]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/exec.c
Merge tag 'usb-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-jammy-kernel.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72
73 #include <trace/events/task.h>
74 #include "internal.h"
75
76 #include <trace/events/sched.h>
77
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79
80 int suid_dumpable = 0;
81
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117 * Note that a shared library must be both readable and executable due to
118 * security reasons.
119 *
120 * Also note that we take the address to load from from the file itself.
121 */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 struct linux_binfmt *fmt;
125 struct file *file;
126 struct filename *tmp = getname(library);
127 int error = PTR_ERR(tmp);
128 static const struct open_flags uselib_flags = {
129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 .acc_mode = MAY_READ | MAY_EXEC,
131 .intent = LOOKUP_OPEN,
132 .lookup_flags = LOOKUP_FOLLOW,
133 };
134
135 if (IS_ERR(tmp))
136 goto out;
137
138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 putname(tmp);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 /*
145 * may_open() has already checked for this, so it should be
146 * impossible to trip now. But we need to be extra cautious
147 * and check again at the very end too.
148 */
149 error = -EACCES;
150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 path_noexec(&file->f_path)))
152 goto exit;
153
154 fsnotify_open(file);
155
156 error = -ENOEXEC;
157
158 read_lock(&binfmt_lock);
159 list_for_each_entry(fmt, &formats, lh) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
170 }
171 read_unlock(&binfmt_lock);
172 exit:
173 fput(file);
174 out:
175 return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178
179 #ifdef CONFIG_MMU
180 /*
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
185 */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 struct mm_struct *mm = current->mm;
189 long diff = (long)(pages - bprm->vma_pages);
190
191 if (!mm || !diff)
192 return;
193
194 bprm->vma_pages = pages;
195 add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 int write)
200 {
201 struct page *page;
202 int ret;
203 unsigned int gup_flags = FOLL_FORCE;
204
205 #ifdef CONFIG_STACK_GROWSUP
206 if (write) {
207 ret = expand_downwards(bprm->vma, pos);
208 if (ret < 0)
209 return NULL;
210 }
211 #endif
212
213 if (write)
214 gup_flags |= FOLL_WRITE;
215
216 /*
217 * We are doing an exec(). 'current' is the process
218 * doing the exec and bprm->mm is the new process's mm.
219 */
220 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
221 &page, NULL, NULL);
222 if (ret <= 0)
223 return NULL;
224
225 if (write)
226 acct_arg_size(bprm, vma_pages(bprm->vma));
227
228 return page;
229 }
230
231 static void put_arg_page(struct page *page)
232 {
233 put_page(page);
234 }
235
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 struct page *page)
242 {
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 int err;
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
251
252 bprm->vma = vma = vm_area_alloc(mm);
253 if (!vma)
254 return -ENOMEM;
255 vma_set_anonymous(vma);
256
257 if (mmap_write_lock_killable(mm)) {
258 err = -EINTR;
259 goto err_free;
260 }
261
262 /*
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
266 * configured yet.
267 */
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273
274 err = insert_vm_struct(mm, vma);
275 if (err)
276 goto err;
277
278 mm->stack_vm = mm->total_vm = 1;
279 mmap_write_unlock(mm);
280 bprm->p = vma->vm_end - sizeof(void *);
281 return 0;
282 err:
283 mmap_write_unlock(mm);
284 err_free:
285 bprm->vma = NULL;
286 vm_area_free(vma);
287 return err;
288 }
289
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292 return len <= MAX_ARG_STRLEN;
293 }
294
295 #else
296
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 int write)
303 {
304 struct page *page;
305
306 page = bprm->page[pos / PAGE_SIZE];
307 if (!page && write) {
308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 if (!page)
310 return NULL;
311 bprm->page[pos / PAGE_SIZE] = page;
312 }
313
314 return page;
315 }
316
317 static void put_arg_page(struct page *page)
318 {
319 }
320
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323 if (bprm->page[i]) {
324 __free_page(bprm->page[i]);
325 bprm->page[i] = NULL;
326 }
327 }
328
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331 int i;
332
333 for (i = 0; i < MAX_ARG_PAGES; i++)
334 free_arg_page(bprm, i);
335 }
336
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 struct page *page)
339 {
340 }
341
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 return 0;
346 }
347
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350 return len <= bprm->p;
351 }
352
353 #endif /* CONFIG_MMU */
354
355 /*
356 * Create a new mm_struct and populate it with a temporary stack
357 * vm_area_struct. We don't have enough context at this point to set the stack
358 * flags, permissions, and offset, so we use temporary values. We'll update
359 * them later in setup_arg_pages().
360 */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363 int err;
364 struct mm_struct *mm = NULL;
365
366 bprm->mm = mm = mm_alloc();
367 err = -ENOMEM;
368 if (!mm)
369 goto err;
370
371 /* Save current stack limit for all calculations made during exec. */
372 task_lock(current->group_leader);
373 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
374 task_unlock(current->group_leader);
375
376 err = __bprm_mm_init(bprm);
377 if (err)
378 goto err;
379
380 return 0;
381
382 err:
383 if (mm) {
384 bprm->mm = NULL;
385 mmdrop(mm);
386 }
387
388 return err;
389 }
390
391 struct user_arg_ptr {
392 #ifdef CONFIG_COMPAT
393 bool is_compat;
394 #endif
395 union {
396 const char __user *const __user *native;
397 #ifdef CONFIG_COMPAT
398 const compat_uptr_t __user *compat;
399 #endif
400 } ptr;
401 };
402
403 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
404 {
405 const char __user *native;
406
407 #ifdef CONFIG_COMPAT
408 if (unlikely(argv.is_compat)) {
409 compat_uptr_t compat;
410
411 if (get_user(compat, argv.ptr.compat + nr))
412 return ERR_PTR(-EFAULT);
413
414 return compat_ptr(compat);
415 }
416 #endif
417
418 if (get_user(native, argv.ptr.native + nr))
419 return ERR_PTR(-EFAULT);
420
421 return native;
422 }
423
424 /*
425 * count() counts the number of strings in array ARGV.
426 */
427 static int count(struct user_arg_ptr argv, int max)
428 {
429 int i = 0;
430
431 if (argv.ptr.native != NULL) {
432 for (;;) {
433 const char __user *p = get_user_arg_ptr(argv, i);
434
435 if (!p)
436 break;
437
438 if (IS_ERR(p))
439 return -EFAULT;
440
441 if (i >= max)
442 return -E2BIG;
443 ++i;
444
445 if (fatal_signal_pending(current))
446 return -ERESTARTNOHAND;
447 cond_resched();
448 }
449 }
450 return i;
451 }
452
453 static int count_strings_kernel(const char *const *argv)
454 {
455 int i;
456
457 if (!argv)
458 return 0;
459
460 for (i = 0; argv[i]; ++i) {
461 if (i >= MAX_ARG_STRINGS)
462 return -E2BIG;
463 if (fatal_signal_pending(current))
464 return -ERESTARTNOHAND;
465 cond_resched();
466 }
467 return i;
468 }
469
470 static int bprm_stack_limits(struct linux_binprm *bprm)
471 {
472 unsigned long limit, ptr_size;
473
474 /*
475 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
476 * (whichever is smaller) for the argv+env strings.
