]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/exec.c
UBUNTU: SAUCE: (no-up) trace: add trace events for open(), exec() and uselib() (for...
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <trace/events/fs.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71
72 #include <trace/events/task.h>
73 #include "internal.h"
74
75 #include <trace/events/sched.h>
76
77 int suid_dumpable = 0;
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 BUG_ON(!fmt);
85 if (WARN_ON(!fmt->load_binary))
86 return;
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117 * Note that a shared library must be both readable and executable due to
118 * security reasons.
119 *
120 * Also note that we take the address to load from from the file itself.
121 */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 struct linux_binfmt *fmt;
125 struct file *file;
126 struct filename *tmp = getname(library);
127 int error = PTR_ERR(tmp);
128 static const struct open_flags uselib_flags = {
129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 .acc_mode = MAY_READ | MAY_EXEC,
131 .intent = LOOKUP_OPEN,
132 .lookup_flags = LOOKUP_FOLLOW,
133 };
134
135 if (IS_ERR(tmp))
136 goto out;
137
138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 putname(tmp);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 error = -EINVAL;
145 if (!S_ISREG(file_inode(file)->i_mode))
146 goto exit;
147
148 error = -EACCES;
149 if (path_noexec(&file->f_path))
150 goto exit;
151
152 fsnotify_open(file);
153
154 error = -ENOEXEC;
155
156 read_lock(&binfmt_lock);
157 list_for_each_entry(fmt, &formats, lh) {
158 if (!fmt->load_shlib)
159 continue;
160 if (!try_module_get(fmt->module))
161 continue;
162 read_unlock(&binfmt_lock);
163 error = fmt->load_shlib(file);
164 read_lock(&binfmt_lock);
165 put_binfmt(fmt);
166 if (error != -ENOEXEC)
167 break;
168 }
169 read_unlock(&binfmt_lock);
170 exit:
171 fput(file);
172 out:
173 return error;
174 }
175 #endif /* #ifdef CONFIG_USELIB */
176
177 #ifdef CONFIG_MMU
178 /*
179 * The nascent bprm->mm is not visible until exec_mmap() but it can
180 * use a lot of memory, account these pages in current->mm temporary
181 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
182 * change the counter back via acct_arg_size(0).
183 */
184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
185 {
186 struct mm_struct *mm = current->mm;
187 long diff = (long)(pages - bprm->vma_pages);
188
189 if (!mm || !diff)
190 return;
191
192 bprm->vma_pages = pages;
193 add_mm_counter(mm, MM_ANONPAGES, diff);
194 }
195
196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
197 int write)
198 {
199 struct page *page;
200 int ret;
201 unsigned int gup_flags = FOLL_FORCE;
202
203 #ifdef CONFIG_STACK_GROWSUP
204 if (write) {
205 ret = expand_downwards(bprm->vma, pos);
206 if (ret < 0)
207 return NULL;
208 }
209 #endif
210
211 if (write)
212 gup_flags |= FOLL_WRITE;
213
214 /*
215 * We are doing an exec(). 'current' is the process
216 * doing the exec and bprm->mm is the new process's mm.
217 */
218 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
219 &page, NULL, NULL);
220 if (ret <= 0)
221 return NULL;
222
223 if (write) {
224 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
225 unsigned long ptr_size, limit;
226
227 /*
228 * Since the stack will hold pointers to the strings, we
229 * must account for them as well.
230 *
231 * The size calculation is the entire vma while each arg page is
232 * built, so each time we get here it's calculating how far it
233 * is currently (rather than each call being just the newly
234 * added size from the arg page). As a result, we need to
235 * always add the entire size of the pointers, so that on the
236 * last call to get_arg_page() we'll actually have the entire
237 * correct size.
238 */
239 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
240 if (ptr_size > ULONG_MAX - size)
241 goto fail;
242 size += ptr_size;
243
244 acct_arg_size(bprm, size / PAGE_SIZE);
245
246 /*
247 * We've historically supported up to 32 pages (ARG_MAX)
248 * of argument strings even with small stacks
249 */
250 if (size <= ARG_MAX)
251 return page;
252
253 /*
254 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
255 * (whichever is smaller) for the argv+env strings.
256 * This ensures that:
257 * - the remaining binfmt code will not run out of stack space,
258 * - the program will have a reasonable amount of stack left
259 * to work from.
260 */
261 limit = _STK_LIM / 4 * 3;
262 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
263 if (size > limit)
264 goto fail;
265 }
266
267 return page;
268
269 fail:
270 put_page(page);
271 return NULL;
272 }
273
274 static void put_arg_page(struct page *page)
275 {
276 put_page(page);
277 }
278
279 static void free_arg_pages(struct linux_binprm *bprm)
280 {
281 }
282
283 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
284 struct page *page)
285 {
286 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
287 }
288
289 static int __bprm_mm_init(struct linux_binprm *bprm)
290 {
291 int err;
292 struct vm_area_struct *vma = NULL;
293 struct mm_struct *mm = bprm->mm;
294
295 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
296 if (!vma)
297 return -ENOMEM;
298
299 if (down_write_killable(&mm->mmap_sem)) {
300 err = -EINTR;
301 goto err_free;
302 }
303 vma->vm_mm = mm;
304
305 /*
306 * Place the stack at the largest stack address the architecture
307 * supports. Later, we'll move this to an appropriate place. We don't
308 * use STACK_TOP because that can depend on attributes which aren't
309 * configured yet.
310 */
311 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
312 vma->vm_end = STACK_TOP_MAX;
313 vma->vm_start = vma->vm_end - PAGE_SIZE;
314 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
315 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
316 INIT_LIST_HEAD(&vma->anon_vma_chain);
317
318 err = insert_vm_struct(mm, vma);
319 if (err)
320 goto err;
321
322 mm->stack_vm = mm->total_vm = 1;
323 arch_bprm_mm_init(mm, vma);
324 up_write(&mm->mmap_sem);
325 bprm->p = vma->vm_end - sizeof(void *);
326 return 0;
327 err:
328 up_write(&mm->mmap_sem);
329 err_free:
330 bprm->vma = NULL;
331 kmem_cache_free(vm_area_cachep, vma);
332 return err;
333 }
334
335 static bool valid_arg_len(struct linux_binprm *bprm, long len)
336 {
337 return len <= MAX_ARG_STRLEN;
338 }
339
340 #else
341
342 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
343 {
344 }
345
346 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
347 int write)
348 {
349 struct page *page;
350
351 page = bprm->page[pos / PAGE_SIZE];
352 if (!page && write) {
353 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
354 if (!page)
355 return NULL;
356 bprm->page[pos / PAGE_SIZE] = page;
357 }
358
359 return page;
360 }
361
362 static void put_arg_page(struct page *page)
363 {
364 }
365
366 static void free_arg_page(struct linux_binprm *bprm, int i)
367 {
368 if (bprm->page[i]) {
369 __free_page(bprm->page[i]);
370 bprm->page[i] = NULL;
371 }
372 }
373
374 static void free_arg_pages(struct linux_binprm *bprm)
375 {
376 int i;
377
378 for (i = 0; i < MAX_ARG_PAGES; i++)
379 free_arg_page(bprm, i);
380 }
381
382 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
383 struct page *page)
384 {
385 }
386
387 static int __bprm_mm_init(struct linux_binprm *bprm)
388 {
389 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
390 return 0;
391 }
392
393 static bool valid_arg_len(struct linux_binprm *bprm, long len)
394 {
395 return len <= bprm->p;
396 }
397
398 #endif /* CONFIG_MMU */
399
400 /*
401 * Create a new mm_struct and populate it with a temporary stack
402 * vm_area_struct. We don't have enough context at this point to set the stack
403 * flags, permissions, and offset, so we use temporary values. We'll update
404 * them later in setup_arg_pages().
