]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/exec.c
UBUNTU: SAUCE: (no-up) trace: add trace events for open(), exec() and uselib() (for...
[mirror_ubuntu-zesty-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <trace/events/fs.h>
62
63 #include <linux/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/tlb.h>
66
67 #include <trace/events/task.h>
68 #include "internal.h"
69
70 #include <trace/events/sched.h>
71
72 int suid_dumpable = 0;
73
74 static LIST_HEAD(formats);
75 static DEFINE_RWLOCK(binfmt_lock);
76
77 void __register_binfmt(struct linux_binfmt * fmt, int insert)
78 {
79 BUG_ON(!fmt);
80 if (WARN_ON(!fmt->load_binary))
81 return;
82 write_lock(&binfmt_lock);
83 insert ? list_add(&fmt->lh, &formats) :
84 list_add_tail(&fmt->lh, &formats);
85 write_unlock(&binfmt_lock);
86 }
87
88 EXPORT_SYMBOL(__register_binfmt);
89
90 void unregister_binfmt(struct linux_binfmt * fmt)
91 {
92 write_lock(&binfmt_lock);
93 list_del(&fmt->lh);
94 write_unlock(&binfmt_lock);
95 }
96
97 EXPORT_SYMBOL(unregister_binfmt);
98
99 static inline void put_binfmt(struct linux_binfmt * fmt)
100 {
101 module_put(fmt->module);
102 }
103
104 bool path_noexec(const struct path *path)
105 {
106 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
107 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 }
109
110 #ifdef CONFIG_USELIB
111 /*
112 * Note that a shared library must be both readable and executable due to
113 * security reasons.
114 *
115 * Also note that we take the address to load from from the file itself.
116 */
117 SYSCALL_DEFINE1(uselib, const char __user *, library)
118 {
119 struct linux_binfmt *fmt;
120 struct file *file;
121 struct filename *tmp = getname(library);
122 int error = PTR_ERR(tmp);
123 static const struct open_flags uselib_flags = {
124 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
125 .acc_mode = MAY_READ | MAY_EXEC,
126 .intent = LOOKUP_OPEN,
127 .lookup_flags = LOOKUP_FOLLOW,
128 };
129
130 if (IS_ERR(tmp))
131 goto out;
132
133 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
134 putname(tmp);
135 error = PTR_ERR(file);
136 if (IS_ERR(file))
137 goto out;
138
139 error = -EINVAL;
140 if (!S_ISREG(file_inode(file)->i_mode))
141 goto exit;
142
143 error = -EACCES;
144 if (path_noexec(&file->f_path))
145 goto exit;
146
147 fsnotify_open(file);
148
149 error = -ENOEXEC;
150
151 read_lock(&binfmt_lock);
152 list_for_each_entry(fmt, &formats, lh) {
153 if (!fmt->load_shlib)
154 continue;
155 if (!try_module_get(fmt->module))
156 continue;
157 read_unlock(&binfmt_lock);
158 error = fmt->load_shlib(file);
159 read_lock(&binfmt_lock);
160 put_binfmt(fmt);
161 if (error != -ENOEXEC)
162 break;
163 }
164 read_unlock(&binfmt_lock);
165 exit:
166 fput(file);
167 out:
168 return error;
169 }
170 #endif /* #ifdef CONFIG_USELIB */
171
172 #ifdef CONFIG_MMU
173 /*
174 * The nascent bprm->mm is not visible until exec_mmap() but it can
175 * use a lot of memory, account these pages in current->mm temporary
176 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
177 * change the counter back via acct_arg_size(0).
178 */
179 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
180 {
181 struct mm_struct *mm = current->mm;
182 long diff = (long)(pages - bprm->vma_pages);
183
184 if (!mm || !diff)
185 return;
186
187 bprm->vma_pages = pages;
188 add_mm_counter(mm, MM_ANONPAGES, diff);
189 }
190
191 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
192 int write)
193 {
194 struct page *page;
195 int ret;
196 unsigned int gup_flags = FOLL_FORCE;
197
198 #ifdef CONFIG_STACK_GROWSUP
199 if (write) {
200 ret = expand_downwards(bprm->vma, pos);
201 if (ret < 0)
202 return NULL;
203 }
204 #endif
205
206 if (write)
207 gup_flags |= FOLL_WRITE;
208
209 /*
210 * We are doing an exec(). 'current' is the process
211 * doing the exec and bprm->mm is the new process's mm.
212 */
213 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
214 &page, NULL, NULL);
215 if (ret <= 0)
216 return NULL;
217
218 if (write) {
219 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
220 struct rlimit *rlim;
221
222 acct_arg_size(bprm, size / PAGE_SIZE);
223
224 /*
225 * We've historically supported up to 32 pages (ARG_MAX)
226 * of argument strings even with small stacks
227 */
228 if (size <= ARG_MAX)
229 return page;
230
231 /*
232 * Limit to 1/4-th the stack size for the argv+env strings.
233 * This ensures that:
234 * - the remaining binfmt code will not run out of stack space,
235 * - the program will have a reasonable amount of stack left
236 * to work from.
237 */
238 rlim = current->signal->rlim;
239 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
240 put_page(page);
241 return NULL;
242 }
243 }
244
245 return page;
246 }
247
248 static void put_arg_page(struct page *page)
249 {
250 put_page(page);
251 }
252
253 static void free_arg_pages(struct linux_binprm *bprm)
254 {
255 }
256
257 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
258 struct page *page)
259 {
260 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
261 }
262
263 static int __bprm_mm_init(struct linux_binprm *bprm)
264 {
265 int err;
266 struct vm_area_struct *vma = NULL;
267 struct mm_struct *mm = bprm->mm;
268
269 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
270 if (!vma)
271 return -ENOMEM;
272
273 if (down_write_killable(&mm->mmap_sem)) {
274 err = -EINTR;
275 goto err_free;
276 }
277 vma->vm_mm = mm;
278
279 /*
280 * Place the stack at the largest stack address the architecture
281 * supports. Later, we'll move this to an appropriate place. We don't
282 * use STACK_TOP because that can depend on attributes which aren't
283 * configured yet.