477 * This ensures that:
478 * - the remaining binfmt code will not run out of stack space,
479 * - the program will have a reasonable amount of stack left
480 * to work from.
481 */
482 limit = _STK_LIM / 4 * 3;
483 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
484 /*
485 * We've historically supported up to 32 pages (ARG_MAX)
486 * of argument strings even with small stacks
487 */
488 limit = max_t(unsigned long, limit, ARG_MAX);
489 /*
490 * We must account for the size of all the argv and envp pointers to
491 * the argv and envp strings, since they will also take up space in
492 * the stack. They aren't stored until much later when we can't
493 * signal to the parent that the child has run out of stack space.
494 * Instead, calculate it here so it's possible to fail gracefully.
495 */
496 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
497 if (limit <= ptr_size)
498 return -E2BIG;
499 limit -= ptr_size;
500
501 bprm->argmin = bprm->p - limit;
502 return 0;
503 }
504
505 /*
506 * 'copy_strings()' copies argument/environment strings from the old
507 * processes's memory to the new process's stack. The call to get_user_pages()
508 * ensures the destination page is created and not swapped out.
509 */
510 static int copy_strings(int argc, struct user_arg_ptr argv,
511 struct linux_binprm *bprm)
512 {
513 struct page *kmapped_page = NULL;
514 char *kaddr = NULL;
515 unsigned long kpos = 0;
516 int ret;
517
518 while (argc-- > 0) {
519 const char __user *str;
520 int len;
521 unsigned long pos;
522
523 ret = -EFAULT;
524 str = get_user_arg_ptr(argv, argc);
525 if (IS_ERR(str))
526 goto out;
527
528 len = strnlen_user(str, MAX_ARG_STRLEN);
529 if (!len)
530 goto out;
531
532 ret = -E2BIG;
533 if (!valid_arg_len(bprm, len))
534 goto out;
535
536 /* We're going to work our way backwords. */
537 pos = bprm->p;
538 str += len;
539 bprm->p -= len;
540 #ifdef CONFIG_MMU
541 if (bprm->p < bprm->argmin)
542 goto out;
543 #endif
544
545 while (len > 0) {
546 int offset, bytes_to_copy;
547
548 if (fatal_signal_pending(current)) {
549 ret = -ERESTARTNOHAND;
550 goto out;
551 }
552 cond_resched();
553
554 offset = pos % PAGE_SIZE;
555 if (offset == 0)
556 offset = PAGE_SIZE;
557
558 bytes_to_copy = offset;
559 if (bytes_to_copy > len)
560 bytes_to_copy = len;
561
562 offset -= bytes_to_copy;
563 pos -= bytes_to_copy;
564 str -= bytes_to_copy;
565 len -= bytes_to_copy;
566
567 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
568 struct page *page;
569
570 page = get_arg_page(bprm, pos, 1);
571 if (!page) {
572 ret = -E2BIG;
573 goto out;
574 }
575
576 if (kmapped_page) {
577 flush_kernel_dcache_page(kmapped_page);
578 kunmap(kmapped_page);
579 put_arg_page(kmapped_page);
580 }
581 kmapped_page = page;
582 kaddr = kmap(kmapped_page);
583 kpos = pos & PAGE_MASK;
584 flush_arg_page(bprm, kpos, kmapped_page);
585 }
586 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
587 ret = -EFAULT;
588 goto out;
589 }
590 }
591 }
592 ret = 0;
593 out:
594 if (kmapped_page) {
595 flush_kernel_dcache_page(kmapped_page);
596 kunmap(kmapped_page);
597 put_arg_page(kmapped_page);
598 }
599 return ret;
600 }
601
602 /*
603 * Copy and argument/environment string from the kernel to the processes stack.
604 */
605 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
606 {
607 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
608 unsigned long pos = bprm->p;
609
610 if (len == 0)
611 return -EFAULT;
612 if (!valid_arg_len(bprm, len))
613 return -E2BIG;
614
615 /* We're going to work our way backwards. */
616 arg += len;
617 bprm->p -= len;
618 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
619 return -E2BIG;
620
621 while (len > 0) {
622 unsigned int bytes_to_copy = min_t(unsigned int, len,
623 min_not_zero(offset_in_page(pos), PAGE_SIZE));
624 struct page *page;
625 char *kaddr;
626
627 pos -= bytes_to_copy;
628 arg -= bytes_to_copy;
629 len -= bytes_to_copy;
630
631 page = get_arg_page(bprm, pos, 1);
632 if (!page)
633 return -E2BIG;
634 kaddr = kmap_atomic(page);
635 flush_arg_page(bprm, pos & PAGE_MASK, page);
636 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
637 flush_kernel_dcache_page(page);
638 kunmap_atomic(kaddr);
639 put_arg_page(page);
640 }
641
642 return 0;
643 }
644 EXPORT_SYMBOL(copy_string_kernel);
645
646 static int copy_strings_kernel(int argc, const char *const *argv,
647 struct linux_binprm *bprm)
648 {
649 while (argc-- > 0) {
650 int ret = copy_string_kernel(argv[argc], bprm);
651 if (ret < 0)
652 return ret;
653 if (fatal_signal_pending(current))
654 return -ERESTARTNOHAND;
655 cond_resched();
656 }
657 return 0;
658 }
659
660 #ifdef CONFIG_MMU
661
662 /*
663 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
664 * the binfmt code determines where the new stack should reside, we shift it to
665 * its final location. The process proceeds as follows:
666 *
667 * 1) Use shift to calculate the new vma endpoints.
668 * 2) Extend vma to cover both the old and new ranges. This ensures the
669 * arguments passed to subsequent functions are consistent.
670 * 3) Move vma's page tables to the new range.
671 * 4) Free up any cleared pgd range.
672 * 5) Shrink the vma to cover only the new range.
673 */
674 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
675 {
676 struct mm_struct *mm = vma->vm_mm;
677 unsigned long old_start = vma->vm_start;
678 unsigned long old_end = vma->vm_end;
679 unsigned long length = old_end - old_start;
680 unsigned long new_start = old_start - shift;
681 unsigned long new_end = old_end - shift;
682 struct mmu_gather tlb;
683
684 BUG_ON(new_start > new_end);
685
686 /*
687 * ensure there are no vmas between where we want to go
688 * and where we are
689 */
690 if (vma != find_vma(mm, new_start))
691 return -EFAULT;
692
693 /*
694 * cover the whole range: [new_start, old_end)
695 */
696 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
697 return -ENOMEM;
698
699 /*
700 * move the page tables downwards, on failure we rely on
701 * process cleanup to remove whatever mess we made.
702 */
703 if (length != move_page_tables(vma, old_start,
704 vma, new_start, length, false))
705 return -ENOMEM;
706
707 lru_add_drain();
708 tlb_gather_mmu(&tlb, mm);
709 if (new_end > old_start) {
710 /*
711 * when the old and new regions overlap clear from new_end.
