]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/exec.c
Merge tag 'flexible-array-transformations-5.18-rc1' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-kernels.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68 #include <linux/coredump.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73
74 #include <trace/events/task.h>
75 #include "internal.h"
76
77 #include <trace/events/sched.h>
78
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80
81 int suid_dumpable = 0;
82
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 write_lock(&binfmt_lock);
89 insert ? list_add(&fmt->lh, &formats) :
90 list_add_tail(&fmt->lh, &formats);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(__register_binfmt);
95
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 write_lock(&binfmt_lock);
99 list_del(&fmt->lh);
100 write_unlock(&binfmt_lock);
101 }
102
103 EXPORT_SYMBOL(unregister_binfmt);
104
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 module_put(fmt->module);
108 }
109
110 bool path_noexec(const struct path *path)
111 {
112 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115
116 #ifdef CONFIG_USELIB
117 /*
118 * Note that a shared library must be both readable and executable due to
119 * security reasons.
120 *
121 * Also note that we take the address to load from the file itself.
122 */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 struct linux_binfmt *fmt;
126 struct file *file;
127 struct filename *tmp = getname(library);
128 int error = PTR_ERR(tmp);
129 static const struct open_flags uselib_flags = {
130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 .acc_mode = MAY_READ | MAY_EXEC,
132 .intent = LOOKUP_OPEN,
133 .lookup_flags = LOOKUP_FOLLOW,
134 };
135
136 if (IS_ERR(tmp))
137 goto out;
138
139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 putname(tmp);
141 error = PTR_ERR(file);
142 if (IS_ERR(file))
143 goto out;
144
145 /*
146 * may_open() has already checked for this, so it should be
147 * impossible to trip now. But we need to be extra cautious
148 * and check again at the very end too.
149 */
150 error = -EACCES;
151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 path_noexec(&file->f_path)))
153 goto exit;
154
155 fsnotify_open(file);
156
157 error = -ENOEXEC;
158
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
162 continue;
163 if (!try_module_get(fmt->module))
164 continue;
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
168 put_binfmt(fmt);
169 if (error != -ENOEXEC)
170 break;
171 }
172 read_unlock(&binfmt_lock);
173 exit:
174 fput(file);
175 out:
176 return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179
180 #ifdef CONFIG_MMU
181 /*
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
186 */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
191
192 if (!mm || !diff)
193 return;
194
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201 {
202 struct page *page;
203 int ret;
204 unsigned int gup_flags = FOLL_FORCE;
205
206 #ifdef CONFIG_STACK_GROWSUP
207 if (write) {
208 ret = expand_downwards(bprm->vma, pos);
209 if (ret < 0)
210 return NULL;
211 }
212 #endif
213
214 if (write)
215 gup_flags |= FOLL_WRITE;
216
217 /*
218 * We are doing an exec(). 'current' is the process
219 * doing the exec and bprm->mm is the new process's mm.
220 */
221 mmap_read_lock(bprm->mm);
222 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
223 &page, NULL, NULL);
224 mmap_read_unlock(bprm->mm);
225 if (ret <= 0)
226 return NULL;
227
228 if (write)
229 acct_arg_size(bprm, vma_pages(bprm->vma));
230
231 return page;
232 }
233
234 static void put_arg_page(struct page *page)
235 {
236 put_page(page);
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 struct page *page)
245 {
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 int err;
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
254
255 bprm->vma = vma = vm_area_alloc(mm);
256 if (!vma)
257 return -ENOMEM;
258 vma_set_anonymous(vma);
259
260 if (mmap_write_lock_killable(mm)) {
261 err = -EINTR;
262 goto err_free;
263 }
264
265 /*
266 * Place the stack at the largest stack address the architecture
267 * supports. Later, we'll move this to an appropriate place. We don't
268 * use STACK_TOP because that can depend on attributes which aren't
269 * configured yet.
270 */
271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272 vma->vm_end = STACK_TOP_MAX;
273 vma->vm_start = vma->vm_end - PAGE_SIZE;
274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
276
277 err = insert_vm_struct(mm, vma);
278 if (err)
279 goto err;
280
281 mm->stack_vm = mm->total_vm = 1;
282 mmap_write_unlock(mm);
283 bprm->p = vma->vm_end - sizeof(void *);
284 return 0;
285 err:
286 mmap_write_unlock(mm);
287 err_free:
288 bprm->vma = NULL;
289 vm_area_free(vma);
290 return err;
291 }
292
293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
294 {
295 return len <= MAX_ARG_STRLEN;
296 }
297
298 #else
299
300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
301 {
302 }
303
304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
305 int write)
306 {
307 struct page *page;
308
309 page = bprm->page[pos / PAGE_SIZE];
310 if (!page && write) {
311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312 if (!page)
313 return NULL;
314 bprm->page[pos / PAGE_SIZE] = page;
315 }
316
317 return page;
318 }
319
320 static void put_arg_page(struct page *page)
321 {
322 }
323
324 static void free_arg_page(struct linux_binprm *bprm, int i)
325 {
326 if (bprm->page[i]) {
327 __free_page(bprm->page[i]);
328 bprm->page[i] = NULL;
329 }
330 }
331
332 static void free_arg_pages(struct linux_binprm *bprm)
333 {
334 int i;
335
336 for (i = 0; i < MAX_ARG_PAGES; i++)
337 free_arg_page(bprm, i);
338 }
339
340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
341 struct page *page)
342 {
343 }
344
345 static int __bprm_mm_init(struct linux_binprm *bprm)
346 {
347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
348 return 0;
349 }
350
351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
352 {
353 return len <= bprm->p;
354 }
355
356 #endif /* CONFIG_MMU */
357
358 /*
359 * Create a new mm_struct and populate it with a temporary stack
360 * vm_area_struct. We don't have enough context at this point to set the stack
361 * flags, permissions, and offset, so we use temporary values. We'll update
362 * them later in setup_arg_pages().
363 */
364 static int bprm_mm_init(struct linux_binprm *bprm)
365 {
366 int err;
367 struct mm_struct *mm = NULL;
368
369 bprm->mm = mm = mm_alloc();
370 err = -ENOMEM;
371 if (!mm)
372 goto err;
373
374 /* Save current stack limit for all calculations made during exec. */
375 task_lock(current->group_leader);
376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377 task_unlock(current->group_leader);
378
379 err = __bprm_mm_init(bprm);
380 if (err)
381 goto err;
382
383 return 0;
384
385 err:
386 if (mm) {
387 bprm->mm = NULL;
388 mmdrop(mm);
389 }
390
391 return err;
392 }
393
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396 bool is_compat;
397 #endif
398 union {
399 const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401 const compat_uptr_t __user *compat;
402 #endif
403 } ptr;
404 };
405
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408 const char __user *native;
409
410 #ifdef CONFIG_COMPAT
411 if (unlikely(argv.is_compat)) {
412 compat_uptr_t compat;
413
414 if (get_user(compat, argv.ptr.compat + nr))
415 return ERR_PTR(-EFAULT);
416
417 return compat_ptr(compat);
418 }
419 #endif
420
421 if (get_user(native, argv.ptr.native + nr))
422 return ERR_PTR(-EFAULT);
423
424 return native;
425 }
426
427 /*
428 * count() counts the number of strings in array ARGV.
