]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/exec.c
Merge branch 'x86-reboot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 BUG_ON(!fmt);
77 if (WARN_ON(!fmt->load_binary))
78 return;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
83 }
84
85 EXPORT_SYMBOL(__register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 module_put(fmt->module);
99 }
100
101 /*
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
104 *
105 * Also note that we take the address to load from from the file itself.
106 */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109 struct file *file;
110 struct filename *tmp = getname(library);
111 int error = PTR_ERR(tmp);
112 static const struct open_flags uselib_flags = {
113 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
114 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
115 .intent = LOOKUP_OPEN,
116 .lookup_flags = LOOKUP_FOLLOW,
117 };
118
119 if (IS_ERR(tmp))
120 goto out;
121
122 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
123 putname(tmp);
124 error = PTR_ERR(file);
125 if (IS_ERR(file))
126 goto out;
127
128 error = -EINVAL;
129 if (!S_ISREG(file_inode(file)->i_mode))
130 goto exit;
131
132 error = -EACCES;
133 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
134 goto exit;
135
136 fsnotify_open(file);
137
138 error = -ENOEXEC;
139 if(file->f_op) {
140 struct linux_binfmt * fmt;
141
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
145 continue;
146 if (!try_module_get(fmt->module))
147 continue;
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
151 put_binfmt(fmt);
152 if (error != -ENOEXEC)
153 break;
154 }
155 read_unlock(&binfmt_lock);
156 }
157 exit:
158 fput(file);
159 out:
160 return error;
161 }
162
163 #ifdef CONFIG_MMU
164 /*
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
169 */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172 struct mm_struct *mm = current->mm;
173 long diff = (long)(pages - bprm->vma_pages);
174
175 if (!mm || !diff)
176 return;
177
178 bprm->vma_pages = pages;
179 add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 int write)
184 {
185 struct page *page;
186 int ret;
187
188 #ifdef CONFIG_STACK_GROWSUP
189 if (write) {
190 ret = expand_downwards(bprm->vma, pos);
191 if (ret < 0)
192 return NULL;
193 }
194 #endif
195 ret = get_user_pages(current, bprm->mm, pos,
196 1, write, 1, &page, NULL);
197 if (ret <= 0)
198 return NULL;
199
200 if (write) {
201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 struct rlimit *rlim;
203
204 acct_arg_size(bprm, size / PAGE_SIZE);
205
206 /*
207 * We've historically supported up to 32 pages (ARG_MAX)
208 * of argument strings even with small stacks
209 */
210 if (size <= ARG_MAX)
211 return page;
212
213 /*
214 * Limit to 1/4-th the stack size for the argv+env strings.
215 * This ensures that:
216 * - the remaining binfmt code will not run out of stack space,
217 * - the program will have a reasonable amount of stack left
218 * to work from.
219 */
220 rlim = current->signal->rlim;
221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 put_page(page);
223 return NULL;
224 }
225 }
226
227 return page;
228 }
229
230 static void put_arg_page(struct page *page)
231 {
232 put_page(page);
233 }
234
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 struct page *page)
245 {
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 int err;
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
254
255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 if (!vma)
257 return -ENOMEM;
258
259 down_write(&mm->mmap_sem);
260 vma->vm_mm = mm;
261
262 /*
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
266 * configured yet.
267 */
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275 err = insert_vm_struct(mm, vma);
276 if (err)
277 goto err;
278
279 mm->stack_vm = mm->total_vm = 1;
280 up_write(&mm->mmap_sem);
281 bprm->p = vma->vm_end - sizeof(void *);
282 return 0;
283 err:
284 up_write(&mm->mmap_sem);
285 bprm->vma = NULL;
286 kmem_cache_free(vm_area_cachep, vma);
287 return err;
288 }
289
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292 return len <= MAX_ARG_STRLEN;
293 }
294
295 #else
296
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 int write)
303 {
304 struct page *page;
305
306 page = bprm->page[pos / PAGE_SIZE];
307 if (!page && write) {
308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 if (!page)
310 return NULL;
311 bprm->page[pos / PAGE_SIZE] = page;
312 }
313
314 return page;
315 }
316
317 static void put_arg_page(struct page *page)
318 {
319 }
320
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323 if (bprm->page[i]) {
324 __free_page(bprm->page[i]);
325 bprm->page[i] = NULL;
326 }
327 }
328
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331 int i;
332
333 for (i = 0; i < MAX_ARG_PAGES; i++)
334 free_arg_page(bprm, i);
335 }
336
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 struct page *page)
339 {
340 }
341
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 return 0;
346 }
347
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350 return len <= bprm->p;
351 }
352
353 #endif /* CONFIG_MMU */
354
355 /*
356 * Create a new mm_struct and populate it with a temporary stack
357 * vm_area_struct. We don't have enough context at this point to set the stack
358 * flags, permissions, and offset, so we use temporary values. We'll update
359 * them later in setup_arg_pages().
360 */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363 int err;
364 struct mm_struct *mm = NULL;
365
366 bprm->mm = mm = mm_alloc();
367 err = -ENOMEM;
368 if (!mm)
369 goto err;
370
371 err = init_new_context(current, mm);
372 if (err)
373 goto err;
374
375 err = __bprm_mm_init(bprm);
376 if (err)
377 goto err;
378
379 return 0;
380
381 err:
382 if (mm) {
383 bprm->mm = NULL;
384 mmdrop(mm);
385 }
386
387 return err;
388 }
389
390 struct user_arg_ptr {
391 #ifdef CONFIG_COMPAT
392 bool is_compat;
393 #endif
394 union {
395 const char __user *const __user *native;
396 #ifdef CONFIG_COMPAT
397 const compat_uptr_t __user *compat;
398 #endif
399 } ptr;
400 };
401
402 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
403 {
404 const char __user *native;
405
406 #ifdef CONFIG_COMPAT
407 if (unlikely(argv.is_compat)) {
408 compat_uptr_t compat;
409
410 if (get_user(compat, argv.ptr.compat + nr))
411 return ERR_PTR(-EFAULT);
412
413 return compat_ptr(compat);
414 }
415 #endif
416
417 if (get_user(native, argv.ptr.native + nr))
418 return ERR_PTR(-EFAULT);
419
420 return native;
421 }
422
423 /*
424 * count() counts the number of strings in array ARGV.
