -ERESTARTNOHAND;
657 cond_resched();
658 }
659 return 0;
660 }
661
662 #ifdef CONFIG_MMU
663
664 /*
665 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
666 * the binfmt code determines where the new stack should reside, we shift it to
667 * its final location. The process proceeds as follows:
668 *
669 * 1) Use shift to calculate the new vma endpoints.
670 * 2) Extend vma to cover both the old and new ranges. This ensures the
671 * arguments passed to subsequent functions are consistent.
672 * 3) Move vma's page tables to the new range.
673 * 4) Free up any cleared pgd range.
674 * 5) Shrink the vma to cover only the new range.
675 */
676 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
677 {
678 struct mm_struct *mm = vma->vm_mm;
679 unsigned long old_start = vma->vm_start;
680 unsigned long old_end = vma->vm_end;
681 unsigned long length = old_end - old_start;
682 unsigned long new_start = old_start - shift;
683 unsigned long new_end = old_end - shift;
684 struct mmu_gather tlb;
685
686 BUG_ON(new_start > new_end);
687
688 /*
689 * ensure there are no vmas between where we want to go
690 * and where we are
691 */
692 if (vma != find_vma(mm, new_start))
693 return -EFAULT;
694
695 /*
696 * cover the whole range: [new_start, old_end)
697 */
698 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
699 return -ENOMEM;
700
701 /*
702 * move the page tables downwards, on failure we rely on
703 * process cleanup to remove whatever mess we made.
704 */
705 if (length != move_page_tables(vma, old_start,
706 vma, new_start, length, false))
707 return -ENOMEM;
708
709 lru_add_drain();
710 tlb_gather_mmu(&tlb, mm);
711 if (new_end > old_start) {
712 /*
713 * when the old and new regions overlap clear from new_end.
714 */
715 free_pgd_range(&tlb, new_end, old_end, new_end,
716 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
717 } else {
718 /*
719 * otherwise, clean from old_start; this is done to not touch
720 * the address space in [new_end, old_start) some architectures
721 * have constraints on va-space that make this illegal (IA64) -
722 * for the others its just a little faster.
723 */
724 free_pgd_range(&tlb, old_start, old_end, new_end,
725 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
726 }
727 tlb_finish_mmu(&tlb);
728
729 /*
730 * Shrink the vma to just the new range. Always succeeds.
731 */
732 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
733
734 return 0;
735 }
736
737 /*
738 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
739 * the stack is optionally relocated, and some extra space is added.
740 */
741 int setup_arg_pages(struct linux_binprm *bprm,
742 unsigned long stack_top,
743 int executable_stack)
744 {
745 unsigned long ret;
746 unsigned long stack_shift;
747 struct mm_struct *mm = current->mm;
748 struct vm_area_struct *vma = bprm->vma;
749 struct vm_area_struct *prev = NULL;
750 unsigned long vm_flags;
751 unsigned long stack_base;
752 unsigned long stack_size;
753 unsigned long stack_expand;
754 unsigned long rlim_stack;
755
756 #ifdef CONFIG_STACK_GROWSUP
757 /* Limit stack size */
758 stack_base = bprm->rlim_stack.rlim_max;
759
760 stack_base = calc_max_stack_size(stack_base);
761
762 /* Add space for stack randomization. */
763 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
764
765 /* Make sure we didn't let the argument array grow too large. */
766 if (vma->vm_end - vma->vm_start > stack_base)
767 return -ENOMEM;
768
769 stack_base = PAGE_ALIGN(stack_top - stack_base);
770
771 stack_shift = vma->vm_start - stack_base;
772 mm->arg_start = bprm->p - stack_shift;
773 bprm->p = vma->vm_end - stack_shift;
774 #else
775 stack_top = arch_align_stack(stack_top);
776 stack_top = PAGE_ALIGN(stack_top);
777
778 if (unlikely(stack_top < mmap_min_addr) ||
779 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
780 return -ENOMEM;
781
782 stack_shift = vma->vm_end - stack_top;
783
784 bprm->p -= stack_shift;
785 mm->arg_start = bprm->p;
786 #endif
787
788 if (bprm->loader)
789 bprm->loader -= stack_shift;
790 bprm->exec -= stack_shift;
791
792 if (mmap_write_lock_killable(mm))
793 return -EINTR;
794
795 vm_flags = VM_STACK_FLAGS;
796
797 /*
798 * Adjust stack execute permissions; explicitly enable for
799 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
800 * (arch default) otherwise.
801 */
802 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
803 vm_flags |= VM_EXEC;
804 else if (executable_stack == EXSTACK_DISABLE_X)
805 vm_flags &= ~VM_EXEC;
806 vm_flags |= mm->def_flags;
807 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
808
809 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
810 vm_flags);
811 if (ret)
812 goto out_unlock;
813 BUG_ON(prev != vma);
814
815 if (unlikely(vm_flags & VM_EXEC)) {
816 pr_warn_once("process '%pD4' started with executable stack\n",
817 bprm->file);
818 }
819
820 /* Move stack pages down in memory. */
821 if (stack_shift) {
822 ret = shift_arg_pages(vma, stack_shift);
823 if (ret)
824 goto out_unlock;
825 }
826
827 /* mprotect_fixup is overkill to remove the temporary stack flags */
828 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
829
830 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
831 stack_size = vma->vm_end - vma->vm_start;
832 /*
833 * Align this down to a page boundary as expand_stack
834 * will align it up.