284 */
285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 vma->vm_end = STACK_TOP_MAX;
287 vma->vm_start = vma->vm_end - PAGE_SIZE;
288 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 INIT_LIST_HEAD(&vma->anon_vma_chain);
291
292 err = insert_vm_struct(mm, vma);
293 if (err)
294 goto err;
295
296 mm->stack_vm = mm->total_vm = 1;
297 arch_bprm_mm_init(mm, vma);
298 up_write(&mm->mmap_sem);
299 bprm->p = vma->vm_end - sizeof(void *);
300 return 0;
301 err:
302 up_write(&mm->mmap_sem);
303 err_free:
304 bprm->vma = NULL;
305 kmem_cache_free(vm_area_cachep, vma);
306 return err;
307 }
308
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
310 {
311 return len <= MAX_ARG_STRLEN;
312 }
313
314 #else
315
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317 {
318 }
319
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321 int write)
322 {
323 struct page *page;
324
325 page = bprm->page[pos / PAGE_SIZE];
326 if (!page && write) {
327 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 if (!page)
329 return NULL;
330 bprm->page[pos / PAGE_SIZE] = page;
331 }
332
333 return page;
334 }
335
336 static void put_arg_page(struct page *page)
337 {
338 }
339
340 static void free_arg_page(struct linux_binprm *bprm, int i)
341 {
342 if (bprm->page[i]) {
343 __free_page(bprm->page[i]);
344 bprm->page[i] = NULL;
345 }
346 }
347
348 static void free_arg_pages(struct linux_binprm *bprm)
349 {
350 int i;
351
352 for (i = 0; i < MAX_ARG_PAGES; i++)
353 free_arg_page(bprm, i);
354 }
355
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357 struct page *page)
358 {
359 }
360
361 static int __bprm_mm_init(struct linux_binprm *bprm)
362 {
363 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364 return 0;
365 }
366
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
368 {
369 return len <= bprm->p;
370 }
371
372 #endif /* CONFIG_MMU */
373
374 /*
375 * Create a new mm_struct and populate it with a temporary stack
376 * vm_area_struct. We don't have enough context at this point to set the stack
377 * flags, permissions, and offset, so we use temporary values. We'll update
378 * them later in setup_arg_pages().
379 */
380 static int bprm_mm_init(struct linux_binprm *bprm)
381 {
382 int err;
383 struct mm_struct *mm = NULL;
384
385 bprm->mm = mm = mm_alloc();
386 err = -ENOMEM;
387 if (!mm)
388 goto err;
389
390 err = __bprm_mm_init(bprm);
391 if (err)
392 goto err;
393
394 return 0;
395
396 err:
397 if (mm) {
398 bprm->mm = NULL;
399 mmdrop(mm);
400 }
401
402 return err;
403 }
404
405 struct user_arg_ptr {
406 #ifdef CONFIG_COMPAT
407 bool is_compat;
408 #endif
409 union {
410 const char __user *const __user *native;
411 #ifdef CONFIG_COMPAT
412 const compat_uptr_t __user *compat;
413 #endif
414 } ptr;
415 };
416
417 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
418 {
419 const char __user *native;
420
421 #ifdef CONFIG_COMPAT
422 if (unlikely(argv.is_compat)) {
423 compat_uptr_t compat;
424
425 if (get_user(compat, argv.ptr.compat + nr))
426 return ERR_PTR(-EFAULT);
427
428 return compat_ptr(compat);
429 }
430 #endif
431
432 if (get_user(native, argv.ptr.native + nr))
433 return ERR_PTR(-EFAULT);
434
435 return native;
436 }
437
438 /*
439 * count() counts the number of strings in array ARGV.
440 */
441 static int count(struct user_arg_ptr argv, int max)
442 {
443 int i = 0;
444
445 if (argv.ptr.native != NULL) {
446 for (;;) {
447 const char __user *p = get_user_arg_ptr(argv, i);
448
449 if (!p)
450 break;
451
452 if (IS_ERR(p))
453 return -EFAULT;
454
455 if (i >= max)
456 return -E2BIG;
457 ++i;
458
459 if (fatal_signal_pending(current))
460 return -ERESTARTNOHAND;
461 cond_resched();
462 }
463 }
464 return i;
465 }
466
467 /*
468 * 'copy_strings()' copies argument/environment strings from the old
469 * processes's memory to the new process's stack. The call to get_user_pages()
470 * ensures the destination page is created and not swapped out.
471 */
472 static int copy_strings(int argc, struct user_arg_ptr argv,
473 struct linux_binprm *bprm)
474 {
475 struct page *kmapped_page = NULL;
476 char *kaddr = NULL;
477 unsigned long kpos = 0;
478 int ret;
479
480 while (argc-- > 0) {
481 const char __user *str;
482 int len;
483 unsigned long pos;
484
485 ret = -EFAULT;
486 str = get_user_arg_ptr(argv, argc);
487 if (IS_ERR(str))
488 goto out;
489
490 len = strnlen_user(str, MAX_ARG_STRLEN);
491 if (!len)
492 goto out;
493
494 ret = -E2BIG;
495 if (!valid_arg_len(bprm, len))
496 goto out;
497
498 /* We're going to work our way backwords. */
499 pos = bprm->p;
500 str += len;
501 bprm->p -= len;
502
503 while (len > 0) {
504 int offset, bytes_to_copy;
505
506 if (fatal_signal_pending(current)) {
507 ret = -ERESTARTNOHAND;
508 goto out;
509 }
510 cond_resched();
511
512 offset = pos % PAGE_SIZE;
513 if (offset == 0)
514 offset = PAGE_SIZE;
515
516 bytes_to_copy = offset;
517 if (bytes_to_copy > len)
518 bytes_to_copy = len;
519
520 offset -= bytes_to_copy;
521 pos -= bytes_to_copy;
522 str -= bytes_to_copy;
523 len -= bytes_to_copy;
524
525 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
526 struct page *page;
527
528 page = get_arg_page(bprm, pos, 1);
529 if (!page) {
530 ret = -E2BIG;
531 goto out;
532 }
533
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
538 }
539 kmapped_page = page;
540 kaddr = kmap(kmapped_page);
541 kpos = pos & PAGE_MASK;
542 flush_arg_page(bprm, kpos, kmapped_page);
543 }
544 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
545 ret = -EFAULT;
546 goto out;
547 }
548 }
549 }
550 ret = 0;
551 out:
552 if (kmapped_page) {
553 flush_kernel_dcache_page(kmapped_page);
554 kunmap(kmapped_page);
555 put_arg_page(kmapped_page);
556 }
557 return ret;
558 }
559
560 /*
561 * Like copy_strings, but get argv and its values from kernel memory.
562 */
563 int copy_strings_kernel(int argc, const char *const *__argv,
564 struct linux_binprm *bprm)
565 {
566 int r;
567 mm_segment_t oldfs = get_fs();
568 struct user_arg_ptr argv = {
569 .ptr.native = (const char __user *const __user *)__argv,
570 };
571
572 set_fs(KERNEL_DS);
573 r = copy_strings(argc, argv, bprm);
574 set_fs(oldfs);
575
576 return r;
577 }
578 EXPORT_SYMBOL(copy_strings_kernel);
579
580 #ifdef CONFIG_MMU
581
582 /*
583 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
584 * the binfmt code determines where the new stack should reside, we shift it to
585 * its final location. The process proceeds as follows:
586 *
587 * 1) Use shift to calculate the new vma endpoints.
588 * 2) Extend vma to cover both the old and new ranges. This ensures the
589 * arguments passed to subsequent functions are consistent.