425 */
426 static int count(struct user_arg_ptr argv, int max)
427 {
428 int i = 0;
429
430 if (argv.ptr.native != NULL) {
431 for (;;) {
432 const char __user *p = get_user_arg_ptr(argv, i);
433
434 if (!p)
435 break;
436
437 if (IS_ERR(p))
438 return -EFAULT;
439
440 if (i >= max)
441 return -E2BIG;
442 ++i;
443
444 if (fatal_signal_pending(current))
445 return -ERESTARTNOHAND;
446 cond_resched();
447 }
448 }
449 return i;
450 }
451
452 /*
453 * 'copy_strings()' copies argument/environment strings from the old
454 * processes's memory to the new process's stack. The call to get_user_pages()
455 * ensures the destination page is created and not swapped out.
456 */
457 static int copy_strings(int argc, struct user_arg_ptr argv,
458 struct linux_binprm *bprm)
459 {
460 struct page *kmapped_page = NULL;
461 char *kaddr = NULL;
462 unsigned long kpos = 0;
463 int ret;
464
465 while (argc-- > 0) {
466 const char __user *str;
467 int len;
468 unsigned long pos;
469
470 ret = -EFAULT;
471 str = get_user_arg_ptr(argv, argc);
472 if (IS_ERR(str))
473 goto out;
474
475 len = strnlen_user(str, MAX_ARG_STRLEN);
476 if (!len)
477 goto out;
478
479 ret = -E2BIG;
480 if (!valid_arg_len(bprm, len))
481 goto out;
482
483 /* We're going to work our way backwords. */
484 pos = bprm->p;
485 str += len;
486 bprm->p -= len;
487
488 while (len > 0) {
489 int offset, bytes_to_copy;
490
491 if (fatal_signal_pending(current)) {
492 ret = -ERESTARTNOHAND;
493 goto out;
494 }
495 cond_resched();
496
497 offset = pos % PAGE_SIZE;
498 if (offset == 0)
499 offset = PAGE_SIZE;
500
501 bytes_to_copy = offset;
502 if (bytes_to_copy > len)
503 bytes_to_copy = len;
504
505 offset -= bytes_to_copy;
506 pos -= bytes_to_copy;
507 str -= bytes_to_copy;
508 len -= bytes_to_copy;
509
510 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
511 struct page *page;
512
513 page = get_arg_page(bprm, pos, 1);
514 if (!page) {
515 ret = -E2BIG;
516 goto out;
517 }
518
519 if (kmapped_page) {
520 flush_kernel_dcache_page(kmapped_page);
521 kunmap(kmapped_page);
522 put_arg_page(kmapped_page);
523 }
524 kmapped_page = page;
525 kaddr = kmap(kmapped_page);
526 kpos = pos & PAGE_MASK;
527 flush_arg_page(bprm, kpos, kmapped_page);
528 }
529 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
530 ret = -EFAULT;
531 goto out;
532 }
533 }
534 }
535 ret = 0;
536 out:
537 if (kmapped_page) {
538 flush_kernel_dcache_page(kmapped_page);
539 kunmap(kmapped_page);
540 put_arg_page(kmapped_page);
541 }
542 return ret;
543 }
544
545 /*
546 * Like copy_strings, but get argv and its values from kernel memory.
547 */
548 int copy_strings_kernel(int argc, const char *const *__argv,
549 struct linux_binprm *bprm)
550 {
551 int r;
552 mm_segment_t oldfs = get_fs();
553 struct user_arg_ptr argv = {
554 .ptr.native = (const char __user *const __user *)__argv,
555 };
556
557 set_fs(KERNEL_DS);
558 r = copy_strings(argc, argv, bprm);
559 set_fs(oldfs);
560
561 return r;
562 }
563 EXPORT_SYMBOL(copy_strings_kernel);
564
565 #ifdef CONFIG_MMU
566
567 /*
568 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
569 * the binfmt code determines where the new stack should reside, we shift it to
570 * its final location. The process proceeds as follows:
571 *
572 * 1) Use shift to calculate the new vma endpoints.
573 * 2) Extend vma to cover both the old and new ranges. This ensures the
574 * arguments passed to subsequent functions are consistent.
575 * 3) Move vma's page tables to the new range.
576 * 4) Free up any cleared pgd range.
577 * 5) Shrink the vma to cover only the new range.
578 */
579 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
580 {
581 struct mm_struct *mm = vma->vm_mm;
582 unsigned long old_start = vma->vm_start;
583 unsigned long old_end = vma->vm_end;
584 unsigned long length = old_end - old_start;
585 unsigned long new_start = old_start - shift;
586 unsigned long new_end = old_end - shift;
587 struct mmu_gather tlb;
588
589 BUG_ON(new_start > new_end);
590
591 /*
592 * ensure there are no vmas between where we want to go
593 * and where we are
594 */
595 if (vma != find_vma(mm, new_start))
596 return -EFAULT;
597
598 /*
599 * cover the whole range: [new_start, old_end)
600 */
601 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
602 return -ENOMEM;
603
604 /*
605 * move the page tables downwards, on failure we rely on
606 * process cleanup to remove whatever mess we made.