835 */
836 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
837 #ifdef CONFIG_STACK_GROWSUP
838 if (stack_size + stack_expand > rlim_stack)
839 stack_base = vma->vm_start + rlim_stack;
840 else
841 stack_base = vma->vm_end + stack_expand;
842 #else
843 if (stack_size + stack_expand > rlim_stack)
844 stack_base = vma->vm_end - rlim_stack;
845 else
846 stack_base = vma->vm_start - stack_expand;
847 #endif
848 current->mm->start_stack = bprm->p;
849 ret = expand_stack(vma, stack_base);
850 if (ret)
851 ret = -EFAULT;
852
853 out_unlock:
854 mmap_write_unlock(mm);
855 return ret;
856 }
857 EXPORT_SYMBOL(setup_arg_pages);
858
859 #else
860
861 /*
862 * Transfer the program arguments and environment from the holding pages
863 * onto the stack. The provided stack pointer is adjusted accordingly.
864 */
865 int transfer_args_to_stack(struct linux_binprm *bprm,
866 unsigned long *sp_location)
867 {
868 unsigned long index, stop, sp;
869 int ret = 0;
870
871 stop = bprm->p >> PAGE_SHIFT;
872 sp = *sp_location;
873
874 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
875 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
876 char *src = kmap(bprm->page[index]) + offset;
877 sp -= PAGE_SIZE - offset;
878 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
879 ret = -EFAULT;
880 kunmap(bprm->page[index]);
881 if (ret)
882 goto out;
883 }
884
885 *sp_location = sp;
886
887 out:
888 return ret;
889 }
890 EXPORT_SYMBOL(transfer_args_to_stack);
891
892 #endif /* CONFIG_MMU */
893
894 static struct file *do_open_execat(int fd, struct filename *name, int flags)
895 {
896 struct file *file;
897 int err;
898 struct open_flags open_exec_flags = {
899 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
900 .acc_mode = MAY_EXEC,
901 .intent = LOOKUP_OPEN,
902 .lookup_flags = LOOKUP_FOLLOW,
903 };
904
905 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
906 return ERR_PTR(-EINVAL);
907 if (flags & AT_SYMLINK_NOFOLLOW)
908 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
909 if (flags & AT_EMPTY_PATH)
910 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
911
912 file = do_filp_open(fd, name, &open_exec_flags);
913 if (IS_ERR(file))
914 goto out;
915
916 /*
917 * may_open() has already checked for this, so it should be
918 * impossible to trip now. But we need to be extra cautious
919 * and check again at the very end too.
920 */
921 err = -EACCES;
922 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
923 path_noexec(&file->f_path)))
924 goto exit;
925
926 err = deny_write_access(file);
927 if (err)
928 goto exit;
929
930 if (name->name[0] != '\0')
931 fsnotify_open(file);
932
933 out:
934 return file;
935
936 exit:
937 fput(file);
938 return ERR_PTR(err);
939 }
940
941 struct file *open_exec(const char *name)
942 {
943 struct filename *filename = getname_kernel(name);
944 struct file *f = ERR_CAST(filename);
945
946 if (!IS_ERR(filename)) {
947 f = do_open_execat(AT_FDCWD, filename, 0);
948 putname(filename);
949 }
950 return f;
951 }
952 EXPORT_SYMBOL(open_exec);
953
954 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
955 defined(CONFIG_BINFMT_ELF_FDPIC)
956 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
957 {
958 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
959 if (res > 0)
960 flush_icache_user_range(addr, addr + len);
961 return res;
962 }
963 EXPORT_SYMBOL(read_code);
964 #endif
965
966 /*
967 * Maps the mm_struct mm into the current task struct.
968 * On success, this function returns with exec_update_lock
969 * held for writing.
970 */
971 static int exec_mmap(struct mm_struct *mm)
972 {
973 struct task_struct *tsk;
974 struct mm_struct *old_mm, *active_mm;
975 int ret;
976
977 /* Notify parent that we're no longer interested in the old VM */
978 tsk = current;
979 old_mm = current->mm;
980 exec_mm_release(tsk, old_mm);
981 if (old_mm)
982 sync_mm_rss(old_mm);
983
984 ret = down_write_killable(&tsk->signal->exec_update_lock);
985 if (ret)
986 return ret;
987
988 if (old_mm) {
989 /*
990 * Make sure that if there is a core dump in progress
991 * for the old mm, we get out and die instead of going
992 * through with the exec. We must hold mmap_lock around
993 * checking core_state and changing tsk->mm.
994 */
995 mmap_read_lock(old_mm);
996 if (unlikely(old_mm->core_state)) {
997 mmap_read_unlock(old_mm);
998 up_write(&tsk->signal->exec_update_lock);
999 return -EINTR;
1000 }
1001 }
1002
1003 task_lock(tsk);
1004 membarrier_exec_mmap(mm);
1005
1006 local_irq_disable();
1007 active_mm = tsk->active_mm;
1008 tsk->active_mm = mm;
1009 tsk->mm = mm;
1010 /*
1011 * This prevents preemption while active_mm is being loaded and
1012 * it and mm are being updated, which could cause problems for
1013 * lazy tlb mm refcounting when these are updated by context
1014 * switches. Not all architectures can handle irqs off over
1015 * activate_mm yet.
1016 */
1017 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1018 local_irq_enable();
1019 activate_mm(active_mm, mm);
1020 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1021 local_irq_enable();
1022 tsk->mm->vmacache_seqnum = 0;
1023 vmacache_flush(tsk);
1024 task_unlock(tsk);
1025 if (old_mm) {
1026 mmap_read_unlock(old_mm);
1027 BUG_ON(active_mm != old_mm);
1028 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1029 mm_update_next_owner(old_mm);
1030 mmput(old_mm);
1031 return 0;
1032 }
1033 mmdrop(active_mm);
1034 return 0;
1035 }
1036
1037 static int de_thread(struct task_struct *tsk)
1038 {
1039 struct signal_struct *sig = tsk->signal;
1040 struct sighand_struct *oldsighand = tsk->sighand;
1041 spinlock_t *lock = &oldsighand->siglock;
1042
1043 if (thread_group_empty(tsk))
1044 goto no_thread_group;
1045
1046 /*
1047 * Kill all other threads in the thread group.