590 * 3) Move vma's page tables to the new range.
591 * 4) Free up any cleared pgd range.
592 * 5) Shrink the vma to cover only the new range.
593 */
594 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
595 {
596 struct mm_struct *mm = vma->vm_mm;
597 unsigned long old_start = vma->vm_start;
598 unsigned long old_end = vma->vm_end;
599 unsigned long length = old_end - old_start;
600 unsigned long new_start = old_start - shift;
601 unsigned long new_end = old_end - shift;
602 struct mmu_gather tlb;
603
604 BUG_ON(new_start > new_end);
605
606 /*
607 * ensure there are no vmas between where we want to go
608 * and where we are
609 */
610 if (vma != find_vma(mm, new_start))
611 return -EFAULT;
612
613 /*
614 * cover the whole range: [new_start, old_end)
615 */
616 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
617 return -ENOMEM;
618
619 /*
620 * move the page tables downwards, on failure we rely on
621 * process cleanup to remove whatever mess we made.
622 */
623 if (length != move_page_tables(vma, old_start,
624 vma, new_start, length, false))
625 return -ENOMEM;
626
627 lru_add_drain();
628 tlb_gather_mmu(&tlb, mm, old_start, old_end);
629 if (new_end > old_start) {
630 /*
631 * when the old and new regions overlap clear from new_end.
632 */
633 free_pgd_range(&tlb, new_end, old_end, new_end,
634 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
635 } else {
636 /*
637 * otherwise, clean from old_start; this is done to not touch
638 * the address space in [new_end, old_start) some architectures
639 * have constraints on va-space that make this illegal (IA64) -
640 * for the others its just a little faster.
641 */
642 free_pgd_range(&tlb, old_start, old_end, new_end,
643 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
644 }
645 tlb_finish_mmu(&tlb, old_start, old_end);
646
647 /*
648 * Shrink the vma to just the new range. Always succeeds.
649 */
650 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
651
652 return 0;
653 }
654
655 /*
656 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
657 * the stack is optionally relocated, and some extra space is added.
658 */
659 int setup_arg_pages(struct linux_binprm *bprm,
660 unsigned long stack_top,
661 int executable_stack)
662 {
663 unsigned long ret;
664 unsigned long stack_shift;
665 struct mm_struct *mm = current->mm;
666 struct vm_area_struct *vma = bprm->vma;
667 struct vm_area_struct *prev = NULL;
668 unsigned long vm_flags;
669 unsigned long stack_base;
670 unsigned long stack_size;
671 unsigned long stack_expand;
672 unsigned long rlim_stack;
673
674 #ifdef CONFIG_STACK_GROWSUP
675 /* Limit stack size */
676 stack_base = rlimit_max(RLIMIT_STACK);
677 if (stack_base > STACK_SIZE_MAX)
678 stack_base = STACK_SIZE_MAX;
679
680 /* Add space for stack randomization. */
681 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
682
683 /* Make sure we didn't let the argument array grow too large. */
684 if (vma->vm_end - vma->vm_start > stack_base)
685 return -ENOMEM;
686
687 stack_base = PAGE_ALIGN(stack_top - stack_base);
688
689 stack_shift = vma->vm_start - stack_base;
690 mm->arg_start = bprm->p - stack_shift;
691 bprm->p = vma->vm_end - stack_shift;
692 #else
693 stack_top = arch_align_stack(stack_top);
694 stack_top = PAGE_ALIGN(stack_top);
695
696 if (unlikely(stack_top < mmap_min_addr) ||
697 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
698 return -ENOMEM;
699
700 stack_shift = vma->vm_end - stack_top;
701
702 bprm->p -= stack_shift;
703 mm->arg_start = bprm->p;
704 #endif
705
706 if (bprm->loader)
707 bprm->loader -= stack_shift;
708 bprm->exec -= stack_shift;
709
710 if (down_write_killable(&mm->mmap_sem))
711 return -EINTR;
712
713 vm_flags = VM_STACK_FLAGS;
714
715 /*
716 * Adjust stack execute permissions; explicitly enable for
717 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
718 * (arch default) otherwise.
719 */
720 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
721 vm_flags |= VM_EXEC;
722 else if (executable_stack == EXSTACK_DISABLE_X)
723 vm_flags &= ~VM_EXEC;
724 vm_flags |= mm->def_flags;
725 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
726
727 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
728 vm_flags);
729 if (ret)
730 goto out_unlock;
731 BUG_ON(prev != vma);
732
733 /* Move stack pages down in memory. */
734 if (stack_shift) {
735 ret = shift_arg_pages(vma, stack_shift);
736 if (ret)
737 goto out_unlock;
738 }
739
740 /* mprotect_fixup is overkill to remove the temporary stack flags */
741 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
742
743 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
744 stack_size = vma->vm_end - vma->vm_start;
745 /*
746 * Align this down to a page boundary as expand_stack
747 * will align it up.
748 */
749 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
750 #ifdef CONFIG_STACK_GROWSUP
751 if (stack_size + stack_expand > rlim_stack)
752 stack_base = vma->vm_start + rlim_stack;
753 else
754 stack_base = vma->vm_end + stack_expand;
755 #else
756 if (stack_size + stack_expand > rlim_stack)
757 stack_base = vma->vm_end - rlim_stack;
758 else
759 stack_base = vma->vm_start - stack_expand;
760 #endif
761 current->mm->start_stack = bprm->p;
762 ret = expand_stack(vma, stack_base);
763 if (ret)
764 ret = -EFAULT;
765
766 out_unlock:
767 up_write(&mm->mmap_sem);
768 return ret;
769 }
770 EXPORT_SYMBOL(setup_arg_pages);
771
772 #else
773
774 /*
775 * Transfer the program arguments and environment from the holding pages
776 * onto the stack. The provided stack pointer is adjusted accordingly.
