]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/exec.c
Merge tag 'soc2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-bionic-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include <asm/exec.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66
67 #include <trace/events/sched.h>
68
69 int core_uses_pid;
70 char core_pattern[CORENAME_MAX_SIZE] = "core";
71 unsigned int core_pipe_limit;
72 int suid_dumpable = 0;
73
74 struct core_name {
75 char *corename;
76 int used, size;
77 };
78 static atomic_t call_count = ATOMIC_INIT(1);
79
80 /* The maximal length of core_pattern is also specified in sysctl.c */
81
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 BUG_ON(!fmt);
88 write_lock(&binfmt_lock);
89 insert ? list_add(&fmt->lh, &formats) :
90 list_add_tail(&fmt->lh, &formats);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(__register_binfmt);
95
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 write_lock(&binfmt_lock);
99 list_del(&fmt->lh);
100 write_unlock(&binfmt_lock);
101 }
102
103 EXPORT_SYMBOL(unregister_binfmt);
104
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 module_put(fmt->module);
108 }
109
110 /*
111 * Note that a shared library must be both readable and executable due to
112 * security reasons.
113 *
114 * Also note that we take the address to load from from the file itself.
115 */
116 SYSCALL_DEFINE1(uselib, const char __user *, library)
117 {
118 struct file *file;
119 char *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124 .intent = LOOKUP_OPEN
125 };
126
127 if (IS_ERR(tmp))
128 goto out;
129
130 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
131 putname(tmp);
132 error = PTR_ERR(file);
133 if (IS_ERR(file))
134 goto out;
135
136 error = -EINVAL;
137 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
138 goto exit;
139
140 error = -EACCES;
141 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
142 goto exit;
143
144 fsnotify_open(file);
145
146 error = -ENOEXEC;
147 if(file->f_op) {
148 struct linux_binfmt * fmt;
149
150 read_lock(&binfmt_lock);
151 list_for_each_entry(fmt, &formats, lh) {
152 if (!fmt->load_shlib)
153 continue;
154 if (!try_module_get(fmt->module))
155 continue;
156 read_unlock(&binfmt_lock);
157 error = fmt->load_shlib(file);
158 read_lock(&binfmt_lock);
159 put_binfmt(fmt);
160 if (error != -ENOEXEC)
161 break;
162 }
163 read_unlock(&binfmt_lock);
164 }
165 exit:
166 fput(file);
167 out:
168 return error;
169 }
170
171 #ifdef CONFIG_MMU
172 /*
173 * The nascent bprm->mm is not visible until exec_mmap() but it can
174 * use a lot of memory, account these pages in current->mm temporary
175 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
176 * change the counter back via acct_arg_size(0).
177 */
178 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
179 {
180 struct mm_struct *mm = current->mm;
181 long diff = (long)(pages - bprm->vma_pages);
182
183 if (!mm || !diff)
184 return;
185
186 bprm->vma_pages = pages;
187 add_mm_counter(mm, MM_ANONPAGES, diff);
188 }
189
190 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
191 int write)
192 {
193 struct page *page;
194 int ret;
195
196 #ifdef CONFIG_STACK_GROWSUP
197 if (write) {
198 ret = expand_downwards(bprm->vma, pos);
199 if (ret < 0)
200 return NULL;
201 }
202 #endif
203 ret = get_user_pages(current, bprm->mm, pos,
204 1, write, 1, &page, NULL);
205 if (ret <= 0)
206 return NULL;
207
208 if (write) {
209 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
210 struct rlimit *rlim;
211
212 acct_arg_size(bprm, size / PAGE_SIZE);
213
214 /*
215 * We've historically supported up to 32 pages (ARG_MAX)
216 * of argument strings even with small stacks
217 */
218 if (size <= ARG_MAX)
219 return page;
220
221 /*
222 * Limit to 1/4-th the stack size for the argv+env strings.
223 * This ensures that:
224 * - the remaining binfmt code will not run out of stack space,
225 * - the program will have a reasonable amount of stack left
226 * to work from.
227 */
228 rlim = current->signal->rlim;
229 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
230 put_page(page);
231 return NULL;
232 }
233 }
234
235 return page;
236 }
237
238 static void put_arg_page(struct page *page)
239 {
240 put_page(page);
241 }
242
243 static void free_arg_page(struct linux_binprm *bprm, int i)
244 {
245 }
246
247 static void free_arg_pages(struct linux_binprm *bprm)
248 {
249 }
250
251 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
252 struct page *page)
253 {
254 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
255 }
256
257 static int __bprm_mm_init(struct linux_binprm *bprm)
258 {
259 int err;
260 struct vm_area_struct *vma = NULL;
261 struct mm_struct *mm = bprm->mm;
262
263 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
264 if (!vma)
265 return -ENOMEM;
266
267 down_write(&mm->mmap_sem);
268 vma->vm_mm = mm;
269
270 /*
271 * Place the stack at the largest stack address the architecture
272 * supports. Later, we'll move this to an appropriate place. We don't
273 * use STACK_TOP because that can depend on attributes which aren't
274 * configured yet.
275 */
276 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
277 vma->vm_end = STACK_TOP_MAX;
278 vma->vm_start = vma->vm_end - PAGE_SIZE;
279 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
280 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
281 INIT_LIST_HEAD(&vma->anon_vma_chain);
282
283 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
284 if (err)
285 goto err;
286
287 err = insert_vm_struct(mm, vma);
288 if (err)
289 goto err;
290
291 mm->stack_vm = mm->total_vm = 1;
292 up_write(&mm->mmap_sem);
293 bprm->p = vma->vm_end - sizeof(void *);
294 return 0;
295 err:
296 up_write(&mm->mmap_sem);
297 bprm->vma = NULL;
298 kmem_cache_free(vm_area_cachep, vma);
299 return err;
300 }
301
302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304 return len <= MAX_ARG_STRLEN;
305 }
306
307 #else
308
309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312
313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 int write)
315 {
316 struct page *page;
317
318 page = bprm->page[pos / PAGE_SIZE];
319 if (!page && write) {
320 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 if (!page)
322 return NULL;
323 bprm->page[pos / PAGE_SIZE] = page;
324 }
325
326 return page;
327 }
328
329 static void put_arg_page(struct page *page)
330 {
331 }
332
333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335 if (bprm->page[i]) {
336 __free_page(bprm->page[i]);
337 bprm->page[i] = NULL;
338 }
339 }
340
341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343 int i;
344
345 for (i = 0; i < MAX_ARG_PAGES; i++)
346 free_arg_page(bprm, i);
347 }
348
349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 struct page *page)
351 {
352 }
353
354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 return 0;
358 }
359
360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362 return len <= bprm->p;
363 }
364
365 #endif /* CONFIG_MMU */
366
367 /*
368 * Create a new mm_struct and populate it with a temporary stack
369 * vm_area_struct. We don't have enough context at this point to set the stack
370 * flags, permissions, and offset, so we use temporary values. We'll update
371 * them later in setup_arg_pages().
372 */
373 int bprm_mm_init(struct linux_binprm *bprm)
374 {
375 int err;
376 struct mm_struct *mm = NULL;
377
378 bprm->mm = mm = mm_alloc();
379 err = -ENOMEM;
380 if (!mm)
381 goto err;
382
383 err = init_new_context(current, mm);
384 if (err)
385 goto err;
386
387 err = __bprm_mm_init(bprm);
388 if (err)
389 goto err;
390
391 return 0;
392
393 err:
394 if (mm) {
395 bprm->mm = NULL;
396 mmdrop(mm);
397 }
398
399 return err;
400 }
401
402 struct user_arg_ptr {
403 #ifdef CONFIG_COMPAT
404 bool is_compat;
405 #endif
406 union {
407 const char __user *const __user *native;
408 #ifdef CONFIG_COMPAT
409 compat_uptr_t __user *compat;
410 #endif
411 } ptr;
412 };
413
414 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
415 {
416 const char __user *native;
417
418 #ifdef CONFIG_COMPAT
419 if (unlikely(argv.is_compat)) {
420 compat_uptr_t compat;
421
422 if (get_user(compat, argv.ptr.compat + nr))
423 return ERR_PTR(-EFAULT);
424
425 return compat_ptr(compat);
426 }
427 #endif
428
429 if (get_user(native, argv.ptr.native + nr))
430 return ERR_PTR(-EFAULT);
431
432 return native;
433 }
434
435 /*
436 * count() counts the number of strings in array ARGV.