607 */
608 if (length != move_page_tables(vma, old_start,
609 vma, new_start, length, false))
610 return -ENOMEM;
611
612 lru_add_drain();
613 tlb_gather_mmu(&tlb, mm, old_start, old_end);
614 if (new_end > old_start) {
615 /*
616 * when the old and new regions overlap clear from new_end.
617 */
618 free_pgd_range(&tlb, new_end, old_end, new_end,
619 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
620 } else {
621 /*
622 * otherwise, clean from old_start; this is done to not touch
623 * the address space in [new_end, old_start) some architectures
624 * have constraints on va-space that make this illegal (IA64) -
625 * for the others its just a little faster.
626 */
627 free_pgd_range(&tlb, old_start, old_end, new_end,
628 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
629 }
630 tlb_finish_mmu(&tlb, old_start, old_end);
631
632 /*
633 * Shrink the vma to just the new range. Always succeeds.
634 */
635 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
636
637 return 0;
638 }
639
640 /*
641 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
642 * the stack is optionally relocated, and some extra space is added.
643 */
644 int setup_arg_pages(struct linux_binprm *bprm,
645 unsigned long stack_top,
646 int executable_stack)
647 {
648 unsigned long ret;
649 unsigned long stack_shift;
650 struct mm_struct *mm = current->mm;
651 struct vm_area_struct *vma = bprm->vma;
652 struct vm_area_struct *prev = NULL;
653 unsigned long vm_flags;
654 unsigned long stack_base;
655 unsigned long stack_size;
656 unsigned long stack_expand;
657 unsigned long rlim_stack;
658
659 #ifdef CONFIG_STACK_GROWSUP
660 /* Limit stack size to 1GB */
661 stack_base = rlimit_max(RLIMIT_STACK);
662 if (stack_base > (1 << 30))
663 stack_base = 1 << 30;
664
665 /* Make sure we didn't let the argument array grow too large. */
666 if (vma->vm_end - vma->vm_start > stack_base)
667 return -ENOMEM;
668
669 stack_base = PAGE_ALIGN(stack_top - stack_base);
670
671 stack_shift = vma->vm_start - stack_base;
672 mm->arg_start = bprm->p - stack_shift;
673 bprm->p = vma->vm_end - stack_shift;
674 #else
675 stack_top = arch_align_stack(stack_top);
676 stack_top = PAGE_ALIGN(stack_top);
677
678 if (unlikely(stack_top < mmap_min_addr) ||
679 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680 return -ENOMEM;
681
682 stack_shift = vma->vm_end - stack_top;
683
684 bprm->p -= stack_shift;
685 mm->arg_start = bprm->p;
686 #endif
687
688 if (bprm->loader)
689 bprm->loader -= stack_shift;
690 bprm->exec -= stack_shift;
691
692 down_write(&mm->mmap_sem);
693 vm_flags = VM_STACK_FLAGS;
694
695 /*
696 * Adjust stack execute permissions; explicitly enable for
697 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698 * (arch default) otherwise.
699 */
700 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701 vm_flags |= VM_EXEC;
702 else if (executable_stack == EXSTACK_DISABLE_X)
703 vm_flags &= ~VM_EXEC;
704 vm_flags |= mm->def_flags;
705 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
706
707 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708 vm_flags);
709 if (ret)
710 goto out_unlock;
711 BUG_ON(prev != vma);
712
713 /* Move stack pages down in memory. */
714 if (stack_shift) {
715 ret = shift_arg_pages(vma, stack_shift);
716 if (ret)
717 goto out_unlock;
718 }
719
720 /* mprotect_fixup is overkill to remove the temporary stack flags */
721 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
722
723 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724 stack_size = vma->vm_end - vma->vm_start;
725 /*
726 * Align this down to a page boundary as expand_stack
727 * will align it up.
728 */
729 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730 #ifdef CONFIG_STACK_GROWSUP
731 if (stack_size + stack_expand > rlim_stack)
732 stack_base = vma->vm_start + rlim_stack;
733 else
734 stack_base = vma->vm_end + stack_expand;
735 #else
736 if (stack_size + stack_expand > rlim_stack)
737 stack_base = vma->vm_end - rlim_stack;
738 else
739 stack_base = vma->vm_start - stack_expand;
740 #endif
741 current->mm->start_stack = bprm->p;
742 ret = expand_stack(vma, stack_base);
743 if (ret)
744 ret = -EFAULT;
745
746 out_unlock:
747 up_write(&mm->mmap_sem);
748 return ret;
749 }
750 EXPORT_SYMBOL(setup_arg_pages);
751
752 #endif /* CONFIG_MMU */
753
754 struct file *open_exec(const char *name)
755 {
756 struct file *file;
757 int err;
758 struct filename tmp = { .name = name };
759 static const struct open_flags open_exec_flags = {
760 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
761 .acc_mode = MAY_EXEC | MAY_OPEN,
762 .intent = LOOKUP_OPEN,
763 .lookup_flags = LOOKUP_FOLLOW,
764 };
765
766 file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags);
767 if (IS_ERR(file))
768 goto out;
769
770 err = -EACCES;
771 if (!S_ISREG(file_inode(file)->i_mode))
772 goto exit;
773
774 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
775 goto exit;
776
777 fsnotify_open(file);
778
779 err = deny_write_access(file);
780 if (err)
781 goto exit;
782
783 out:
784 return file;
785
786 exit:
787 fput(file);
788 return ERR_PTR(err);
789 }
790 EXPORT_SYMBOL(open_exec);
791
792 int kernel_read(struct file *file, loff_t offset,
793 char *addr, unsigned long count)
794 {
795 mm_segment_t old_fs;
796 loff_t pos = offset;
797 int result;
798
799 old_fs = get_fs();
800 set_fs(get_ds());
801 /* The cast to a user pointer is valid due to the set_fs() */
802 result = vfs_read(file, (void __user *)addr, count, &pos);
803 set_fs(old_fs);
804 return result;
805 }
806
807 EXPORT_SYMBOL(kernel_read);
808
809 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
810 {
811 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
812 if (res > 0)
813 flush_icache_range(addr, addr + len);
814 return res;
815 }
816 EXPORT_SYMBOL(read_code);
817
818 static int exec_mmap(struct mm_struct *mm)
819 {
820 struct task_struct *tsk;
821 struct mm_struct * old_mm, *active_mm;
822
823 /* Notify parent that we're no longer interested in the old VM */
824 tsk = current;
825 old_mm = current->mm;
826 mm_release(tsk, old_mm);
827
828 if (old_mm) {
829 sync_mm_rss(old_mm);
830 /*
831 * Make sure that if there is a core dump in progress
832 * for the old mm, we get out and die instead of going
833 * through with the exec. We must hold mmap_sem around
834 * checking core_state and changing tsk->mm.