777 */
778 int transfer_args_to_stack(struct linux_binprm *bprm,
779 unsigned long *sp_location)
780 {
781 unsigned long index, stop, sp;
782 int ret = 0;
783
784 stop = bprm->p >> PAGE_SHIFT;
785 sp = *sp_location;
786
787 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
788 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
789 char *src = kmap(bprm->page[index]) + offset;
790 sp -= PAGE_SIZE - offset;
791 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
792 ret = -EFAULT;
793 kunmap(bprm->page[index]);
794 if (ret)
795 goto out;
796 }
797
798 *sp_location = sp;
799
800 out:
801 return ret;
802 }
803 EXPORT_SYMBOL(transfer_args_to_stack);
804
805 #endif /* CONFIG_MMU */
806
807 static struct file *do_open_execat(int fd, struct filename *name, int flags)
808 {
809 struct file *file;
810 int err;
811 struct open_flags open_exec_flags = {
812 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
813 .acc_mode = MAY_EXEC,
814 .intent = LOOKUP_OPEN,
815 .lookup_flags = LOOKUP_FOLLOW,
816 };
817
818 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
819 return ERR_PTR(-EINVAL);
820 if (flags & AT_SYMLINK_NOFOLLOW)
821 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
822 if (flags & AT_EMPTY_PATH)
823 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
824
825 file = do_filp_open(fd, name, &open_exec_flags);
826 if (IS_ERR(file))
827 goto out;
828
829 err = -EACCES;
830 if (!S_ISREG(file_inode(file)->i_mode))
831 goto exit;
832
833 if (path_noexec(&file->f_path))
834 goto exit;
835
836 err = deny_write_access(file);
837 if (err)
838 goto exit;
839
840 if (name->name[0] != '\0')
841 fsnotify_open(file);
842
843 trace_open_exec(name->name);
844
845 out:
846 return file;
847
848 exit:
849 fput(file);
850 return ERR_PTR(err);
851 }
852
853 struct file *open_exec(const char *name)
854 {
855 struct filename *filename = getname_kernel(name);
856 struct file *f = ERR_CAST(filename);
857
858 if (!IS_ERR(filename)) {
859 f = do_open_execat(AT_FDCWD, filename, 0);
860 putname(filename);
861 }
862 return f;
863 }
864 EXPORT_SYMBOL(open_exec);
865
866 int kernel_read(struct file *file, loff_t offset,
867 char *addr, unsigned long count)
868 {
869 mm_segment_t old_fs;
870 loff_t pos = offset;
871 int result;
872
873 old_fs = get_fs();
874 set_fs(get_ds());
875 /* The cast to a user pointer is valid due to the set_fs() */
876 result = vfs_read(file, (void __user *)addr, count, &pos);
877 set_fs(old_fs);
878 return result;
879 }
880
881 EXPORT_SYMBOL(kernel_read);
882
883 int kernel_read_file(struct file *file, void **buf, loff_t *size,
884 loff_t max_size, enum kernel_read_file_id id)
885 {
886 loff_t i_size, pos;
887 ssize_t bytes = 0;
888 int ret;
889
890 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
891 return -EINVAL;
892
893 ret = security_kernel_read_file(file, id);
894 if (ret)
895 return ret;
896
897 ret = deny_write_access(file);
898 if (ret)
899 return ret;
900
901 i_size = i_size_read(file_inode(file));
902 if (max_size > 0 && i_size > max_size) {
903 ret = -EFBIG;
904 goto out;
905 }
906 if (i_size <= 0) {
907 ret = -EINVAL;
908 goto out;
909 }
910
911 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
912 *buf = vmalloc(i_size);
913 if (!*buf) {
914 ret = -ENOMEM;
915 goto out;
916 }
917
918 pos = 0;
919 while (pos < i_size) {
920 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
921 i_size - pos);
922 if (bytes < 0) {
923 ret = bytes;
924 goto out;
925 }
926
927 if (bytes == 0)
928 break;
929 pos += bytes;
930 }
931
932 if (pos != i_size) {
933 ret = -EIO;
934 goto out_free;
935 }
936
937 ret = security_kernel_post_read_file(file, *buf, i_size, id);
938 if (!ret)
939 *size = pos;
940
941 out_free:
942 if (ret < 0) {
943 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
944 vfree(*buf);
945 *buf = NULL;
946 }
947 }
948
949 out:
950 allow_write_access(file);
951 return ret;
952 }
953 EXPORT_SYMBOL_GPL(kernel_read_file);
954
955 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
956 loff_t max_size, enum kernel_read_file_id id)
957 {
958 struct file *file;
959 int ret;
960
961 if (!path || !*path)
962 return -EINVAL;
963
964 file = filp_open(path, O_RDONLY, 0);
965 if (IS_ERR(file))
966 return PTR_ERR(file);
967
968 ret = kernel_read_file(file, buf, size, max_size, id);
969 fput(file);
970 return ret;
971 }
972 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
973
974 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
975 enum kernel_read_file_id id)
976 {
977 struct fd f = fdget(fd);
978 int ret = -EBADF;
979
980 if (!f.file)
981 goto out;
982
983 ret = kernel_read_file(f.file, buf, size, max_size, id);
984 out:
985 fdput(f);
986 return ret;
987 }
988 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
989
990 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
991 {
992 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
993 if (res > 0)
994 flush_icache_range(addr, addr + len);
995 return res;
996 }
997 EXPORT_SYMBOL(read_code);
998
999 static int exec_mmap(struct mm_struct *mm)
1000 {
1001 struct task_struct *tsk;
1002 struct mm_struct *old_mm, *active_mm;
1003
1004 /* Notify parent that we're no longer interested in the old VM */
1005 tsk = current;
1006 old_mm = current->mm;
1007 mm_release(tsk, old_mm);
1008
1009 if (old_mm) {
1010 sync_mm_rss(old_mm);
1011 /*
1012 * Make sure that if there is a core dump in progress
1013 * for the old mm, we get out and die instead of going
1014 * through with the exec. We must hold mmap_sem around
1015 * checking core_state and changing tsk->mm.
1016 */
1017 down_read(&old_mm->mmap_sem);
1018 if (unlikely(old_mm->core_state)) {
1019 up_read(&old_mm->mmap_sem);
1020 return -EINTR;
1021 }
1022 }
1023 task_lock(tsk);
1024 active_mm = tsk->active_mm;
1025 tsk->mm = mm;
1026 tsk->active_mm = mm;
1027 activate_mm(active_mm, mm);
1028 tsk->mm->vmacache_seqnum = 0;
1029 vmacache_flush(tsk);
1030 task_unlock(tsk);
1031 if (old_mm) {
1032 up_read(&old_mm->mmap_sem);
1033 BUG_ON(active_mm != old_mm);
1034 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1035 mm_update_next_owner(old_mm);
1036 mmput(old_mm);
1037 return 0;
1038 }
1039 mmdrop(active_mm);
1040 return 0;
1041 }
1042
1043 /*
1044 * This function makes sure the current process has its own signal table,
1045 * so that flush_signal_handlers can later reset the handlers without
1046 * disturbing other processes. (Other processes might share the signal
1047 * table via the CLONE_SIGHAND option to clone().)
1048 */
1049 static int de_thread(struct task_struct *tsk)
1050 {
1051 struct signal_struct *sig = tsk->signal;
1052 struct sighand_struct *oldsighand = tsk->sighand;
1053 spinlock_t *lock = &oldsighand->siglock;
1054
1055 if (thread_group_empty(tsk))
1056 goto no_thread_group;
1057
1058 /*
1059 * Kill all other threads in the thread group.
1060 */
1061 spin_lock_irq(lock);
1062 if (signal_group_exit(sig)) {
1063 /*
1064 * Another group action in progress, just
1065 * return so that the signal is processed.