429 */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432 int i = 0;
433
434 if (argv.ptr.native != NULL) {
435 for (;;) {
436 const char __user *p = get_user_arg_ptr(argv, i);
437
438 if (!p)
439 break;
440
441 if (IS_ERR(p))
442 return -EFAULT;
443
444 if (i >= max)
445 return -E2BIG;
446 ++i;
447
448 if (fatal_signal_pending(current))
449 return -ERESTARTNOHAND;
450 cond_resched();
451 }
452 }
453 return i;
454 }
455
456 static int count_strings_kernel(const char *const *argv)
457 {
458 int i;
459
460 if (!argv)
461 return 0;
462
463 for (i = 0; argv[i]; ++i) {
464 if (i >= MAX_ARG_STRINGS)
465 return -E2BIG;
466 if (fatal_signal_pending(current))
467 return -ERESTARTNOHAND;
468 cond_resched();
469 }
470 return i;
471 }
472
473 static int bprm_stack_limits(struct linux_binprm *bprm)
474 {
475 unsigned long limit, ptr_size;
476
477 /*
478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479 * (whichever is smaller) for the argv+env strings.
480 * This ensures that:
481 * - the remaining binfmt code will not run out of stack space,
482 * - the program will have a reasonable amount of stack left
483 * to work from.
484 */
485 limit = _STK_LIM / 4 * 3;
486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
487 /*
488 * We've historically supported up to 32 pages (ARG_MAX)
489 * of argument strings even with small stacks
490 */
491 limit = max_t(unsigned long, limit, ARG_MAX);
492 /*
493 * We must account for the size of all the argv and envp pointers to
494 * the argv and envp strings, since they will also take up space in
495 * the stack. They aren't stored until much later when we can't
496 * signal to the parent that the child has run out of stack space.
497 * Instead, calculate it here so it's possible to fail gracefully.
498 *
499 * In the case of argc = 0, make sure there is space for adding a
500 * empty string (which will bump argc to 1), to ensure confused
501 * userspace programs don't start processing from argv[1], thinking
502 * argc can never be 0, to keep them from walking envp by accident.
503 * See do_execveat_common().
504 */
505 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
506 if (limit <= ptr_size)
507 return -E2BIG;
508 limit -= ptr_size;
509
510 bprm->argmin = bprm->p - limit;
511 return 0;
512 }
513
514 /*
515 * 'copy_strings()' copies argument/environment strings from the old
516 * processes's memory to the new process's stack. The call to get_user_pages()
517 * ensures the destination page is created and not swapped out.
518 */
519 static int copy_strings(int argc, struct user_arg_ptr argv,
520 struct linux_binprm *bprm)
521 {
522 struct page *kmapped_page = NULL;
523 char *kaddr = NULL;
524 unsigned long kpos = 0;
525 int ret;
526
527 while (argc-- > 0) {
528 const char __user *str;
529 int len;
530 unsigned long pos;
531
532 ret = -EFAULT;
533 str = get_user_arg_ptr(argv, argc);
534 if (IS_ERR(str))
535 goto out;
536
537 len = strnlen_user(str, MAX_ARG_STRLEN);
538 if (!len)
539 goto out;
540
541 ret = -E2BIG;
542 if (!valid_arg_len(bprm, len))
543 goto out;
544
545 /* We're going to work our way backwards. */
546 pos = bprm->p;
547 str += len;
548 bprm->p -= len;
549 #ifdef CONFIG_MMU
550 if (bprm->p < bprm->argmin)
551 goto out;
552 #endif
553
554 while (len > 0) {
555 int offset, bytes_to_copy;
556
557 if (fatal_signal_pending(current)) {
558 ret = -ERESTARTNOHAND;
559 goto out;
560 }
561 cond_resched();
562
563 offset = pos % PAGE_SIZE;
564 if (offset == 0)
565 offset = PAGE_SIZE;
566
567 bytes_to_copy = offset;
568 if (bytes_to_copy > len)
569 bytes_to_copy = len;
570
571 offset -= bytes_to_copy;
572 pos -= bytes_to_copy;
573 str -= bytes_to_copy;
574 len -= bytes_to_copy;
575
576 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
577 struct page *page;
578
579 page = get_arg_page(bprm, pos, 1);
580 if (!page) {
581 ret = -E2BIG;
582 goto out;
583 }
584
585 if (kmapped_page) {
586 flush_dcache_page(kmapped_page);
587 kunmap(kmapped_page);
588 put_arg_page(kmapped_page);
589 }
590 kmapped_page = page;
591 kaddr = kmap(kmapped_page);
592 kpos = pos & PAGE_MASK;
593 flush_arg_page(bprm, kpos, kmapped_page);
594 }
595 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
596 ret = -EFAULT;
597 goto out;
598 }
599 }
600 }
601 ret = 0;
602 out:
603 if (kmapped_page) {
604 flush_dcache_page(kmapped_page);
605 kunmap(kmapped_page);
606 put_arg_page(kmapped_page);
607 }
608 return ret;
609 }
610
611 /*
612 * Copy and argument/environment string from the kernel to the processes stack.
613 */
614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
615 {
616 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
617 unsigned long pos = bprm->p;
618
619 if (len == 0)
620 return -EFAULT;
621 if (!valid_arg_len(bprm, len))
622 return -E2BIG;
623
624 /* We're going to work our way backwards. */
625 arg += len;
626 bprm->p -= len;
627 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
628 return -E2BIG;
629
630 while (len > 0) {
631 unsigned int bytes_to_copy = min_t(unsigned int, len,
632 min_not_zero(offset_in_page(pos), PAGE_SIZE));
633 struct page *page;
634 char *kaddr;
635
636 pos -= bytes_to_copy;
637 arg -= bytes_to_copy;
638 len -= bytes_to_copy;
639
640 page = get_arg_page(bprm, pos, 1);
641 if (!page)
642 return -E2BIG;
643 kaddr = kmap_atomic(page);
644 flush_arg_page(bprm, pos & PAGE_MASK, page);
645 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
646 flush_dcache_page(page);
647 kunmap_atomic(kaddr);
648 put_arg_page(page);
649 }
650
651 return 0;
652 }
653 EXPORT_SYMBOL(copy_string_kernel);
654
655 static int copy_strings_kernel(int argc, const char *const *argv,
656 struct linux_binprm *bprm)
657 {
658 while (argc-- > 0) {
659 int ret = copy_string_kernel(argv[argc], bprm);
660 if (ret < 0)
661 return ret;
662 if (fatal_signal_pending(current))
663 return -ERESTARTNOHAND;
664 cond_resched();
665 }
666 return 0;
667 }
668
669 #ifdef CONFIG_MMU
670
671 /*
672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
673 * the binfmt code determines where the new stack should reside, we shift it to
674 * its final location. The process proceeds as follows:
675 *
676 * 1) Use shift to calculate the new vma endpoints.
677 * 2) Extend vma to cover both the old and new ranges. This ensures the
678 * arguments passed to subsequent functions are consistent.
679 * 3) Move vma's page tables to the new range.
680 * 4) Free up any cleared pgd range.
681 * 5) Shrink the vma to cover only the new range.
682 */
683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684 {
685 struct mm_struct *mm = vma->vm_mm;
686 unsigned long old_start = vma->vm_start;
687 unsigned long old_end = vma->vm_end;
688 unsigned long length = old_end - old_start;
689 unsigned long new_start = old_start - shift;
690 unsigned long new_end = old_end - shift;
691 struct mmu_gather tlb;
692
693 BUG_ON(new_start > new_end);
694
695 /*
696 * ensure there are no vmas between where we want to go
697 * and where we are
698 */
699 if (vma != find_vma(mm, new_start))
700 return -EFAULT;
701
702 /*
703 * cover the whole range: [new_start, old_end)
704 */
705 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
706 return -ENOMEM;
707
708 /*
709 * move the page tables downwards, on failure we rely on
710 * process cleanup to remove whatever mess we made.