712 */
713 free_pgd_range(&tlb, new_end, old_end, new_end,
714 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
715 } else {
716 /*
717 * otherwise, clean from old_start; this is done to not touch
718 * the address space in [new_end, old_start) some architectures
719 * have constraints on va-space that make this illegal (IA64) -
720 * for the others its just a little faster.
721 */
722 free_pgd_range(&tlb, old_start, old_end, new_end,
723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
724 }
725 tlb_finish_mmu(&tlb);
726
727 /*
728 * Shrink the vma to just the new range. Always succeeds.
729 */
730 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
731
732 return 0;
733 }
734
735 /*
736 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
737 * the stack is optionally relocated, and some extra space is added.
738 */
739 int setup_arg_pages(struct linux_binprm *bprm,
740 unsigned long stack_top,
741 int executable_stack)
742 {
743 unsigned long ret;
744 unsigned long stack_shift;
745 struct mm_struct *mm = current->mm;
746 struct vm_area_struct *vma = bprm->vma;
747 struct vm_area_struct *prev = NULL;
748 unsigned long vm_flags;
749 unsigned long stack_base;
750 unsigned long stack_size;
751 unsigned long stack_expand;
752 unsigned long rlim_stack;
753
754 #ifdef CONFIG_STACK_GROWSUP
755 /* Limit stack size */
756 stack_base = bprm->rlim_stack.rlim_max;
757
758 stack_base = calc_max_stack_size(stack_base);
759
760 /* Add space for stack randomization. */
761 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
762
763 /* Make sure we didn't let the argument array grow too large. */
764 if (vma->vm_end - vma->vm_start > stack_base)
765 return -ENOMEM;
766
767 stack_base = PAGE_ALIGN(stack_top - stack_base);
768
769 stack_shift = vma->vm_start - stack_base;
770 mm->arg_start = bprm->p - stack_shift;
771 bprm->p = vma->vm_end - stack_shift;
772 #else
773 stack_top = arch_align_stack(stack_top);
774 stack_top = PAGE_ALIGN(stack_top);
775
776 if (unlikely(stack_top < mmap_min_addr) ||
777 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
778 return -ENOMEM;
779
780 stack_shift = vma->vm_end - stack_top;
781
782 bprm->p -= stack_shift;
783 mm->arg_start = bprm->p;
784 #endif
785
786 if (bprm->loader)
787 bprm->loader -= stack_shift;
788 bprm->exec -= stack_shift;
789
790 if (mmap_write_lock_killable(mm))
791 return -EINTR;
792
793 vm_flags = VM_STACK_FLAGS;
794
795 /*
796 * Adjust stack execute permissions; explicitly enable for
797 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
798 * (arch default) otherwise.
799 */
800 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
801 vm_flags |= VM_EXEC;
802 else if (executable_stack == EXSTACK_DISABLE_X)
803 vm_flags &= ~VM_EXEC;
804 vm_flags |= mm->def_flags;
805 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
806
807 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
808 vm_flags);
809 if (ret)
810 goto out_unlock;
811 BUG_ON(prev != vma);
812
813 if (unlikely(vm_flags & VM_EXEC)) {
814 pr_warn_once("process '%pD4' started with executable stack\n",
815 bprm->file);
816 }
817
818 /* Move stack pages down in memory. */
819 if (stack_shift) {
820 ret = shift_arg_pages(vma, stack_shift);
821 if (ret)
822 goto out_unlock;
823 }
824
825 /* mprotect_fixup is overkill to remove the temporary stack flags */
826 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
827
828 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
829 stack_size = vma->vm_end - vma->vm_start;
830 /*
831 * Align this down to a page boundary as expand_stack
832 * will align it up.
833 */
834 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
835 #ifdef CONFIG_STACK_GROWSUP
836 if (stack_size + stack_expand > rlim_stack)
837 stack_base = vma->vm_start + rlim_stack;
838 else
839 stack_base = vma->vm_end + stack_expand;
840 #else
841 if (stack_size + stack_expand > rlim_stack)
842 stack_base = vma->vm_end - rlim_stack;
843 else
844 stack_base = vma->vm_start - stack_expand;
845 #endif
846 current->mm->start_stack = bprm->p;
847 ret = expand_stack(vma, stack_base);
848 if (ret)
849 ret = -EFAULT;
850
851 out_unlock:
852 mmap_write_unlock(mm);
853 return ret;
854 }
855 EXPORT_SYMBOL(setup_arg_pages);
856
857 #else
858
859 /*
860 * Transfer the program arguments and environment from the holding pages
861 * onto the stack. The provided stack pointer is adjusted accordingly.
862 */
863 int transfer_args_to_stack(struct linux_binprm *bprm,
864 unsigned long *sp_location)
865 {
866 unsigned long index, stop, sp;
867 int ret = 0;
868
869 stop = bprm->p >> PAGE_SHIFT;
870 sp = *sp_location;
871
872 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
873 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
874 char *src = kmap(bprm->page[index]) + offset;
875 sp -= PAGE_SIZE - offset;
876 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
877 ret = -EFAULT;
878 kunmap(bprm->page[index]);
879 if (ret)
880 goto out;
881 }
882
883 *sp_location = sp;
884
885 out:
886 return ret;
887 }
888 EXPORT_SYMBOL(transfer_args_to_stack);
889
890 #endif /* CONFIG_MMU */
891
892 static struct file *do_open_execat(int fd, struct filename *name, int flags)
893 {
894 struct file *file;
895 int err;
896 struct open_flags open_exec_flags = {
897 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
898 .acc_mode = MAY_EXEC,
899 .intent = LOOKUP_OPEN,
900 .lookup_flags = LOOKUP_FOLLOW,
901 };
902
903 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
904 return ERR_PTR(-EINVAL);
905 if (flags & AT_SYMLINK_NOFOLLOW)
906 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
907 if (flags & AT_EMPTY_PATH)
908 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
909
910 file = do_filp_open(fd, name, &open_exec_flags);
911 if (IS_ERR(file))
912 goto out;
913
914 /*
915 * may_open() has already checked for this, so it should be
916 * impossible to trip now. But we need to be extra cautious
917 * and check again at the very end too.
918 */
919 err = -EACCES;
920 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
921 path_noexec(&file->f_path)))
922 goto exit;
923
924 err = deny_write_access(file);
925 if (err)
926 goto exit;
927
928 if (name->name[0] != '\0')
929 fsnotify_open(file);
930
931 out:
932 return file;
933
934 exit:
935 fput(file);
936 return ERR_PTR(err);
937 }
938
939 struct file *open_exec(const char *name)
940 {
941 struct filename *filename = getname_kernel(name);
942 struct file *f = ERR_CAST(filename);
943
944 if (!IS_ERR(filename)) {
945 f = do_open_execat(AT_FDCWD, filename, 0);
946 putname(filename);
947 }
948 return f;
949 }
950 EXPORT_SYMBOL(open_exec);
951
952 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
953 defined(CONFIG_BINFMT_ELF_FDPIC)
954 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
955 {
956 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
957 if (res > 0)
958 flush_icache_user_range(addr, addr + len);
959 return res;
960 }
961 EXPORT_SYMBOL(read_code);
962 #endif
963
964 /*
965 * Maps the mm_struct mm into the current task struct.