835 */
836 down_read(&old_mm->mmap_sem);
837 if (unlikely(old_mm->core_state)) {
838 up_read(&old_mm->mmap_sem);
839 return -EINTR;
840 }
841 }
842 task_lock(tsk);
843 active_mm = tsk->active_mm;
844 tsk->mm = mm;
845 tsk->active_mm = mm;
846 activate_mm(active_mm, mm);
847 task_unlock(tsk);
848 arch_pick_mmap_layout(mm);
849 if (old_mm) {
850 up_read(&old_mm->mmap_sem);
851 BUG_ON(active_mm != old_mm);
852 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
853 mm_update_next_owner(old_mm);
854 mmput(old_mm);
855 return 0;
856 }
857 mmdrop(active_mm);
858 return 0;
859 }
860
861 /*
862 * This function makes sure the current process has its own signal table,
863 * so that flush_signal_handlers can later reset the handlers without
864 * disturbing other processes. (Other processes might share the signal
865 * table via the CLONE_SIGHAND option to clone().)
866 */
867 static int de_thread(struct task_struct *tsk)
868 {
869 struct signal_struct *sig = tsk->signal;
870 struct sighand_struct *oldsighand = tsk->sighand;
871 spinlock_t *lock = &oldsighand->siglock;
872
873 if (thread_group_empty(tsk))
874 goto no_thread_group;
875
876 /*
877 * Kill all other threads in the thread group.
878 */
879 spin_lock_irq(lock);
880 if (signal_group_exit(sig)) {
881 /*
882 * Another group action in progress, just
883 * return so that the signal is processed.
884 */
885 spin_unlock_irq(lock);
886 return -EAGAIN;
887 }
888
889 sig->group_exit_task = tsk;
890 sig->notify_count = zap_other_threads(tsk);
891 if (!thread_group_leader(tsk))
892 sig->notify_count--;
893
894 while (sig->notify_count) {
895 __set_current_state(TASK_KILLABLE);
896 spin_unlock_irq(lock);
897 schedule();
898 if (unlikely(__fatal_signal_pending(tsk)))
899 goto killed;
900 spin_lock_irq(lock);
901 }
902 spin_unlock_irq(lock);
903
904 /*
905 * At this point all other threads have exited, all we have to
906 * do is to wait for the thread group leader to become inactive,
907 * and to assume its PID:
908 */
909 if (!thread_group_leader(tsk)) {
910 struct task_struct *leader = tsk->group_leader;
911
912 sig->notify_count = -1; /* for exit_notify() */
913 for (;;) {
914 threadgroup_change_begin(tsk);
915 write_lock_irq(&tasklist_lock);
916 if (likely(leader->exit_state))
917 break;
918 __set_current_state(TASK_KILLABLE);
919 write_unlock_irq(&tasklist_lock);
920 threadgroup_change_end(tsk);
921 schedule();
922 if (unlikely(__fatal_signal_pending(tsk)))
923 goto killed;
924 }
925
926 /*
927 * The only record we have of the real-time age of a
928 * process, regardless of execs it's done, is start_time.
929 * All the past CPU time is accumulated in signal_struct
930 * from sister threads now dead. But in this non-leader
931 * exec, nothing survives from the original leader thread,
932 * whose birth marks the true age of this process now.
933 * When we take on its identity by switching to its PID, we
934 * also take its birthdate (always earlier than our own).
935 */
936 tsk->start_time = leader->start_time;
937 tsk->real_start_time = leader->real_start_time;
938
939 BUG_ON(!same_thread_group(leader, tsk));
940 BUG_ON(has_group_leader_pid(tsk));
941 /*
942 * An exec() starts a new thread group with the
943 * TGID of the previous thread group. Rehash the
944 * two threads with a switched PID, and release
945 * the former thread group leader:
946 */
947
948 /* Become a process group leader with the old leader's pid.
949 * The old leader becomes a thread of the this thread group.
950 * Note: The old leader also uses this pid until release_task
951 * is called. Odd but simple and correct.
952 */
953 tsk->pid = leader->pid;
954 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
955 transfer_pid(leader, tsk, PIDTYPE_PGID);
956 transfer_pid(leader, tsk, PIDTYPE_SID);
957
958 list_replace_rcu(&leader->tasks, &tsk->tasks);
959 list_replace_init(&leader->sibling, &tsk->sibling);
960
961 tsk->group_leader = tsk;
962 leader->group_leader = tsk;
963
964 tsk->exit_signal = SIGCHLD;
965 leader->exit_signal = -1;
966
967 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
968 leader->exit_state = EXIT_DEAD;
969
970 /*
971 * We are going to release_task()->ptrace_unlink() silently,
972 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
973 * the tracer wont't block again waiting for this thread.