1048 */
1049 spin_lock_irq(lock);
1050 if (signal_group_exit(sig)) {
1051 /*
1052 * Another group action in progress, just
1053 * return so that the signal is processed.
1054 */
1055 spin_unlock_irq(lock);
1056 return -EAGAIN;
1057 }
1058
1059 sig->group_exit_task = tsk;
1060 sig->notify_count = zap_other_threads(tsk);
1061 if (!thread_group_leader(tsk))
1062 sig->notify_count--;
1063
1064 while (sig->notify_count) {
1065 __set_current_state(TASK_KILLABLE);
1066 spin_unlock_irq(lock);
1067 schedule();
1068 if (__fatal_signal_pending(tsk))
1069 goto killed;
1070 spin_lock_irq(lock);
1071 }
1072 spin_unlock_irq(lock);
1073
1074 /*
1075 * At this point all other threads have exited, all we have to
1076 * do is to wait for the thread group leader to become inactive,
1077 * and to assume its PID:
1078 */
1079 if (!thread_group_leader(tsk)) {
1080 struct task_struct *leader = tsk->group_leader;
1081
1082 for (;;) {
1083 cgroup_threadgroup_change_begin(tsk);
1084 write_lock_irq(&tasklist_lock);
1085 /*
1086 * Do this under tasklist_lock to ensure that
1087 * exit_notify() can't miss ->group_exit_task
1088 */
1089 sig->notify_count = -1;
1090 if (likely(leader->exit_state))
1091 break;
1092 __set_current_state(TASK_KILLABLE);
1093 write_unlock_irq(&tasklist_lock);
1094 cgroup_threadgroup_change_end(tsk);
1095 schedule();
1096 if (__fatal_signal_pending(tsk))
1097 goto killed;
1098 }
1099
1100 /*
1101 * The only record we have of the real-time age of a
1102 * process, regardless of execs it's done, is start_time.
1103 * All the past CPU time is accumulated in signal_struct
1104 * from sister threads now dead. But in this non-leader
1105 * exec, nothing survives from the original leader thread,
1106 * whose birth marks the true age of this process now.
1107 * When we take on its identity by switching to its PID, we
1108 * also take its birthdate (always earlier than our own).
1109 */
1110 tsk->start_time = leader->start_time;
1111 tsk->start_boottime = leader->start_boottime;
1112
1113 BUG_ON(!same_thread_group(leader, tsk));
1114 /*
1115 * An exec() starts a new thread group with the
1116 * TGID of the previous thread group. Rehash the
1117 * two threads with a switched PID, and release
1118 * the former thread group leader:
1119 */
1120
1121 /* Become a process group leader with the old leader's pid.
1122 * The old leader becomes a thread of the this thread group.
1123 */
1124 exchange_tids(tsk, leader);
1125 transfer_pid(leader, tsk, PIDTYPE_TGID);
1126 transfer_pid(leader, tsk, PIDTYPE_PGID);
1127 transfer_pid(leader, tsk, PIDTYPE_SID);
1128
1129 list_replace_rcu(&leader->tasks, &tsk->tasks);
1130 list_replace_init(&leader->sibling, &tsk->sibling);
1131
1132 tsk->group_leader = tsk;
1133 leader->group_leader = tsk;
1134
1135 tsk->exit_signal = SIGCHLD;
1136 leader->exit_signal = -1;
1137
1138 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1139 leader->exit_state = EXIT_DEAD;
1140
1141 /*
1142 * We are going to release_task()->ptrace_unlink() silently,
1143 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1144 * the tracer wont't block again waiting for this thread.
1145 */
1146 if (unlikely(leader->ptrace))
1147 __wake_up_parent(leader, leader->parent);
1148 write_unlock_irq(&tasklist_lock);
1149 cgroup_threadgroup_change_end(tsk);
1150
1151 release_task(leader);
1152 }
1153
1154 sig->group_exit_task = NULL;
1155 sig->notify_count = 0;
1156
1157 no_thread_group:
1158 /* we have changed execution domain */
1159 tsk->exit_signal = SIGCHLD;
1160
1161 BUG_ON(!thread_group_leader(tsk));
1162 return 0;
1163
1164 killed:
1165 /* protects against exit_notify() and __exit_signal() */
1166 read_lock(&tasklist_lock);
1167 sig->group_exit_task = NULL;
1168 sig->notify_count = 0;
1169 read_unlock(&tasklist_lock);
1170 return -EAGAIN;
1171 }
1172
1173
1174 /*
1175 * This function makes sure the current process has its own signal table,
1176 * so that flush_signal_handlers can later reset the handlers without
1177 * disturbing other processes. (Other processes might share the signal
1178 * table via the CLONE_SIGHAND option to clone().)
1179 */
1180 static int unshare_sighand(struct task_struct *me)
1181 {
1182 struct sighand_struct *oldsighand = me->sighand;
1183
1184 if (refcount_read(&oldsighand->count) != 1) {
1185 struct sighand_struct *newsighand;
1186 /*
1187 * This ->sighand is shared with the CLONE_SIGHAND
1188 * but not CLONE_THREAD task, switch to the new one.