437 */
438 static int count(struct user_arg_ptr argv, int max)
439 {
440 int i = 0;
441
442 if (argv.ptr.native != NULL) {
443 for (;;) {
444 const char __user *p = get_user_arg_ptr(argv, i);
445
446 if (!p)
447 break;
448
449 if (IS_ERR(p))
450 return -EFAULT;
451
452 if (i++ >= max)
453 return -E2BIG;
454
455 if (fatal_signal_pending(current))
456 return -ERESTARTNOHAND;
457 cond_resched();
458 }
459 }
460 return i;
461 }
462
463 /*
464 * 'copy_strings()' copies argument/environment strings from the old
465 * processes's memory to the new process's stack. The call to get_user_pages()
466 * ensures the destination page is created and not swapped out.
467 */
468 static int copy_strings(int argc, struct user_arg_ptr argv,
469 struct linux_binprm *bprm)
470 {
471 struct page *kmapped_page = NULL;
472 char *kaddr = NULL;
473 unsigned long kpos = 0;
474 int ret;
475
476 while (argc-- > 0) {
477 const char __user *str;
478 int len;
479 unsigned long pos;
480
481 ret = -EFAULT;
482 str = get_user_arg_ptr(argv, argc);
483 if (IS_ERR(str))
484 goto out;
485
486 len = strnlen_user(str, MAX_ARG_STRLEN);
487 if (!len)
488 goto out;
489
490 ret = -E2BIG;
491 if (!valid_arg_len(bprm, len))
492 goto out;
493
494 /* We're going to work our way backwords. */
495 pos = bprm->p;
496 str += len;
497 bprm->p -= len;
498
499 while (len > 0) {
500 int offset, bytes_to_copy;
501
502 if (fatal_signal_pending(current)) {
503 ret = -ERESTARTNOHAND;
504 goto out;
505 }
506 cond_resched();
507
508 offset = pos % PAGE_SIZE;
509 if (offset == 0)
510 offset = PAGE_SIZE;
511
512 bytes_to_copy = offset;
513 if (bytes_to_copy > len)
514 bytes_to_copy = len;
515
516 offset -= bytes_to_copy;
517 pos -= bytes_to_copy;
518 str -= bytes_to_copy;
519 len -= bytes_to_copy;
520
521 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
522 struct page *page;
523
524 page = get_arg_page(bprm, pos, 1);
525 if (!page) {
526 ret = -E2BIG;
527 goto out;
528 }
529
530 if (kmapped_page) {
531 flush_kernel_dcache_page(kmapped_page);
532 kunmap(kmapped_page);
533 put_arg_page(kmapped_page);
534 }
535 kmapped_page = page;
536 kaddr = kmap(kmapped_page);
537 kpos = pos & PAGE_MASK;
538 flush_arg_page(bprm, kpos, kmapped_page);
539 }
540 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
541 ret = -EFAULT;
542 goto out;
543 }
544 }
545 }
546 ret = 0;
547 out:
548 if (kmapped_page) {
549 flush_kernel_dcache_page(kmapped_page);
550 kunmap(kmapped_page);
551 put_arg_page(kmapped_page);
552 }
553 return ret;
554 }
555
556 /*
557 * Like copy_strings, but get argv and its values from kernel memory.
558 */
559 int copy_strings_kernel(int argc, const char *const *__argv,
560 struct linux_binprm *bprm)
561 {
562 int r;
563 mm_segment_t oldfs = get_fs();
564 struct user_arg_ptr argv = {
565 .ptr.native = (const char __user *const __user *)__argv,
566 };
567
568 set_fs(KERNEL_DS);
569 r = copy_strings(argc, argv, bprm);
570 set_fs(oldfs);
571
572 return r;
573 }
574 EXPORT_SYMBOL(copy_strings_kernel);
575
576 #ifdef CONFIG_MMU
577
578 /*
579 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
580 * the binfmt code determines where the new stack should reside, we shift it to
581 * its final location. The process proceeds as follows:
582 *
583 * 1) Use shift to calculate the new vma endpoints.
584 * 2) Extend vma to cover both the old and new ranges. This ensures the
585 * arguments passed to subsequent functions are consistent.
586 * 3) Move vma's page tables to the new range.
587 * 4) Free up any cleared pgd range.
588 * 5) Shrink the vma to cover only the new range.
589 */
590 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
591 {
592 struct mm_struct *mm = vma->vm_mm;
593 unsigned long old_start = vma->vm_start;
594 unsigned long old_end = vma->vm_end;
595 unsigned long length = old_end - old_start;
596 unsigned long new_start = old_start - shift;
597 unsigned long new_end = old_end - shift;
598 struct mmu_gather tlb;
599
600 BUG_ON(new_start > new_end);
601
602 /*
603 * ensure there are no vmas between where we want to go
604 * and where we are
605 */
606 if (vma != find_vma(mm, new_start))
607 return -EFAULT;
608
609 /*
610 * cover the whole range: [new_start, old_end)
611 */
612 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
613 return -ENOMEM;
614
615 /*
616 * move the page tables downwards, on failure we rely on
617 * process cleanup to remove whatever mess we made.
618 */
619 if (length != move_page_tables(vma, old_start,
620 vma, new_start, length))
621 return -ENOMEM;
622
623 lru_add_drain();
624 tlb_gather_mmu(&tlb, mm, 0);
625 if (new_end > old_start) {
626 /*
627 * when the old and new regions overlap clear from new_end.
628 */
629 free_pgd_range(&tlb, new_end, old_end, new_end,
630 vma->vm_next ? vma->vm_next->vm_start : 0);
631 } else {
632 /*
633 * otherwise, clean from old_start; this is done to not touch
634 * the address space in [new_end, old_start) some architectures
635 * have constraints on va-space that make this illegal (IA64) -
636 * for the others its just a little faster.
637 */
638 free_pgd_range(&tlb, old_start, old_end, new_end,
639 vma->vm_next ? vma->vm_next->vm_start : 0);
640 }
641 tlb_finish_mmu(&tlb, new_end, old_end);
642
643 /*
644 * Shrink the vma to just the new range. Always succeeds.
645 */
646 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
647
648 return 0;
649 }
650
651 /*
652 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
653 * the stack is optionally relocated, and some extra space is added.
654 */
655 int setup_arg_pages(struct linux_binprm *bprm,
656 unsigned long stack_top,
657 int executable_stack)
658 {
659 unsigned long ret;
660 unsigned long stack_shift;
661 struct mm_struct *mm = current->mm;
662 struct vm_area_struct *vma = bprm->vma;
663 struct vm_area_struct *prev = NULL;
664 unsigned long vm_flags;
665 unsigned long stack_base;
666 unsigned long stack_size;
667 unsigned long stack_expand;
668 unsigned long rlim_stack;
669
670 #ifdef CONFIG_STACK_GROWSUP
671 /* Limit stack size to 1GB */
672 stack_base = rlimit_max(RLIMIT_STACK);
673 if (stack_base > (1 << 30))
674 stack_base = 1 << 30;
675
676 /* Make sure we didn't let the argument array grow too large. */
677 if (vma->vm_end - vma->vm_start > stack_base)
678 return -ENOMEM;
679
680 stack_base = PAGE_ALIGN(stack_top - stack_base);
681
682 stack_shift = vma->vm_start - stack_base;
683 mm->arg_start = bprm->p - stack_shift;
684 bprm->p = vma->vm_end - stack_shift;
685 #else
686 stack_top = arch_align_stack(stack_top);
687 stack_top = PAGE_ALIGN(stack_top);
688
689 if (unlikely(stack_top < mmap_min_addr) ||
690 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 return -ENOMEM;
692
693 stack_shift = vma->vm_end - stack_top;
694
695 bprm->p -= stack_shift;
696 mm->arg_start = bprm->p;
697 #endif
698
699 if (bprm->loader)
700 bprm->loader -= stack_shift;
701 bprm->exec -= stack_shift;
702
703 down_write(&mm->mmap_sem);
704 vm_flags = VM_STACK_FLAGS;
705
706 /*
707 * Adjust stack execute permissions; explicitly enable for
708 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
709 * (arch default) otherwise.