966 * On success, this function returns with exec_update_lock
967 * held for writing.
968 */
969 static int exec_mmap(struct mm_struct *mm)
970 {
971 struct task_struct *tsk;
972 struct mm_struct *old_mm, *active_mm;
973 int ret;
974
975 /* Notify parent that we're no longer interested in the old VM */
976 tsk = current;
977 old_mm = current->mm;
978 exec_mm_release(tsk, old_mm);
979 if (old_mm)
980 sync_mm_rss(old_mm);
981
982 ret = down_write_killable(&tsk->signal->exec_update_lock);
983 if (ret)
984 return ret;
985
986 if (old_mm) {
987 /*
988 * Make sure that if there is a core dump in progress
989 * for the old mm, we get out and die instead of going
990 * through with the exec. We must hold mmap_lock around
991 * checking core_state and changing tsk->mm.
992 */
993 mmap_read_lock(old_mm);
994 if (unlikely(old_mm->core_state)) {
995 mmap_read_unlock(old_mm);
996 up_write(&tsk->signal->exec_update_lock);
997 return -EINTR;
998 }
999 }
1000
1001 task_lock(tsk);
1002 membarrier_exec_mmap(mm);
1003
1004 local_irq_disable();
1005 active_mm = tsk->active_mm;
1006 tsk->active_mm = mm;
1007 tsk->mm = mm;
1008 /*
1009 * This prevents preemption while active_mm is being loaded and
1010 * it and mm are being updated, which could cause problems for
1011 * lazy tlb mm refcounting when these are updated by context
1012 * switches. Not all architectures can handle irqs off over
1013 * activate_mm yet.
1014 */
1015 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1016 local_irq_enable();
1017 activate_mm(active_mm, mm);
1018 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1019 local_irq_enable();
1020 tsk->mm->vmacache_seqnum = 0;
1021 vmacache_flush(tsk);
1022 task_unlock(tsk);
1023 if (old_mm) {
1024 mmap_read_unlock(old_mm);
1025 BUG_ON(active_mm != old_mm);
1026 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1027 mm_update_next_owner(old_mm);
1028 mmput(old_mm);
1029 return 0;
1030 }
1031 mmdrop(active_mm);
1032 return 0;
1033 }
1034
1035 static int de_thread(struct task_struct *tsk)
1036 {
1037 struct signal_struct *sig = tsk->signal;
1038 struct sighand_struct *oldsighand = tsk->sighand;
1039 spinlock_t *lock = &oldsighand->siglock;
1040
1041 if (thread_group_empty(tsk))
1042 goto no_thread_group;
1043
1044 /*
1045 * Kill all other threads in the thread group.
1046 */
1047 spin_lock_irq(lock);
1048 if (signal_group_exit(sig)) {
1049 /*
1050 * Another group action in progress, just
1051 * return so that the signal is processed.
1052 */
1053 spin_unlock_irq(lock);
1054 return -EAGAIN;
1055 }
1056
1057 sig->group_exit_task = tsk;
1058 sig->notify_count = zap_other_threads(tsk);
1059 if (!thread_group_leader(tsk))
1060 sig->notify_count--;
1061
1062 while (sig->notify_count) {
1063 __set_current_state(TASK_KILLABLE);
1064 spin_unlock_irq(lock);
1065 schedule();
1066 if (__fatal_signal_pending(tsk))
1067 goto killed;
1068 spin_lock_irq(lock);
1069 }
1070 spin_unlock_irq(lock);
1071
1072 /*
1073 * At this point all other threads have exited, all we have to
1074 * do is to wait for the thread group leader to become inactive,
1075 * and to assume its PID:
1076 */
1077 if (!thread_group_leader(tsk)) {
1078 struct task_struct *leader = tsk->group_leader;
1079
1080 for (;;) {
1081 cgroup_threadgroup_change_begin(tsk);
1082 write_lock_irq(&tasklist_lock);
1083 /*
1084 * Do this under tasklist_lock to ensure that
1085 * exit_notify() can't miss ->group_exit_task
1086 */
1087 sig->notify_count = -1;
1088 if (likely(leader->exit_state))
1089 break;
1090 __set_current_state(TASK_KILLABLE);
1091 write_unlock_irq(&tasklist_lock);
1092 cgroup_threadgroup_change_end(tsk);
1093 schedule();
1094 if (__fatal_signal_pending(tsk))
1095 goto killed;
1096 }
1097
1098 /*
1099 * The only record we have of the real-time age of a
1100 * process, regardless of execs it's done, is start_time.
1101 * All the past CPU time is accumulated in signal_struct
1102 * from sister threads now dead. But in this non-leader
1103 * exec, nothing survives from the original leader thread,
1104 * whose birth marks the true age of this process now.
1105 * When we take on its identity by switching to its PID, we
1106 * also take its birthdate (always earlier than our own).
1107 */
1108 tsk->start_time = leader->start_time;
1109 tsk->start_boottime = leader->start_boottime;
1110
1111 BUG_ON(!same_thread_group(leader, tsk));
1112 /*
1113 * An exec() starts a new thread group with the
1114 * TGID of the previous thread group. Rehash the
1115 * two threads with a switched PID, and release
1116 * the former thread group leader:
1117 */
1118
1119 /* Become a process group leader with the old leader's pid.
1120 * The old leader becomes a thread of the this thread group.
1121 */
1122 exchange_tids(tsk, leader);
1123 transfer_pid(leader, tsk, PIDTYPE_TGID);
1124 transfer_pid(leader, tsk, PIDTYPE_PGID);
1125 transfer_pid(leader, tsk, PIDTYPE_SID);
1126
1127 list_replace_rcu(&leader->tasks, &tsk->tasks);
1128 list_replace_init(&leader->sibling, &tsk->sibling);
1129
1130 tsk->group_leader = tsk;
1131 leader->group_leader = tsk;
1132
1133 tsk->exit_signal = SIGCHLD;
1134 leader->exit_signal = -1;
1135
1136 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1137 leader->exit_state = EXIT_DEAD;
1138
1139 /*
1140 * We are going to release_task()->ptrace_unlink() silently,
1141 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1142 * the tracer wont't block again waiting for this thread.
1143 */
1144 if (unlikely(leader->ptrace))
1145 __wake_up_parent(leader, leader->parent);
1146 write_unlock_irq(&tasklist_lock);
1147 cgroup_threadgroup_change_end(tsk);
1148
1149 release_task(leader);
1150 }
1151
1152 sig->group_exit_task = NULL;
1153 sig->notify_count = 0;
1154
1155 no_thread_group:
1156 /* we have changed execution domain */
1157 tsk->exit_signal = SIGCHLD;
1158
1159 BUG_ON(!thread_group_leader(tsk));
1160 return 0;
1161
1162 killed:
1163 /* protects against exit_notify() and __exit_signal() */
1164 read_lock(&tasklist_lock);
1165 sig->group_exit_task = NULL;
1166 sig->notify_count = 0;
1167 read_unlock(&tasklist_lock);
1168 return -EAGAIN;
1169 }
1170
1171
1172 /*
1173 * This function makes sure the current process has its own signal table,
1174 * so that flush_signal_handlers can later reset the handlers without
1175 * disturbing other processes. (Other processes might share the signal
1176 * table via the CLONE_SIGHAND option to clone().)