711 */
712 if (length != move_page_tables(vma, old_start,
713 vma, new_start, length, false))
714 return -ENOMEM;
715
716 lru_add_drain();
717 tlb_gather_mmu(&tlb, mm);
718 if (new_end > old_start) {
719 /*
720 * when the old and new regions overlap clear from new_end.
721 */
722 free_pgd_range(&tlb, new_end, old_end, new_end,
723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
724 } else {
725 /*
726 * otherwise, clean from old_start; this is done to not touch
727 * the address space in [new_end, old_start) some architectures
728 * have constraints on va-space that make this illegal (IA64) -
729 * for the others its just a little faster.
730 */
731 free_pgd_range(&tlb, old_start, old_end, new_end,
732 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
733 }
734 tlb_finish_mmu(&tlb);
735
736 /*
737 * Shrink the vma to just the new range. Always succeeds.
738 */
739 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
740
741 return 0;
742 }
743
744 /*
745 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
746 * the stack is optionally relocated, and some extra space is added.
747 */
748 int setup_arg_pages(struct linux_binprm *bprm,
749 unsigned long stack_top,
750 int executable_stack)
751 {
752 unsigned long ret;
753 unsigned long stack_shift;
754 struct mm_struct *mm = current->mm;
755 struct vm_area_struct *vma = bprm->vma;
756 struct vm_area_struct *prev = NULL;
757 unsigned long vm_flags;
758 unsigned long stack_base;
759 unsigned long stack_size;
760 unsigned long stack_expand;
761 unsigned long rlim_stack;
762
763 #ifdef CONFIG_STACK_GROWSUP
764 /* Limit stack size */
765 stack_base = bprm->rlim_stack.rlim_max;
766
767 stack_base = calc_max_stack_size(stack_base);
768
769 /* Add space for stack randomization. */
770 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
771
772 /* Make sure we didn't let the argument array grow too large. */
773 if (vma->vm_end - vma->vm_start > stack_base)
774 return -ENOMEM;
775
776 stack_base = PAGE_ALIGN(stack_top - stack_base);
777
778 stack_shift = vma->vm_start - stack_base;
779 mm->arg_start = bprm->p - stack_shift;
780 bprm->p = vma->vm_end - stack_shift;
781 #else
782 stack_top = arch_align_stack(stack_top);
783 stack_top = PAGE_ALIGN(stack_top);
784
785 if (unlikely(stack_top < mmap_min_addr) ||
786 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
787 return -ENOMEM;
788
789 stack_shift = vma->vm_end - stack_top;
790
791 bprm->p -= stack_shift;
792 mm->arg_start = bprm->p;
793 #endif
794
795 if (bprm->loader)
796 bprm->loader -= stack_shift;
797 bprm->exec -= stack_shift;
798
799 if (mmap_write_lock_killable(mm))
800 return -EINTR;
801
802 vm_flags = VM_STACK_FLAGS;
803
804 /*
805 * Adjust stack execute permissions; explicitly enable for
806 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
807 * (arch default) otherwise.
808 */
809 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
810 vm_flags |= VM_EXEC;
811 else if (executable_stack == EXSTACK_DISABLE_X)
812 vm_flags &= ~VM_EXEC;
813 vm_flags |= mm->def_flags;
814 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
815
816 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
817 vm_flags);
818 if (ret)
819 goto out_unlock;
820 BUG_ON(prev != vma);
821
822 if (unlikely(vm_flags & VM_EXEC)) {
823 pr_warn_once("process '%pD4' started with executable stack\n",
824 bprm->file);
825 }
826
827 /* Move stack pages down in memory. */
828 if (stack_shift) {
829 ret = shift_arg_pages(vma, stack_shift);
830 if (ret)
831 goto out_unlock;
832 }
833
834 /* mprotect_fixup is overkill to remove the temporary stack flags */
835 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
836
837 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
838 stack_size = vma->vm_end - vma->vm_start;
839 /*
840 * Align this down to a page boundary as expand_stack
841 * will align it up.
842 */
843 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
844 #ifdef CONFIG_STACK_GROWSUP
845 if (stack_size + stack_expand > rlim_stack)
846 stack_base = vma->vm_start + rlim_stack;
847 else
848 stack_base = vma->vm_end + stack_expand;
849 #else
850 if (stack_size + stack_expand > rlim_stack)
851 stack_base = vma->vm_end - rlim_stack;
852 else
853 stack_base = vma->vm_start - stack_expand;
854 #endif
855 current->mm->start_stack = bprm->p;
856 ret = expand_stack(vma, stack_base);
857 if (ret)
858 ret = -EFAULT;
859
860 out_unlock:
861 mmap_write_unlock(mm);
862 return ret;
863 }
864 EXPORT_SYMBOL(setup_arg_pages);
865
866 #else
867
868 /*
869 * Transfer the program arguments and environment from the holding pages
870 * onto the stack. The provided stack pointer is adjusted accordingly.
871 */
872 int transfer_args_to_stack(struct linux_binprm *bprm,
873 unsigned long *sp_location)
874 {
875 unsigned long index, stop, sp;
876 int ret = 0;
877
878 stop = bprm->p >> PAGE_SHIFT;
879 sp = *sp_location;
880
881 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
882 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
883 char *src = kmap(bprm->page[index]) + offset;
884 sp -= PAGE_SIZE - offset;
885 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
886 ret = -EFAULT;
887 kunmap(bprm->page[index]);
888 if (ret)
889 goto out;
890 }
891
892 *sp_location = sp;
893
894 out:
895 return ret;
896 }
897 EXPORT_SYMBOL(transfer_args_to_stack);
898
899 #endif /* CONFIG_MMU */
900
901 static struct file *do_open_execat(int fd, struct filename *name, int flags)
902 {
903 struct file *file;
904 int err;
905 struct open_flags open_exec_flags = {
906 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
907 .acc_mode = MAY_EXEC,
908 .intent = LOOKUP_OPEN,
909 .lookup_flags = LOOKUP_FOLLOW,
910 };
911
912 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
913 return ERR_PTR(-EINVAL);
914 if (flags & AT_SYMLINK_NOFOLLOW)
915 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
916 if (flags & AT_EMPTY_PATH)
917 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
918
919 file = do_filp_open(fd, name, &open_exec_flags);
920 if (IS_ERR(file))
921 goto out;
922
923 /*
924 * may_open() has already checked for this, so it should be
925 * impossible to trip now. But we need to be extra cautious
926 * and check again at the very end too.
927 */
928 err = -EACCES;
929 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
930 path_noexec(&file->f_path)))
931 goto exit;
932
933 err = deny_write_access(file);
934 if (err)
935 goto exit;
936
937 if (name->name[0] != '\0')
938 fsnotify_open(file);
939
940 out:
941 return file;
942
943 exit:
944 fput(file);
945 return ERR_PTR(err);
946 }
947
948 struct file *open_exec(const char *name)
949 {
950 struct filename *filename = getname_kernel(name);
951 struct file *f = ERR_CAST(filename);
952
953 if (!IS_ERR(filename)) {
954 f = do_open_execat(AT_FDCWD, filename, 0);
955 putname(filename);
956 }
957 return f;
958 }
959 EXPORT_SYMBOL(open_exec);
960
961 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
962 defined(CONFIG_BINFMT_ELF_FDPIC)
963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
964 {
965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
966 if (res > 0)
967 flush_icache_user_range(addr, addr + len);
968 return res;
969 }
970 EXPORT_SYMBOL(read_code);
971 #endif
972
973 /*
974 * Maps the mm_struct mm into the current task struct.