710 */
711 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
712 vm_flags |= VM_EXEC;
713 else if (executable_stack == EXSTACK_DISABLE_X)
714 vm_flags &= ~VM_EXEC;
715 vm_flags |= mm->def_flags;
716 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
717
718 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
719 vm_flags);
720 if (ret)
721 goto out_unlock;
722 BUG_ON(prev != vma);
723
724 /* Move stack pages down in memory. */
725 if (stack_shift) {
726 ret = shift_arg_pages(vma, stack_shift);
727 if (ret)
728 goto out_unlock;
729 }
730
731 /* mprotect_fixup is overkill to remove the temporary stack flags */
732 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
733
734 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
735 stack_size = vma->vm_end - vma->vm_start;
736 /*
737 * Align this down to a page boundary as expand_stack
738 * will align it up.
739 */
740 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
741 #ifdef CONFIG_STACK_GROWSUP
742 if (stack_size + stack_expand > rlim_stack)
743 stack_base = vma->vm_start + rlim_stack;
744 else
745 stack_base = vma->vm_end + stack_expand;
746 #else
747 if (stack_size + stack_expand > rlim_stack)
748 stack_base = vma->vm_end - rlim_stack;
749 else
750 stack_base = vma->vm_start - stack_expand;
751 #endif
752 current->mm->start_stack = bprm->p;
753 ret = expand_stack(vma, stack_base);
754 if (ret)
755 ret = -EFAULT;
756
757 out_unlock:
758 up_write(&mm->mmap_sem);
759 return ret;
760 }
761 EXPORT_SYMBOL(setup_arg_pages);
762
763 #endif /* CONFIG_MMU */
764
765 struct file *open_exec(const char *name)
766 {
767 struct file *file;
768 int err;
769 static const struct open_flags open_exec_flags = {
770 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
771 .acc_mode = MAY_EXEC | MAY_OPEN,
772 .intent = LOOKUP_OPEN
773 };
774
775 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
776 if (IS_ERR(file))
777 goto out;
778
779 err = -EACCES;
780 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
781 goto exit;
782
783 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
784 goto exit;
785
786 fsnotify_open(file);
787
788 err = deny_write_access(file);
789 if (err)
790 goto exit;
791
792 out:
793 return file;
794
795 exit:
796 fput(file);
797 return ERR_PTR(err);
798 }
799 EXPORT_SYMBOL(open_exec);
800
801 int kernel_read(struct file *file, loff_t offset,
802 char *addr, unsigned long count)
803 {
804 mm_segment_t old_fs;
805 loff_t pos = offset;
806 int result;
807
808 old_fs = get_fs();
809 set_fs(get_ds());
810 /* The cast to a user pointer is valid due to the set_fs() */
811 result = vfs_read(file, (void __user *)addr, count, &pos);
812 set_fs(old_fs);
813 return result;
814 }
815
816 EXPORT_SYMBOL(kernel_read);
817
818 static int exec_mmap(struct mm_struct *mm)
819 {
820 struct task_struct *tsk;
821 struct mm_struct * old_mm, *active_mm;
822
823 /* Notify parent that we're no longer interested in the old VM */
824 tsk = current;
825 old_mm = current->mm;
826 sync_mm_rss(old_mm);
827 mm_release(tsk, old_mm);
828
829 if (old_mm) {
830 /*
831 * Make sure that if there is a core dump in progress
832 * for the old mm, we get out and die instead of going
833 * through with the exec. We must hold mmap_sem around
834 * checking core_state and changing tsk->mm.
835 */
836 down_read(&old_mm->mmap_sem);
837 if (unlikely(old_mm->core_state)) {
838 up_read(&old_mm->mmap_sem);
839 return -EINTR;
840 }
841 }
842 task_lock(tsk);
843 active_mm = tsk->active_mm;
844 tsk->mm = mm;
845 tsk->active_mm = mm;
846 activate_mm(active_mm, mm);
847 task_unlock(tsk);
848 arch_pick_mmap_layout(mm);
849 if (old_mm) {
850 up_read(&old_mm->mmap_sem);
851 BUG_ON(active_mm != old_mm);
852 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
853 mm_update_next_owner(old_mm);
854 mmput(old_mm);
855 return 0;
856 }
857 mmdrop(active_mm);
858 return 0;
859 }
860
861 /*
862 * This function makes sure the current process has its own signal table,
863 * so that flush_signal_handlers can later reset the handlers without
864 * disturbing other processes. (Other processes might share the signal
865 * table via the CLONE_SIGHAND option to clone().)
866 */
867 static int de_thread(struct task_struct *tsk)
868 {
869 struct signal_struct *sig = tsk->signal;
870 struct sighand_struct *oldsighand = tsk->sighand;
871 spinlock_t *lock = &oldsighand->siglock;
872
873 if (thread_group_empty(tsk))
874 goto no_thread_group;
875
876 /*
877 * Kill all other threads in the thread group.
878 */
879 spin_lock_irq(lock);
880 if (signal_group_exit(sig)) {
881 /*
882 * Another group action in progress, just
883 * return so that the signal is processed.
884 */
885 spin_unlock_irq(lock);
886 return -EAGAIN;
887 }
888
889 sig->group_exit_task = tsk;
890 sig->notify_count = zap_other_threads(tsk);
891 if (!thread_group_leader(tsk))
892 sig->notify_count--;
893
894 while (sig->notify_count) {
895 __set_current_state(TASK_UNINTERRUPTIBLE);
896 spin_unlock_irq(lock);
897 schedule();
898 spin_lock_irq(lock);
899 }
900 spin_unlock_irq(lock);
901
902 /*
903 * At this point all other threads have exited, all we have to
904 * do is to wait for the thread group leader to become inactive,
905 * and to assume its PID:
906 */
907 if (!thread_group_leader(tsk)) {
908 struct task_struct *leader = tsk->group_leader;
909
910 sig->notify_count = -1; /* for exit_notify() */
911 for (;;) {
912 write_lock_irq(&tasklist_lock);
913 if (likely(leader->exit_state))
914 break;
915 __set_current_state(TASK_UNINTERRUPTIBLE);
916 write_unlock_irq(&tasklist_lock);
917 schedule();
918 }
919
920 /*
921 * The only record we have of the real-time age of a
922 * process, regardless of execs it's done, is start_time.
923 * All the past CPU time is accumulated in signal_struct
924 * from sister threads now dead. But in this non-leader
925 * exec, nothing survives from the original leader thread,
926 * whose birth marks the true age of this process now.
927 * When we take on its identity by switching to its PID, we
928 * also take its birthdate (always earlier than our own).
929 */
930 tsk->start_time = leader->start_time;
931
932 BUG_ON(!same_thread_group(leader, tsk));
933 BUG_ON(has_group_leader_pid(tsk));
934 /*
935 * An exec() starts a new thread group with the
936 * TGID of the previous thread group. Rehash the
937 * two threads with a switched PID, and release
938 * the former thread group leader:
939 */
940
941 /* Become a process group leader with the old leader's pid.
942 * The old leader becomes a thread of the this thread group.
943 * Note: The old leader also uses this pid until release_task
944 * is called. Odd but simple and correct.
945 */
946 detach_pid(tsk, PIDTYPE_PID);
947 tsk->pid = leader->pid;
948 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
949 transfer_pid(leader, tsk, PIDTYPE_PGID);
950 transfer_pid(leader, tsk, PIDTYPE_SID);
951
952 list_replace_rcu(&leader->tasks, &tsk->tasks);
953 list_replace_init(&leader->sibling, &tsk->sibling);
954
955 tsk->group_leader = tsk;
956 leader->group_leader = tsk;
957
958 tsk->exit_signal = SIGCHLD;
959 leader->exit_signal = -1;
960
961 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
962 leader->exit_state = EXIT_DEAD;
963
964 /*
965 * We are going to release_task()->ptrace_unlink() silently,
966 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
967 * the tracer wont't block again waiting for this thread.