1177 */
1178 static int unshare_sighand(struct task_struct *me)
1179 {
1180 struct sighand_struct *oldsighand = me->sighand;
1181
1182 if (refcount_read(&oldsighand->count) != 1) {
1183 struct sighand_struct *newsighand;
1184 /*
1185 * This ->sighand is shared with the CLONE_SIGHAND
1186 * but not CLONE_THREAD task, switch to the new one.
1187 */
1188 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1189 if (!newsighand)
1190 return -ENOMEM;
1191
1192 refcount_set(&newsighand->count, 1);
1193 memcpy(newsighand->action, oldsighand->action,
1194 sizeof(newsighand->action));
1195
1196 write_lock_irq(&tasklist_lock);
1197 spin_lock(&oldsighand->siglock);
1198 rcu_assign_pointer(me->sighand, newsighand);
1199 spin_unlock(&oldsighand->siglock);
1200 write_unlock_irq(&tasklist_lock);
1201
1202 __cleanup_sighand(oldsighand);
1203 }
1204 return 0;
1205 }
1206
1207 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1208 {
1209 task_lock(tsk);
1210 strncpy(buf, tsk->comm, buf_size);
1211 task_unlock(tsk);
1212 return buf;
1213 }
1214 EXPORT_SYMBOL_GPL(__get_task_comm);
1215
1216 /*
1217 * These functions flushes out all traces of the currently running executable
1218 * so that a new one can be started
1219 */
1220
1221 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1222 {
1223 task_lock(tsk);
1224 trace_task_rename(tsk, buf);
1225 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1226 task_unlock(tsk);
1227 perf_event_comm(tsk, exec);
1228 }
1229
1230 /*
1231 * Calling this is the point of no return. None of the failures will be
1232 * seen by userspace since either the process is already taking a fatal
1233 * signal (via de_thread() or coredump), or will have SEGV raised
1234 * (after exec_mmap()) by search_binary_handler (see below).
1235 */
1236 int begin_new_exec(struct linux_binprm * bprm)
1237 {
1238 struct task_struct *me = current;
1239 int retval;
1240
1241 /* Once we are committed compute the creds */
1242 retval = bprm_creds_from_file(bprm);
1243 if (retval)
1244 return retval;
1245
1246 /*
1247 * Ensure all future errors are fatal.
1248 */
1249 bprm->point_of_no_return = true;
1250
1251 /*
1252 * Make this the only thread in the thread group.
1253 */
1254 retval = de_thread(me);
1255 if (retval)
1256 goto out;
1257
1258 /*
1259 * Cancel any io_uring activity across execve
1260 */
1261 io_uring_task_cancel();
1262
1263 /* Ensure the files table is not shared. */
1264 retval = unshare_files();
1265 if (retval)
1266 goto out;
1267
1268 /*
1269 * Must be called _before_ exec_mmap() as bprm->mm is
1270 * not visibile until then. This also enables the update
1271 * to be lockless.
1272 */
1273 set_mm_exe_file(bprm->mm, bprm->file);
1274
1275 /* If the binary is not readable then enforce mm->dumpable=0 */
1276 would_dump(bprm, bprm->file);
1277 if (bprm->have_execfd)
1278 would_dump(bprm, bprm->executable);
1279
1280 /*
1281 * Release all of the old mmap stuff
1282 */
1283 acct_arg_size(bprm, 0);
1284 retval = exec_mmap(bprm->mm);
1285 if (retval)
1286 goto out;
1287
1288 bprm->mm = NULL;
1289
1290 #ifdef CONFIG_POSIX_TIMERS
1291 exit_itimers(me->signal);
1292 flush_itimer_signals();
1293 #endif
1294
1295 /*
1296 * Make the signal table private.
1297 */
1298 retval = unshare_sighand(me);
1299 if (retval)
1300 goto out_unlock;
1301
1302 /*
1303 * Ensure that the uaccess routines can actually operate on userspace
1304 * pointers:
1305 */
1306 force_uaccess_begin();
1307
1308 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1309 PF_NOFREEZE | PF_NO_SETAFFINITY);
1310 flush_thread();
1311 me->personality &= ~bprm->per_clear;
1312
1313 clear_syscall_work_syscall_user_dispatch(me);
1314
1315 /*
1316 * We have to apply CLOEXEC before we change whether the process is
1317 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1318 * trying to access the should-be-closed file descriptors of a process
1319 * undergoing exec(2).
1320 */
1321 do_close_on_exec(me->files);
1322
1323 if (bprm->secureexec) {
1324 /* Make sure parent cannot signal privileged process. */
1325 me->pdeath_signal = 0;
1326
1327 /*
1328 * For secureexec, reset the stack limit to sane default to
1329 * avoid bad behavior from the prior rlimits. This has to
1330 * happen before arch_pick_mmap_layout(), which examines
1331 * RLIMIT_STACK, but after the point of no return to avoid
1332 * needing to clean up the change on failure.
1333 */
1334 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1335 bprm->rlim_stack.rlim_cur = _STK_LIM;
1336 }
1337
1338 me->sas_ss_sp = me->sas_ss_size = 0;
1339
1340 /*
1341 * Figure out dumpability. Note that this checking only of current
1342 * is wrong, but userspace depends on it. This should be testing
1343 * bprm->secureexec instead.
1344 */
1345 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1346 !(uid_eq(current_euid(), current_uid()) &&
1347 gid_eq(current_egid(), current_gid())))
1348 set_dumpable(current->mm, suid_dumpable);
1349 else
1350 set_dumpable(current->mm, SUID_DUMP_USER);
1351
1352 perf_event_exec();
1353 __set_task_comm(me, kbasename(bprm->filename), true);
1354
1355 /* An exec changes our domain. We are no longer part of the thread
1356 group */
1357 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1358 flush_signal_handlers(me, 0);
1359
1360 retval = set_cred_ucounts(bprm->cred);
1361 if (retval < 0)
1362 goto out_unlock;
1363
1364 /*
1365 * install the new credentials for this executable
1366 */
1367 security_bprm_committing_creds(bprm);
1368
1369 commit_creds(bprm->cred);
1370 bprm->cred = NULL;
1371
1372 /*
1373 * Disable monitoring for regular users
1374 * when executing setuid binaries. Must
1375 * wait until new credentials are committed
1376 * by commit_creds() above
1377 */
1378 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1379 perf_event_exit_task(me);
1380 /*
1381 * cred_guard_mutex must be held at least to this point to prevent
1382 * ptrace_attach() from altering our determination of the task's
1383 * credentials; any time after this it may be unlocked.