1066 */
1067 spin_unlock_irq(lock);
1068 return -EAGAIN;
1069 }
1070
1071 sig->group_exit_task = tsk;
1072 sig->notify_count = zap_other_threads(tsk);
1073 if (!thread_group_leader(tsk))
1074 sig->notify_count--;
1075
1076 while (sig->notify_count) {
1077 __set_current_state(TASK_KILLABLE);
1078 spin_unlock_irq(lock);
1079 schedule();
1080 if (unlikely(__fatal_signal_pending(tsk)))
1081 goto killed;
1082 spin_lock_irq(lock);
1083 }
1084 spin_unlock_irq(lock);
1085
1086 /*
1087 * At this point all other threads have exited, all we have to
1088 * do is to wait for the thread group leader to become inactive,
1089 * and to assume its PID:
1090 */
1091 if (!thread_group_leader(tsk)) {
1092 struct task_struct *leader = tsk->group_leader;
1093
1094 for (;;) {
1095 threadgroup_change_begin(tsk);
1096 write_lock_irq(&tasklist_lock);
1097 /*
1098 * Do this under tasklist_lock to ensure that
1099 * exit_notify() can't miss ->group_exit_task
1100 */
1101 sig->notify_count = -1;
1102 if (likely(leader->exit_state))
1103 break;
1104 __set_current_state(TASK_KILLABLE);
1105 write_unlock_irq(&tasklist_lock);
1106 threadgroup_change_end(tsk);
1107 schedule();
1108 if (unlikely(__fatal_signal_pending(tsk)))
1109 goto killed;
1110 }
1111
1112 /*
1113 * The only record we have of the real-time age of a
1114 * process, regardless of execs it's done, is start_time.
1115 * All the past CPU time is accumulated in signal_struct
1116 * from sister threads now dead. But in this non-leader
1117 * exec, nothing survives from the original leader thread,
1118 * whose birth marks the true age of this process now.
1119 * When we take on its identity by switching to its PID, we
1120 * also take its birthdate (always earlier than our own).
1121 */
1122 tsk->start_time = leader->start_time;
1123 tsk->real_start_time = leader->real_start_time;
1124
1125 BUG_ON(!same_thread_group(leader, tsk));
1126 BUG_ON(has_group_leader_pid(tsk));
1127 /*
1128 * An exec() starts a new thread group with the
1129 * TGID of the previous thread group. Rehash the
1130 * two threads with a switched PID, and release
1131 * the former thread group leader:
1132 */
1133
1134 /* Become a process group leader with the old leader's pid.
1135 * The old leader becomes a thread of the this thread group.
1136 * Note: The old leader also uses this pid until release_task
1137 * is called. Odd but simple and correct.
1138 */
1139 tsk->pid = leader->pid;
1140 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1141 transfer_pid(leader, tsk, PIDTYPE_PGID);
1142 transfer_pid(leader, tsk, PIDTYPE_SID);
1143
1144 list_replace_rcu(&leader->tasks, &tsk->tasks);
1145 list_replace_init(&leader->sibling, &tsk->sibling);
1146
1147 tsk->group_leader = tsk;
1148 leader->group_leader = tsk;
1149
1150 tsk->exit_signal = SIGCHLD;
1151 leader->exit_signal = -1;
1152
1153 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1154 leader->exit_state = EXIT_DEAD;
1155
1156 /*
1157 * We are going to release_task()->ptrace_unlink() silently,
1158 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1159 * the tracer wont't block again waiting for this thread.
1160 */
1161 if (unlikely(leader->ptrace))
1162 __wake_up_parent(leader, leader->parent);
1163 write_unlock_irq(&tasklist_lock);
1164 threadgroup_change_end(tsk);
1165
1166 release_task(leader);
1167 }
1168
1169 sig->group_exit_task = NULL;
1170 sig->notify_count = 0;
1171
1172 no_thread_group:
1173 /* we have changed execution domain */
1174 tsk->exit_signal = SIGCHLD;
1175
1176 #ifdef CONFIG_POSIX_TIMERS
1177 exit_itimers(sig);
1178 flush_itimer_signals();
1179 #endif
1180
1181 if (atomic_read(&oldsighand->count) != 1) {
1182 struct sighand_struct *newsighand;
1183 /*
1184 * This ->sighand is shared with the CLONE_SIGHAND
1185 * but not CLONE_THREAD task, switch to the new one.
1186 */
1187 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1188 if (!newsighand)
1189 return -ENOMEM;
1190
1191 atomic_set(&newsighand->count, 1);
1192 memcpy(newsighand->action, oldsighand->action,
1193 sizeof(newsighand->action));
1194
1195 write_lock_irq(&tasklist_lock);
1196 spin_lock(&oldsighand->siglock);
1197 rcu_assign_pointer(tsk->sighand, newsighand);
1198 spin_unlock(&oldsighand->siglock);
1199 write_unlock_irq(&tasklist_lock);
1200
1201 __cleanup_sighand(oldsighand);
1202 }
1203
1204 BUG_ON(!thread_group_leader(tsk));
1205 return 0;
1206
1207 killed:
1208 /* protects against exit_notify() and __exit_signal() */
1209 read_lock(&tasklist_lock);
1210 sig->group_exit_task = NULL;
1211 sig->notify_count = 0;
1212 read_unlock(&tasklist_lock);
1213 return -EAGAIN;
1214 }
1215
1216 char *get_task_comm(char *buf, struct task_struct *tsk)
1217 {
1218 /* buf must be at least sizeof(tsk->comm) in size */
1219 task_lock(tsk);
1220 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1221 task_unlock(tsk);
1222 return buf;
1223 }
1224 EXPORT_SYMBOL_GPL(get_task_comm);
1225
1226 /*
1227 * These functions flushes out all traces of the currently running executable
1228 * so that a new one can be started
1229 */
1230
1231 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1232 {
1233 task_lock(tsk);
1234 trace_task_rename(tsk, buf);
1235 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1236 task_unlock(tsk);
1237 perf_event_comm(tsk, exec);
1238 }
1239
1240 int flush_old_exec(struct linux_binprm * bprm)
1241 {
1242 int retval;
1243
1244 /*
1245 * Make sure we have a private signal table and that
1246 * we are unassociated from the previous thread group.
1247 */
1248 retval = de_thread(current);
1249 if (retval)
1250 goto out;
1251
1252 /*
1253 * Must be called _before_ exec_mmap() as bprm->mm is
1254 * not visibile until then. This also enables the update
1255 * to be lockless.
1256 */
1257 set_mm_exe_file(bprm->mm, bprm->file);
1258
1259 /*
1260 * Release all of the old mmap stuff
1261 */
1262 acct_arg_size(bprm, 0);
1263 retval = exec_mmap(bprm->mm);
1264 if (retval)
1265 goto out;
1266
1267 bprm->mm = NULL; /* We're using it now */
1268
1269 set_fs(USER_DS);
1270 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1271 PF_NOFREEZE | PF_NO_SETAFFINITY);
1272 flush_thread();
1273 current->personality &= ~bprm->per_clear;
1274
1275 /*
1276 * We have to apply CLOEXEC before we change whether the process is
1277 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1278 * trying to access the should-be-closed file descriptors of a process
1279 * undergoing exec(2).