968 */
969 if (unlikely(leader->ptrace))
970 __wake_up_parent(leader, leader->parent);
971 write_unlock_irq(&tasklist_lock);
972
973 release_task(leader);
974 }
975
976 sig->group_exit_task = NULL;
977 sig->notify_count = 0;
978
979 no_thread_group:
980 /* we have changed execution domain */
981 tsk->exit_signal = SIGCHLD;
982
983 exit_itimers(sig);
984 flush_itimer_signals();
985
986 if (atomic_read(&oldsighand->count) != 1) {
987 struct sighand_struct *newsighand;
988 /*
989 * This ->sighand is shared with the CLONE_SIGHAND
990 * but not CLONE_THREAD task, switch to the new one.
991 */
992 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
993 if (!newsighand)
994 return -ENOMEM;
995
996 atomic_set(&newsighand->count, 1);
997 memcpy(newsighand->action, oldsighand->action,
998 sizeof(newsighand->action));
999
1000 write_lock_irq(&tasklist_lock);
1001 spin_lock(&oldsighand->siglock);
1002 rcu_assign_pointer(tsk->sighand, newsighand);
1003 spin_unlock(&oldsighand->siglock);
1004 write_unlock_irq(&tasklist_lock);
1005
1006 __cleanup_sighand(oldsighand);
1007 }
1008
1009 BUG_ON(!thread_group_leader(tsk));
1010 return 0;
1011 }
1012
1013 /*
1014 * These functions flushes out all traces of the currently running executable
1015 * so that a new one can be started
1016 */
1017 static void flush_old_files(struct files_struct * files)
1018 {
1019 long j = -1;
1020 struct fdtable *fdt;
1021
1022 spin_lock(&files->file_lock);
1023 for (;;) {
1024 unsigned long set, i;
1025
1026 j++;
1027 i = j * __NFDBITS;
1028 fdt = files_fdtable(files);
1029 if (i >= fdt->max_fds)
1030 break;
1031 set = fdt->close_on_exec[j];
1032 if (!set)
1033 continue;
1034 fdt->close_on_exec[j] = 0;
1035 spin_unlock(&files->file_lock);
1036 for ( ; set ; i++,set >>= 1) {
1037 if (set & 1) {
1038 sys_close(i);
1039 }
1040 }
1041 spin_lock(&files->file_lock);
1042
1043 }
1044 spin_unlock(&files->file_lock);
1045 }
1046
1047 char *get_task_comm(char *buf, struct task_struct *tsk)
1048 {
1049 /* buf must be at least sizeof(tsk->comm) in size */
1050 task_lock(tsk);
1051 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1052 task_unlock(tsk);
1053 return buf;
1054 }
1055 EXPORT_SYMBOL_GPL(get_task_comm);
1056
1057 void set_task_comm(struct task_struct *tsk, char *buf)
1058 {
1059 task_lock(tsk);
1060
1061 trace_task_rename(tsk, buf);
1062
1063 /*
1064 * Threads may access current->comm without holding
1065 * the task lock, so write the string carefully.
1066 * Readers without a lock may see incomplete new
1067 * names but are safe from non-terminating string reads.
1068 */
1069 memset(tsk->comm, 0, TASK_COMM_LEN);
1070 wmb();
1071 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1072 task_unlock(tsk);
1073 perf_event_comm(tsk);
1074 }
1075
1076 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1077 {
1078 int i, ch;
1079
1080 /* Copies the binary name from after last slash */
1081 for (i = 0; (ch = *(fn++)) != '\0';) {
1082 if (ch == '/')
1083 i = 0; /* overwrite what we wrote */
1084 else
1085 if (i < len - 1)
1086 tcomm[i++] = ch;
1087 }
1088 tcomm[i] = '\0';
1089 }
1090
1091 int flush_old_exec(struct linux_binprm * bprm)
1092 {
1093 int retval;
1094
1095 /*
1096 * Make sure we have a private signal table and that
1097 * we are unassociated from the previous thread group.
1098 */
1099 retval = de_thread(current);
1100 if (retval)
1101 goto out;
1102
1103 set_mm_exe_file(bprm->mm, bprm->file);
1104
1105 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1106 /*
1107 * Release all of the old mmap stuff
1108 */
1109 acct_arg_size(bprm, 0);
1110 retval = exec_mmap(bprm->mm);
1111 if (retval)
1112 goto out;
1113
1114 bprm->mm = NULL; /* We're using it now */
1115
1116 set_fs(USER_DS);
1117 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1118 flush_thread();
1119 current->personality &= ~bprm->per_clear;
1120
1121 return 0;
1122
1123 out:
1124 return retval;
1125 }
1126 EXPORT_SYMBOL(flush_old_exec);
1127
1128 void would_dump(struct linux_binprm *bprm, struct file *file)
1129 {
1130 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1131 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1132 }
1133 EXPORT_SYMBOL(would_dump);
1134
1135 void setup_new_exec(struct linux_binprm * bprm)
1136 {
1137 arch_pick_mmap_layout(current->mm);
1138
1139 /* This is the point of no return */
1140 current->sas_ss_sp = current->sas_ss_size = 0;
1141
1142 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1143 set_dumpable(current->mm, 1);
1144 else
1145 set_dumpable(current->mm, suid_dumpable);
1146
1147 set_task_comm(current, bprm->tcomm);
1148
1149 /* Set the new mm task size. We have to do that late because it may
1150 * depend on TIF_32BIT which is only updated in flush_thread() on
1151 * some architectures like powerpc
1152 */
1153 current->mm->task_size = TASK_SIZE;
1154
1155 /* install the new credentials */
1156 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1157 !gid_eq(bprm->cred->gid, current_egid())) {
1158 current->pdeath_signal = 0;
1159 } else {
1160 would_dump(bprm, bprm->file);
1161 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1162 set_dumpable(current->mm, suid_dumpable);
1163 }
1164
1165 /*
1166 * Flush performance counters when crossing a
1167 * security domain:
1168 */
1169 if (!get_dumpable(current->mm))
1170 perf_event_exit_task(current);
1171
1172 /* An exec changes our domain. We are no longer part of the thread
1173 group */
1174
1175 current->self_exec_id++;
1176
1177 flush_signal_handlers(current, 0);
1178 flush_old_files(current->files);
1179 }
1180 EXPORT_SYMBOL(setup_new_exec);
1181
1182 /*
1183 * Prepare credentials and lock ->cred_guard_mutex.
1184 * install_exec_creds() commits the new creds and drops the lock.
1185 * Or, if exec fails before, free_bprm() should release ->cred and
1186 * and unlock.
1187 */
1188 int prepare_bprm_creds(struct linux_binprm *bprm)
1189 {
1190 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1191 return -ERESTARTNOINTR;
1192
1193 bprm->cred = prepare_exec_creds();
1194 if (likely(bprm->cred))
1195 return 0;
1196
1197 mutex_unlock(&current->signal->cred_guard_mutex);
1198 return -ENOMEM;
1199 }
1200
1201 void free_bprm(struct linux_binprm *bprm)
1202 {
1203 free_arg_pages(bprm);
1204 if (bprm->cred) {
1205 mutex_unlock(&current->signal->cred_guard_mutex);
1206 abort_creds(bprm->cred);
1207 }
1208 kfree(bprm);
1209 }
1210
1211 /*
1212 * install the new credentials for this executable
1213 */
1214 void install_exec_creds(struct linux_binprm *bprm)
1215 {
1216 security_bprm_committing_creds(bprm);
1217
1218 commit_creds(bprm->cred);
1219 bprm->cred = NULL;
1220 /*
1221 * cred_guard_mutex must be held at least to this point to prevent
1222 * ptrace_attach() from altering our determination of the task's
1223 * credentials; any time after this it may be unlocked.
1224 */
1225 security_bprm_committed_creds(bprm);
1226 mutex_unlock(&current->signal->cred_guard_mutex);
1227 }
1228 EXPORT_SYMBOL(install_exec_creds);
1229
1230 /*
1231 * determine how safe it is to execute the proposed program
1232 * - the caller must hold ->cred_guard_mutex to protect against
1233 * PTRACE_ATTACH
1234 */
1235 static int check_unsafe_exec(struct linux_binprm *bprm)
1236 {
1237 struct task_struct *p = current, *t;
1238 unsigned n_fs;
1239 int res = 0;
1240
1241 if (p->ptrace) {
1242 if (p->ptrace & PT_PTRACE_CAP)
1243 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1244 else
1245 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1246 }
1247
1248 /*
1249 * This isn't strictly necessary, but it makes it harder for LSMs to
1250 * mess up.