1384 */
1385 security_bprm_committed_creds(bprm);
1386
1387 /* Pass the opened binary to the interpreter. */
1388 if (bprm->have_execfd) {
1389 retval = get_unused_fd_flags(0);
1390 if (retval < 0)
1391 goto out_unlock;
1392 fd_install(retval, bprm->executable);
1393 bprm->executable = NULL;
1394 bprm->execfd = retval;
1395 }
1396 return 0;
1397
1398 out_unlock:
1399 up_write(&me->signal->exec_update_lock);
1400 out:
1401 return retval;
1402 }
1403 EXPORT_SYMBOL(begin_new_exec);
1404
1405 void would_dump(struct linux_binprm *bprm, struct file *file)
1406 {
1407 struct inode *inode = file_inode(file);
1408 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1409 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1410 struct user_namespace *old, *user_ns;
1411 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1412
1413 /* Ensure mm->user_ns contains the executable */
1414 user_ns = old = bprm->mm->user_ns;
1415 while ((user_ns != &init_user_ns) &&
1416 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1417 user_ns = user_ns->parent;
1418
1419 if (old != user_ns) {
1420 bprm->mm->user_ns = get_user_ns(user_ns);
1421 put_user_ns(old);
1422 }
1423 }
1424 }
1425 EXPORT_SYMBOL(would_dump);
1426
1427 void setup_new_exec(struct linux_binprm * bprm)
1428 {
1429 /* Setup things that can depend upon the personality */
1430 struct task_struct *me = current;
1431
1432 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1433
1434 arch_setup_new_exec();
1435
1436 /* Set the new mm task size. We have to do that late because it may
1437 * depend on TIF_32BIT which is only updated in flush_thread() on
1438 * some architectures like powerpc
1439 */
1440 me->mm->task_size = TASK_SIZE;
1441 up_write(&me->signal->exec_update_lock);
1442 mutex_unlock(&me->signal->cred_guard_mutex);
1443 }
1444 EXPORT_SYMBOL(setup_new_exec);
1445
1446 /* Runs immediately before start_thread() takes over. */
1447 void finalize_exec(struct linux_binprm *bprm)
1448 {
1449 /* Store any stack rlimit changes before starting thread. */
1450 task_lock(current->group_leader);
1451 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1452 task_unlock(current->group_leader);
1453 }
1454 EXPORT_SYMBOL(finalize_exec);
1455
1456 /*
1457 * Prepare credentials and lock ->cred_guard_mutex.
1458 * setup_new_exec() commits the new creds and drops the lock.
1459 * Or, if exec fails before, free_bprm() should release ->cred
1460 * and unlock.
1461 */
1462 static int prepare_bprm_creds(struct linux_binprm *bprm)
1463 {
1464 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1465 return -ERESTARTNOINTR;
1466
1467 bprm->cred = prepare_exec_creds();
1468 if (likely(bprm->cred))
1469 return 0;
1470
1471 mutex_unlock(&current->signal->cred_guard_mutex);
1472 return -ENOMEM;
1473 }
1474
1475 static void free_bprm(struct linux_binprm *bprm)
1476 {
1477 if (bprm->mm) {
1478 acct_arg_size(bprm, 0);
1479 mmput(bprm->mm);
1480 }
1481 free_arg_pages(bprm);
1482 if (bprm->cred) {
1483 mutex_unlock(&current->signal->cred_guard_mutex);
1484 abort_creds(bprm->cred);
1485 }
1486 if (bprm->file) {
1487 allow_write_access(bprm->file);
1488 fput(bprm->file);
1489 }
1490 if (bprm->executable)
1491 fput(bprm->executable);
1492 /* If a binfmt changed the interp, free it. */
1493 if (bprm->interp != bprm->filename)
1494 kfree(bprm->interp);
1495 kfree(bprm->fdpath);
1496 kfree(bprm);
1497 }
1498
1499 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1500 {
1501 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1502 int retval = -ENOMEM;
1503 if (!bprm)
1504 goto out;
1505
1506 if (fd == AT_FDCWD || filename->name[0] == '/') {
1507 bprm->filename = filename->name;
1508 } else {
1509 if (filename->name[0] == '\0')
1510 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1511 else
1512 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1513 fd, filename->name);
1514 if (!bprm->fdpath)
1515 goto out_free;
1516
1517 bprm->filename = bprm->fdpath;
1518 }
1519 bprm->interp = bprm->filename;
1520
1521 retval = bprm_mm_init(bprm);
1522 if (retval)
1523 goto out_free;
1524 return bprm;
1525
1526 out_free:
1527 free_bprm(bprm);
1528 out:
1529 return ERR_PTR(retval);
1530 }
1531
1532 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1533 {
1534 /* If a binfmt changed the interp, free it first. */
1535 if (bprm->interp != bprm->filename)
1536 kfree(bprm->interp);
1537 bprm->interp = kstrdup(interp, GFP_KERNEL);
1538 if (!bprm->interp)
1539 return -ENOMEM;
1540 return 0;
1541 }
1542 EXPORT_SYMBOL(bprm_change_interp);
1543
1544 /*
1545 * determine how safe it is to execute the proposed program
1546 * - the caller must hold ->cred_guard_mutex to protect against
1547 * PTRACE_ATTACH or seccomp thread-sync
1548 */
1549 static void check_unsafe_exec(struct linux_binprm *bprm)
1550 {
1551 struct task_struct *p = current, *t;
1552 unsigned n_fs;
1553
1554 if (p->ptrace)
1555 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1556
1557 /*
1558 * This isn't strictly necessary, but it makes it harder for LSMs to
1559 * mess up.
1560 */
1561 if (task_no_new_privs(current))
1562 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1563
1564 t = p;
1565 n_fs = 1;
1566 spin_lock(&p->fs->lock);
1567 rcu_read_lock();
1568 while_each_thread(p, t) {
1569 if (t->fs == p->fs)
1570 n_fs++;
1571 }
1572 rcu_read_unlock();
1573
1574 if (p->fs->users > n_fs)
1575 bprm->unsafe |= LSM_UNSAFE_SHARE;
1576 else
1577 p->fs->in_exec = 1;
1578 spin_unlock(&p->fs->lock);
1579 }
1580
1581 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1582 {
1583 /* Handle suid and sgid on files */
1584 struct user_namespace *mnt_userns;
1585 struct inode *inode;
1586 unsigned int mode;
1587 kuid_t uid;
1588 kgid_t gid;
1589
1590 if (!mnt_may_suid(file->f_path.mnt))
1591 return;
1592
1593 if (task_no_new_privs(current))
1594 return;
1595
1596 inode = file->f_path.dentry->d_inode;
1597 mode = READ_ONCE(inode->i_mode);
1598 if (!(mode & (S_ISUID|S_ISGID)))
1599 return;
1600
1601 mnt_userns = file_mnt_user_ns(file);
1602
1603 /* Be careful if suid/sgid is set */
1604 inode_lock(inode);
1605
1606 /* reload atomically mode/uid/gid now that lock held */
1607 mode = inode->i_mode;
1608 uid = i_uid_into_mnt(mnt_userns, inode);
1609 gid = i_gid_into_mnt(mnt_userns, inode);
1610 inode_unlock(inode);
1611
1612 /* We ignore suid/sgid if there are no mappings for them in the ns */
1613 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1614 !kgid_has_mapping(bprm->cred->user_ns, gid))
1615 return;
1616
1617 if (mode & S_ISUID) {
1618 bprm->per_clear |= PER_CLEAR_ON_SETID;
1619 bprm->cred->euid = uid;
1620 }
1621
1622 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1623 bprm->per_clear |= PER_CLEAR_ON_SETID;
1624 bprm->cred->egid = gid;
1625 }
1626 }
1627
1628 /*
1629 * Compute brpm->cred based upon the final binary.