405 */
406 static int bprm_mm_init(struct linux_binprm *bprm)
407 {
408 int err;
409 struct mm_struct *mm = NULL;
410
411 bprm->mm = mm = mm_alloc();
412 err = -ENOMEM;
413 if (!mm)
414 goto err;
415
416 err = __bprm_mm_init(bprm);
417 if (err)
418 goto err;
419
420 return 0;
421
422 err:
423 if (mm) {
424 bprm->mm = NULL;
425 mmdrop(mm);
426 }
427
428 return err;
429 }
430
431 struct user_arg_ptr {
432 #ifdef CONFIG_COMPAT
433 bool is_compat;
434 #endif
435 union {
436 const char __user *const __user *native;
437 #ifdef CONFIG_COMPAT
438 const compat_uptr_t __user *compat;
439 #endif
440 } ptr;
441 };
442
443 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
444 {
445 const char __user *native;
446
447 #ifdef CONFIG_COMPAT
448 if (unlikely(argv.is_compat)) {
449 compat_uptr_t compat;
450
451 if (get_user(compat, argv.ptr.compat + nr))
452 return ERR_PTR(-EFAULT);
453
454 return compat_ptr(compat);
455 }
456 #endif
457
458 if (get_user(native, argv.ptr.native + nr))
459 return ERR_PTR(-EFAULT);
460
461 return native;
462 }
463
464 /*
465 * count() counts the number of strings in array ARGV.
466 */
467 static int count(struct user_arg_ptr argv, int max)
468 {
469 int i = 0;
470
471 if (argv.ptr.native != NULL) {
472 for (;;) {
473 const char __user *p = get_user_arg_ptr(argv, i);
474
475 if (!p)
476 break;
477
478 if (IS_ERR(p))
479 return -EFAULT;
480
481 if (i >= max)
482 return -E2BIG;
483 ++i;
484
485 if (fatal_signal_pending(current))
486 return -ERESTARTNOHAND;
487 cond_resched();
488 }
489 }
490 return i;
491 }
492
493 /*
494 * 'copy_strings()' copies argument/environment strings from the old
495 * processes's memory to the new process's stack. The call to get_user_pages()
496 * ensures the destination page is created and not swapped out.
497 */
498 static int copy_strings(int argc, struct user_arg_ptr argv,
499 struct linux_binprm *bprm)
500 {
501 struct page *kmapped_page = NULL;
502 char *kaddr = NULL;
503 unsigned long kpos = 0;
504 int ret;
505
506 while (argc-- > 0) {
507 const char __user *str;
508 int len;
509 unsigned long pos;
510
511 ret = -EFAULT;
512 str = get_user_arg_ptr(argv, argc);
513 if (IS_ERR(str))
514 goto out;
515
516 len = strnlen_user(str, MAX_ARG_STRLEN);
517 if (!len)
518 goto out;
519
520 ret = -E2BIG;
521 if (!valid_arg_len(bprm, len))
522 goto out;
523
524 /* We're going to work our way backwords. */
525 pos = bprm->p;
526 str += len;
527 bprm->p -= len;
528
529 while (len > 0) {
530 int offset, bytes_to_copy;
531
532 if (fatal_signal_pending(current)) {
533 ret = -ERESTARTNOHAND;
534 goto out;
535 }
536 cond_resched();
537
538 offset = pos % PAGE_SIZE;
539 if (offset == 0)
540 offset = PAGE_SIZE;
541
542 bytes_to_copy = offset;
543 if (bytes_to_copy > len)
544 bytes_to_copy = len;
545
546 offset -= bytes_to_copy;
547 pos -= bytes_to_copy;
548 str -= bytes_to_copy;
549 len -= bytes_to_copy;
550
551 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
552 struct page *page;
553
554 page = get_arg_page(bprm, pos, 1);
555 if (!page) {
556 ret = -E2BIG;
557 goto out;
558 }
559
560 if (kmapped_page) {
561 flush_kernel_dcache_page(kmapped_page);
562 kunmap(kmapped_page);
563 put_arg_page(kmapped_page);
564 }
565 kmapped_page = page;
566 kaddr = kmap(kmapped_page);
567 kpos = pos & PAGE_MASK;
568 flush_arg_page(bprm, kpos, kmapped_page);
569 }
570 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
571 ret = -EFAULT;
572 goto out;
573 }
574 }
575 }
576 ret = 0;
577 out:
578 if (kmapped_page) {
579 flush_kernel_dcache_page(kmapped_page);
580 kunmap(kmapped_page);
581 put_arg_page(kmapped_page);
582 }
583 return ret;
584 }
585
586 /*
587 * Like copy_strings, but get argv and its values from kernel memory.
588 */
589 int copy_strings_kernel(int argc, const char *const *__argv,
590 struct linux_binprm *bprm)
591 {
592 int r;
593 mm_segment_t oldfs = get_fs();
594 struct user_arg_ptr argv = {
595 .ptr.native = (const char __user *const __user *)__argv,
596 };
597
598 set_fs(KERNEL_DS);
599 r = copy_strings(argc, argv, bprm);
600 set_fs(oldfs);
601
602 return r;
603 }
604 EXPORT_SYMBOL(copy_strings_kernel);
605
606 #ifdef CONFIG_MMU
607
608 /*
609 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
610 * the binfmt code determines where the new stack should reside, we shift it to
611 * its final location. The process proceeds as follows:
612 *
613 * 1) Use shift to calculate the new vma endpoints.
614 * 2) Extend vma to cover both the old and new ranges. This ensures the
615 * arguments passed to subsequent functions are consistent.
616 * 3) Move vma's page tables to the new range.
617 * 4) Free up any cleared pgd range.
618 * 5) Shrink the vma to cover only the new range.