1251 */
1252 if (current->no_new_privs)
1253 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1254
1255 n_fs = 1;
1256 spin_lock(&p->fs->lock);
1257 rcu_read_lock();
1258 for (t = next_thread(p); t != p; t = next_thread(t)) {
1259 if (t->fs == p->fs)
1260 n_fs++;
1261 }
1262 rcu_read_unlock();
1263
1264 if (p->fs->users > n_fs) {
1265 bprm->unsafe |= LSM_UNSAFE_SHARE;
1266 } else {
1267 res = -EAGAIN;
1268 if (!p->fs->in_exec) {
1269 p->fs->in_exec = 1;
1270 res = 1;
1271 }
1272 }
1273 spin_unlock(&p->fs->lock);
1274
1275 return res;
1276 }
1277
1278 /*
1279 * Fill the binprm structure from the inode.
1280 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1281 *
1282 * This may be called multiple times for binary chains (scripts for example).
1283 */
1284 int prepare_binprm(struct linux_binprm *bprm)
1285 {
1286 umode_t mode;
1287 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1288 int retval;
1289
1290 mode = inode->i_mode;
1291 if (bprm->file->f_op == NULL)
1292 return -EACCES;
1293
1294 /* clear any previous set[ug]id data from a previous binary */
1295 bprm->cred->euid = current_euid();
1296 bprm->cred->egid = current_egid();
1297
1298 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1299 !current->no_new_privs) {
1300 /* Set-uid? */
1301 if (mode & S_ISUID) {
1302 if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1303 return -EPERM;
1304 bprm->per_clear |= PER_CLEAR_ON_SETID;
1305 bprm->cred->euid = inode->i_uid;
1306
1307 }
1308
1309 /* Set-gid? */
1310 /*
1311 * If setgid is set but no group execute bit then this
1312 * is a candidate for mandatory locking, not a setgid
1313 * executable.
1314 */
1315 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1316 if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1317 return -EPERM;
1318 bprm->per_clear |= PER_CLEAR_ON_SETID;
1319 bprm->cred->egid = inode->i_gid;
1320 }
1321 }
1322
1323 /* fill in binprm security blob */
1324 retval = security_bprm_set_creds(bprm);
1325 if (retval)
1326 return retval;
1327 bprm->cred_prepared = 1;
1328
1329 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1330 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1331 }
1332
1333 EXPORT_SYMBOL(prepare_binprm);
1334
1335 /*
1336 * Arguments are '\0' separated strings found at the location bprm->p
1337 * points to; chop off the first by relocating brpm->p to right after
1338 * the first '\0' encountered.
1339 */
1340 int remove_arg_zero(struct linux_binprm *bprm)
1341 {
1342 int ret = 0;
1343 unsigned long offset;
1344 char *kaddr;
1345 struct page *page;
1346
1347 if (!bprm->argc)
1348 return 0;
1349
1350 do {
1351 offset = bprm->p & ~PAGE_MASK;
1352 page = get_arg_page(bprm, bprm->p, 0);
1353 if (!page) {
1354 ret = -EFAULT;
1355 goto out;
1356 }
1357 kaddr = kmap_atomic(page);
1358
1359 for (; offset < PAGE_SIZE && kaddr[offset];
1360 offset++, bprm->p++)
1361 ;
1362
1363 kunmap_atomic(kaddr);
1364 put_arg_page(page);
1365
1366 if (offset == PAGE_SIZE)
1367 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1368 } while (offset == PAGE_SIZE);
1369
1370 bprm->p++;
1371 bprm->argc--;
1372 ret = 0;
1373
1374 out:
1375 return ret;
1376 }
1377 EXPORT_SYMBOL(remove_arg_zero);
1378
1379 /*
1380 * cycle the list of binary formats handler, until one recognizes the image
1381 */
1382 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1383 {
1384 unsigned int depth = bprm->recursion_depth;
1385 int try,retval;
1386 struct linux_binfmt *fmt;
1387 pid_t old_pid, old_vpid;
1388
1389 retval = security_bprm_check(bprm);
1390 if (retval)
1391 return retval;
1392
1393 retval = audit_bprm(bprm);
1394 if (retval)
1395 return retval;
1396
1397 /* Need to fetch pid before load_binary changes it */
1398 old_pid = current->pid;
1399 rcu_read_lock();
1400 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1401 rcu_read_unlock();
1402
1403 retval = -ENOENT;
1404 for (try=0; try<2; try++) {
1405 read_lock(&binfmt_lock);
1406 list_for_each_entry(fmt, &formats, lh) {
1407 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1408 if (!fn)
1409 continue;
1410 if (!try_module_get(fmt->module))
1411 continue;
1412 read_unlock(&binfmt_lock);
1413 retval = fn(bprm, regs);
1414 /*
1415 * Restore the depth counter to its starting value
1416 * in this call, so we don't have to rely on every
1417 * load_binary function to restore it on return.
1418 */
1419 bprm->recursion_depth = depth;
1420 if (retval >= 0) {
1421 if (depth == 0) {
1422 trace_sched_process_exec(current, old_pid, bprm);
1423 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1424 }
1425 put_binfmt(fmt);
1426 allow_write_access(bprm->file);
1427 if (bprm->file)
1428 fput(bprm->file);
1429 bprm->file = NULL;
1430 current->did_exec = 1;
1431 proc_exec_connector(current);
1432 return retval;
1433 }
1434 read_lock(&binfmt_lock);
1435 put_binfmt(fmt);
1436 if (retval != -ENOEXEC || bprm->mm == NULL)
1437 break;
1438 if (!bprm->file) {
1439 read_unlock(&binfmt_lock);
1440 return retval;
1441 }
1442 }
1443 read_unlock(&binfmt_lock);
1444 #ifdef CONFIG_MODULES
1445 if (retval != -ENOEXEC || bprm->mm == NULL) {
1446 break;
1447 } else {
1448 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1449 if (printable(bprm->buf[0]) &&
1450 printable(bprm->buf[1]) &&
1451 printable(bprm->buf[2]) &&
1452 printable(bprm->buf[3]))
1453 break; /* -ENOEXEC */
1454 if (try)
1455 break; /* -ENOEXEC */
1456 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1457 }
1458 #else
1459 break;
1460 #endif
1461 }
1462 return retval;
1463 }
1464
1465 EXPORT_SYMBOL(search_binary_handler);
1466
1467 /*
1468 * sys_execve() executes a new program.
1469 */
1470 static int do_execve_common(const char *filename,
1471 struct user_arg_ptr argv,
1472 struct user_arg_ptr envp,
1473 struct pt_regs *regs)
1474 {
1475 struct linux_binprm *bprm;
1476 struct file *file;
1477 struct files_struct *displaced;
1478 bool clear_in_exec;
1479 int retval;
1480 const struct cred *cred = current_cred();
1481
1482 /*
1483 * We move the actual failure in case of RLIMIT_NPROC excess from
1484 * set*uid() to execve() because too many poorly written programs
1485 * don't check setuid() return code. Here we additionally recheck
1486 * whether NPROC limit is still exceeded.