1630 */
1631 static int bprm_creds_from_file(struct linux_binprm *bprm)
1632 {
1633 /* Compute creds based on which file? */
1634 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1635
1636 bprm_fill_uid(bprm, file);
1637 return security_bprm_creds_from_file(bprm, file);
1638 }
1639
1640 /*
1641 * Fill the binprm structure from the inode.
1642 * Read the first BINPRM_BUF_SIZE bytes
1643 *
1644 * This may be called multiple times for binary chains (scripts for example).
1645 */
1646 static int prepare_binprm(struct linux_binprm *bprm)
1647 {
1648 loff_t pos = 0;
1649
1650 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1651 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1652 }
1653
1654 /*
1655 * Arguments are '\0' separated strings found at the location bprm->p
1656 * points to; chop off the first by relocating brpm->p to right after
1657 * the first '\0' encountered.
1658 */
1659 int remove_arg_zero(struct linux_binprm *bprm)
1660 {
1661 int ret = 0;
1662 unsigned long offset;
1663 char *kaddr;
1664 struct page *page;
1665
1666 if (!bprm->argc)
1667 return 0;
1668
1669 do {
1670 offset = bprm->p & ~PAGE_MASK;
1671 page = get_arg_page(bprm, bprm->p, 0);
1672 if (!page) {
1673 ret = -EFAULT;
1674 goto out;
1675 }
1676 kaddr = kmap_atomic(page);
1677
1678 for (; offset < PAGE_SIZE && kaddr[offset];
1679 offset++, bprm->p++)
1680 ;
1681
1682 kunmap_atomic(kaddr);
1683 put_arg_page(page);
1684 } while (offset == PAGE_SIZE);
1685
1686 bprm->p++;
1687 bprm->argc--;
1688 ret = 0;
1689
1690 out:
1691 return ret;
1692 }
1693 EXPORT_SYMBOL(remove_arg_zero);
1694
1695 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1696 /*
1697 * cycle the list of binary formats handler, until one recognizes the image
1698 */
1699 static int search_binary_handler(struct linux_binprm *bprm)
1700 {
1701 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1702 struct linux_binfmt *fmt;
1703 int retval;
1704
1705 retval = prepare_binprm(bprm);
1706 if (retval < 0)
1707 return retval;
1708
1709 retval = security_bprm_check(bprm);
1710 if (retval)
1711 return retval;
1712
1713 retval = -ENOENT;
1714 retry:
1715 read_lock(&binfmt_lock);
1716 list_for_each_entry(fmt, &formats, lh) {
1717 if (!try_module_get(fmt->module))
1718 continue;
1719 read_unlock(&binfmt_lock);
1720
1721 retval = fmt->load_binary(bprm);
1722
1723 read_lock(&binfmt_lock);
1724 put_binfmt(fmt);
1725 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1726 read_unlock(&binfmt_lock);
1727 return retval;
1728 }
1729 }
1730 read_unlock(&binfmt_lock);
1731
1732 if (need_retry) {
1733 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1734 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1735 return retval;
1736 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1737 return retval;
1738 need_retry = false;
1739 goto retry;
1740 }
1741
1742 return retval;
1743 }
1744
1745 static int exec_binprm(struct linux_binprm *bprm)
1746 {
1747 pid_t old_pid, old_vpid;
1748 int ret, depth;
1749
1750 /* Need to fetch pid before load_binary changes it */
1751 old_pid = current->pid;
1752 rcu_read_lock();
1753 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1754 rcu_read_unlock();
1755
1756 /* This allows 4 levels of binfmt rewrites before failing hard. */
1757 for (depth = 0;; depth++) {
1758 struct file *exec;
1759 if (depth > 5)
1760 return -ELOOP;
1761
1762 ret = search_binary_handler(bprm);
1763 if (ret < 0)
1764 return ret;
1765 if (!bprm->interpreter)
1766 break;
1767
1768 exec = bprm->file;
1769 bprm->file = bprm->interpreter;
1770 bprm->interpreter = NULL;
1771
1772 allow_write_access(exec);
1773 if (unlikely(bprm->have_execfd)) {
1774 if (bprm->executable) {
1775 fput(exec);
1776 return -ENOEXEC;
1777 }
1778 bprm->executable = exec;
1779 } else
1780 fput(exec);
1781 }
1782
1783 audit_bprm(bprm);
1784 trace_sched_process_exec(current, old_pid, bprm);
1785 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1786 proc_exec_connector(current);
1787 return 0;
1788 }
1789
1790 /*
1791 * sys_execve() executes a new program.
1792 */
1793 static int bprm_execve(struct linux_binprm *bprm,
1794 int fd, struct filename *filename, int flags)
1795 {
1796 struct file *file;
1797 int retval;
1798
1799 retval = prepare_bprm_creds(bprm);
1800 if (retval)
1801 return retval;
1802
1803 check_unsafe_exec(bprm);
1804 current->in_execve = 1;
1805
1806 file = do_open_execat(fd, filename, flags);
1807 retval = PTR_ERR(file);
1808 if (IS_ERR(file))
1809 goto out_unmark;
1810
1811 sched_exec();
1812
1813 bprm->file = file;
1814 /*
1815 * Record that a name derived from an O_CLOEXEC fd will be
1816 * inaccessible after exec. This allows the code in exec to
1817 * choose to fail when the executable is not mmaped into the
1818 * interpreter and an open file descriptor is not passed to
1819 * the interpreter. This makes for a better user experience
1820 * than having the interpreter start and then immediately fail
1821 * when it finds the executable is inaccessible.
1822 */
1823 if (bprm->fdpath && get_close_on_exec(fd))
1824 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1825
1826 /* Set the unchanging part of bprm->cred */
1827 retval = security_bprm_creds_for_exec(bprm);
1828 if (retval)
1829 goto out;
1830
1831 retval = exec_binprm(bprm);
1832 if (retval < 0)
1833 goto out;
1834
1835 /* execve succeeded */
1836 current->fs->in_exec = 0;
1837 current->in_execve = 0;
1838 rseq_execve(current);
1839 acct_update_integrals(current);
1840 task_numa_free(current, false);
1841 return retval;
1842
1843 out:
1844 /*
1845 * If past the point of no return ensure the code never
1846 * returns to the userspace process. Use an existing fatal
1847 * signal if present otherwise terminate the process with
1848 * SIGSEGV.
1849 */
1850 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1851 force_sigsegv(SIGSEGV);
1852
1853 out_unmark:
1854 current->fs->in_exec = 0;
1855 current->in_execve = 0;
1856
1857 return retval;
1858 }
1859
1860 static int do_execveat_common(int fd, struct filename *filename,
1861 struct user_arg_ptr argv,
1862 struct user_arg_ptr envp,
1863 int flags)
1864 {
1865 struct linux_binprm *bprm;
1866 int retval;
1867
1868 if (IS_ERR(filename))
1869 return PTR_ERR(filename);
1870
1871 /*
1872 * We move the actual failure in case of RLIMIT_NPROC excess from
1873 * set*uid() to execve() because too many poorly written programs
1874 * don't check setuid() return code. Here we additionally recheck
1875 * whether NPROC limit is still exceeded.