1189 */
1190 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1191 if (!newsighand)
1192 return -ENOMEM;
1193
1194 refcount_set(&newsighand->count, 1);
1195 memcpy(newsighand->action, oldsighand->action,
1196 sizeof(newsighand->action));
1197
1198 write_lock_irq(&tasklist_lock);
1199 spin_lock(&oldsighand->siglock);
1200 rcu_assign_pointer(me->sighand, newsighand);
1201 spin_unlock(&oldsighand->siglock);
1202 write_unlock_irq(&tasklist_lock);
1203
1204 __cleanup_sighand(oldsighand);
1205 }
1206 return 0;
1207 }
1208
1209 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1210 {
1211 task_lock(tsk);
1212 strncpy(buf, tsk->comm, buf_size);
1213 task_unlock(tsk);
1214 return buf;
1215 }
1216 EXPORT_SYMBOL_GPL(__get_task_comm);
1217
1218 /*
1219 * These functions flushes out all traces of the currently running executable
1220 * so that a new one can be started
1221 */
1222
1223 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1224 {
1225 task_lock(tsk);
1226 trace_task_rename(tsk, buf);
1227 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1228 task_unlock(tsk);
1229 perf_event_comm(tsk, exec);
1230 }
1231
1232 /*
1233 * Calling this is the point of no return. None of the failures will be
1234 * seen by userspace since either the process is already taking a fatal
1235 * signal (via de_thread() or coredump), or will have SEGV raised
1236 * (after exec_mmap()) by search_binary_handler (see below).
1237 */
1238 int begin_new_exec(struct linux_binprm * bprm)
1239 {
1240 struct task_struct *me = current;
1241 int retval;
1242
1243 /* Once we are committed compute the creds */
1244 retval = bprm_creds_from_file(bprm);
1245 if (retval)
1246 return retval;
1247
1248 /*
1249 * Ensure all future errors are fatal.
1250 */
1251 bprm->point_of_no_return = true;
1252
1253 /*
1254 * Make this the only thread in the thread group.
1255 */
1256 retval = de_thread(me);
1257 if (retval)
1258 goto out;
1259
1260 /*
1261 * Cancel any io_uring activity across execve
1262 */
1263 io_uring_task_cancel();
1264
1265 /* Ensure the files table is not shared. */
1266 retval = unshare_files();
1267 if (retval)
1268 goto out;
1269
1270 /*
1271 * Must be called _before_ exec_mmap() as bprm->mm is
1272 * not visibile until then. This also enables the update
1273 * to be lockless.
1274 */
1275 retval = set_mm_exe_file(bprm->mm, bprm->file);
1276 if (retval)
1277 goto out;
1278
1279 /* If the binary is not readable then enforce mm->dumpable=0 */
1280 would_dump(bprm, bprm->file);
1281 if (bprm->have_execfd)
1282 would_dump(bprm, bprm->executable);
1283
1284 /*
1285 * Release all of the old mmap stuff
1286 */
1287 acct_arg_size(bprm, 0);
1288 retval = exec_mmap(bprm->mm);
1289 if (retval)
1290 goto out;
1291
1292 bprm->mm = NULL;
1293
1294 #ifdef CONFIG_POSIX_TIMERS
1295 exit_itimers(me->signal);
1296 flush_itimer_signals();
1297 #endif
1298
1299 /*
1300 * Make the signal table private.
1301 */
1302 retval = unshare_sighand(me);
1303 if (retval)
1304 goto out_unlock;
1305
1306 /*
1307 * Ensure that the uaccess routines can actually operate on userspace
1308 * pointers:
1309 */
1310 force_uaccess_begin();
1311
1312 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1313 PF_NOFREEZE | PF_NO_SETAFFINITY);
1314 flush_thread();
1315 me->personality &= ~bprm->per_clear;
1316
1317 clear_syscall_work_syscall_user_dispatch(me);
1318
1319 /*
1320 * We have to apply CLOEXEC before we change whether the process is
1321 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1322 * trying to access the should-be-closed file descriptors of a process
1323 * undergoing exec(2).
1324 */
1325 do_close_on_exec(me->files);
1326
1327 if (bprm->secureexec) {
1328 /* Make sure parent cannot signal privileged process. */
1329 me->pdeath_signal = 0;
1330
1331 /*
1332 * For secureexec, reset the stack limit to sane default to
1333 * avoid bad behavior from the prior rlimits. This has to
1334 * happen before arch_pick_mmap_layout(), which examines
1335 * RLIMIT_STACK, but after the point of no return to avoid
1336 * needing to clean up the change on failure.
1337 */
1338 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1339 bprm->rlim_stack.rlim_cur = _STK_LIM;
1340 }
1341
1342 me->sas_ss_sp = me->sas_ss_size = 0;
1343
1344 /*
1345 * Figure out dumpability. Note that this checking only of current
1346 * is wrong, but userspace depends on it. This should be testing
1347 * bprm->secureexec instead.
1348 */
1349 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1350 !(uid_eq(current_euid(), current_uid()) &&
1351 gid_eq(current_egid(), current_gid())))
1352 set_dumpable(current->mm, suid_dumpable);
1353 else
1354 set_dumpable(current->mm, SUID_DUMP_USER);
1355
1356 perf_event_exec();
1357 __set_task_comm(me, kbasename(bprm->filename), true);
1358
1359 /* An exec changes our domain. We are no longer part of the thread
1360 group */
1361 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1362 flush_signal_handlers(me, 0);
1363
1364 retval = set_cred_ucounts(bprm->cred);
1365 if (retval < 0)
1366 goto out_unlock;
1367
1368 /*
1369 * install the new credentials for this executable
1370 */
1371 security_bprm_committing_creds(bprm);
1372
1373 commit_creds(bprm->cred);
1374 bprm->cred = NULL;
1375
1376 /*
1377 * Disable monitoring for regular users
1378 * when executing setuid binaries. Must
1379 * wait until new credentials are committed
1380 * by commit_creds() above
1381 */
1382 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1383 perf_event_exit_task(me);
1384 /*
1385 * cred_guard_mutex must be held at least to this point to prevent
1386 * ptrace_attach() from altering our determination of the task's
1387 * credentials; any time after this it may be unlocked.