975 * On success, this function returns with exec_update_lock
976 * held for writing.
977 */
978 static int exec_mmap(struct mm_struct *mm)
979 {
980 struct task_struct *tsk;
981 struct mm_struct *old_mm, *active_mm;
982 int ret;
983
984 /* Notify parent that we're no longer interested in the old VM */
985 tsk = current;
986 old_mm = current->mm;
987 exec_mm_release(tsk, old_mm);
988 if (old_mm)
989 sync_mm_rss(old_mm);
990
991 ret = down_write_killable(&tsk->signal->exec_update_lock);
992 if (ret)
993 return ret;
994
995 if (old_mm) {
996 /*
997 * If there is a pending fatal signal perhaps a signal
998 * whose default action is to create a coredump get
999 * out and die instead of going through with the exec.
1000 */
1001 ret = mmap_read_lock_killable(old_mm);
1002 if (ret) {
1003 up_write(&tsk->signal->exec_update_lock);
1004 return ret;
1005 }
1006 }
1007
1008 task_lock(tsk);
1009 membarrier_exec_mmap(mm);
1010
1011 local_irq_disable();
1012 active_mm = tsk->active_mm;
1013 tsk->active_mm = mm;
1014 tsk->mm = mm;
1015 /*
1016 * This prevents preemption while active_mm is being loaded and
1017 * it and mm are being updated, which could cause problems for
1018 * lazy tlb mm refcounting when these are updated by context
1019 * switches. Not all architectures can handle irqs off over
1020 * activate_mm yet.
1021 */
1022 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1023 local_irq_enable();
1024 activate_mm(active_mm, mm);
1025 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026 local_irq_enable();
1027 tsk->mm->vmacache_seqnum = 0;
1028 vmacache_flush(tsk);
1029 task_unlock(tsk);
1030 if (old_mm) {
1031 mmap_read_unlock(old_mm);
1032 BUG_ON(active_mm != old_mm);
1033 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1034 mm_update_next_owner(old_mm);
1035 mmput(old_mm);
1036 return 0;
1037 }
1038 mmdrop(active_mm);
1039 return 0;
1040 }
1041
1042 static int de_thread(struct task_struct *tsk)
1043 {
1044 struct signal_struct *sig = tsk->signal;
1045 struct sighand_struct *oldsighand = tsk->sighand;
1046 spinlock_t *lock = &oldsighand->siglock;
1047
1048 if (thread_group_empty(tsk))
1049 goto no_thread_group;
1050
1051 /*
1052 * Kill all other threads in the thread group.
1053 */
1054 spin_lock_irq(lock);
1055 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1056 /*
1057 * Another group action in progress, just
1058 * return so that the signal is processed.
1059 */
1060 spin_unlock_irq(lock);
1061 return -EAGAIN;
1062 }
1063
1064 sig->group_exec_task = tsk;
1065 sig->notify_count = zap_other_threads(tsk);
1066 if (!thread_group_leader(tsk))
1067 sig->notify_count--;
1068
1069 while (sig->notify_count) {
1070 __set_current_state(TASK_KILLABLE);
1071 spin_unlock_irq(lock);
1072 schedule();
1073 if (__fatal_signal_pending(tsk))
1074 goto killed;
1075 spin_lock_irq(lock);
1076 }
1077 spin_unlock_irq(lock);
1078
1079 /*
1080 * At this point all other threads have exited, all we have to
1081 * do is to wait for the thread group leader to become inactive,
1082 * and to assume its PID:
1083 */
1084 if (!thread_group_leader(tsk)) {
1085 struct task_struct *leader = tsk->group_leader;
1086
1087 for (;;) {
1088 cgroup_threadgroup_change_begin(tsk);
1089 write_lock_irq(&tasklist_lock);
1090 /*
1091 * Do this under tasklist_lock to ensure that
1092 * exit_notify() can't miss ->group_exec_task
1093 */
1094 sig->notify_count = -1;
1095 if (likely(leader->exit_state))
1096 break;
1097 __set_current_state(TASK_KILLABLE);
1098 write_unlock_irq(&tasklist_lock);
1099 cgroup_threadgroup_change_end(tsk);
1100 schedule();
1101 if (__fatal_signal_pending(tsk))
1102 goto killed;
1103 }
1104
1105 /*
1106 * The only record we have of the real-time age of a
1107 * process, regardless of execs it's done, is start_time.
1108 * All the past CPU time is accumulated in signal_struct
1109 * from sister threads now dead. But in this non-leader
1110 * exec, nothing survives from the original leader thread,
1111 * whose birth marks the true age of this process now.
1112 * When we take on its identity by switching to its PID, we
1113 * also take its birthdate (always earlier than our own).
1114 */
1115 tsk->start_time = leader->start_time;
1116 tsk->start_boottime = leader->start_boottime;
1117
1118 BUG_ON(!same_thread_group(leader, tsk));
1119 /*
1120 * An exec() starts a new thread group with the
1121 * TGID of the previous thread group. Rehash the
1122 * two threads with a switched PID, and release
1123 * the former thread group leader:
1124 */
1125
1126 /* Become a process group leader with the old leader's pid.
1127 * The old leader becomes a thread of the this thread group.
1128 */
1129 exchange_tids(tsk, leader);
1130 transfer_pid(leader, tsk, PIDTYPE_TGID);
1131 transfer_pid(leader, tsk, PIDTYPE_PGID);
1132 transfer_pid(leader, tsk, PIDTYPE_SID);
1133
1134 list_replace_rcu(&leader->tasks, &tsk->tasks);
1135 list_replace_init(&leader->sibling, &tsk->sibling);
1136
1137 tsk->group_leader = tsk;
1138 leader->group_leader = tsk;
1139
1140 tsk->exit_signal = SIGCHLD;
1141 leader->exit_signal = -1;
1142
1143 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1144 leader->exit_state = EXIT_DEAD;
1145
1146 /*
1147 * We are going to release_task()->ptrace_unlink() silently,
1148 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1149 * the tracer wont't block again waiting for this thread.
1150 */
1151 if (unlikely(leader->ptrace))
1152 __wake_up_parent(leader, leader->parent);
1153 write_unlock_irq(&tasklist_lock);
1154 cgroup_threadgroup_change_end(tsk);
1155
1156 release_task(leader);
1157 }
1158
1159 sig->group_exec_task = NULL;
1160 sig->notify_count = 0;
1161
1162 no_thread_group:
1163 /* we have changed execution domain */
1164 tsk->exit_signal = SIGCHLD;
1165
1166 BUG_ON(!thread_group_leader(tsk));
1167 return 0;
1168
1169 killed:
1170 /* protects against exit_notify() and __exit_signal() */
1171 read_lock(&tasklist_lock);
1172 sig->group_exec_task = NULL;
1173 sig->notify_count = 0;
1174 read_unlock(&tasklist_lock);
1175 return -EAGAIN;
1176 }
1177
1178
1179 /*
1180 * This function makes sure the current process has its own signal table,
1181 * so that flush_signal_handlers can later reset the handlers without
1182 * disturbing other processes. (Other processes might share the signal
1183 * table via the CLONE_SIGHAND option to clone().)