974 */
975 if (unlikely(leader->ptrace))
976 __wake_up_parent(leader, leader->parent);
977 write_unlock_irq(&tasklist_lock);
978 threadgroup_change_end(tsk);
979
980 release_task(leader);
981 }
982
983 sig->group_exit_task = NULL;
984 sig->notify_count = 0;
985
986 no_thread_group:
987 /* we have changed execution domain */
988 tsk->exit_signal = SIGCHLD;
989
990 exit_itimers(sig);
991 flush_itimer_signals();
992
993 if (atomic_read(&oldsighand->count) != 1) {
994 struct sighand_struct *newsighand;
995 /*
996 * This ->sighand is shared with the CLONE_SIGHAND
997 * but not CLONE_THREAD task, switch to the new one.
998 */
999 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1000 if (!newsighand)
1001 return -ENOMEM;
1002
1003 atomic_set(&newsighand->count, 1);
1004 memcpy(newsighand->action, oldsighand->action,
1005 sizeof(newsighand->action));
1006
1007 write_lock_irq(&tasklist_lock);
1008 spin_lock(&oldsighand->siglock);
1009 rcu_assign_pointer(tsk->sighand, newsighand);
1010 spin_unlock(&oldsighand->siglock);
1011 write_unlock_irq(&tasklist_lock);
1012
1013 __cleanup_sighand(oldsighand);
1014 }
1015
1016 BUG_ON(!thread_group_leader(tsk));
1017 return 0;
1018
1019 killed:
1020 /* protects against exit_notify() and __exit_signal() */
1021 read_lock(&tasklist_lock);
1022 sig->group_exit_task = NULL;
1023 sig->notify_count = 0;
1024 read_unlock(&tasklist_lock);
1025 return -EAGAIN;
1026 }
1027
1028 char *get_task_comm(char *buf, struct task_struct *tsk)
1029 {
1030 /* buf must be at least sizeof(tsk->comm) in size */
1031 task_lock(tsk);
1032 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1033 task_unlock(tsk);
1034 return buf;
1035 }
1036 EXPORT_SYMBOL_GPL(get_task_comm);
1037
1038 /*
1039 * These functions flushes out all traces of the currently running executable
1040 * so that a new one can be started
1041 */
1042
1043 void set_task_comm(struct task_struct *tsk, char *buf)
1044 {
1045 task_lock(tsk);
1046 trace_task_rename(tsk, buf);
1047 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1048 task_unlock(tsk);
1049 perf_event_comm(tsk);
1050 }
1051
1052 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1053 {
1054 int i, ch;
1055
1056 /* Copies the binary name from after last slash */
1057 for (i = 0; (ch = *(fn++)) != '\0';) {
1058 if (ch == '/')
1059 i = 0; /* overwrite what we wrote */
1060 else
1061 if (i < len - 1)
1062 tcomm[i++] = ch;
1063 }
1064 tcomm[i] = '\0';
1065 }
1066
1067 int flush_old_exec(struct linux_binprm * bprm)
1068 {
1069 int retval;
1070
1071 /*
1072 * Make sure we have a private signal table and that
1073 * we are unassociated from the previous thread group.
1074 */
1075 retval = de_thread(current);
1076 if (retval)
1077 goto out;
1078
1079 set_mm_exe_file(bprm->mm, bprm->file);
1080
1081 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1082 /*
1083 * Release all of the old mmap stuff
1084 */
1085 acct_arg_size(bprm, 0);
1086 retval = exec_mmap(bprm->mm);
1087 if (retval)
1088 goto out;
1089
1090 bprm->mm = NULL; /* We're using it now */
1091
1092 set_fs(USER_DS);
1093 current->flags &=
1094 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1095 flush_thread();
1096 current->personality &= ~bprm->per_clear;
1097
1098 return 0;
1099
1100 out:
1101 return retval;
1102 }
1103 EXPORT_SYMBOL(flush_old_exec);
1104
1105 void would_dump(struct linux_binprm *bprm, struct file *file)
1106 {
1107 if (inode_permission(file_inode(file), MAY_READ) < 0)
1108 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1109 }
1110 EXPORT_SYMBOL(would_dump);
1111
1112 void setup_new_exec(struct linux_binprm * bprm)
1113 {
1114 arch_pick_mmap_layout(current->mm);
1115
1116 /* This is the point of no return */
1117 current->sas_ss_sp = current->sas_ss_size = 0;
1118
1119 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1120 set_dumpable(current->mm, SUID_DUMP_USER);
1121 else
1122 set_dumpable(current->mm, suid_dumpable);
1123
1124 set_task_comm(current, bprm->tcomm);
1125
1126 /* Set the new mm task size. We have to do that late because it may
1127 * depend on TIF_32BIT which is only updated in flush_thread() on
1128 * some architectures like powerpc
1129 */
1130 current->mm->task_size = TASK_SIZE;
1131
1132 /* install the new credentials */
1133 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1134 !gid_eq(bprm->cred->gid, current_egid())) {
1135 current->pdeath_signal = 0;
1136 } else {
1137 would_dump(bprm, bprm->file);
1138 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1139 set_dumpable(current->mm, suid_dumpable);
1140 }
1141
1142 /* An exec changes our domain. We are no longer part of the thread
1143 group */
1144
1145 current->self_exec_id++;
1146
1147 flush_signal_handlers(current, 0);
1148 do_close_on_exec(current->files);
1149 }
1150 EXPORT_SYMBOL(setup_new_exec);
1151
1152 /*
1153 * Prepare credentials and lock ->cred_guard_mutex.