1280 */
1281 do_close_on_exec(current->files);
1282 return 0;
1283
1284 out:
1285 return retval;
1286 }
1287 EXPORT_SYMBOL(flush_old_exec);
1288
1289 void would_dump(struct linux_binprm *bprm, struct file *file)
1290 {
1291 struct inode *inode = file_inode(file);
1292 if (inode_permission(inode, MAY_READ) < 0) {
1293 struct user_namespace *old, *user_ns;
1294 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1295
1296 /* Ensure mm->user_ns contains the executable */
1297 user_ns = old = bprm->mm->user_ns;
1298 while ((user_ns != &init_user_ns) &&
1299 !privileged_wrt_inode_uidgid(user_ns, inode))
1300 user_ns = user_ns->parent;
1301
1302 if (old != user_ns) {
1303 bprm->mm->user_ns = get_user_ns(user_ns);
1304 put_user_ns(old);
1305 }
1306 }
1307 }
1308 EXPORT_SYMBOL(would_dump);
1309
1310 void setup_new_exec(struct linux_binprm * bprm)
1311 {
1312 arch_pick_mmap_layout(current->mm);
1313
1314 /* This is the point of no return */
1315 current->sas_ss_sp = current->sas_ss_size = 0;
1316
1317 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1318 set_dumpable(current->mm, SUID_DUMP_USER);
1319 else
1320 set_dumpable(current->mm, suid_dumpable);
1321
1322 perf_event_exec();
1323 __set_task_comm(current, kbasename(bprm->filename), true);
1324
1325 /* Set the new mm task size. We have to do that late because it may
1326 * depend on TIF_32BIT which is only updated in flush_thread() on
1327 * some architectures like powerpc
1328 */
1329 current->mm->task_size = TASK_SIZE;
1330
1331 /* install the new credentials */
1332 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1333 !gid_eq(bprm->cred->gid, current_egid())) {
1334 current->pdeath_signal = 0;
1335 } else {
1336 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1337 set_dumpable(current->mm, suid_dumpable);
1338 }
1339
1340 /* An exec changes our domain. We are no longer part of the thread
1341 group */
1342 current->self_exec_id++;
1343 flush_signal_handlers(current, 0);
1344 }
1345 EXPORT_SYMBOL(setup_new_exec);
1346
1347 /*
1348 * Prepare credentials and lock ->cred_guard_mutex.
1349 * install_exec_creds() commits the new creds and drops the lock.
1350 * Or, if exec fails before, free_bprm() should release ->cred and
1351 * and unlock.
1352 */
1353 int prepare_bprm_creds(struct linux_binprm *bprm)
1354 {
1355 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1356 return -ERESTARTNOINTR;
1357
1358 bprm->cred = prepare_exec_creds();
1359 if (likely(bprm->cred))
1360 return 0;
1361
1362 mutex_unlock(&current->signal->cred_guard_mutex);
1363 return -ENOMEM;
1364 }
1365
1366 static void free_bprm(struct linux_binprm *bprm)
1367 {
1368 free_arg_pages(bprm);
1369 if (bprm->cred) {
1370 mutex_unlock(&current->signal->cred_guard_mutex);
1371 abort_creds(bprm->cred);
1372 }
1373 if (bprm->file) {
1374 allow_write_access(bprm->file);
1375 fput(bprm->file);
1376 }
1377 /* If a binfmt changed the interp, free it. */
1378 if (bprm->interp != bprm->filename)
1379 kfree(bprm->interp);
1380 kfree(bprm);
1381 }
1382
1383 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1384 {
1385 /* If a binfmt changed the interp, free it first. */
1386 if (bprm->interp != bprm->filename)
1387 kfree(bprm->interp);
1388 bprm->interp = kstrdup(interp, GFP_KERNEL);
1389 if (!bprm->interp)
1390 return -ENOMEM;
1391 return 0;
1392 }
1393 EXPORT_SYMBOL(bprm_change_interp);
1394
1395 /*
1396 * install the new credentials for this executable
1397 */
1398 void install_exec_creds(struct linux_binprm *bprm)
1399 {
1400 security_bprm_committing_creds(bprm);
1401
1402 commit_creds(bprm->cred);
1403 bprm->cred = NULL;
1404
1405 /*
1406 * Disable monitoring for regular users
1407 * when executing setuid binaries. Must
1408 * wait until new credentials are committed
1409 * by commit_creds() above
1410 */
1411 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1412 perf_event_exit_task(current);
1413 /*
1414 * cred_guard_mutex must be held at least to this point to prevent
1415 * ptrace_attach() from altering our determination of the task's
1416 * credentials; any time after this it may be unlocked.
1417 */
1418 security_bprm_committed_creds(bprm);
1419 mutex_unlock(&current->signal->cred_guard_mutex);
1420 }
1421 EXPORT_SYMBOL(install_exec_creds);
1422
1423 /*
1424 * determine how safe it is to execute the proposed program
1425 * - the caller must hold ->cred_guard_mutex to protect against
1426 * PTRACE_ATTACH or seccomp thread-sync
1427 */
1428 static void check_unsafe_exec(struct linux_binprm *bprm)
1429 {
1430 struct task_struct *p = current, *t;
1431 unsigned n_fs;
1432
1433 if (p->ptrace) {
1434 if (ptracer_capable(p, current_user_ns()))
1435 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1436 else
1437 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1438 }
1439
1440 /*
1441 * This isn't strictly necessary, but it makes it harder for LSMs to
1442 * mess up.
1443 */
1444 if (task_no_new_privs(current))
1445 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1446
1447 t = p;
1448 n_fs = 1;
1449 spin_lock(&p->fs->lock);
1450 rcu_read_lock();
1451 while_each_thread(p, t) {
1452 if (t->fs == p->fs)
1453 n_fs++;
1454 }
1455 rcu_read_unlock();
1456
1457 if (p->fs->users > n_fs)
1458 bprm->unsafe |= LSM_UNSAFE_SHARE;
1459 else
1460 p->fs->in_exec = 1;
1461 spin_unlock(&p->fs->lock);
1462 }
1463
1464 static void bprm_fill_uid(struct linux_binprm *bprm)
1465 {
1466 struct inode *inode;
1467 unsigned int mode;
1468 kuid_t uid;
1469 kgid_t gid;
1470
1471 /*
1472 * Since this can be called multiple times (via prepare_binprm),
1473 * we must clear any previous work done when setting set[ug]id
1474 * bits from any earlier bprm->file uses (for example when run
1475 * first for a setuid script then again for its interpreter).