1388 */
1389 security_bprm_committed_creds(bprm);
1390
1391 /* Pass the opened binary to the interpreter. */
1392 if (bprm->have_execfd) {
1393 retval = get_unused_fd_flags(0);
1394 if (retval < 0)
1395 goto out_unlock;
1396 fd_install(retval, bprm->executable);
1397 bprm->executable = NULL;
1398 bprm->execfd = retval;
1399 }
1400 return 0;
1401
1402 out_unlock:
1403 up_write(&me->signal->exec_update_lock);
1404 out:
1405 return retval;
1406 }
1407 EXPORT_SYMBOL(begin_new_exec);
1408
1409 void would_dump(struct linux_binprm *bprm, struct file *file)
1410 {
1411 struct inode *inode = file_inode(file);
1412 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1413 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1414 struct user_namespace *old, *user_ns;
1415 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1416
1417 /* Ensure mm->user_ns contains the executable */
1418 user_ns = old = bprm->mm->user_ns;
1419 while ((user_ns != &init_user_ns) &&
1420 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1421 user_ns = user_ns->parent;
1422
1423 if (old != user_ns) {
1424 bprm->mm->user_ns = get_user_ns(user_ns);
1425 put_user_ns(old);
1426 }
1427 }
1428 }
1429 EXPORT_SYMBOL(would_dump);
1430
1431 void setup_new_exec(struct linux_binprm * bprm)
1432 {
1433 /* Setup things that can depend upon the personality */
1434 struct task_struct *me = current;
1435
1436 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1437
1438 arch_setup_new_exec();
1439
1440 /* Set the new mm task size. We have to do that late because it may
1441 * depend on TIF_32BIT which is only updated in flush_thread() on
1442 * some architectures like powerpc
1443 */
1444 me->mm->task_size = TASK_SIZE;
1445 up_write(&me->signal->exec_update_lock);
1446 mutex_unlock(&me->signal->cred_guard_mutex);
1447 }
1448 EXPORT_SYMBOL(setup_new_exec);
1449
1450 /* Runs immediately before start_thread() takes over. */
1451 void finalize_exec(struct linux_binprm *bprm)
1452 {
1453 /* Store any stack rlimit changes before starting thread. */
1454 task_lock(current->group_leader);
1455 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1456 task_unlock(current->group_leader);
1457 }
1458 EXPORT_SYMBOL(finalize_exec);
1459
1460 /*
1461 * Prepare credentials and lock ->cred_guard_mutex.
1462 * setup_new_exec() commits the new creds and drops the lock.
1463 * Or, if exec fails before, free_bprm() should release ->cred
1464 * and unlock.
1465 */
1466 static int prepare_bprm_creds(struct linux_binprm *bprm)
1467 {
1468 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1469 return -ERESTARTNOINTR;
1470
1471 bprm->cred = prepare_exec_creds();
1472 if (likely(bprm->cred))
1473 return 0;
1474
1475 mutex_unlock(&current->signal->cred_guard_mutex);
1476 return -ENOMEM;
1477 }
1478
1479 static void free_bprm(struct linux_binprm *bprm)
1480 {
1481 if (bprm->mm) {
1482 acct_arg_size(bprm, 0);
1483 mmput(bprm->mm);
1484 }
1485 free_arg_pages(bprm);
1486 if (bprm->cred) {
1487 mutex_unlock(&current->signal->cred_guard_mutex);
1488 abort_creds(bprm->cred);
1489 }
1490 if (bprm->file) {
1491 allow_write_access(bprm->file);
1492 fput(bprm->file);
1493 }
1494 if (bprm->executable)
1495 fput(bprm->executable);
1496 /* If a binfmt changed the interp, free it. */
1497 if (bprm->interp != bprm->filename)
1498 kfree(bprm->interp);
1499 kfree(bprm->fdpath);
1500 kfree(bprm);
1501 }
1502
1503 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1504 {
1505 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1506 int retval = -ENOMEM;
1507 if (!bprm)
1508 goto out;
1509
1510 if (fd == AT_FDCWD || filename->name[0] == '/') {
1511 bprm->filename = filename->name;
1512 } else {
1513 if (filename->name[0] == '\0')
1514 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1515 else
1516 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1517 fd, filename->name);
1518 if (!bprm->fdpath)
1519 goto out_free;
1520
1521 bprm->filename = bprm->fdpath;
1522 }
1523 bprm->interp = bprm->filename;
1524
1525 retval = bprm_mm_init(bprm);
1526 if (retval)
1527 goto out_free;
1528 return bprm;
1529
1530 out_free:
1531 free_bprm(bprm);
1532 out:
1533 return ERR_PTR(retval);
1534 }
1535
1536 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1537 {
1538 /* If a binfmt changed the interp, free it first. */
1539 if (bprm->interp != bprm->filename)
1540 kfree(bprm->interp);
1541 bprm->interp = kstrdup(interp, GFP_KERNEL);
1542 if (!bprm->interp)
1543 return -ENOMEM;
1544 return 0;
1545 }
1546 EXPORT_SYMBOL(bprm_change_interp);
1547
1548 /*
1549 * determine how safe it is to execute the proposed program
1550 * - the caller must hold ->cred_guard_mutex to protect against
1551 * PTRACE_ATTACH or seccomp thread-sync
1552 */
1553 static void check_unsafe_exec(struct linux_binprm *bprm)
1554 {
1555 struct task_struct *p = current, *t;
1556 unsigned n_fs;
1557
1558 if (p->ptrace)
1559 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1560
1561 /*
1562 * This isn't strictly necessary, but it makes it harder for LSMs to
1563 * mess up.