619 */
620 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
621 {
622 struct mm_struct *mm = vma->vm_mm;
623 unsigned long old_start = vma->vm_start;
624 unsigned long old_end = vma->vm_end;
625 unsigned long length = old_end - old_start;
626 unsigned long new_start = old_start - shift;
627 unsigned long new_end = old_end - shift;
628 struct mmu_gather tlb;
629
630 BUG_ON(new_start > new_end);
631
632 /*
633 * ensure there are no vmas between where we want to go
634 * and where we are
635 */
636 if (vma != find_vma(mm, new_start))
637 return -EFAULT;
638
639 /*
640 * cover the whole range: [new_start, old_end)
641 */
642 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
643 return -ENOMEM;
644
645 /*
646 * move the page tables downwards, on failure we rely on
647 * process cleanup to remove whatever mess we made.
648 */
649 if (length != move_page_tables(vma, old_start,
650 vma, new_start, length, false))
651 return -ENOMEM;
652
653 lru_add_drain();
654 tlb_gather_mmu(&tlb, mm, old_start, old_end);
655 if (new_end > old_start) {
656 /*
657 * when the old and new regions overlap clear from new_end.
658 */
659 free_pgd_range(&tlb, new_end, old_end, new_end,
660 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
661 } else {
662 /*
663 * otherwise, clean from old_start; this is done to not touch
664 * the address space in [new_end, old_start) some architectures
665 * have constraints on va-space that make this illegal (IA64) -
666 * for the others its just a little faster.
667 */
668 free_pgd_range(&tlb, old_start, old_end, new_end,
669 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
670 }
671 tlb_finish_mmu(&tlb, old_start, old_end);
672
673 /*
674 * Shrink the vma to just the new range. Always succeeds.
675 */
676 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
677
678 return 0;
679 }
680
681 /*
682 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
683 * the stack is optionally relocated, and some extra space is added.
684 */
685 int setup_arg_pages(struct linux_binprm *bprm,
686 unsigned long stack_top,
687 int executable_stack)
688 {
689 unsigned long ret;
690 unsigned long stack_shift;
691 struct mm_struct *mm = current->mm;
692 struct vm_area_struct *vma = bprm->vma;
693 struct vm_area_struct *prev = NULL;
694 unsigned long vm_flags;
695 unsigned long stack_base;
696 unsigned long stack_size;
697 unsigned long stack_expand;
698 unsigned long rlim_stack;
699
700 #ifdef CONFIG_STACK_GROWSUP
701 /* Limit stack size */
702 stack_base = rlimit_max(RLIMIT_STACK);
703 if (stack_base > STACK_SIZE_MAX)
704 stack_base = STACK_SIZE_MAX;
705
706 /* Add space for stack randomization. */
707 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
708
709 /* Make sure we didn't let the argument array grow too large. */
710 if (vma->vm_end - vma->vm_start > stack_base)
711 return -ENOMEM;
712
713 stack_base = PAGE_ALIGN(stack_top - stack_base);
714
715 stack_shift = vma->vm_start - stack_base;
716 mm->arg_start = bprm->p - stack_shift;
717 bprm->p = vma->vm_end - stack_shift;
718 #else
719 stack_top = arch_align_stack(stack_top);
720 stack_top = PAGE_ALIGN(stack_top);
721
722 if (unlikely(stack_top < mmap_min_addr) ||
723 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
724 return -ENOMEM;
725
726 stack_shift = vma->vm_end - stack_top;
727
728 bprm->p -= stack_shift;
729 mm->arg_start = bprm->p;
730 #endif
731
732 if (bprm->loader)
733 bprm->loader -= stack_shift;
734 bprm->exec -= stack_shift;
735
736 if (down_write_killable(&mm->mmap_sem))
737 return -EINTR;
738
739 vm_flags = VM_STACK_FLAGS;
740
741 /*
742 * Adjust stack execute permissions; explicitly enable for
743 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
744 * (arch default) otherwise.
745 */
746 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
747 vm_flags |= VM_EXEC;
748 else if (executable_stack == EXSTACK_DISABLE_X)
749 vm_flags &= ~VM_EXEC;
750 vm_flags |= mm->def_flags;
751 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
752
753 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
754 vm_flags);
755 if (ret)
756 goto out_unlock;
757 BUG_ON(prev != vma);
758
759 /* Move stack pages down in memory. */
760 if (stack_shift) {
761 ret = shift_arg_pages(vma, stack_shift);
762 if (ret)
763 goto out_unlock;
764 }
765
766 /* mprotect_fixup is overkill to remove the temporary stack flags */
767 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
768
769 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
770 stack_size = vma->vm_end - vma->vm_start;
771 /*
772 * Align this down to a page boundary as expand_stack
773 * will align it up.
774 */
775 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
776 #ifdef CONFIG_STACK_GROWSUP
777 if (stack_size + stack_expand > rlim_stack)
778 stack_base = vma->vm_start + rlim_stack;
779 else
780 stack_base = vma->vm_end + stack_expand;
781 #else
782 if (stack_size + stack_expand > rlim_stack)
783 stack_base = vma->vm_end - rlim_stack;
784 else
785 stack_base = vma->vm_start - stack_expand;
786 #endif
787 current->mm->start_stack = bprm->p;
788 ret = expand_stack(vma, stack_base);
789 if (ret)
790 ret = -EFAULT;
791
792 out_unlock:
793 up_write(&mm->mmap_sem);
794 return ret;
795 }
796 EXPORT_SYMBOL(setup_arg_pages);
797
798 #else
799
800 /*
801 * Transfer the program arguments and environment from the holding pages
802 * onto the stack. The provided stack pointer is adjusted accordingly.