1476 */
1477 bprm->cred->euid = current_euid();
1478 bprm->cred->egid = current_egid();
1479
1480 if (!mnt_may_suid(bprm->file->f_path.mnt))
1481 return;
1482
1483 if (task_no_new_privs(current))
1484 return;
1485
1486 inode = file_inode(bprm->file);
1487 mode = READ_ONCE(inode->i_mode);
1488 if (!(mode & (S_ISUID|S_ISGID)))
1489 return;
1490
1491 /* Be careful if suid/sgid is set */
1492 inode_lock(inode);
1493
1494 /* reload atomically mode/uid/gid now that lock held */
1495 mode = inode->i_mode;
1496 uid = inode->i_uid;
1497 gid = inode->i_gid;
1498 inode_unlock(inode);
1499
1500 /* We ignore suid/sgid if there are no mappings for them in the ns */
1501 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1502 !kgid_has_mapping(bprm->cred->user_ns, gid))
1503 return;
1504
1505 if (mode & S_ISUID) {
1506 bprm->per_clear |= PER_CLEAR_ON_SETID;
1507 bprm->cred->euid = uid;
1508 }
1509
1510 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1511 bprm->per_clear |= PER_CLEAR_ON_SETID;
1512 bprm->cred->egid = gid;
1513 }
1514 }
1515
1516 /*
1517 * Fill the binprm structure from the inode.
1518 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1519 *
1520 * This may be called multiple times for binary chains (scripts for example).
1521 */
1522 int prepare_binprm(struct linux_binprm *bprm)
1523 {
1524 int retval;
1525
1526 bprm_fill_uid(bprm);
1527
1528 /* fill in binprm security blob */
1529 retval = security_bprm_set_creds(bprm);
1530 if (retval)
1531 return retval;
1532 bprm->cred_prepared = 1;
1533
1534 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1535 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1536 }
1537
1538 EXPORT_SYMBOL(prepare_binprm);
1539
1540 /*
1541 * Arguments are '\0' separated strings found at the location bprm->p
1542 * points to; chop off the first by relocating brpm->p to right after
1543 * the first '\0' encountered.
1544 */
1545 int remove_arg_zero(struct linux_binprm *bprm)
1546 {
1547 int ret = 0;
1548 unsigned long offset;
1549 char *kaddr;
1550 struct page *page;
1551
1552 if (!bprm->argc)
1553 return 0;
1554
1555 do {
1556 offset = bprm->p & ~PAGE_MASK;
1557 page = get_arg_page(bprm, bprm->p, 0);
1558 if (!page) {
1559 ret = -EFAULT;
1560 goto out;
1561 }
1562 kaddr = kmap_atomic(page);
1563
1564 for (; offset < PAGE_SIZE && kaddr[offset];
1565 offset++, bprm->p++)
1566 ;
1567
1568 kunmap_atomic(kaddr);
1569 put_arg_page(page);
1570 } while (offset == PAGE_SIZE);
1571
1572 bprm->p++;
1573 bprm->argc--;
1574 ret = 0;
1575
1576 out:
1577 return ret;
1578 }
1579 EXPORT_SYMBOL(remove_arg_zero);
1580
1581 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1582 /*
1583 * cycle the list of binary formats handler, until one recognizes the image
1584 */
1585 int search_binary_handler(struct linux_binprm *bprm)
1586 {
1587 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1588 struct linux_binfmt *fmt;
1589 int retval;
1590
1591 /* This allows 4 levels of binfmt rewrites before failing hard. */
1592 if (bprm->recursion_depth > 5)
1593 return -ELOOP;
1594
1595 retval = security_bprm_check(bprm);
1596 if (retval)
1597 return retval;
1598
1599 retval = -ENOENT;
1600 retry:
1601 read_lock(&binfmt_lock);
1602 list_for_each_entry(fmt, &formats, lh) {
1603 if (!try_module_get(fmt->module))
1604 continue;
1605 read_unlock(&binfmt_lock);
1606 bprm->recursion_depth++;
1607 retval = fmt->load_binary(bprm);
1608 read_lock(&binfmt_lock);
1609 put_binfmt(fmt);
1610 bprm->recursion_depth--;
1611 if (retval < 0 && !bprm->mm) {
1612 /* we got to flush_old_exec() and failed after it */
1613 read_unlock(&binfmt_lock);
1614 force_sigsegv(SIGSEGV, current);
1615 return retval;
1616 }
1617 if (retval != -ENOEXEC || !bprm->file) {
1618 read_unlock(&binfmt_lock);
1619 return retval;
1620 }
1621 }
1622 read_unlock(&binfmt_lock);
1623
1624 if (need_retry) {
1625 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1626 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1627 return retval;
1628 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1629 return retval;
1630 need_retry = false;
1631 goto retry;
1632 }
1633
1634 return retval;
1635 }
1636 EXPORT_SYMBOL(search_binary_handler);
1637
1638 static int exec_binprm(struct linux_binprm *bprm)
1639 {
1640 pid_t old_pid, old_vpid;
1641 int ret;
1642
1643 /* Need to fetch pid before load_binary changes it */
1644 old_pid = current->pid;
1645 rcu_read_lock();
1646 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1647 rcu_read_unlock();
1648
1649 ret = search_binary_handler(bprm);
1650 if (ret >= 0) {
1651 audit_bprm(bprm);
1652 trace_sched_process_exec(current, old_pid, bprm);
1653 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1654 proc_exec_connector(current);
1655 }
1656
1657 return ret;
1658 }
1659
1660 /*
1661 * sys_execve() executes a new program.
1662 */
1663 static int do_execveat_common(int fd, struct filename *filename,
1664 struct user_arg_ptr argv,
1665 struct user_arg_ptr envp,
1666 int flags)
1667 {
1668 char *pathbuf = NULL;
1669 struct linux_binprm *bprm;
1670 struct file *file;
1671 struct files_struct *displaced;
1672 int retval;
1673
1674 if (IS_ERR(filename))
1675 return PTR_ERR(filename);
1676
1677 /*
1678 * We move the actual failure in case of RLIMIT_NPROC excess from
1679 * set*uid() to execve() because too many poorly written programs
1680 * don't check setuid() return code. Here we additionally recheck
1681 * whether NPROC limit is still exceeded.