1564 */
1565 if (task_no_new_privs(current))
1566 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1567
1568 t = p;
1569 n_fs = 1;
1570 spin_lock(&p->fs->lock);
1571 rcu_read_lock();
1572 while_each_thread(p, t) {
1573 if (t->fs == p->fs)
1574 n_fs++;
1575 }
1576 rcu_read_unlock();
1577
1578 if (p->fs->users > n_fs)
1579 bprm->unsafe |= LSM_UNSAFE_SHARE;
1580 else
1581 p->fs->in_exec = 1;
1582 spin_unlock(&p->fs->lock);
1583 }
1584
1585 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1586 {
1587 /* Handle suid and sgid on files */
1588 struct user_namespace *mnt_userns;
1589 struct inode *inode;
1590 unsigned int mode;
1591 kuid_t uid;
1592 kgid_t gid;
1593
1594 if (!mnt_may_suid(file->f_path.mnt))
1595 return;
1596
1597 if (task_no_new_privs(current))
1598 return;
1599
1600 inode = file->f_path.dentry->d_inode;
1601 mode = READ_ONCE(inode->i_mode);
1602 if (!(mode & (S_ISUID|S_ISGID)))
1603 return;
1604
1605 mnt_userns = file_mnt_user_ns(file);
1606
1607 /* Be careful if suid/sgid is set */
1608 inode_lock(inode);
1609
1610 /* reload atomically mode/uid/gid now that lock held */
1611 mode = inode->i_mode;
1612 uid = i_uid_into_mnt(mnt_userns, inode);
1613 gid = i_gid_into_mnt(mnt_userns, inode);
1614 inode_unlock(inode);
1615
1616 /* We ignore suid/sgid if there are no mappings for them in the ns */
1617 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1618 !kgid_has_mapping(bprm->cred->user_ns, gid))
1619 return;
1620
1621 if (mode & S_ISUID) {
1622 bprm->per_clear |= PER_CLEAR_ON_SETID;
1623 bprm->cred->euid = uid;
1624 }
1625
1626 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1627 bprm->per_clear |= PER_CLEAR_ON_SETID;
1628 bprm->cred->egid = gid;
1629 }
1630 }
1631
1632 /*
1633 * Compute brpm->cred based upon the final binary.
1634 */
1635 static int bprm_creds_from_file(struct linux_binprm *bprm)
1636 {
1637 /* Compute creds based on which file? */
1638 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1639
1640 bprm_fill_uid(bprm, file);
1641 return security_bprm_creds_from_file(bprm, file);
1642 }
1643
1644 /*
1645 * Fill the binprm structure from the inode.
1646 * Read the first BINPRM_BUF_SIZE bytes
1647 *
1648 * This may be called multiple times for binary chains (scripts for example).
1649 */
1650 static int prepare_binprm(struct linux_binprm *bprm)
1651 {
1652 loff_t pos = 0;
1653
1654 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1655 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1656 }
1657
1658 /*
1659 * Arguments are '\0' separated strings found at the location bprm->p
1660 * points to; chop off the first by relocating brpm->p to right after
1661 * the first '\0' encountered.
1662 */
1663 int remove_arg_zero(struct linux_binprm *bprm)
1664 {
1665 int ret = 0;
1666 unsigned long offset;
1667 char *kaddr;
1668 struct page *page;
1669
1670 if (!bprm->argc)
1671 return 0;
1672
1673 do {
1674 offset = bprm->p & ~PAGE_MASK;
1675 page = get_arg_page(bprm, bprm->p, 0);
1676 if (!page) {
1677 ret = -EFAULT;
1678 goto out;
1679 }
1680 kaddr = kmap_atomic(page);
1681
1682 for (; offset < PAGE_SIZE && kaddr[offset];
1683 offset++, bprm->p++)
1684 ;
1685
1686 kunmap_atomic(kaddr);
1687 put_arg_page(page);
1688 } while (offset == PAGE_SIZE);
1689
1690 bprm->p++;
1691 bprm->argc--;
1692 ret = 0;
1693
1694 out:
1695 return ret;
1696 }
1697 EXPORT_SYMBOL(remove_arg_zero);
1698
1699 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1700 /*
1701 * cycle the list of binary formats handler, until one recognizes the image
1702 */
1703 static int search_binary_handler(struct linux_binprm *bprm)
1704 {
1705 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1706 struct linux_binfmt *fmt;
1707 int retval;
1708
1709 retval = prepare_binprm(bprm);
1710 if (retval < 0)
1711 return retval;
1712
1713 retval = security_bprm_check(bprm);
1714 if (retval)
1715 return retval;
1716
1717 retval = -ENOENT;
1718 retry:
1719 read_lock(&binfmt_lock);
1720 list_for_each_entry(fmt, &formats, lh) {
1721 if (!try_module_get(fmt->module))
1722 continue;
1723 read_unlock(&binfmt_lock);
1724
1725 retval = fmt->load_binary(bprm);
1726
1727 read_lock(&binfmt_lock);