803 */
804 int transfer_args_to_stack(struct linux_binprm *bprm,
805 unsigned long *sp_location)
806 {
807 unsigned long index, stop, sp;
808 int ret = 0;
809
810 stop = bprm->p >> PAGE_SHIFT;
811 sp = *sp_location;
812
813 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
814 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
815 char *src = kmap(bprm->page[index]) + offset;
816 sp -= PAGE_SIZE - offset;
817 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
818 ret = -EFAULT;
819 kunmap(bprm->page[index]);
820 if (ret)
821 goto out;
822 }
823
824 *sp_location = sp;
825
826 out:
827 return ret;
828 }
829 EXPORT_SYMBOL(transfer_args_to_stack);
830
831 #endif /* CONFIG_MMU */
832
833 static struct file *do_open_execat(int fd, struct filename *name, int flags)
834 {
835 struct file *file;
836 int err;
837 struct open_flags open_exec_flags = {
838 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
839 .acc_mode = MAY_EXEC,
840 .intent = LOOKUP_OPEN,
841 .lookup_flags = LOOKUP_FOLLOW,
842 };
843
844 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
845 return ERR_PTR(-EINVAL);
846 if (flags & AT_SYMLINK_NOFOLLOW)
847 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
848 if (flags & AT_EMPTY_PATH)
849 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
850
851 file = do_filp_open(fd, name, &open_exec_flags);
852 if (IS_ERR(file))
853 goto out;
854
855 err = -EACCES;
856 if (!S_ISREG(file_inode(file)->i_mode))
857 goto exit;
858
859 if (path_noexec(&file->f_path))
860 goto exit;
861
862 err = deny_write_access(file);
863 if (err)
864 goto exit;
865
866 if (name->name[0] != '\0')
867 fsnotify_open(file);
868
869 trace_open_exec(name->name);
870
871 out:
872 return file;
873
874 exit:
875 fput(file);
876 return ERR_PTR(err);
877 }
878
879 struct file *open_exec(const char *name)
880 {
881 struct filename *filename = getname_kernel(name);
882 struct file *f = ERR_CAST(filename);
883
884 if (!IS_ERR(filename)) {
885 f = do_open_execat(AT_FDCWD, filename, 0);
886 putname(filename);
887 }
888 return f;
889 }
890 EXPORT_SYMBOL(open_exec);
891
892 int kernel_read(struct file *file, loff_t offset,
893 char *addr, unsigned long count)
894 {
895 mm_segment_t old_fs;
896 loff_t pos = offset;
897 int result;
898
899 old_fs = get_fs();
900 set_fs(get_ds());
901 /* The cast to a user pointer is valid due to the set_fs() */
902 result = vfs_read(file, (void __user *)addr, count, &pos);
903 set_fs(old_fs);
904 return result;
905 }
906
907 EXPORT_SYMBOL(kernel_read);
908
909 int kernel_read_file(struct file *file, void **buf, loff_t *size,
910 loff_t max_size, enum kernel_read_file_id id)
911 {
912 loff_t i_size, pos;
913 ssize_t bytes = 0;
914 int ret;
915
916 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
917 return -EINVAL;
918
919 ret = security_kernel_read_file(file, id);
920 if (ret)
921 return ret;
922
923 ret = deny_write_access(file);
924 if (ret)
925 return ret;
926
927 i_size = i_size_read(file_inode(file));
928 if (max_size > 0 && i_size > max_size) {
929 ret = -EFBIG;
930 goto out;
931 }
932 if (i_size <= 0) {
933 ret = -EINVAL;
934 goto out;
935 }
936
937 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
938 *buf = vmalloc(i_size);
939 if (!*buf) {
940 ret = -ENOMEM;
941 goto out;
942 }
943
944 pos = 0;
945 while (pos < i_size) {
946 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
947 i_size - pos);
948 if (bytes < 0) {
949 ret = bytes;
950 goto out;
951 }
952
953 if (bytes == 0)
954 break;
955 pos += bytes;
956 }
957
958 if (pos != i_size) {
959 ret = -EIO;
960 goto out_free;
961 }
962
963 ret = security_kernel_post_read_file(file, *buf, i_size, id);
964 if (!ret)
965 *size = pos;
966
967 out_free:
968 if (ret < 0) {
969 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
970 vfree(*buf);
971 *buf = NULL;
972 }
973 }
974
975 out:
976 allow_write_access(file);
977 return ret;
978 }
979 EXPORT_SYMBOL_GPL(kernel_read_file);
980
981 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
982 loff_t max_size, enum kernel_read_file_id id)
983 {
984 struct file *file;
985 int ret;
986
987 if (!path || !*path)
988 return -EINVAL;
989
990 file = filp_open(path, O_RDONLY, 0);
991 if (IS_ERR(file))
992 return PTR_ERR(file);
993
994 ret = kernel_read_file(file, buf, size, max_size, id);
995 fput(file);
996 return ret;
997 }
998 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
999
1000 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1001 enum kernel_read_file_id id)
1002 {
1003 struct fd f = fdget(fd);
1004 int ret = -EBADF;
1005
1006 if (!f.file)
1007 goto out;
1008
1009 ret = kernel_read_file(f.file, buf, size, max_size, id);
1010 out:
1011 fdput(f);
1012 return ret;
1013 }
1014 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1015
1016 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1017 {
1018 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1019 if (res > 0)
1020 flush_icache_range(addr, addr + len);
1021 return res;
1022 }
1023 EXPORT_SYMBOL(read_code);
1024
1025 static int exec_mmap(struct mm_struct *mm)
1026 {
1027 struct task_struct *tsk;
1028 struct mm_struct *old_mm, *active_mm;
1029
1030 /* Notify parent that we're no longer interested in the old VM */
1031 tsk = current;
1032 old_mm = current->mm;
1033 mm_release(tsk, old_mm);
1034
1035 if (old_mm) {
1036 sync_mm_rss(old_mm);
1037 /*
1038 * Make sure that if there is a core dump in progress
1039 * for the old mm, we get out and die instead of going
1040 * through with the exec. We must hold mmap_sem around
1041 * checking core_state and changing tsk->mm.
1042 */
1043 down_read(&old_mm->mmap_sem);
1044 if (unlikely(old_mm->core_state)) {
1045 up_read(&old_mm->mmap_sem);
1046 return -EINTR;
1047 }
1048 }
1049 task_lock(tsk);
1050 active_mm = tsk->active_mm;
1051 tsk->mm = mm;
1052 tsk->active_mm = mm;
1053 activate_mm(active_mm, mm);
1054 tsk->mm->vmacache_seqnum = 0;
1055 vmacache_flush(tsk);
1056 task_unlock(tsk);
1057 if (old_mm) {
1058 up_read(&old_mm->mmap_sem);
1059 BUG_ON(active_mm != old_mm);
1060 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1061 mm_update_next_owner(old_mm);
1062 mmput(old_mm);
1063 return 0;
1064 }
1065 mmdrop(active_mm);
1066 return 0;
1067 }
1068
1069 /*
1070 * This function makes sure the current process has its own signal table,
1071 * so that flush_signal_handlers can later reset the handlers without
1072 * disturbing other processes. (Other processes might share the signal
1073 * table via the CLONE_SIGHAND option to clone().)
1074 */
1075 static int de_thread(struct task_struct *tsk)
1076 {
1077 struct signal_struct *sig = tsk->signal;
1078 struct sighand_struct *oldsighand = tsk->sighand;
1079 spinlock_t *lock = &oldsighand->siglock;
1080
1081 if (thread_group_empty(tsk))
1082 goto no_thread_group;
1083
1084 /*
1085 * Kill all other threads in the thread group.
1086 */
1087 spin_lock_irq(lock);
1088 if (signal_group_exit(sig)) {
1089 /*
1090 * Another group action in progress, just
1091 * return so that the signal is processed.