1184 */
1185 static int unshare_sighand(struct task_struct *me)
1186 {
1187 struct sighand_struct *oldsighand = me->sighand;
1188
1189 if (refcount_read(&oldsighand->count) != 1) {
1190 struct sighand_struct *newsighand;
1191 /*
1192 * This ->sighand is shared with the CLONE_SIGHAND
1193 * but not CLONE_THREAD task, switch to the new one.
1194 */
1195 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1196 if (!newsighand)
1197 return -ENOMEM;
1198
1199 refcount_set(&newsighand->count, 1);
1200 memcpy(newsighand->action, oldsighand->action,
1201 sizeof(newsighand->action));
1202
1203 write_lock_irq(&tasklist_lock);
1204 spin_lock(&oldsighand->siglock);
1205 rcu_assign_pointer(me->sighand, newsighand);
1206 spin_unlock(&oldsighand->siglock);
1207 write_unlock_irq(&tasklist_lock);
1208
1209 __cleanup_sighand(oldsighand);
1210 }
1211 return 0;
1212 }
1213
1214 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1215 {
1216 task_lock(tsk);
1217 /* Always NUL terminated and zero-padded */
1218 strscpy_pad(buf, tsk->comm, buf_size);
1219 task_unlock(tsk);
1220 return buf;
1221 }
1222 EXPORT_SYMBOL_GPL(__get_task_comm);
1223
1224 /*
1225 * These functions flushes out all traces of the currently running executable
1226 * so that a new one can be started
1227 */
1228
1229 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1230 {
1231 task_lock(tsk);
1232 trace_task_rename(tsk, buf);
1233 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1234 task_unlock(tsk);
1235 perf_event_comm(tsk, exec);
1236 }
1237
1238 /*
1239 * Calling this is the point of no return. None of the failures will be
1240 * seen by userspace since either the process is already taking a fatal
1241 * signal (via de_thread() or coredump), or will have SEGV raised
1242 * (after exec_mmap()) by search_binary_handler (see below).
1243 */
1244 int begin_new_exec(struct linux_binprm * bprm)
1245 {
1246 struct task_struct *me = current;
1247 int retval;
1248
1249 /* Once we are committed compute the creds */
1250 retval = bprm_creds_from_file(bprm);
1251 if (retval)
1252 return retval;
1253
1254 /*
1255 * Ensure all future errors are fatal.
1256 */
1257 bprm->point_of_no_return = true;
1258
1259 /*
1260 * Make this the only thread in the thread group.
1261 */
1262 retval = de_thread(me);
1263 if (retval)
1264 goto out;
1265
1266 /*
1267 * Cancel any io_uring activity across execve
1268 */
1269 io_uring_task_cancel();
1270
1271 /* Ensure the files table is not shared. */
1272 retval = unshare_files();
1273 if (retval)
1274 goto out;
1275
1276 /*
1277 * Must be called _before_ exec_mmap() as bprm->mm is
1278 * not visible until then. This also enables the update
1279 * to be lockless.
1280 */
1281 retval = set_mm_exe_file(bprm->mm, bprm->file);
1282 if (retval)
1283 goto out;
1284
1285 /* If the binary is not readable then enforce mm->dumpable=0 */
1286 would_dump(bprm, bprm->file);
1287 if (bprm->have_execfd)
1288 would_dump(bprm, bprm->executable);
1289
1290 /*
1291 * Release all of the old mmap stuff
1292 */
1293 acct_arg_size(bprm, 0);
1294 retval = exec_mmap(bprm->mm);
1295 if (retval)
1296 goto out;
1297
1298 bprm->mm = NULL;
1299
1300 #ifdef CONFIG_POSIX_TIMERS
1301 exit_itimers(me->signal);
1302 flush_itimer_signals();
1303 #endif
1304
1305 /*
1306 * Make the signal table private.
1307 */
1308 retval = unshare_sighand(me);
1309 if (retval)
1310 goto out_unlock;
1311
1312 if (me->flags & PF_KTHREAD)
1313 free_kthread_struct(me);
1314 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1315 PF_NOFREEZE | PF_NO_SETAFFINITY);
1316 flush_thread();
1317 me->personality &= ~bprm->per_clear;
1318
1319 clear_syscall_work_syscall_user_dispatch(me);
1320
1321 /*
1322 * We have to apply CLOEXEC before we change whether the process is
1323 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1324 * trying to access the should-be-closed file descriptors of a process
1325 * undergoing exec(2).
1326 */
1327 do_close_on_exec(me->files);
1328
1329 if (bprm->secureexec) {
1330 /* Make sure parent cannot signal privileged process. */
1331 me->pdeath_signal = 0;
1332
1333 /*
1334 * For secureexec, reset the stack limit to sane default to
1335 * avoid bad behavior from the prior rlimits. This has to
1336 * happen before arch_pick_mmap_layout(), which examines
1337 * RLIMIT_STACK, but after the point of no return to avoid
1338 * needing to clean up the change on failure.
1339 */
1340 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1341 bprm->rlim_stack.rlim_cur = _STK_LIM;
1342 }
1343
1344 me->sas_ss_sp = me->sas_ss_size = 0;
1345
1346 /*
1347 * Figure out dumpability. Note that this checking only of current
1348 * is wrong, but userspace depends on it. This should be testing
1349 * bprm->secureexec instead.
1350 */
1351 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1352 !(uid_eq(current_euid(), current_uid()) &&
1353 gid_eq(current_egid(), current_gid())))
1354 set_dumpable(current->mm, suid_dumpable);
1355 else
1356 set_dumpable(current->mm, SUID_DUMP_USER);
1357
1358 perf_event_exec();
1359 __set_task_comm(me, kbasename(bprm->filename), true);
1360
1361 /* An exec changes our domain. We are no longer part of the thread
1362 group */
1363 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1364 flush_signal_handlers(me, 0);
1365
1366 retval = set_cred_ucounts(bprm->cred);
1367 if (retval < 0)
1368 goto out_unlock;
1369
1370 /*
1371 * install the new credentials for this executable
1372 */
1373 security_bprm_committing_creds(bprm);
1374
1375 commit_creds(bprm->cred);
1376 bprm->cred = NULL;
1377
1378 /*
1379 * Disable monitoring for regular users
1380 * when executing setuid binaries. Must
1381 * wait until new credentials are committed
1382 * by commit_creds() above
1383 */
1384 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1385 perf_event_exit_task(me);
1386 /*
1387 * cred_guard_mutex must be held at least to this point to prevent
1388 * ptrace_attach() from altering our determination of the task's
1389 * credentials; any time after this it may be unlocked.