1154 * install_exec_creds() commits the new creds and drops the lock.
1155 * Or, if exec fails before, free_bprm() should release ->cred and
1156 * and unlock.
1157 */
1158 int prepare_bprm_creds(struct linux_binprm *bprm)
1159 {
1160 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1161 return -ERESTARTNOINTR;
1162
1163 bprm->cred = prepare_exec_creds();
1164 if (likely(bprm->cred))
1165 return 0;
1166
1167 mutex_unlock(&current->signal->cred_guard_mutex);
1168 return -ENOMEM;
1169 }
1170
1171 void free_bprm(struct linux_binprm *bprm)
1172 {
1173 free_arg_pages(bprm);
1174 if (bprm->cred) {
1175 mutex_unlock(&current->signal->cred_guard_mutex);
1176 abort_creds(bprm->cred);
1177 }
1178 /* If a binfmt changed the interp, free it. */
1179 if (bprm->interp != bprm->filename)
1180 kfree(bprm->interp);
1181 kfree(bprm);
1182 }
1183
1184 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1185 {
1186 /* If a binfmt changed the interp, free it first. */
1187 if (bprm->interp != bprm->filename)
1188 kfree(bprm->interp);
1189 bprm->interp = kstrdup(interp, GFP_KERNEL);
1190 if (!bprm->interp)
1191 return -ENOMEM;
1192 return 0;
1193 }
1194 EXPORT_SYMBOL(bprm_change_interp);
1195
1196 /*
1197 * install the new credentials for this executable
1198 */
1199 void install_exec_creds(struct linux_binprm *bprm)
1200 {
1201 security_bprm_committing_creds(bprm);
1202
1203 commit_creds(bprm->cred);
1204 bprm->cred = NULL;
1205
1206 /*
1207 * Disable monitoring for regular users
1208 * when executing setuid binaries. Must
1209 * wait until new credentials are committed
1210 * by commit_creds() above
1211 */
1212 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1213 perf_event_exit_task(current);
1214 /*
1215 * cred_guard_mutex must be held at least to this point to prevent
1216 * ptrace_attach() from altering our determination of the task's
1217 * credentials; any time after this it may be unlocked.
1218 */
1219 security_bprm_committed_creds(bprm);
1220 mutex_unlock(&current->signal->cred_guard_mutex);
1221 }
1222 EXPORT_SYMBOL(install_exec_creds);
1223
1224 /*
1225 * determine how safe it is to execute the proposed program
1226 * - the caller must hold ->cred_guard_mutex to protect against
1227 * PTRACE_ATTACH
1228 */
1229 static int check_unsafe_exec(struct linux_binprm *bprm)
1230 {
1231 struct task_struct *p = current, *t;
1232 unsigned n_fs;
1233 int res = 0;
1234
1235 if (p->ptrace) {
1236 if (p->ptrace & PT_PTRACE_CAP)
1237 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1238 else
1239 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1240 }
1241
1242 /*
1243 * This isn't strictly necessary, but it makes it harder for LSMs to
1244 * mess up.
1245 */
1246 if (current->no_new_privs)
1247 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1248
1249 n_fs = 1;
1250 spin_lock(&p->fs->lock);
1251 rcu_read_lock();
1252 for (t = next_thread(p); t != p; t = next_thread(t)) {
1253 if (t->fs == p->fs)
1254 n_fs++;
1255 }
1256 rcu_read_unlock();
1257
1258 if (p->fs->users > n_fs) {
1259 bprm->unsafe |= LSM_UNSAFE_SHARE;
1260 } else {
1261 res = -EAGAIN;
1262 if (!p->fs->in_exec) {
1263 p->fs->in_exec = 1;
1264 res = 1;
1265 }
1266 }
1267 spin_unlock(&p->fs->lock);
1268
1269 return res;
1270 }
1271
1272 /*
1273 * Fill the binprm structure from the inode.
1274 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1275 *
1276 * This may be called multiple times for binary chains (scripts for example).
1277 */
1278 int prepare_binprm(struct linux_binprm *bprm)
1279 {
1280 umode_t mode;
1281 struct inode * inode = file_inode(bprm->file);
1282 int retval;
1283
1284 mode = inode->i_mode;
1285 if (bprm->file->f_op == NULL)
1286 return -EACCES;
1287
1288 /* clear any previous set[ug]id data from a previous binary */
1289 bprm->cred->euid = current_euid();
1290 bprm->cred->egid = current_egid();
1291
1292 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1293 !current->no_new_privs &&
1294 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1295 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1296 /* Set-uid? */
1297 if (mode & S_ISUID) {
1298 bprm->per_clear |= PER_CLEAR_ON_SETID;
1299 bprm->cred->euid = inode->i_uid;
1300 }
1301
1302 /* Set-gid? */
1303 /*
1304 * If setgid is set but no group execute bit then this
1305 * is a candidate for mandatory locking, not a setgid
1306 * executable.
1307 */
1308 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1309 bprm->per_clear |= PER_CLEAR_ON_SETID;
1310 bprm->cred->egid = inode->i_gid;
1311 }
1312 }
1313
1314 /* fill in binprm security blob */
1315 retval = security_bprm_set_creds(bprm);
1316 if (retval)
1317 return retval;
1318 bprm->cred_prepared = 1;
1319
1320 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1321 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1322 }
1323
1324 EXPORT_SYMBOL(prepare_binprm);
1325
1326 /*
1327 * Arguments are '\0' separated strings found at the location bprm->p
1328 * points to; chop off the first by relocating brpm->p to right after
1329 * the first '\0' encountered.