1728 put_binfmt(fmt);
1729 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1730 read_unlock(&binfmt_lock);
1731 return retval;
1732 }
1733 }
1734 read_unlock(&binfmt_lock);
1735
1736 if (need_retry) {
1737 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1738 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1739 return retval;
1740 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1741 return retval;
1742 need_retry = false;
1743 goto retry;
1744 }
1745
1746 return retval;
1747 }
1748
1749 static int exec_binprm(struct linux_binprm *bprm)
1750 {
1751 pid_t old_pid, old_vpid;
1752 int ret, depth;
1753
1754 /* Need to fetch pid before load_binary changes it */
1755 old_pid = current->pid;
1756 rcu_read_lock();
1757 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1758 rcu_read_unlock();
1759
1760 /* This allows 4 levels of binfmt rewrites before failing hard. */
1761 for (depth = 0;; depth++) {
1762 struct file *exec;
1763 if (depth > 5)
1764 return -ELOOP;
1765
1766 ret = search_binary_handler(bprm);
1767 if (ret < 0)
1768 return ret;
1769 if (!bprm->interpreter)
1770 break;
1771
1772 exec = bprm->file;
1773 bprm->file = bprm->interpreter;
1774 bprm->interpreter = NULL;
1775
1776 allow_write_access(exec);
1777 if (unlikely(bprm->have_execfd)) {
1778 if (bprm->executable) {
1779 fput(exec);
1780 return -ENOEXEC;
1781 }
1782 bprm->executable = exec;
1783 } else
1784 fput(exec);
1785 }
1786
1787 audit_bprm(bprm);
1788 trace_sched_process_exec(current, old_pid, bprm);
1789 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1790 proc_exec_connector(current);
1791 return 0;
1792 }
1793
1794 /*
1795 * sys_execve() executes a new program.
1796 */
1797 static int bprm_execve(struct linux_binprm *bprm,
1798 int fd, struct filename *filename, int flags)
1799 {
1800 struct file *file;
1801 int retval;
1802
1803 retval = prepare_bprm_creds(bprm);
1804 if (retval)
1805 return retval;
1806
1807 check_unsafe_exec(bprm);
1808 current->in_execve = 1;
1809
1810 file = do_open_execat(fd, filename, flags);
1811 retval = PTR_ERR(file);
1812 if (IS_ERR(file))
1813 goto out_unmark;
1814
1815 sched_exec();
1816
1817 bprm->file = file;
1818 /*
1819 * Record that a name derived from an O_CLOEXEC fd will be
1820 * inaccessible after exec. This allows the code in exec to
1821 * choose to fail when the executable is not mmaped into the
1822 * interpreter and an open file descriptor is not passed to
1823 * the interpreter. This makes for a better user experience
1824 * than having the interpreter start and then immediately fail
1825 * when it finds the executable is inaccessible.
1826 */
1827 if (bprm->fdpath && get_close_on_exec(fd))
1828 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1829
1830 /* Set the unchanging part of bprm->cred */
1831 retval = security_bprm_creds_for_exec(bprm);
1832 if (retval)
1833 goto out;
1834
1835 retval = exec_binprm(bprm);
1836 if (retval < 0)
1837 goto out;
1838
1839 /* execve succeeded */
1840 current->fs->in_exec = 0;
1841 current->in_execve = 0;
1842 rseq_execve(current);
1843 acct_update_integrals(current);
1844 task_numa_free(current, false);
1845 return retval;
1846
1847 out:
1848 /*
1849 * If past the point of no return ensure the code never
1850 * returns to the userspace process. Use an existing fatal
1851 * signal if present otherwise terminate the process with
1852 * SIGSEGV.
1853 */
1854 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1855 force_sigsegv(SIGSEGV);
1856
1857 out_unmark:
1858 current->fs->in_exec = 0;
1859 current->in_execve = 0;
1860
1861 return retval;
1862 }
1863
1864 static int do_execveat_common(int fd, struct filename *filename,
1865 struct user_arg_ptr argv,
1866 struct user_arg_ptr envp,
1867 int flags)
1868 {
1869 struct linux_binprm *bprm;
1870 int retval;
1871
1872 if (IS_ERR(filename))
1873 return PTR_ERR(filename);
1874
1875 /*
1876 * We move the actual failure in case of RLIMIT_NPROC excess from
1877 * set*uid() to execve() because too many poorly written programs
1878 * don't check setuid() return code. Here we additionally recheck
1879 * whether NPROC limit is still exceeded.