1487 */
1488 if ((current->flags & PF_NPROC_EXCEEDED) &&
1489 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1490 retval = -EAGAIN;
1491 goto out_ret;
1492 }
1493
1494 /* We're below the limit (still or again), so we don't want to make
1495 * further execve() calls fail. */
1496 current->flags &= ~PF_NPROC_EXCEEDED;
1497
1498 retval = unshare_files(&displaced);
1499 if (retval)
1500 goto out_ret;
1501
1502 retval = -ENOMEM;
1503 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1504 if (!bprm)
1505 goto out_files;
1506
1507 retval = prepare_bprm_creds(bprm);
1508 if (retval)
1509 goto out_free;
1510
1511 retval = check_unsafe_exec(bprm);
1512 if (retval < 0)
1513 goto out_free;
1514 clear_in_exec = retval;
1515 current->in_execve = 1;
1516
1517 file = open_exec(filename);
1518 retval = PTR_ERR(file);
1519 if (IS_ERR(file))
1520 goto out_unmark;
1521
1522 sched_exec();
1523
1524 bprm->file = file;
1525 bprm->filename = filename;
1526 bprm->interp = filename;
1527
1528 retval = bprm_mm_init(bprm);
1529 if (retval)
1530 goto out_file;
1531
1532 bprm->argc = count(argv, MAX_ARG_STRINGS);
1533 if ((retval = bprm->argc) < 0)
1534 goto out;
1535
1536 bprm->envc = count(envp, MAX_ARG_STRINGS);
1537 if ((retval = bprm->envc) < 0)
1538 goto out;
1539
1540 retval = prepare_binprm(bprm);
1541 if (retval < 0)
1542 goto out;
1543
1544 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1545 if (retval < 0)
1546 goto out;
1547
1548 bprm->exec = bprm->p;
1549 retval = copy_strings(bprm->envc, envp, bprm);
1550 if (retval < 0)
1551 goto out;
1552
1553 retval = copy_strings(bprm->argc, argv, bprm);
1554 if (retval < 0)
1555 goto out;
1556
1557 retval = search_binary_handler(bprm,regs);
1558 if (retval < 0)
1559 goto out;
1560
1561 /* execve succeeded */
1562 current->fs->in_exec = 0;
1563 current->in_execve = 0;
1564 acct_update_integrals(current);
1565 free_bprm(bprm);
1566 if (displaced)
1567 put_files_struct(displaced);
1568 return retval;
1569
1570 out:
1571 if (bprm->mm) {
1572 acct_arg_size(bprm, 0);
1573 mmput(bprm->mm);
1574 }
1575
1576 out_file:
1577 if (bprm->file) {
1578 allow_write_access(bprm->file);
1579 fput(bprm->file);
1580 }
1581
1582 out_unmark:
1583 if (clear_in_exec)
1584 current->fs->in_exec = 0;
1585 current->in_execve = 0;
1586
1587 out_free:
1588 free_bprm(bprm);
1589
1590 out_files:
1591 if (displaced)
1592 reset_files_struct(displaced);
1593 out_ret:
1594 return retval;
1595 }
1596
1597 int do_execve(const char *filename,
1598 const char __user *const __user *__argv,
1599 const char __user *const __user *__envp,
1600 struct pt_regs *regs)
1601 {
1602 struct user_arg_ptr argv = { .ptr.native = __argv };
1603 struct user_arg_ptr envp = { .ptr.native = __envp };
1604 return do_execve_common(filename, argv, envp, regs);
1605 }
1606
1607 #ifdef CONFIG_COMPAT
1608 int compat_do_execve(char *filename,
1609 compat_uptr_t __user *__argv,
1610 compat_uptr_t __user *__envp,
1611 struct pt_regs *regs)
1612 {
1613 struct user_arg_ptr argv = {
1614 .is_compat = true,
1615 .ptr.compat = __argv,
1616 };
1617 struct user_arg_ptr envp = {
1618 .is_compat = true,
1619 .ptr.compat = __envp,
1620 };
1621 return do_execve_common(filename, argv, envp, regs);
1622 }
1623 #endif
1624
1625 void set_binfmt(struct linux_binfmt *new)
1626 {
1627 struct mm_struct *mm = current->mm;
1628
1629 if (mm->binfmt)
1630 module_put(mm->binfmt->module);
1631
1632 mm->binfmt = new;
1633 if (new)
1634 __module_get(new->module);
1635 }
1636
1637 EXPORT_SYMBOL(set_binfmt);
1638
1639 static int expand_corename(struct core_name *cn)
1640 {
1641 char *old_corename = cn->corename;
1642
1643 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1644 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1645
1646 if (!cn->corename) {
1647 kfree(old_corename);
1648 return -ENOMEM;
1649 }
1650
1651 return 0;
1652 }
1653
1654 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1655 {
1656 char *cur;
1657 int need;
1658 int ret;
1659 va_list arg;
1660
1661 va_start(arg, fmt);
1662 need = vsnprintf(NULL, 0, fmt, arg);
1663 va_end(arg);
1664
1665 if (likely(need < cn->size - cn->used - 1))
1666 goto out_printf;
1667
1668 ret = expand_corename(cn);
1669 if (ret)
1670 goto expand_fail;
1671
1672 out_printf:
1673 cur = cn->corename + cn->used;
1674 va_start(arg, fmt);
1675 vsnprintf(cur, need + 1, fmt, arg);
1676 va_end(arg);
1677 cn->used += need;
1678 return 0;
1679
1680 expand_fail:
1681 return ret;
1682 }
1683
1684 static void cn_escape(char *str)
1685 {
1686 for (; *str; str++)
1687 if (*str == '/')
1688 *str = '!';
1689 }
1690
1691 static int cn_print_exe_file(struct core_name *cn)
1692 {
1693 struct file *exe_file;
1694 char *pathbuf, *path;
1695 int ret;
1696
1697 exe_file = get_mm_exe_file(current->mm);
1698 if (!exe_file) {
1699 char *commstart = cn->corename + cn->used;
1700 ret = cn_printf(cn, "%s (path unknown)", current->comm);
1701 cn_escape(commstart);
1702 return ret;
1703 }
1704
1705 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1706 if (!pathbuf) {
1707 ret = -ENOMEM;
1708 goto put_exe_file;
1709 }
1710
1711 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1712 if (IS_ERR(path)) {
1713 ret = PTR_ERR(path);
1714 goto free_buf;
1715 }
1716
1717 cn_escape(path);
1718
1719 ret = cn_printf(cn, "%s", path);
1720
1721 free_buf:
1722 kfree(pathbuf);
1723 put_exe_file:
1724 fput(exe_file);
1725 return ret;
1726 }
1727
1728 /* format_corename will inspect the pattern parameter, and output a
1729 * name into corename, which must have space for at least
1730 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1731 */
1732 static int format_corename(struct core_name *cn, long signr)
1733 {
1734 const struct cred *cred = current_cred();
1735 const char *pat_ptr = core_pattern;
1736 int ispipe = (*pat_ptr == '|');
1737 int pid_in_pattern = 0;
1738 int err = 0;
1739
1740 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1741 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1742 cn->used = 0;
1743
1744 if (!cn->corename)
1745 return -ENOMEM;
1746
1747 /* Repeat as long as we have more pattern to process and more output
1748 space */
1749 while (*pat_ptr) {
1750 if (*pat_ptr != '%') {
1751 if (*pat_ptr == 0)
1752 goto out;
1753 err = cn_printf(cn, "%c", *pat_ptr++);
1754 } else {
1755 switch (*++pat_ptr) {
1756 /* single % at the end, drop that */
1757 case 0:
1758 goto out;
1759 /* Double percent, output one percent */
1760 case '%':
1761 err = cn_printf(cn, "%c", '%');
1762 break;
1763 /* pid */
1764 case 'p':
1765 pid_in_pattern = 1;
1766 err = cn_printf(cn, "%d",
1767 task_tgid_vnr(current));
1768 break;
1769 /* uid */
1770 case 'u':
1771 err = cn_printf(cn, "%d", cred->uid);
1772 break;
1773 /* gid */
1774 case 'g':
1775 err = cn_printf(cn, "%d", cred->gid);
1776 break;
1777 /* signal that caused the coredump */
1778 case 's':
1779 err = cn_printf(cn, "%ld", signr);
1780 break;
1781 /* UNIX time of coredump */
1782 case 't': {
1783 struct timeval tv;
1784 do_gettimeofday(&tv);
1785 err = cn_printf(cn, "%lu", tv.tv_sec);
1786 break;
1787 }
1788 /* hostname */
1789 case 'h': {
1790 char *namestart = cn->corename + cn->used;
1791 down_read(&uts_sem);
1792 err = cn_printf(cn, "%s",
1793 utsname()->nodename);
1794 up_read(&uts_sem);
1795 cn_escape(namestart);
1796 break;
1797 }
1798 /* executable */
1799 case 'e': {
1800 char *commstart = cn->corename + cn->used;