1092 */
1093 spin_unlock_irq(lock);
1094 return -EAGAIN;
1095 }
1096
1097 sig->group_exit_task = tsk;
1098 sig->notify_count = zap_other_threads(tsk);
1099 if (!thread_group_leader(tsk))
1100 sig->notify_count--;
1101
1102 while (sig->notify_count) {
1103 __set_current_state(TASK_KILLABLE);
1104 spin_unlock_irq(lock);
1105 schedule();
1106 if (unlikely(__fatal_signal_pending(tsk)))
1107 goto killed;
1108 spin_lock_irq(lock);
1109 }
1110 spin_unlock_irq(lock);
1111
1112 /*
1113 * At this point all other threads have exited, all we have to
1114 * do is to wait for the thread group leader to become inactive,
1115 * and to assume its PID:
1116 */
1117 if (!thread_group_leader(tsk)) {
1118 struct task_struct *leader = tsk->group_leader;
1119
1120 for (;;) {
1121 cgroup_threadgroup_change_begin(tsk);
1122 write_lock_irq(&tasklist_lock);
1123 /*
1124 * Do this under tasklist_lock to ensure that
1125 * exit_notify() can't miss ->group_exit_task
1126 */
1127 sig->notify_count = -1;
1128 if (likely(leader->exit_state))
1129 break;
1130 __set_current_state(TASK_KILLABLE);
1131 write_unlock_irq(&tasklist_lock);
1132 cgroup_threadgroup_change_end(tsk);
1133 schedule();
1134 if (unlikely(__fatal_signal_pending(tsk)))
1135 goto killed;
1136 }
1137
1138 /*
1139 * The only record we have of the real-time age of a
1140 * process, regardless of execs it's done, is start_time.
1141 * All the past CPU time is accumulated in signal_struct
1142 * from sister threads now dead. But in this non-leader
1143 * exec, nothing survives from the original leader thread,
1144 * whose birth marks the true age of this process now.
1145 * When we take on its identity by switching to its PID, we
1146 * also take its birthdate (always earlier than our own).
1147 */
1148 tsk->start_time = leader->start_time;
1149 tsk->real_start_time = leader->real_start_time;
1150
1151 BUG_ON(!same_thread_group(leader, tsk));
1152 BUG_ON(has_group_leader_pid(tsk));
1153 /*
1154 * An exec() starts a new thread group with the
1155 * TGID of the previous thread group. Rehash the
1156 * two threads with a switched PID, and release
1157 * the former thread group leader:
1158 */
1159
1160 /* Become a process group leader with the old leader's pid.
1161 * The old leader becomes a thread of the this thread group.
1162 * Note: The old leader also uses this pid until release_task
1163 * is called. Odd but simple and correct.
1164 */
1165 tsk->pid = leader->pid;
1166 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1167 transfer_pid(leader, tsk, PIDTYPE_PGID);
1168 transfer_pid(leader, tsk, PIDTYPE_SID);
1169
1170 list_replace_rcu(&leader->tasks, &tsk->tasks);
1171 list_replace_init(&leader->sibling, &tsk->sibling);
1172
1173 tsk->group_leader = tsk;
1174 leader->group_leader = tsk;
1175
1176 tsk->exit_signal = SIGCHLD;
1177 leader->exit_signal = -1;
1178
1179 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1180 leader->exit_state = EXIT_DEAD;
1181
1182 /*
1183 * We are going to release_task()->ptrace_unlink() silently,
1184 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1185 * the tracer wont't block again waiting for this thread.
1186 */
1187 if (unlikely(leader->ptrace))
1188 __wake_up_parent(leader, leader->parent);
1189 write_unlock_irq(&tasklist_lock);
1190 cgroup_threadgroup_change_end(tsk);
1191
1192 release_task(leader);
1193 }
1194
1195 sig->group_exit_task = NULL;
1196 sig->notify_count = 0;
1197
1198 no_thread_group:
1199 /* we have changed execution domain */
1200 tsk->exit_signal = SIGCHLD;
1201
1202 #ifdef CONFIG_POSIX_TIMERS
1203 exit_itimers(sig);
1204 flush_itimer_signals();
1205 #endif
1206
1207 if (atomic_read(&oldsighand->count) != 1) {
1208 struct sighand_struct *newsighand;
1209 /*
1210 * This ->sighand is shared with the CLONE_SIGHAND
1211 * but not CLONE_THREAD task, switch to the new one.
1212 */
1213 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1214 if (!newsighand)
1215 return -ENOMEM;
1216
1217 atomic_set(&newsighand->count, 1);
1218 memcpy(newsighand->action, oldsighand->action,
1219 sizeof(newsighand->action));
1220
1221 write_lock_irq(&tasklist_lock);
1222 spin_lock(&oldsighand->siglock);
1223 rcu_assign_pointer(tsk->sighand, newsighand);
1224 spin_unlock(&oldsighand->siglock);
1225 write_unlock_irq(&tasklist_lock);
1226
1227 __cleanup_sighand(oldsighand);
1228 }
1229
1230 BUG_ON(!thread_group_leader(tsk));
1231 return 0;
1232
1233 killed:
1234 /* protects against exit_notify() and __exit_signal() */
1235 read_lock(&tasklist_lock);
1236 sig->group_exit_task = NULL;
1237 sig->notify_count = 0;
1238 read_unlock(&tasklist_lock);
1239 return -EAGAIN;
1240 }
1241
1242 char *get_task_comm(char *buf, struct task_struct *tsk)
1243 {
1244 /* buf must be at least sizeof(tsk->comm) in size */
1245 task_lock(tsk);
1246 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1247 task_unlock(tsk);
1248 return buf;
1249 }
1250 EXPORT_SYMBOL_GPL(get_task_comm);
1251
1252 /*
1253 * These functions flushes out all traces of the currently running executable
1254 * so that a new one can be started
1255 */
1256
1257 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1258 {
1259 task_lock(tsk);
1260 trace_task_rename(tsk, buf);
1261 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1262 task_unlock(tsk);
1263 perf_event_comm(tsk, exec);
1264 }
1265
1266 int flush_old_exec(struct linux_binprm * bprm)
1267 {
1268 int retval;
1269
1270 /*
1271 * Make sure we have a private signal table and that
1272 * we are unassociated from the previous thread group.
1273 */
1274 retval = de_thread(current);
1275 if (retval)
1276 goto out;
1277
1278 /*
1279 * Must be called _before_ exec_mmap() as bprm->mm is
1280 * not visibile until then. This also enables the update
1281 * to be lockless.
1282 */
1283 set_mm_exe_file(bprm->mm, bprm->file);
1284
1285 /*
1286 * Release all of the old mmap stuff
1287 */
1288 acct_arg_size(bprm, 0);
1289 retval = exec_mmap(bprm->mm);
1290 if (retval)
1291 goto out;
1292
1293 bprm->mm = NULL; /* We're using it now */
1294
1295 set_fs(USER_DS);
1296 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1297 PF_NOFREEZE | PF_NO_SETAFFINITY);
1298 flush_thread();
1299 current->personality &= ~bprm->per_clear;
1300
1301 /*
1302 * We have to apply CLOEXEC before we change whether the process is
1303 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1304 * trying to access the should-be-closed file descriptors of a process
1305 * undergoing exec(2).