1876 */
1877 if ((current->flags & PF_NPROC_EXCEEDED) &&
1878 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1879 retval = -EAGAIN;
1880 goto out_ret;
1881 }
1882
1883 /* We're below the limit (still or again), so we don't want to make
1884 * further execve() calls fail. */
1885 current->flags &= ~PF_NPROC_EXCEEDED;
1886
1887 bprm = alloc_bprm(fd, filename);
1888 if (IS_ERR(bprm)) {
1889 retval = PTR_ERR(bprm);
1890 goto out_ret;
1891 }
1892
1893 retval = count(argv, MAX_ARG_STRINGS);
1894 if (retval < 0)
1895 goto out_free;
1896 bprm->argc = retval;
1897
1898 retval = count(envp, MAX_ARG_STRINGS);
1899 if (retval < 0)
1900 goto out_free;
1901 bprm->envc = retval;
1902
1903 retval = bprm_stack_limits(bprm);
1904 if (retval < 0)
1905 goto out_free;
1906
1907 retval = copy_string_kernel(bprm->filename, bprm);
1908 if (retval < 0)
1909 goto out_free;
1910 bprm->exec = bprm->p;
1911
1912 retval = copy_strings(bprm->envc, envp, bprm);
1913 if (retval < 0)
1914 goto out_free;
1915
1916 retval = copy_strings(bprm->argc, argv, bprm);
1917 if (retval < 0)
1918 goto out_free;
1919
1920 retval = bprm_execve(bprm, fd, filename, flags);
1921 out_free:
1922 free_bprm(bprm);
1923
1924 out_ret:
1925 putname(filename);
1926 return retval;
1927 }
1928
1929 int kernel_execve(const char *kernel_filename,
1930 const char *const *argv, const char *const *envp)
1931 {
1932 struct filename *filename;
1933 struct linux_binprm *bprm;
1934 int fd = AT_FDCWD;
1935 int retval;
1936
1937 filename = getname_kernel(kernel_filename);
1938 if (IS_ERR(filename))
1939 return PTR_ERR(filename);
1940
1941 bprm = alloc_bprm(fd, filename);
1942 if (IS_ERR(bprm)) {
1943 retval = PTR_ERR(bprm);
1944 goto out_ret;
1945 }
1946
1947 retval = count_strings_kernel(argv);
1948 if (retval < 0)
1949 goto out_free;
1950 bprm->argc = retval;
1951
1952 retval = count_strings_kernel(envp);
1953 if (retval < 0)
1954 goto out_free;
1955 bprm->envc = retval;
1956
1957 retval = bprm_stack_limits(bprm);
1958 if (retval < 0)
1959 goto out_free;
1960
1961 retval = copy_string_kernel(bprm->filename, bprm);
1962 if (retval < 0)
1963 goto out_free;
1964 bprm->exec = bprm->p;
1965
1966 retval = copy_strings_kernel(bprm->envc, envp, bprm);
1967 if (retval < 0)
1968 goto out_free;
1969
1970 retval = copy_strings_kernel(bprm->argc, argv, bprm);
1971 if (retval < 0)
1972 goto out_free;
1973
1974 retval = bprm_execve(bprm, fd, filename, 0);
1975 out_free:
1976 free_bprm(bprm);
1977 out_ret:
1978 putname(filename);
1979 return retval;
1980 }
1981
1982 static int do_execve(struct filename *filename,
1983 const char __user *const __user *__argv,
1984 const char __user *const __user *__envp)
1985 {
1986 struct user_arg_ptr argv = { .ptr.native = __argv };
1987 struct user_arg_ptr envp = { .ptr.native = __envp };
1988 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1989 }
1990
1991 static int do_execveat(int fd, struct filename *filename,
1992 const char __user *const __user *__argv,
1993 const char __user *const __user *__envp,
1994 int flags)
1995 {
1996 struct user_arg_ptr argv = { .ptr.native = __argv };
1997 struct user_arg_ptr envp = { .ptr.native = __envp };
1998
1999 return do_execveat_common(fd, filename, argv, envp, flags);
2000 }
2001
2002 #ifdef CONFIG_COMPAT
2003 static int compat_do_execve(struct filename *filename,
2004 const compat_uptr_t __user *__argv,
2005 const compat_uptr_t __user *__envp)
2006 {
2007 struct user_arg_ptr argv = {
2008 .is_compat = true,
2009 .ptr.compat = __argv,
2010 };
2011 struct user_arg_ptr envp = {
2012 .is_compat = true,
2013 .ptr.compat = __envp,
2014 };
2015 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2016 }
2017
2018 static int compat_do_execveat(int fd, struct filename *filename,
2019 const compat_uptr_t __user *__argv,
2020 const compat_uptr_t __user *__envp,
2021 int flags)
2022 {
2023 struct user_arg_ptr argv = {
2024 .is_compat = true,
2025 .ptr.compat = __argv,
2026 };
2027 struct user_arg_ptr envp = {
2028 .is_compat = true,
2029 .ptr.compat = __envp,
2030 };
2031 return do_execveat_common(fd, filename, argv, envp, flags);
2032 }
2033 #endif
2034
2035 void set_binfmt(struct linux_binfmt *new)
2036 {
2037 struct mm_struct *mm = current->mm;
2038
2039 if (mm->binfmt)
2040 module_put(mm->binfmt->module);
2041
2042 mm->binfmt = new;
2043 if (new)
2044 __module_get(new->module);
2045 }
2046 EXPORT_SYMBOL(set_binfmt);
2047
2048 /*
2049 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2050 */
2051 void set_dumpable(struct mm_struct *mm, int value)
2052 {
2053 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2054 return;
2055
2056 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2057 }
2058
2059 SYSCALL_DEFINE3(execve,
2060 const char __user *, filename,
2061 const char __user *const __user *, argv,
2062 const char __user *const __user *, envp)
2063 {
2064 return do_execve(getname(filename), argv, envp);
2065 }
2066
2067 SYSCALL_DEFINE5(execveat,
2068 int, fd, const char __user *, filename,
2069 const char __user *const __user *, argv,
2070 const char __user *const __user *, envp,
2071 int, flags)
2072 {
2073 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2074
2075 return do_execveat(fd,
2076 getname_flags(filename, lookup_flags, NULL),
2077 argv, envp, flags);
2078 }
2079
2080 #ifdef CONFIG_COMPAT
2081 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2082 const compat_uptr_t __user *, argv,
2083 const compat_uptr_t __user *, envp)
2084 {
2085 return compat_do_execve(getname(filename), argv, envp);
2086 }
2087
2088 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2089 const char __user *, filename,
2090 const compat_uptr_t __user *, argv,
2091 const compat_uptr_t __user *, envp,
2092 int, flags)
2093 {
2094 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2095
2096 return compat_do_execveat(fd,
2097 getname_flags(filename, lookup_flags, NULL),
2098 argv, envp, flags);
2099 }
2100 #endif