1390 */
1391 security_bprm_committed_creds(bprm);
1392
1393 /* Pass the opened binary to the interpreter. */
1394 if (bprm->have_execfd) {
1395 retval = get_unused_fd_flags(0);
1396 if (retval < 0)
1397 goto out_unlock;
1398 fd_install(retval, bprm->executable);
1399 bprm->executable = NULL;
1400 bprm->execfd = retval;
1401 }
1402 return 0;
1403
1404 out_unlock:
1405 up_write(&me->signal->exec_update_lock);
1406 out:
1407 return retval;
1408 }
1409 EXPORT_SYMBOL(begin_new_exec);
1410
1411 void would_dump(struct linux_binprm *bprm, struct file *file)
1412 {
1413 struct inode *inode = file_inode(file);
1414 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1415 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1416 struct user_namespace *old, *user_ns;
1417 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1418
1419 /* Ensure mm->user_ns contains the executable */
1420 user_ns = old = bprm->mm->user_ns;
1421 while ((user_ns != &init_user_ns) &&
1422 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1423 user_ns = user_ns->parent;
1424
1425 if (old != user_ns) {
1426 bprm->mm->user_ns = get_user_ns(user_ns);
1427 put_user_ns(old);
1428 }
1429 }
1430 }
1431 EXPORT_SYMBOL(would_dump);
1432
1433 void setup_new_exec(struct linux_binprm * bprm)
1434 {
1435 /* Setup things that can depend upon the personality */
1436 struct task_struct *me = current;
1437
1438 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1439
1440 arch_setup_new_exec();
1441
1442 /* Set the new mm task size. We have to do that late because it may
1443 * depend on TIF_32BIT which is only updated in flush_thread() on
1444 * some architectures like powerpc
1445 */
1446 me->mm->task_size = TASK_SIZE;
1447 up_write(&me->signal->exec_update_lock);
1448 mutex_unlock(&me->signal->cred_guard_mutex);
1449 }
1450 EXPORT_SYMBOL(setup_new_exec);
1451
1452 /* Runs immediately before start_thread() takes over. */
1453 void finalize_exec(struct linux_binprm *bprm)
1454 {
1455 /* Store any stack rlimit changes before starting thread. */
1456 task_lock(current->group_leader);
1457 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1458 task_unlock(current->group_leader);
1459 }
1460 EXPORT_SYMBOL(finalize_exec);
1461
1462 /*
1463 * Prepare credentials and lock ->cred_guard_mutex.
1464 * setup_new_exec() commits the new creds and drops the lock.
1465 * Or, if exec fails before, free_bprm() should release ->cred
1466 * and unlock.
1467 */
1468 static int prepare_bprm_creds(struct linux_binprm *bprm)
1469 {
1470 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1471 return -ERESTARTNOINTR;
1472
1473 bprm->cred = prepare_exec_creds();
1474 if (likely(bprm->cred))
1475 return 0;
1476
1477 mutex_unlock(&current->signal->cred_guard_mutex);
1478 return -ENOMEM;
1479 }
1480
1481 static void free_bprm(struct linux_binprm *bprm)
1482 {
1483 if (bprm->mm) {
1484 acct_arg_size(bprm, 0);
1485 mmput(bprm->mm);
1486 }
1487 free_arg_pages(bprm);
1488 if (bprm->cred) {
1489 mutex_unlock(&current->signal->cred_guard_mutex);
1490 abort_creds(bprm->cred);
1491 }
1492 if (bprm->file) {
1493 allow_write_access(bprm->file);
1494 fput(bprm->file);
1495 }
1496 if (bprm->executable)
1497 fput(bprm->executable);
1498 /* If a binfmt changed the interp, free it. */
1499 if (bprm->interp != bprm->filename)
1500 kfree(bprm->interp);
1501 kfree(bprm->fdpath);
1502 kfree(bprm);
1503 }
1504
1505 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1506 {
1507 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1508 int retval = -ENOMEM;
1509 if (!bprm)
1510 goto out;
1511
1512 if (fd == AT_FDCWD || filename->name[0] == '/') {
1513 bprm->filename = filename->name;
1514 } else {
1515 if (filename->name[0] == '\0')
1516 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1517 else
1518 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1519 fd, filename->name);
1520 if (!bprm->fdpath)
1521 goto out_free;
1522
1523 bprm->filename = bprm->fdpath;
1524 }
1525 bprm->interp = bprm->filename;
1526
1527 retval = bprm_mm_init(bprm);
1528 if (retval)
1529 goto out_free;
1530 return bprm;
1531
1532 out_free:
1533 free_bprm(bprm);
1534 out:
1535 return ERR_PTR(retval);
1536 }
1537
1538 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1539 {
1540 /* If a binfmt changed the interp, free it first. */
1541 if (bprm->interp != bprm->filename)
1542 kfree(bprm->interp);
1543 bprm->interp = kstrdup(interp, GFP_KERNEL);
1544 if (!bprm->interp)
1545 return -ENOMEM;
1546 return 0;
1547 }
1548 EXPORT_SYMBOL(bprm_change_interp);
1549
1550 /*
1551 * determine how safe it is to execute the proposed program
1552 * - the caller must hold ->cred_guard_mutex to protect against
1553 * PTRACE_ATTACH or seccomp thread-sync
1554 */
1555 static void check_unsafe_exec(struct linux_binprm *bprm)
1556 {
1557 struct task_struct *p = current, *t;
1558 unsigned n_fs;
1559
1560 if (p->ptrace)
1561 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1562
1563 /*
1564 * This isn't strictly necessary, but it makes it harder for LSMs to
1565 * mess up.
1566 */
1567 if (task_no_new_privs(current))
1568 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1569
1570 t = p;
1571 n_fs = 1;
1572 spin_lock(&p->fs->lock);
1573 rcu_read_lock();
1574 while_each_thread(p, t) {
1575 if (t->fs == p->fs)
1576 n_fs++;
1577 }
1578 rcu_read_unlock();
1579
1580 if (p->fs->users > n_fs)
1581 bprm->unsafe |= LSM_UNSAFE_SHARE;
1582 else
1583 p->fs->in_exec = 1;
1584 spin_unlock(&p->fs->lock);
1585 }
1586
1587 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1588 {
1589 /* Handle suid and sgid on files */
1590 struct user_namespace *mnt_userns;
1591 struct inode *inode;
1592 unsigned int mode;
1593 kuid_t uid;
1594 kgid_t gid;
1595
1596 if (!mnt_may_suid(file->f_path.mnt))
1597 return;
1598
1599 if (task_no_new_privs(current))
1600 return;
1601
1602 inode = file->f_path.dentry->d_inode;
1603 mode = READ_ONCE(inode->i_mode);
1604 if (!(mode & (S_ISUID|S_ISGID)))
1605 return;
1606
1607 mnt_userns = file_mnt_user_ns(file);
1608
1609 /* Be careful if suid/sgid is set */
1610 inode_lock(inode);
1611
1612 /* reload atomically mode/uid/gid now that lock held */
1613 mode = inode->i_mode;
1614 uid = i_uid_into_mnt(mnt_userns, inode);
1615 gid = i_gid_into_mnt(mnt_userns, inode);
1616 inode_unlock(inode);
1617
1618 /* We ignore suid/sgid if there are no mappings for them in the ns */
1619 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1620 !kgid_has_mapping(bprm->cred->user_ns, gid))
1621 return;
1622
1623 if (mode & S_ISUID) {
1624 bprm->per_clear |= PER_CLEAR_ON_SETID;
1625 bprm->cred->euid = uid;
1626 }
1627
1628 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1629 bprm->per_clear |= PER_CLEAR_ON_SETID;
1630 bprm->cred->egid = gid;
1631 }
1632 }
1633
1634 /*
1635 * Compute brpm->cred based upon the final binary.
1636 */
1637 static int bprm_creds_from_file(struct linux_binprm *bprm)
1638 {
1639 /* Compute creds based on which file? */
1640 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1641
1642 bprm_fill_uid(bprm, file);
1643 return security_bprm_creds_from_file(bprm, file);
1644 }
1645
1646 /*
1647 * Fill the binprm structure from the inode.
1648 * Read the first BINPRM_BUF_SIZE bytes
1649 *
1650 * This may be called multiple times for binary chains (scripts for example).