1306 */
1307 do_close_on_exec(current->files);
1308 return 0;
1309
1310 out:
1311 return retval;
1312 }
1313 EXPORT_SYMBOL(flush_old_exec);
1314
1315 void would_dump(struct linux_binprm *bprm, struct file *file)
1316 {
1317 struct inode *inode = file_inode(file);
1318 if (inode_permission(inode, MAY_READ) < 0) {
1319 struct user_namespace *old, *user_ns;
1320 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1321
1322 /* Ensure mm->user_ns contains the executable */
1323 user_ns = old = bprm->mm->user_ns;
1324 while ((user_ns != &init_user_ns) &&
1325 !privileged_wrt_inode_uidgid(user_ns, inode))
1326 user_ns = user_ns->parent;
1327
1328 if (old != user_ns) {
1329 bprm->mm->user_ns = get_user_ns(user_ns);
1330 put_user_ns(old);
1331 }
1332 }
1333 }
1334 EXPORT_SYMBOL(would_dump);
1335
1336 void setup_new_exec(struct linux_binprm * bprm)
1337 {
1338 arch_pick_mmap_layout(current->mm);
1339
1340 /* This is the point of no return */
1341 current->sas_ss_sp = current->sas_ss_size = 0;
1342
1343 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1344 set_dumpable(current->mm, SUID_DUMP_USER);
1345 else
1346 set_dumpable(current->mm, suid_dumpable);
1347
1348 arch_setup_new_exec();
1349 perf_event_exec();
1350 __set_task_comm(current, kbasename(bprm->filename), true);
1351
1352 /* Set the new mm task size. We have to do that late because it may
1353 * depend on TIF_32BIT which is only updated in flush_thread() on
1354 * some architectures like powerpc
1355 */
1356 current->mm->task_size = TASK_SIZE;
1357
1358 /* install the new credentials */
1359 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1360 !gid_eq(bprm->cred->gid, current_egid())) {
1361 current->pdeath_signal = 0;
1362 } else {
1363 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1364 set_dumpable(current->mm, suid_dumpable);
1365 }
1366
1367 /* An exec changes our domain. We are no longer part of the thread
1368 group */
1369 current->self_exec_id++;
1370 flush_signal_handlers(current, 0);
1371 }
1372 EXPORT_SYMBOL(setup_new_exec);
1373
1374 /*
1375 * Prepare credentials and lock ->cred_guard_mutex.
1376 * install_exec_creds() commits the new creds and drops the lock.
1377 * Or, if exec fails before, free_bprm() should release ->cred and
1378 * and unlock.
1379 */
1380 int prepare_bprm_creds(struct linux_binprm *bprm)
1381 {
1382 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1383 return -ERESTARTNOINTR;
1384
1385 bprm->cred = prepare_exec_creds();
1386 if (likely(bprm->cred))
1387 return 0;
1388
1389 mutex_unlock(&current->signal->cred_guard_mutex);
1390 return -ENOMEM;
1391 }
1392
1393 static void free_bprm(struct linux_binprm *bprm)
1394 {
1395 free_arg_pages(bprm);
1396 if (bprm->cred) {
1397 mutex_unlock(&current->signal->cred_guard_mutex);
1398 abort_creds(bprm->cred);
1399 }
1400 if (bprm->file) {
1401 allow_write_access(bprm->file);
1402 fput(bprm->file);
1403 }
1404 /* If a binfmt changed the interp, free it. */
1405 if (bprm->interp != bprm->filename)
1406 kfree(bprm->interp);
1407 kfree(bprm);
1408 }
1409
1410 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1411 {
1412 /* If a binfmt changed the interp, free it first. */
1413 if (bprm->interp != bprm->filename)
1414 kfree(bprm->interp);
1415 bprm->interp = kstrdup(interp, GFP_KERNEL);
1416 if (!bprm->interp)
1417 return -ENOMEM;
1418 return 0;
1419 }
1420 EXPORT_SYMBOL(bprm_change_interp);
1421
1422 /*
1423 * install the new credentials for this executable
1424 */
1425 void install_exec_creds(struct linux_binprm *bprm)
1426 {
1427 security_bprm_committing_creds(bprm);
1428
1429 commit_creds(bprm->cred);
1430 bprm->cred = NULL;
1431
1432 /*
1433 * Disable monitoring for regular users
1434 * when executing setuid binaries. Must
1435 * wait until new credentials are committed
1436 * by commit_creds() above
1437 */
1438 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1439 perf_event_exit_task(current);
1440 /*
1441 * cred_guard_mutex must be held at least to this point to prevent
1442 * ptrace_attach() from altering our determination of the task's
1443 * credentials; any time after this it may be unlocked.
1444 */
1445 security_bprm_committed_creds(bprm);
1446 mutex_unlock(&current->signal->cred_guard_mutex);
1447 }
1448 EXPORT_SYMBOL(install_exec_creds);
1449
1450 /*
1451 * determine how safe it is to execute the proposed program
1452 * - the caller must hold ->cred_guard_mutex to protect against
1453 * PTRACE_ATTACH or seccomp thread-sync
1454 */
1455 static void check_unsafe_exec(struct linux_binprm *bprm)
1456 {
1457 struct task_struct *p = current, *t;
1458 unsigned n_fs;
1459
1460 if (p->ptrace)
1461 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1462
1463 /*
1464 * This isn't strictly necessary, but it makes it harder for LSMs to
1465 * mess up.
1466 */
1467 if (task_no_new_privs(current))
1468 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1469
1470 t = p;
1471 n_fs = 1;
1472 spin_lock(&p->fs->lock);
1473 rcu_read_lock();
1474 while_each_thread(p, t) {
1475 if (t->fs == p->fs)
1476 n_fs++;
1477 }
1478 rcu_read_unlock();
1479
1480 if (p->fs->users > n_fs)
1481 bprm->unsafe |= LSM_UNSAFE_SHARE;
1482 else
1483 p->fs->in_exec = 1;
1484 spin_unlock(&p->fs->lock);
1485 }
1486
1487 static void bprm_fill_uid(struct linux_binprm *bprm)
1488 {
1489 struct inode *inode;
1490 unsigned int mode;
1491 kuid_t uid;
1492 kgid_t gid;
1493
1494 /*
1495 * Since this can be called multiple times (via prepare_binprm),
1496 * we must clear any previous work done when setting set[ug]id
1497 * bits from any earlier bprm->file uses (for example when run
1498 * first for a setuid script then again for its interpreter).