1330 */
1331 int remove_arg_zero(struct linux_binprm *bprm)
1332 {
1333 int ret = 0;
1334 unsigned long offset;
1335 char *kaddr;
1336 struct page *page;
1337
1338 if (!bprm->argc)
1339 return 0;
1340
1341 do {
1342 offset = bprm->p & ~PAGE_MASK;
1343 page = get_arg_page(bprm, bprm->p, 0);
1344 if (!page) {
1345 ret = -EFAULT;
1346 goto out;
1347 }
1348 kaddr = kmap_atomic(page);
1349
1350 for (; offset < PAGE_SIZE && kaddr[offset];
1351 offset++, bprm->p++)
1352 ;
1353
1354 kunmap_atomic(kaddr);
1355 put_arg_page(page);
1356
1357 if (offset == PAGE_SIZE)
1358 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1359 } while (offset == PAGE_SIZE);
1360
1361 bprm->p++;
1362 bprm->argc--;
1363 ret = 0;
1364
1365 out:
1366 return ret;
1367 }
1368 EXPORT_SYMBOL(remove_arg_zero);
1369
1370 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1371 /*
1372 * cycle the list of binary formats handler, until one recognizes the image
1373 */
1374 int search_binary_handler(struct linux_binprm *bprm)
1375 {
1376 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1377 struct linux_binfmt *fmt;
1378 int retval;
1379
1380 /* This allows 4 levels of binfmt rewrites before failing hard. */
1381 if (bprm->recursion_depth > 5)
1382 return -ELOOP;
1383
1384 retval = security_bprm_check(bprm);
1385 if (retval)
1386 return retval;
1387
1388 retval = audit_bprm(bprm);
1389 if (retval)
1390 return retval;
1391
1392 retval = -ENOENT;
1393 retry:
1394 read_lock(&binfmt_lock);
1395 list_for_each_entry(fmt, &formats, lh) {
1396 if (!try_module_get(fmt->module))
1397 continue;
1398 read_unlock(&binfmt_lock);
1399 bprm->recursion_depth++;
1400 retval = fmt->load_binary(bprm);
1401 bprm->recursion_depth--;
1402 if (retval >= 0 || retval != -ENOEXEC ||
1403 bprm->mm == NULL || bprm->file == NULL) {
1404 put_binfmt(fmt);
1405 return retval;
1406 }
1407 read_lock(&binfmt_lock);
1408 put_binfmt(fmt);
1409 }
1410 read_unlock(&binfmt_lock);
1411
1412 if (need_retry && retval == -ENOEXEC) {
1413 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1414 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1415 return retval;
1416 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1417 return retval;
1418 need_retry = false;
1419 goto retry;
1420 }
1421
1422 return retval;
1423 }
1424 EXPORT_SYMBOL(search_binary_handler);
1425
1426 static int exec_binprm(struct linux_binprm *bprm)
1427 {
1428 pid_t old_pid, old_vpid;
1429 int ret;
1430
1431 /* Need to fetch pid before load_binary changes it */
1432 old_pid = current->pid;
1433 rcu_read_lock();
1434 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1435 rcu_read_unlock();
1436
1437 ret = search_binary_handler(bprm);
1438 if (ret >= 0) {
1439 trace_sched_process_exec(current, old_pid, bprm);
1440 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1441 current->did_exec = 1;
1442 proc_exec_connector(current);
1443
1444 if (bprm->file) {
1445 allow_write_access(bprm->file);
1446 fput(bprm->file);
1447 bprm->file = NULL; /* to catch use-after-free */
1448 }
1449 }
1450
1451 return ret;
1452 }
1453
1454 /*
1455 * sys_execve() executes a new program.
1456 */
1457 static int do_execve_common(const char *filename,
1458 struct user_arg_ptr argv,
1459 struct user_arg_ptr envp)
1460 {
1461 struct linux_binprm *bprm;
1462 struct file *file;
1463 struct files_struct *displaced;
1464 bool clear_in_exec;
1465 int retval;
1466
1467 /*
1468 * We move the actual failure in case of RLIMIT_NPROC excess from
1469 * set*uid() to execve() because too many poorly written programs
1470 * don't check setuid() return code. Here we additionally recheck
1471 * whether NPROC limit is still exceeded.