1801 err = cn_printf(cn, "%s", current->comm);
1802 cn_escape(commstart);
1803 break;
1804 }
1805 case 'E':
1806 err = cn_print_exe_file(cn);
1807 break;
1808 /* core limit size */
1809 case 'c':
1810 err = cn_printf(cn, "%lu",
1811 rlimit(RLIMIT_CORE));
1812 break;
1813 default:
1814 break;
1815 }
1816 ++pat_ptr;
1817 }
1818
1819 if (err)
1820 return err;
1821 }
1822
1823 /* Backward compatibility with core_uses_pid:
1824 *
1825 * If core_pattern does not include a %p (as is the default)
1826 * and core_uses_pid is set, then .%pid will be appended to
1827 * the filename. Do not do this for piped commands. */
1828 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1829 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1830 if (err)
1831 return err;
1832 }
1833 out:
1834 return ispipe;
1835 }
1836
1837 static int zap_process(struct task_struct *start, int exit_code)
1838 {
1839 struct task_struct *t;
1840 int nr = 0;
1841
1842 start->signal->flags = SIGNAL_GROUP_EXIT;
1843 start->signal->group_exit_code = exit_code;
1844 start->signal->group_stop_count = 0;
1845
1846 t = start;
1847 do {
1848 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1849 if (t != current && t->mm) {
1850 sigaddset(&t->pending.signal, SIGKILL);
1851 signal_wake_up(t, 1);
1852 nr++;
1853 }
1854 } while_each_thread(start, t);
1855
1856 return nr;
1857 }
1858
1859 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1860 struct core_state *core_state, int exit_code)
1861 {
1862 struct task_struct *g, *p;
1863 unsigned long flags;
1864 int nr = -EAGAIN;
1865
1866 spin_lock_irq(&tsk->sighand->siglock);
1867 if (!signal_group_exit(tsk->signal)) {
1868 mm->core_state = core_state;
1869 nr = zap_process(tsk, exit_code);
1870 }
1871 spin_unlock_irq(&tsk->sighand->siglock);
1872 if (unlikely(nr < 0))
1873 return nr;
1874
1875 if (atomic_read(&mm->mm_users) == nr + 1)
1876 goto done;
1877 /*
1878 * We should find and kill all tasks which use this mm, and we should
1879 * count them correctly into ->nr_threads. We don't take tasklist
1880 * lock, but this is safe wrt:
1881 *
1882 * fork:
1883 * None of sub-threads can fork after zap_process(leader). All
1884 * processes which were created before this point should be
1885 * visible to zap_threads() because copy_process() adds the new
1886 * process to the tail of init_task.tasks list, and lock/unlock
1887 * of ->siglock provides a memory barrier.
1888 *
1889 * do_exit:
1890 * The caller holds mm->mmap_sem. This means that the task which
1891 * uses this mm can't pass exit_mm(), so it can't exit or clear
1892 * its ->mm.
1893 *
1894 * de_thread:
1895 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1896 * we must see either old or new leader, this does not matter.
1897 * However, it can change p->sighand, so lock_task_sighand(p)
1898 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1899 * it can't fail.
1900 *
1901 * Note also that "g" can be the old leader with ->mm == NULL
1902 * and already unhashed and thus removed from ->thread_group.
1903 * This is OK, __unhash_process()->list_del_rcu() does not
1904 * clear the ->next pointer, we will find the new leader via
1905 * next_thread().
1906 */
1907 rcu_read_lock();
1908 for_each_process(g) {
1909 if (g == tsk->group_leader)
1910 continue;
1911 if (g->flags & PF_KTHREAD)
1912 continue;
1913 p = g;
1914 do {
1915 if (p->mm) {
1916 if (unlikely(p->mm == mm)) {
1917 lock_task_sighand(p, &flags);
1918 nr += zap_process(p, exit_code);
1919 unlock_task_sighand(p, &flags);
1920 }
1921 break;
1922 }
1923 } while_each_thread(g, p);
1924 }
1925 rcu_read_unlock();
1926 done:
1927 atomic_set(&core_state->nr_threads, nr);
1928 return nr;
1929 }
1930
1931 static int coredump_wait(int exit_code, struct core_state *core_state)
1932 {
1933 struct task_struct *tsk = current;
1934 struct mm_struct *mm = tsk->mm;
1935 int core_waiters = -EBUSY;
1936
1937 init_completion(&core_state->startup);
1938 core_state->dumper.task = tsk;
1939 core_state->dumper.next = NULL;
1940
1941 down_write(&mm->mmap_sem);
1942 if (!mm->core_state)
1943 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1944 up_write(&mm->mmap_sem);
1945
1946 if (core_waiters > 0) {
1947 struct core_thread *ptr;
1948
1949 wait_for_completion(&core_state->startup);
1950 /*
1951 * Wait for all the threads to become inactive, so that
1952 * all the thread context (extended register state, like
1953 * fpu etc) gets copied to the memory.
1954 */
1955 ptr = core_state->dumper.next;
1956 while (ptr != NULL) {
1957 wait_task_inactive(ptr->task, 0);
1958 ptr = ptr->next;
1959 }
1960 }
1961
1962 return core_waiters;
1963 }
1964
1965 static void coredump_finish(struct mm_struct *mm)
1966 {
1967 struct core_thread *curr, *next;
1968 struct task_struct *task;
1969
1970 next = mm->core_state->dumper.next;
1971 while ((curr = next) != NULL) {
1972 next = curr->next;
1973 task = curr->task;
1974 /*
1975 * see exit_mm(), curr->task must not see
1976 * ->task == NULL before we read ->next.
1977 */
1978 smp_mb();
1979 curr->task = NULL;
1980 wake_up_process(task);
1981 }
1982
1983 mm->core_state = NULL;
1984 }
1985
1986 /*
1987 * set_dumpable converts traditional three-value dumpable to two flags and
1988 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1989 * these bits are not changed atomically. So get_dumpable can observe the
1990 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1991 * return either old dumpable or new one by paying attention to the order of
1992 * modifying the bits.
1993 *
1994 * dumpable | mm->flags (binary)
1995 * old new | initial interim final
1996 * ---------+-----------------------
1997 * 0 1 | 00 01 01
1998 * 0 2 | 00 10(*) 11
1999 * 1 0 | 01 00 00
2000 * 1 2 | 01 11 11
2001 * 2 0 | 11 10(*) 00
2002 * 2 1 | 11 11 01
2003 *
2004 * (*) get_dumpable regards interim value of 10 as 11.
2005 */
2006 void set_dumpable(struct mm_struct *mm, int value)
2007 {
2008 switch (value) {
2009 case 0:
2010 clear_bit(MMF_DUMPABLE, &mm->flags);
2011 smp_wmb();
2012 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2013 break;
2014 case 1:
2015 set_bit(MMF_DUMPABLE, &mm->flags);
2016 smp_wmb();
2017 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2018 break;
2019 case 2:
2020 set_bit(MMF_DUMP_SECURELY, &mm->flags);
2021 smp_wmb();
2022 set_bit(MMF_DUMPABLE, &mm->flags);
2023 break;
2024 }
2025 }
2026
2027 static int __get_dumpable(unsigned long mm_flags)
2028 {
2029 int ret;
2030
2031 ret = mm_flags & MMF_DUMPABLE_MASK;
2032 return (ret >= 2) ? 2 : ret;
2033 }
2034
2035 int get_dumpable(struct mm_struct *mm)
2036 {
2037 return __get_dumpable(mm->flags);
2038 }
2039
2040 static void wait_for_dump_helpers(struct file *file)
2041 {
2042 struct pipe_inode_info *pipe;
2043
2044 pipe = file->f_path.dentry->d_inode->i_pipe;
2045
2046 pipe_lock(pipe);
2047 pipe->readers++;
2048 pipe->writers--;
2049
2050 while ((pipe->readers > 1) && (!signal_pending(current))) {
2051 wake_up_interruptible_sync(&pipe->wait);
2052 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2053 pipe_wait(pipe);
2054 }
2055
2056 pipe->readers--;
2057 pipe->writers++;
2058 pipe_unlock(pipe);
2059
2060 }
2061
2062
2063 /*
2064 * umh_pipe_setup
2065 * helper function to customize the process used
2066 * to collect the core in userspace. Specifically
2067 * it sets up a pipe and installs it as fd 0 (stdin)
2068 * for the process. Returns 0 on success, or
2069 * PTR_ERR on failure.