1499 */
1500 bprm->cred->euid = current_euid();
1501 bprm->cred->egid = current_egid();
1502
1503 if (!mnt_may_suid(bprm->file->f_path.mnt))
1504 return;
1505
1506 if (task_no_new_privs(current))
1507 return;
1508
1509 inode = bprm->file->f_path.dentry->d_inode;
1510 mode = READ_ONCE(inode->i_mode);
1511 if (!(mode & (S_ISUID|S_ISGID)))
1512 return;
1513
1514 /* Be careful if suid/sgid is set */
1515 inode_lock(inode);
1516
1517 /* reload atomically mode/uid/gid now that lock held */
1518 mode = inode->i_mode;
1519 uid = inode->i_uid;
1520 gid = inode->i_gid;
1521 inode_unlock(inode);
1522
1523 /* We ignore suid/sgid if there are no mappings for them in the ns */
1524 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1525 !kgid_has_mapping(bprm->cred->user_ns, gid))
1526 return;
1527
1528 if (mode & S_ISUID) {
1529 bprm->per_clear |= PER_CLEAR_ON_SETID;
1530 bprm->cred->euid = uid;
1531 }
1532
1533 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1534 bprm->per_clear |= PER_CLEAR_ON_SETID;
1535 bprm->cred->egid = gid;
1536 }
1537 }
1538
1539 /*
1540 * Fill the binprm structure from the inode.
1541 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1542 *
1543 * This may be called multiple times for binary chains (scripts for example).
1544 */
1545 int prepare_binprm(struct linux_binprm *bprm)
1546 {
1547 int retval;
1548
1549 bprm_fill_uid(bprm);
1550
1551 /* fill in binprm security blob */
1552 retval = security_bprm_set_creds(bprm);
1553 if (retval)
1554 return retval;
1555 bprm->cred_prepared = 1;
1556
1557 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1558 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1559 }
1560
1561 EXPORT_SYMBOL(prepare_binprm);
1562
1563 /*
1564 * Arguments are '\0' separated strings found at the location bprm->p
1565 * points to; chop off the first by relocating brpm->p to right after
1566 * the first '\0' encountered.
1567 */
1568 int remove_arg_zero(struct linux_binprm *bprm)
1569 {
1570 int ret = 0;
1571 unsigned long offset;
1572 char *kaddr;
1573 struct page *page;
1574
1575 if (!bprm->argc)
1576 return 0;
1577
1578 do {
1579 offset = bprm->p & ~PAGE_MASK;
1580 page = get_arg_page(bprm, bprm->p, 0);
1581 if (!page) {
1582 ret = -EFAULT;
1583 goto out;
1584 }
1585 kaddr = kmap_atomic(page);
1586
1587 for (; offset < PAGE_SIZE && kaddr[offset];
1588 offset++, bprm->p++)
1589 ;
1590
1591 kunmap_atomic(kaddr);
1592 put_arg_page(page);
1593 } while (offset == PAGE_SIZE);
1594
1595 bprm->p++;
1596 bprm->argc--;
1597 ret = 0;
1598
1599 out:
1600 return ret;
1601 }
1602 EXPORT_SYMBOL(remove_arg_zero);
1603
1604 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1605 /*
1606 * cycle the list of binary formats handler, until one recognizes the image
1607 */
1608 int search_binary_handler(struct linux_binprm *bprm)
1609 {
1610 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1611 struct linux_binfmt *fmt;
1612 int retval;
1613
1614 /* This allows 4 levels of binfmt rewrites before failing hard. */
1615 if (bprm->recursion_depth > 5)
1616 return -ELOOP;
1617
1618 retval = security_bprm_check(bprm);
1619 if (retval)
1620 return retval;
1621
1622 retval = -ENOENT;
1623 retry:
1624 read_lock(&binfmt_lock);
1625 list_for_each_entry(fmt, &formats, lh) {
1626 if (!try_module_get(fmt->module))
1627 continue;
1628 read_unlock(&binfmt_lock);
1629 bprm->recursion_depth++;
1630 retval = fmt->load_binary(bprm);
1631 read_lock(&binfmt_lock);
1632 put_binfmt(fmt);
1633 bprm->recursion_depth--;
1634 if (retval < 0 && !bprm->mm) {
1635 /* we got to flush_old_exec() and failed after it */
1636 read_unlock(&binfmt_lock);
1637 force_sigsegv(SIGSEGV, current);
1638 return retval;
1639 }
1640 if (retval != -ENOEXEC || !bprm->file) {
1641 read_unlock(&binfmt_lock);
1642 return retval;
1643 }
1644 }
1645 read_unlock(&binfmt_lock);
1646
1647 if (need_retry) {
1648 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1649 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1650 return retval;
1651 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1652 return retval;
1653 need_retry = false;
1654 goto retry;
1655 }
1656
1657 return retval;
1658 }
1659 EXPORT_SYMBOL(search_binary_handler);
1660
1661 static int exec_binprm(struct linux_binprm *bprm)
1662 {
1663 pid_t old_pid, old_vpid;
1664 int ret;
1665
1666 /* Need to fetch pid before load_binary changes it */
1667 old_pid = current->pid;
1668 rcu_read_lock();
1669 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1670 rcu_read_unlock();
1671
1672 ret = search_binary_handler(bprm);
1673 if (ret >= 0) {
1674 audit_bprm(bprm);
1675 trace_sched_process_exec(current, old_pid, bprm);
1676 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1677 proc_exec_connector(current);
1678 }
1679
1680 return ret;
1681 }
1682
1683 /*
1684 * sys_execve() executes a new program.
1685 */
1686 static int do_execveat_common(int fd, struct filename *filename,
1687 struct user_arg_ptr argv,
1688 struct user_arg_ptr envp,
1689 int flags)
1690 {
1691 char *pathbuf = NULL;
1692 struct linux_binprm *bprm;
1693 struct file *file;
1694 struct files_struct *displaced;
1695 int retval;
1696
1697 if (IS_ERR(filename))
1698 return PTR_ERR(filename);
1699
1700 /*
1701 * We move the actual failure in case of RLIMIT_NPROC excess from
1702 * set*uid() to execve() because too many poorly written programs
1703 * don't check setuid() return code. Here we additionally recheck
1704 * whether NPROC limit is still exceeded.