1682 */
1683 if ((current->flags & PF_NPROC_EXCEEDED) &&
1684 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1685 retval = -EAGAIN;
1686 goto out_ret;
1687 }
1688
1689 /* We're below the limit (still or again), so we don't want to make
1690 * further execve() calls fail. */
1691 current->flags &= ~PF_NPROC_EXCEEDED;
1692
1693 retval = unshare_files(&displaced);
1694 if (retval)
1695 goto out_ret;
1696
1697 retval = -ENOMEM;
1698 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1699 if (!bprm)
1700 goto out_files;
1701
1702 retval = prepare_bprm_creds(bprm);
1703 if (retval)
1704 goto out_free;
1705
1706 check_unsafe_exec(bprm);
1707 current->in_execve = 1;
1708
1709 file = do_open_execat(fd, filename, flags);
1710 retval = PTR_ERR(file);
1711 if (IS_ERR(file))
1712 goto out_unmark;
1713
1714 sched_exec();
1715
1716 bprm->file = file;
1717 if (fd == AT_FDCWD || filename->name[0] == '/') {
1718 bprm->filename = filename->name;
1719 } else {
1720 if (filename->name[0] == '\0')
1721 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1722 else
1723 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1724 fd, filename->name);
1725 if (!pathbuf) {
1726 retval = -ENOMEM;
1727 goto out_unmark;
1728 }
1729 /*
1730 * Record that a name derived from an O_CLOEXEC fd will be
1731 * inaccessible after exec. Relies on having exclusive access to
1732 * current->files (due to unshare_files above).
1733 */
1734 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1735 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1736 bprm->filename = pathbuf;
1737 }
1738 bprm->interp = bprm->filename;
1739
1740 retval = bprm_mm_init(bprm);
1741 if (retval)
1742 goto out_unmark;
1743
1744 bprm->argc = count(argv, MAX_ARG_STRINGS);
1745 if ((retval = bprm->argc) < 0)
1746 goto out;
1747
1748 bprm->envc = count(envp, MAX_ARG_STRINGS);
1749 if ((retval = bprm->envc) < 0)
1750 goto out;
1751
1752 retval = prepare_binprm(bprm);
1753 if (retval < 0)
1754 goto out;
1755
1756 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1757 if (retval < 0)
1758 goto out;
1759
1760 bprm->exec = bprm->p;
1761 retval = copy_strings(bprm->envc, envp, bprm);
1762 if (retval < 0)
1763 goto out;
1764
1765 retval = copy_strings(bprm->argc, argv, bprm);
1766 if (retval < 0)
1767 goto out;
1768
1769 would_dump(bprm, bprm->file);
1770
1771 retval = exec_binprm(bprm);
1772 if (retval < 0)
1773 goto out;
1774
1775 /* execve succeeded */
1776 current->fs->in_exec = 0;
1777 current->in_execve = 0;
1778 acct_update_integrals(current);
1779 task_numa_free(current);
1780 free_bprm(bprm);
1781 kfree(pathbuf);
1782 putname(filename);
1783 if (displaced)
1784 put_files_struct(displaced);
1785 return retval;
1786
1787 out:
1788 if (bprm->mm) {
1789 acct_arg_size(bprm, 0);
1790 mmput(bprm->mm);
1791 }
1792
1793 out_unmark:
1794 current->fs->in_exec = 0;
1795 current->in_execve = 0;
1796
1797 out_free:
1798 free_bprm(bprm);
1799 kfree(pathbuf);
1800
1801 out_files:
1802 if (displaced)
1803 reset_files_struct(displaced);
1804 out_ret:
1805 putname(filename);
1806 return retval;
1807 }
1808
1809 int do_execve(struct filename *filename,
1810 const char __user *const __user *__argv,
1811 const char __user *const __user *__envp)
1812 {
1813 struct user_arg_ptr argv = { .ptr.native = __argv };
1814 struct user_arg_ptr envp = { .ptr.native = __envp };
1815 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1816 }
1817
1818 int do_execveat(int fd, struct filename *filename,
1819 const char __user *const __user *__argv,
1820 const char __user *const __user *__envp,
1821 int flags)
1822 {
1823 struct user_arg_ptr argv = { .ptr.native = __argv };
1824 struct user_arg_ptr envp = { .ptr.native = __envp };
1825
1826 return do_execveat_common(fd, filename, argv, envp, flags);
1827 }
1828
1829 #ifdef CONFIG_COMPAT
1830 static int compat_do_execve(struct filename *filename,
1831 const compat_uptr_t __user *__argv,
1832 const compat_uptr_t __user *__envp)
1833 {
1834 struct user_arg_ptr argv = {
1835 .is_compat = true,
1836 .ptr.compat = __argv,
1837 };
1838 struct user_arg_ptr envp = {
1839 .is_compat = true,
1840 .ptr.compat = __envp,
1841 };
1842 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1843 }
1844
1845 static int compat_do_execveat(int fd, struct filename *filename,
1846 const compat_uptr_t __user *__argv,
1847 const compat_uptr_t __user *__envp,
1848 int flags)
1849 {
1850 struct user_arg_ptr argv = {
1851 .is_compat = true,
1852 .ptr.compat = __argv,
1853 };
1854 struct user_arg_ptr envp = {
1855 .is_compat = true,
1856 .ptr.compat = __envp,
1857 };
1858 return do_execveat_common(fd, filename, argv, envp, flags);
1859 }
1860 #endif
1861
1862 void set_binfmt(struct linux_binfmt *new)
1863 {
1864 struct mm_struct *mm = current->mm;
1865
1866 if (mm->binfmt)
1867 module_put(mm->binfmt->module);
1868
1869 mm->binfmt = new;
1870 if (new)
1871 __module_get(new->module);
1872 }
1873 EXPORT_SYMBOL(set_binfmt);
1874
1875 /*
1876 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1877 */
1878 void set_dumpable(struct mm_struct *mm, int value)
1879 {
1880 unsigned long old, new;
1881
1882 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1883 return;
1884
1885 do {
1886 old = ACCESS_ONCE(mm->flags);
1887 new = (old & ~MMF_DUMPABLE_MASK) | value;
1888 } while (cmpxchg(&mm->flags, old, new) != old);
1889 }
1890
1891 SYSCALL_DEFINE3(execve,
1892 const char __user *, filename,
1893 const char __user *const __user *, argv,
1894 const char __user *const __user *, envp)
1895 {
1896 return do_execve(getname(filename), argv, envp);
1897 }
1898
1899 SYSCALL_DEFINE5(execveat,
1900 int, fd, const char __user *, filename,
1901 const char __user *const __user *, argv,
1902 const char __user *const __user *, envp,
1903 int, flags)
1904 {
1905 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1906
1907 return do_execveat(fd,
1908 getname_flags(filename, lookup_flags, NULL),
1909 argv, envp, flags);
1910 }
1911
1912 #ifdef CONFIG_COMPAT
1913 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1914 const compat_uptr_t __user *, argv,
1915 const compat_uptr_t __user *, envp)
1916 {
1917 return compat_do_execve(getname(filename), argv, envp);
1918 }
1919
1920 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1921 const char __user *, filename,
1922 const compat_uptr_t __user *, argv,
1923 const compat_uptr_t __user *, envp,
1924 int, flags)
1925 {
1926 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1927
1928 return compat_do_execveat(fd,
1929 getname_flags(filename, lookup_flags, NULL),
1930 argv, envp, flags);
1931 }
1932 #endif