1651 */
1652 static int prepare_binprm(struct linux_binprm *bprm)
1653 {
1654 loff_t pos = 0;
1655
1656 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1657 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1658 }
1659
1660 /*
1661 * Arguments are '\0' separated strings found at the location bprm->p
1662 * points to; chop off the first by relocating brpm->p to right after
1663 * the first '\0' encountered.
1664 */
1665 int remove_arg_zero(struct linux_binprm *bprm)
1666 {
1667 int ret = 0;
1668 unsigned long offset;
1669 char *kaddr;
1670 struct page *page;
1671
1672 if (!bprm->argc)
1673 return 0;
1674
1675 do {
1676 offset = bprm->p & ~PAGE_MASK;
1677 page = get_arg_page(bprm, bprm->p, 0);
1678 if (!page) {
1679 ret = -EFAULT;
1680 goto out;
1681 }
1682 kaddr = kmap_atomic(page);
1683
1684 for (; offset < PAGE_SIZE && kaddr[offset];
1685 offset++, bprm->p++)
1686 ;
1687
1688 kunmap_atomic(kaddr);
1689 put_arg_page(page);
1690 } while (offset == PAGE_SIZE);
1691
1692 bprm->p++;
1693 bprm->argc--;
1694 ret = 0;
1695
1696 out:
1697 return ret;
1698 }
1699 EXPORT_SYMBOL(remove_arg_zero);
1700
1701 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1702 /*
1703 * cycle the list of binary formats handler, until one recognizes the image
1704 */
1705 static int search_binary_handler(struct linux_binprm *bprm)
1706 {
1707 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1708 struct linux_binfmt *fmt;
1709 int retval;
1710
1711 retval = prepare_binprm(bprm);
1712 if (retval < 0)
1713 return retval;
1714
1715 retval = security_bprm_check(bprm);
1716 if (retval)
1717 return retval;
1718
1719 retval = -ENOENT;
1720 retry:
1721 read_lock(&binfmt_lock);
1722 list_for_each_entry(fmt, &formats, lh) {
1723 if (!try_module_get(fmt->module))
1724 continue;
1725 read_unlock(&binfmt_lock);
1726
1727 retval = fmt->load_binary(bprm);
1728
1729 read_lock(&binfmt_lock);
1730 put_binfmt(fmt);
1731 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1732 read_unlock(&binfmt_lock);
1733 return retval;
1734 }
1735 }
1736 read_unlock(&binfmt_lock);
1737
1738 if (need_retry) {
1739 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1740 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1741 return retval;
1742 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1743 return retval;
1744 need_retry = false;
1745 goto retry;
1746 }
1747
1748 return retval;
1749 }
1750
1751 static int exec_binprm(struct linux_binprm *bprm)
1752 {
1753 pid_t old_pid, old_vpid;
1754 int ret, depth;
1755
1756 /* Need to fetch pid before load_binary changes it */
1757 old_pid = current->pid;
1758 rcu_read_lock();
1759 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1760 rcu_read_unlock();
1761
1762 /* This allows 4 levels of binfmt rewrites before failing hard. */
1763 for (depth = 0;; depth++) {
1764 struct file *exec;
1765 if (depth > 5)
1766 return -ELOOP;
1767
1768 ret = search_binary_handler(bprm);
1769 if (ret < 0)
1770 return ret;
1771 if (!bprm->interpreter)
1772 break;
1773
1774 exec = bprm->file;
1775 bprm->file = bprm->interpreter;
1776 bprm->interpreter = NULL;
1777
1778 allow_write_access(exec);
1779 if (unlikely(bprm->have_execfd)) {
1780 if (bprm->executable) {
1781 fput(exec);
1782 return -ENOEXEC;
1783 }
1784 bprm->executable = exec;
1785 } else
1786 fput(exec);
1787 }
1788
1789 audit_bprm(bprm);
1790 trace_sched_process_exec(current, old_pid, bprm);
1791 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1792 proc_exec_connector(current);
1793 return 0;
1794 }
1795
1796 /*
1797 * sys_execve() executes a new program.
1798 */
1799 static int bprm_execve(struct linux_binprm *bprm,
1800 int fd, struct filename *filename, int flags)
1801 {
1802 struct file *file;
1803 int retval;
1804
1805 retval = prepare_bprm_creds(bprm);
1806 if (retval)
1807 return retval;
1808
1809 check_unsafe_exec(bprm);
1810 current->in_execve = 1;
1811
1812 file = do_open_execat(fd, filename, flags);
1813 retval = PTR_ERR(file);
1814 if (IS_ERR(file))
1815 goto out_unmark;
1816
1817 sched_exec();
1818
1819 bprm->file = file;
1820 /*
1821 * Record that a name derived from an O_CLOEXEC fd will be
1822 * inaccessible after exec. This allows the code in exec to
1823 * choose to fail when the executable is not mmaped into the
1824 * interpreter and an open file descriptor is not passed to
1825 * the interpreter. This makes for a better user experience
1826 * than having the interpreter start and then immediately fail
1827 * when it finds the executable is inaccessible.
1828 */
1829 if (bprm->fdpath && get_close_on_exec(fd))
1830 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1831
1832 /* Set the unchanging part of bprm->cred */
1833 retval = security_bprm_creds_for_exec(bprm);
1834 if (retval)
1835 goto out;
1836
1837 retval = exec_binprm(bprm);
1838 if (retval < 0)
1839 goto out;
1840
1841 /* execve succeeded */
1842 current->fs->in_exec = 0;
1843 current->in_execve = 0;
1844 rseq_execve(current);
1845 acct_update_integrals(current);
1846 task_numa_free(current, false);
1847 return retval;
1848
1849 out:
1850 /*
1851 * If past the point of no return ensure the code never
1852 * returns to the userspace process. Use an existing fatal
1853 * signal if present otherwise terminate the process with
1854 * SIGSEGV.
1855 */
1856 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1857 force_fatal_sig(SIGSEGV);
1858
1859 out_unmark:
1860 current->fs->in_exec = 0;
1861 current->in_execve = 0;
1862
1863 return retval;
1864 }
1865
1866 static int do_execveat_common(int fd, struct filename *filename,
1867 struct user_arg_ptr argv,
1868 struct user_arg_ptr envp,
1869 int flags)
1870 {
1871 struct linux_binprm *bprm;
1872 int retval;
1873
1874 if (IS_ERR(filename))
1875 return PTR_ERR(filename);
1876
1877 /*
1878 * We move the actual failure in case of RLIMIT_NPROC excess from
1879 * set*uid() to execve() because too many poorly written programs
1880 * don't check setuid() return code. Here we additionally recheck
1881 * whether NPROC limit is still exceeded.
1882 */
1883 if ((current->flags & PF_NPROC_EXCEEDED) &&
1884 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1885 retval = -EAGAIN;
1886 goto out_ret;
1887 }
1888
1889 /* We're below the limit (still or again), so we don't want to make
1890 * further execve() calls fail. */
1891 current->flags &= ~PF_NPROC_EXCEEDED;
1892
1893 bprm = alloc_bprm(fd, filename);
1894 if (IS_ERR(bprm)) {
1895 retval = PTR_ERR(bprm);
1896 goto out_ret;
1897 }
1898
1899 retval = count(argv, MAX_ARG_STRINGS);
1900 if (retval == 0)
1901 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1902 current->comm, bprm->filename);
1903 if (retval < 0)
1904 goto out_free;
1905 bprm->argc = retval;
1906
1907 retval = count(envp, MAX_ARG_STRINGS);
1908 if (retval < 0)
1909 goto out_free;
1910 bprm->envc = retval;
1911
1912 retval = bprm_stack_limits(bprm);
1913 if (retval < 0)
1914 goto out_free;
1915
1916 retval = copy_string_kernel(bprm->filename, bprm);
1917 if (retval < 0)
1918 goto out_free;
1919 bprm->exec = bprm->p;
1920
1921 retval = copy_strings(bprm->envc, envp, bprm);
1922 if (retval < 0)
1923 goto out_free;
1924
1925 retval = copy_strings(bprm->argc, argv, bprm);
1926 if (retval < 0)
1927 goto out_free;
1928
1929 /*
1930 * When argv is empty, add an empty string ("") as argv[0] to
1931 * ensure confused userspace programs that start processing
1932 * from argv[1] won't end up walking envp. See also
1933 * bprm_stack_limits().