1705 */
1706 if ((current->flags & PF_NPROC_EXCEEDED) &&
1707 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1708 retval = -EAGAIN;
1709 goto out_ret;
1710 }
1711
1712 /* We're below the limit (still or again), so we don't want to make
1713 * further execve() calls fail. */
1714 current->flags &= ~PF_NPROC_EXCEEDED;
1715
1716 retval = unshare_files(&displaced);
1717 if (retval)
1718 goto out_ret;
1719
1720 retval = -ENOMEM;
1721 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1722 if (!bprm)
1723 goto out_files;
1724
1725 retval = prepare_bprm_creds(bprm);
1726 if (retval)
1727 goto out_free;
1728
1729 check_unsafe_exec(bprm);
1730 current->in_execve = 1;
1731
1732 file = do_open_execat(fd, filename, flags);
1733 retval = PTR_ERR(file);
1734 if (IS_ERR(file))
1735 goto out_unmark;
1736
1737 sched_exec();
1738
1739 bprm->file = file;
1740 if (fd == AT_FDCWD || filename->name[0] == '/') {
1741 bprm->filename = filename->name;
1742 } else {
1743 if (filename->name[0] == '\0')
1744 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1745 else
1746 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1747 fd, filename->name);
1748 if (!pathbuf) {
1749 retval = -ENOMEM;
1750 goto out_unmark;
1751 }
1752 /*
1753 * Record that a name derived from an O_CLOEXEC fd will be
1754 * inaccessible after exec. Relies on having exclusive access to
1755 * current->files (due to unshare_files above).
1756 */
1757 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1758 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1759 bprm->filename = pathbuf;
1760 }
1761 bprm->interp = bprm->filename;
1762
1763 retval = bprm_mm_init(bprm);
1764 if (retval)
1765 goto out_unmark;
1766
1767 bprm->argc = count(argv, MAX_ARG_STRINGS);
1768 if ((retval = bprm->argc) < 0)
1769 goto out;
1770
1771 bprm->envc = count(envp, MAX_ARG_STRINGS);
1772 if ((retval = bprm->envc) < 0)
1773 goto out;
1774
1775 retval = prepare_binprm(bprm);
1776 if (retval < 0)
1777 goto out;
1778
1779 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1780 if (retval < 0)
1781 goto out;
1782
1783 bprm->exec = bprm->p;
1784 retval = copy_strings(bprm->envc, envp, bprm);
1785 if (retval < 0)
1786 goto out;
1787
1788 retval = copy_strings(bprm->argc, argv, bprm);
1789 if (retval < 0)
1790 goto out;
1791
1792 would_dump(bprm, bprm->file);
1793
1794 retval = exec_binprm(bprm);
1795 if (retval < 0)
1796 goto out;
1797
1798 /* execve succeeded */
1799 current->fs->in_exec = 0;
1800 current->in_execve = 0;
1801 acct_update_integrals(current);
1802 task_numa_free(current);
1803 free_bprm(bprm);
1804 kfree(pathbuf);
1805 putname(filename);
1806 if (displaced)
1807 put_files_struct(displaced);
1808 return retval;
1809
1810 out:
1811 if (bprm->mm) {
1812 acct_arg_size(bprm, 0);
1813 mmput(bprm->mm);
1814 }
1815
1816 out_unmark:
1817 current->fs->in_exec = 0;
1818 current->in_execve = 0;
1819
1820 out_free:
1821 free_bprm(bprm);
1822 kfree(pathbuf);
1823
1824 out_files:
1825 if (displaced)
1826 reset_files_struct(displaced);
1827 out_ret:
1828 putname(filename);
1829 return retval;
1830 }
1831
1832 int do_execve(struct filename *filename,
1833 const char __user *const __user *__argv,
1834 const char __user *const __user *__envp)
1835 {
1836 struct user_arg_ptr argv = { .ptr.native = __argv };
1837 struct user_arg_ptr envp = { .ptr.native = __envp };
1838 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1839 }
1840
1841 int do_execveat(int fd, struct filename *filename,
1842 const char __user *const __user *__argv,
1843 const char __user *const __user *__envp,
1844 int flags)
1845 {
1846 struct user_arg_ptr argv = { .ptr.native = __argv };
1847 struct user_arg_ptr envp = { .ptr.native = __envp };
1848
1849 return do_execveat_common(fd, filename, argv, envp, flags);
1850 }
1851
1852 #ifdef CONFIG_COMPAT
1853 static int compat_do_execve(struct filename *filename,
1854 const compat_uptr_t __user *__argv,
1855 const compat_uptr_t __user *__envp)
1856 {
1857 struct user_arg_ptr argv = {
1858 .is_compat = true,
1859 .ptr.compat = __argv,
1860 };
1861 struct user_arg_ptr envp = {
1862 .is_compat = true,
1863 .ptr.compat = __envp,
1864 };
1865 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1866 }
1867
1868 static int compat_do_execveat(int fd, struct filename *filename,
1869 const compat_uptr_t __user *__argv,
1870 const compat_uptr_t __user *__envp,
1871 int flags)
1872 {
1873 struct user_arg_ptr argv = {
1874 .is_compat = true,
1875 .ptr.compat = __argv,
1876 };
1877 struct user_arg_ptr envp = {
1878 .is_compat = true,
1879 .ptr.compat = __envp,
1880 };
1881 return do_execveat_common(fd, filename, argv, envp, flags);
1882 }
1883 #endif
1884
1885 void set_binfmt(struct linux_binfmt *new)
1886 {
1887 struct mm_struct *mm = current->mm;
1888
1889 if (mm->binfmt)
1890 module_put(mm->binfmt->module);
1891
1892 mm->binfmt = new;
1893 if (new)
1894 __module_get(new->module);
1895 }
1896 EXPORT_SYMBOL(set_binfmt);
1897
1898 /*
1899 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1900 */
1901 void set_dumpable(struct mm_struct *mm, int value)
1902 {
1903 unsigned long old, new;
1904
1905 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1906 return;
1907
1908 do {
1909 old = ACCESS_ONCE(mm->flags);
1910 new = (old & ~MMF_DUMPABLE_MASK) | value;
1911 } while (cmpxchg(&mm->flags, old, new) != old);
1912 }
1913
1914 SYSCALL_DEFINE3(execve,
1915 const char __user *, filename,
1916 const char __user *const __user *, argv,
1917 const char __user *const __user *, envp)
1918 {
1919 return do_execve(getname(filename), argv, envp);
1920 }
1921
1922 SYSCALL_DEFINE5(execveat,
1923 int, fd, const char __user *, filename,
1924 const char __user *const __user *, argv,
1925 const char __user *const __user *, envp,
1926 int, flags)
1927 {
1928 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1929
1930 return do_execveat(fd,
1931 getname_flags(filename, lookup_flags, NULL),
1932 argv, envp, flags);
1933 }
1934
1935 #ifdef CONFIG_COMPAT
1936 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1937 const compat_uptr_t __user *, argv,
1938 const compat_uptr_t __user *, envp)
1939 {
1940 return compat_do_execve(getname(filename), argv, envp);
1941 }
1942
1943 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1944 const char __user *, filename,
1945 const compat_uptr_t __user *, argv,
1946 const compat_uptr_t __user *, envp,
1947 int, flags)
1948 {
1949 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1950
1951 return compat_do_execveat(fd,
1952 getname_flags(filename, lookup_flags, NULL),
1953 argv, envp, flags);
1954 }
1955 #endif