1472 */
1473 if ((current->flags & PF_NPROC_EXCEEDED) &&
1474 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1475 retval = -EAGAIN;
1476 goto out_ret;
1477 }
1478
1479 /* We're below the limit (still or again), so we don't want to make
1480 * further execve() calls fail. */
1481 current->flags &= ~PF_NPROC_EXCEEDED;
1482
1483 retval = unshare_files(&displaced);
1484 if (retval)
1485 goto out_ret;
1486
1487 retval = -ENOMEM;
1488 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1489 if (!bprm)
1490 goto out_files;
1491
1492 retval = prepare_bprm_creds(bprm);
1493 if (retval)
1494 goto out_free;
1495
1496 retval = check_unsafe_exec(bprm);
1497 if (retval < 0)
1498 goto out_free;
1499 clear_in_exec = retval;
1500 current->in_execve = 1;
1501
1502 file = open_exec(filename);
1503 retval = PTR_ERR(file);
1504 if (IS_ERR(file))
1505 goto out_unmark;
1506
1507 sched_exec();
1508
1509 bprm->file = file;
1510 bprm->filename = filename;
1511 bprm->interp = filename;
1512
1513 retval = bprm_mm_init(bprm);
1514 if (retval)
1515 goto out_file;
1516
1517 bprm->argc = count(argv, MAX_ARG_STRINGS);
1518 if ((retval = bprm->argc) < 0)
1519 goto out;
1520
1521 bprm->envc = count(envp, MAX_ARG_STRINGS);
1522 if ((retval = bprm->envc) < 0)
1523 goto out;
1524
1525 retval = prepare_binprm(bprm);
1526 if (retval < 0)
1527 goto out;
1528
1529 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1530 if (retval < 0)
1531 goto out;
1532
1533 bprm->exec = bprm->p;
1534 retval = copy_strings(bprm->envc, envp, bprm);
1535 if (retval < 0)
1536 goto out;
1537
1538 retval = copy_strings(bprm->argc, argv, bprm);
1539 if (retval < 0)
1540 goto out;
1541
1542 retval = exec_binprm(bprm);
1543 if (retval < 0)
1544 goto out;
1545
1546 /* execve succeeded */
1547 current->fs->in_exec = 0;
1548 current->in_execve = 0;
1549 acct_update_integrals(current);
1550 task_numa_free(current);
1551 free_bprm(bprm);
1552 if (displaced)
1553 put_files_struct(displaced);
1554 return retval;
1555
1556 out:
1557 if (bprm->mm) {
1558 acct_arg_size(bprm, 0);
1559 mmput(bprm->mm);
1560 }
1561
1562 out_file:
1563 if (bprm->file) {
1564 allow_write_access(bprm->file);
1565 fput(bprm->file);
1566 }
1567
1568 out_unmark:
1569 if (clear_in_exec)
1570 current->fs->in_exec = 0;
1571 current->in_execve = 0;
1572
1573 out_free:
1574 free_bprm(bprm);
1575
1576 out_files:
1577 if (displaced)
1578 reset_files_struct(displaced);
1579 out_ret:
1580 return retval;
1581 }
1582
1583 int do_execve(const char *filename,
1584 const char __user *const __user *__argv,
1585 const char __user *const __user *__envp)
1586 {
1587 struct user_arg_ptr argv = { .ptr.native = __argv };
1588 struct user_arg_ptr envp = { .ptr.native = __envp };
1589 return do_execve_common(filename, argv, envp);
1590 }
1591
1592 #ifdef CONFIG_COMPAT
1593 static int compat_do_execve(const char *filename,
1594 const compat_uptr_t __user *__argv,
1595 const compat_uptr_t __user *__envp)
1596 {
1597 struct user_arg_ptr argv = {
1598 .is_compat = true,
1599 .ptr.compat = __argv,
1600 };
1601 struct user_arg_ptr envp = {
1602 .is_compat = true,
1603 .ptr.compat = __envp,
1604 };
1605 return do_execve_common(filename, argv, envp);
1606 }
1607 #endif
1608
1609 void set_binfmt(struct linux_binfmt *new)
1610 {
1611 struct mm_struct *mm = current->mm;
1612
1613 if (mm->binfmt)
1614 module_put(mm->binfmt->module);
1615
1616 mm->binfmt = new;
1617 if (new)
1618 __module_get(new->module);
1619 }
1620
1621 EXPORT_SYMBOL(set_binfmt);
1622
1623 /*
1624 * set_dumpable converts traditional three-value dumpable to two flags and
1625 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1626 * these bits are not changed atomically. So get_dumpable can observe the
1627 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1628 * return either old dumpable or new one by paying attention to the order of
1629 * modifying the bits.
1630 *
1631 * dumpable | mm->flags (binary)
1632 * old new | initial interim final
1633 * ---------+-----------------------
1634 * 0 1 | 00 01 01
1635 * 0 2 | 00 10(*) 11
1636 * 1 0 | 01 00 00
1637 * 1 2 | 01 11 11
1638 * 2 0 | 11 10(*) 00
1639 * 2 1 | 11 11 01
1640 *
1641 * (*) get_dumpable regards interim value of 10 as 11.
1642 */
1643 void set_dumpable(struct mm_struct *mm, int value)
1644 {
1645 switch (value) {
1646 case SUID_DUMP_DISABLE:
1647 clear_bit(MMF_DUMPABLE, &mm->flags);
1648 smp_wmb();
1649 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1650 break;
1651 case SUID_DUMP_USER:
1652 set_bit(MMF_DUMPABLE, &mm->flags);
1653 smp_wmb();
1654 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1655 break;
1656 case SUID_DUMP_ROOT:
1657 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1658 smp_wmb();
1659 set_bit(MMF_DUMPABLE, &mm->flags);
1660 break;
1661 }
1662 }
1663
1664 int __get_dumpable(unsigned long mm_flags)
1665 {
1666 int ret;
1667
1668 ret = mm_flags & MMF_DUMPABLE_MASK;
1669 return (ret > SUID_DUMP_USER) ? SUID_DUMP_ROOT : ret;
1670 }
1671
1672 int get_dumpable(struct mm_struct *mm)
1673 {
1674 return __get_dumpable(mm->flags);
1675 }
1676
1677 SYSCALL_DEFINE3(execve,
1678 const char __user *, filename,
1679 const char __user *const __user *, argv,
1680 const char __user *const __user *, envp)
1681 {
1682 struct filename *path = getname(filename);
1683 int error = PTR_ERR(path);
1684 if (!IS_ERR(path)) {
1685 error = do_execve(path->name, argv, envp);
1686 putname(path);
1687 }
1688 return error;
1689 }
1690 #ifdef CONFIG_COMPAT
1691 asmlinkage long compat_sys_execve(const char __user * filename,
1692 const compat_uptr_t __user * argv,
1693 const compat_uptr_t __user * envp)
1694 {
1695 struct filename *path = getname(filename);
1696 int error = PTR_ERR(path);
1697 if (!IS_ERR(path)) {
1698 error = compat_do_execve(path->name, argv, envp);
1699 putname(path);
1700 }
1701 return error;
1702 }
1703 #endif