1934 */
1935 if (bprm->argc == 0) {
1936 retval = copy_string_kernel("", bprm);
1937 if (retval < 0)
1938 goto out_free;
1939 bprm->argc = 1;
1940 }
1941
1942 retval = bprm_execve(bprm, fd, filename, flags);
1943 out_free:
1944 free_bprm(bprm);
1945
1946 out_ret:
1947 putname(filename);
1948 return retval;
1949 }
1950
1951 int kernel_execve(const char *kernel_filename,
1952 const char *const *argv, const char *const *envp)
1953 {
1954 struct filename *filename;
1955 struct linux_binprm *bprm;
1956 int fd = AT_FDCWD;
1957 int retval;
1958
1959 filename = getname_kernel(kernel_filename);
1960 if (IS_ERR(filename))
1961 return PTR_ERR(filename);
1962
1963 bprm = alloc_bprm(fd, filename);
1964 if (IS_ERR(bprm)) {
1965 retval = PTR_ERR(bprm);
1966 goto out_ret;
1967 }
1968
1969 retval = count_strings_kernel(argv);
1970 if (WARN_ON_ONCE(retval == 0))
1971 retval = -EINVAL;
1972 if (retval < 0)
1973 goto out_free;
1974 bprm->argc = retval;
1975
1976 retval = count_strings_kernel(envp);
1977 if (retval < 0)
1978 goto out_free;
1979 bprm->envc = retval;
1980
1981 retval = bprm_stack_limits(bprm);
1982 if (retval < 0)
1983 goto out_free;
1984
1985 retval = copy_string_kernel(bprm->filename, bprm);
1986 if (retval < 0)
1987 goto out_free;
1988 bprm->exec = bprm->p;
1989
1990 retval = copy_strings_kernel(bprm->envc, envp, bprm);
1991 if (retval < 0)
1992 goto out_free;
1993
1994 retval = copy_strings_kernel(bprm->argc, argv, bprm);
1995 if (retval < 0)
1996 goto out_free;
1997
1998 retval = bprm_execve(bprm, fd, filename, 0);
1999 out_free:
2000 free_bprm(bprm);
2001 out_ret:
2002 putname(filename);
2003 return retval;
2004 }
2005
2006 static int do_execve(struct filename *filename,
2007 const char __user *const __user *__argv,
2008 const char __user *const __user *__envp)
2009 {
2010 struct user_arg_ptr argv = { .ptr.native = __argv };
2011 struct user_arg_ptr envp = { .ptr.native = __envp };
2012 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2013 }
2014
2015 static int do_execveat(int fd, struct filename *filename,
2016 const char __user *const __user *__argv,
2017 const char __user *const __user *__envp,
2018 int flags)
2019 {
2020 struct user_arg_ptr argv = { .ptr.native = __argv };
2021 struct user_arg_ptr envp = { .ptr.native = __envp };
2022
2023 return do_execveat_common(fd, filename, argv, envp, flags);
2024 }
2025
2026 #ifdef CONFIG_COMPAT
2027 static int compat_do_execve(struct filename *filename,
2028 const compat_uptr_t __user *__argv,
2029 const compat_uptr_t __user *__envp)
2030 {
2031 struct user_arg_ptr argv = {
2032 .is_compat = true,
2033 .ptr.compat = __argv,
2034 };
2035 struct user_arg_ptr envp = {
2036 .is_compat = true,
2037 .ptr.compat = __envp,
2038 };
2039 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2040 }
2041
2042 static int compat_do_execveat(int fd, struct filename *filename,
2043 const compat_uptr_t __user *__argv,
2044 const compat_uptr_t __user *__envp,
2045 int flags)
2046 {
2047 struct user_arg_ptr argv = {
2048 .is_compat = true,
2049 .ptr.compat = __argv,
2050 };
2051 struct user_arg_ptr envp = {
2052 .is_compat = true,
2053 .ptr.compat = __envp,
2054 };
2055 return do_execveat_common(fd, filename, argv, envp, flags);
2056 }
2057 #endif
2058
2059 void set_binfmt(struct linux_binfmt *new)
2060 {
2061 struct mm_struct *mm = current->mm;
2062
2063 if (mm->binfmt)
2064 module_put(mm->binfmt->module);
2065
2066 mm->binfmt = new;
2067 if (new)
2068 __module_get(new->module);
2069 }
2070 EXPORT_SYMBOL(set_binfmt);
2071
2072 /*
2073 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2074 */
2075 void set_dumpable(struct mm_struct *mm, int value)
2076 {
2077 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2078 return;
2079
2080 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2081 }
2082
2083 SYSCALL_DEFINE3(execve,
2084 const char __user *, filename,
2085 const char __user *const __user *, argv,
2086 const char __user *const __user *, envp)
2087 {
2088 return do_execve(getname(filename), argv, envp);
2089 }
2090
2091 SYSCALL_DEFINE5(execveat,
2092 int, fd, const char __user *, filename,
2093 const char __user *const __user *, argv,
2094 const char __user *const __user *, envp,
2095 int, flags)
2096 {
2097 return do_execveat(fd,
2098 getname_uflags(filename, flags),
2099 argv, envp, flags);
2100 }
2101
2102 #ifdef CONFIG_COMPAT
2103 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2104 const compat_uptr_t __user *, argv,
2105 const compat_uptr_t __user *, envp)
2106 {
2107 return compat_do_execve(getname(filename), argv, envp);
2108 }
2109
2110 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2111 const char __user *, filename,
2112 const compat_uptr_t __user *, argv,
2113 const compat_uptr_t __user *, envp,
2114 int, flags)
2115 {
2116 return compat_do_execveat(fd,
2117 getname_uflags(filename, flags),
2118 argv, envp, flags);
2119 }
2120 #endif
2121
2122 #ifdef CONFIG_SYSCTL
2123
2124 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2125 void *buffer, size_t *lenp, loff_t *ppos)
2126 {
2127 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2128
2129 if (!error)
2130 validate_coredump_safety();
2131 return error;
2132 }
2133
2134 static struct ctl_table fs_exec_sysctls[] = {
2135 {
2136 .procname = "suid_dumpable",
2137 .data = &suid_dumpable,
2138 .maxlen = sizeof(int),
2139 .mode = 0644,
2140 .proc_handler = proc_dointvec_minmax_coredump,
2141 .extra1 = SYSCTL_ZERO,
2142 .extra2 = SYSCTL_TWO,
2143 },
2144 { }
2145 };
2146
2147 static int __init init_fs_exec_sysctls(void)
2148 {
2149 register_sysctl_init("fs", fs_exec_sysctls);
2150 return 0;
2151 }
2152
2153 fs_initcall(init_fs_exec_sysctls);
2154 #endif /* CONFIG_SYSCTL */