1880 */
1881 if ((current->flags & PF_NPROC_EXCEEDED) &&
1882 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1883 retval = -EAGAIN;
1884 goto out_ret;
1885 }
1886
1887 /* We're below the limit (still or again), so we don't want to make
1888 * further execve() calls fail. */
1889 current->flags &= ~PF_NPROC_EXCEEDED;
1890
1891 bprm = alloc_bprm(fd, filename);
1892 if (IS_ERR(bprm)) {
1893 retval = PTR_ERR(bprm);
1894 goto out_ret;
1895 }
1896
1897 retval = count(argv, MAX_ARG_STRINGS);
1898 if (retval < 0)
1899 goto out_free;
1900 bprm->argc = retval;
1901
1902 retval = count(envp, MAX_ARG_STRINGS);
1903 if (retval < 0)
1904 goto out_free;
1905 bprm->envc = retval;
1906
1907 retval = bprm_stack_limits(bprm);
1908 if (retval < 0)
1909 goto out_free;
1910
1911 retval = copy_string_kernel(bprm->filename, bprm);
1912 if (retval < 0)
1913 goto out_free;
1914 bprm->exec = bprm->p;
1915
1916 retval = copy_strings(bprm->envc, envp, bprm);
1917 if (retval < 0)
1918 goto out_free;
1919
1920 retval = copy_strings(bprm->argc, argv, bprm);
1921 if (retval < 0)
1922 goto out_free;
1923
1924 retval = bprm_execve(bprm, fd, filename, flags);
1925 out_free:
1926 free_bprm(bprm);
1927
1928 out_ret:
1929 putname(filename);
1930 return retval;
1931 }
1932
1933 int kernel_execve(const char *kernel_filename,
1934 const char *const *argv, const char *const *envp)
1935 {
1936 struct filename *filename;
1937 struct linux_binprm *bprm;
1938 int fd = AT_FDCWD;
1939 int retval;
1940
1941 filename = getname_kernel(kernel_filename);
1942 if (IS_ERR(filename))
1943 return PTR_ERR(filename);
1944
1945 bprm = alloc_bprm(fd, filename);
1946 if (IS_ERR(bprm)) {
1947 retval = PTR_ERR(bprm);
1948 goto out_ret;
1949 }
1950
1951 retval = count_strings_kernel(argv);
1952 if (retval < 0)
1953 goto out_free;
1954 bprm->argc = retval;
1955
1956 retval = count_strings_kernel(envp);
1957 if (retval < 0)
1958 goto out_free;
1959 bprm->envc = retval;
1960
1961 retval = bprm_stack_limits(bprm);
1962 if (retval < 0)
1963 goto out_free;
1964
1965 retval = copy_string_kernel(bprm->filename, bprm);
1966 if (retval < 0)
1967 goto out_free;
1968 bprm->exec = bprm->p;
1969
1970 retval = copy_strings_kernel(bprm->envc, envp, bprm);
1971 if (retval < 0)
1972 goto out_free;
1973
1974 retval = copy_strings_kernel(bprm->argc, argv, bprm);
1975 if (retval < 0)
1976 goto out_free;
1977
1978 retval = bprm_execve(bprm, fd, filename, 0);
1979 out_free:
1980 free_bprm(bprm);
1981 out_ret:
1982 putname(filename);
1983 return retval;
1984 }
1985
1986 static int do_execve(struct filename *filename,
1987 const char __user *const __user *__argv,
1988 const char __user *const __user *__envp)
1989 {
1990 struct user_arg_ptr argv = { .ptr.native = __argv };
1991 struct user_arg_ptr envp = { .ptr.native = __envp };
1992 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1993 }
1994
1995 static int do_execveat(int fd, struct filename *filename,
1996 const char __user *const __user *__argv,
1997 const char __user *const __user *__envp,
1998 int flags)
1999 {
2000 struct user_arg_ptr argv = { .ptr.native = __argv };
2001 struct user_arg_ptr envp = { .ptr.native = __envp };
2002
2003 return do_execveat_common(fd, filename, argv, envp, flags);
2004 }
2005
2006 #ifdef CONFIG_COMPAT
2007 static int compat_do_execve(struct filename *filename,
2008 const compat_uptr_t __user *__argv,
2009 const compat_uptr_t __user *__envp)
2010 {
2011 struct user_arg_ptr argv = {
2012 .is_compat = true,
2013 .ptr.compat = __argv,
2014 };
2015 struct user_arg_ptr envp = {
2016 .is_compat = true,
2017 .ptr.compat = __envp,
2018 };
2019 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2020 }
2021
2022 static int compat_do_execveat(int fd, struct filename *filename,
2023 const compat_uptr_t __user *__argv,
2024 const compat_uptr_t __user *__envp,
2025 int flags)
2026 {
2027 struct user_arg_ptr argv = {
2028 .is_compat = true,
2029 .ptr.compat = __argv,
2030 };
2031 struct user_arg_ptr envp = {
2032 .is_compat = true,
2033 .ptr.compat = __envp,
2034 };
2035 return do_execveat_common(fd, filename, argv, envp, flags);
2036 }
2037 #endif
2038
2039 void set_binfmt(struct linux_binfmt *new)
2040 {
2041 struct mm_struct *mm = current->mm;
2042
2043 if (mm->binfmt)
2044 module_put(mm->binfmt->module);
2045
2046 mm->binfmt = new;
2047 if (new)
2048 __module_get(new->module);
2049 }
2050 EXPORT_SYMBOL(set_binfmt);
2051
2052 /*
2053 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2054 */
2055 void set_dumpable(struct mm_struct *mm, int value)
2056 {
2057 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2058 return;
2059
2060 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2061 }
2062
2063 SYSCALL_DEFINE3(execve,
2064 const char __user *, filename,
2065 const char __user *const __user *, argv,
2066 const char __user *const __user *, envp)
2067 {
2068 return do_execve(getname(filename), argv, envp);
2069 }
2070
2071 SYSCALL_DEFINE5(execveat,
2072 int, fd, const char __user *, filename,
2073 const char __user *const __user *, argv,
2074 const char __user *const __user *, envp,
2075 int, flags)
2076 {
2077 return do_execveat(fd,
2078 getname_uflags(filename, flags),
2079 argv, envp, flags);
2080 }
2081
2082 #ifdef CONFIG_COMPAT
2083 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2084 const compat_uptr_t __user *, argv,
2085 const compat_uptr_t __user *, envp)
2086 {
2087 return compat_do_execve(getname(filename), argv, envp);
2088 }
2089
2090 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2091 const char __user *, filename,
2092 const compat_uptr_t __user *, argv,
2093 const compat_uptr_t __user *, envp,
2094 int, flags)
2095 {
2096 return compat_do_execveat(fd,
2097 getname_uflags(filename, flags),
2098 argv, envp, flags);
2099 }
2100 #endif