2070 * Note that it also sets the core limit to 1. This
2071 * is a special value that we use to trap recursive
2072 * core dumps
2073 */
2074 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2075 {
2076 struct file *rp, *wp;
2077 struct fdtable *fdt;
2078 struct coredump_params *cp = (struct coredump_params *)info->data;
2079 struct files_struct *cf = current->files;
2080
2081 wp = create_write_pipe(0);
2082 if (IS_ERR(wp))
2083 return PTR_ERR(wp);
2084
2085 rp = create_read_pipe(wp, 0);
2086 if (IS_ERR(rp)) {
2087 free_write_pipe(wp);
2088 return PTR_ERR(rp);
2089 }
2090
2091 cp->file = wp;
2092
2093 sys_close(0);
2094 fd_install(0, rp);
2095 spin_lock(&cf->file_lock);
2096 fdt = files_fdtable(cf);
2097 __set_open_fd(0, fdt);
2098 __clear_close_on_exec(0, fdt);
2099 spin_unlock(&cf->file_lock);
2100
2101 /* and disallow core files too */
2102 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2103
2104 return 0;
2105 }
2106
2107 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2108 {
2109 struct core_state core_state;
2110 struct core_name cn;
2111 struct mm_struct *mm = current->mm;
2112 struct linux_binfmt * binfmt;
2113 const struct cred *old_cred;
2114 struct cred *cred;
2115 int retval = 0;
2116 int flag = 0;
2117 int ispipe;
2118 static atomic_t core_dump_count = ATOMIC_INIT(0);
2119 struct coredump_params cprm = {
2120 .signr = signr,
2121 .regs = regs,
2122 .limit = rlimit(RLIMIT_CORE),
2123 /*
2124 * We must use the same mm->flags while dumping core to avoid
2125 * inconsistency of bit flags, since this flag is not protected
2126 * by any locks.
2127 */
2128 .mm_flags = mm->flags,
2129 };
2130
2131 audit_core_dumps(signr);
2132
2133 binfmt = mm->binfmt;
2134 if (!binfmt || !binfmt->core_dump)
2135 goto fail;
2136 if (!__get_dumpable(cprm.mm_flags))
2137 goto fail;
2138
2139 cred = prepare_creds();
2140 if (!cred)
2141 goto fail;
2142 /*
2143 * We cannot trust fsuid as being the "true" uid of the
2144 * process nor do we know its entire history. We only know it
2145 * was tainted so we dump it as root in mode 2.
2146 */
2147 if (__get_dumpable(cprm.mm_flags) == 2) {
2148 /* Setuid core dump mode */
2149 flag = O_EXCL; /* Stop rewrite attacks */
2150 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
2151 }
2152
2153 retval = coredump_wait(exit_code, &core_state);
2154 if (retval < 0)
2155 goto fail_creds;
2156
2157 old_cred = override_creds(cred);
2158
2159 /*
2160 * Clear any false indication of pending signals that might
2161 * be seen by the filesystem code called to write the core file.
2162 */
2163 clear_thread_flag(TIF_SIGPENDING);
2164
2165 ispipe = format_corename(&cn, signr);
2166
2167 if (ispipe) {
2168 int dump_count;
2169 char **helper_argv;
2170
2171 if (ispipe < 0) {
2172 printk(KERN_WARNING "format_corename failed\n");
2173 printk(KERN_WARNING "Aborting core\n");
2174 goto fail_corename;
2175 }
2176
2177 if (cprm.limit == 1) {
2178 /*
2179 * Normally core limits are irrelevant to pipes, since
2180 * we're not writing to the file system, but we use
2181 * cprm.limit of 1 here as a speacial value. Any
2182 * non-1 limit gets set to RLIM_INFINITY below, but
2183 * a limit of 0 skips the dump. This is a consistent
2184 * way to catch recursive crashes. We can still crash
2185 * if the core_pattern binary sets RLIM_CORE = !1
2186 * but it runs as root, and can do lots of stupid things
2187 * Note that we use task_tgid_vnr here to grab the pid
2188 * of the process group leader. That way we get the
2189 * right pid if a thread in a multi-threaded
2190 * core_pattern process dies.
2191 */
2192 printk(KERN_WARNING
2193 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2194 task_tgid_vnr(current), current->comm);
2195 printk(KERN_WARNING "Aborting core\n");
2196 goto fail_unlock;
2197 }
2198 cprm.limit = RLIM_INFINITY;
2199
2200 dump_count = atomic_inc_return(&core_dump_count);
2201 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2202 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2203 task_tgid_vnr(current), current->comm);
2204 printk(KERN_WARNING "Skipping core dump\n");
2205 goto fail_dropcount;
2206 }
2207
2208 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2209 if (!helper_argv) {
2210 printk(KERN_WARNING "%s failed to allocate memory\n",
2211 __func__);
2212 goto fail_dropcount;
2213 }
2214
2215 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2216 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2217 NULL, &cprm);
2218 argv_free(helper_argv);
2219 if (retval) {
2220 printk(KERN_INFO "Core dump to %s pipe failed\n",
2221 cn.corename);
2222 goto close_fail;
2223 }
2224 } else {
2225 struct inode *inode;
2226
2227 if (cprm.limit < binfmt->min_coredump)
2228 goto fail_unlock;
2229
2230 cprm.file = filp_open(cn.corename,
2231 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2232 0600);
2233 if (IS_ERR(cprm.file))
2234 goto fail_unlock;
2235
2236 inode = cprm.file->f_path.dentry->d_inode;
2237 if (inode->i_nlink > 1)
2238 goto close_fail;
2239 if (d_unhashed(cprm.file->f_path.dentry))
2240 goto close_fail;
2241 /*
2242 * AK: actually i see no reason to not allow this for named
2243 * pipes etc, but keep the previous behaviour for now.
2244 */
2245 if (!S_ISREG(inode->i_mode))
2246 goto close_fail;
2247 /*
2248 * Dont allow local users get cute and trick others to coredump
2249 * into their pre-created files.
2250 */
2251 if (!uid_eq(inode->i_uid, current_fsuid()))
2252 goto close_fail;
2253 if (!cprm.file->f_op || !cprm.file->f_op->write)
2254 goto close_fail;
2255 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2256 goto close_fail;
2257 }
2258
2259 retval = binfmt->core_dump(&cprm);
2260 if (retval)
2261 current->signal->group_exit_code |= 0x80;
2262
2263 if (ispipe && core_pipe_limit)
2264 wait_for_dump_helpers(cprm.file);
2265 close_fail:
2266 if (cprm.file)
2267 filp_close(cprm.file, NULL);
2268 fail_dropcount:
2269 if (ispipe)
2270 atomic_dec(&core_dump_count);
2271 fail_unlock:
2272 kfree(cn.corename);
2273 fail_corename:
2274 coredump_finish(mm);
2275 revert_creds(old_cred);
2276 fail_creds:
2277 put_cred(cred);
2278 fail:
2279 return;
2280 }
2281
2282 /*
2283 * Core dumping helper functions. These are the only things you should
2284 * do on a core-file: use only these functions to write out all the
2285 * necessary info.
2286 */
2287 int dump_write(struct file *file, const void *addr, int nr)
2288 {
2289 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2290 }
2291 EXPORT_SYMBOL(dump_write);
2292
2293 int dump_seek(struct file *file, loff_t off)
2294 {
2295 int ret = 1;
2296
2297 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2298 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2299 return 0;
2300 } else {
2301 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2302
2303 if (!buf)
2304 return 0;
2305 while (off > 0) {
2306 unsigned long n = off;
2307
2308 if (n > PAGE_SIZE)
2309 n = PAGE_SIZE;
2310 if (!dump_write(file, buf, n)) {
2311 ret = 0;
2312 break;
2313 }
2314 off -= n;
2315 }
2316 free_page((unsigned long)buf);
2317 }
2318 return ret;
2319 }
2320 EXPORT_SYMBOL(dump_seek);