]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext2/inode.c
UBUNTU: [Config] arm64: snapdragon: DRM_MSM=m
[mirror_ubuntu-bionic-kernel.git] / fs / ext2 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext2/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Goal-directed block allocation by Stephen Tweedie
17 * (sct@dcs.ed.ac.uk), 1993, 1998
18 * Big-endian to little-endian byte-swapping/bitmaps by
19 * David S. Miller (davem@caip.rutgers.edu), 1995
20 * 64-bit file support on 64-bit platforms by Jakub Jelinek
21 * (jj@sunsite.ms.mff.cuni.cz)
22 *
23 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24 */
25
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/dax.h>
30 #include <linux/blkdev.h>
31 #include <linux/quotaops.h>
32 #include <linux/writeback.h>
33 #include <linux/buffer_head.h>
34 #include <linux/mpage.h>
35 #include <linux/fiemap.h>
36 #include <linux/iomap.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include "ext2.h"
40 #include "acl.h"
41 #include "xattr.h"
42
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45 /*
46 * Test whether an inode is a fast symlink.
47 */
48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49 {
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
52
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
55 }
56
57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59 static void ext2_write_failed(struct address_space *mapping, loff_t to)
60 {
61 struct inode *inode = mapping->host;
62
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
66 }
67 }
68
69 /*
70 * Called at the last iput() if i_nlink is zero.
71 */
72 void ext2_evict_inode(struct inode * inode)
73 {
74 struct ext2_block_alloc_info *rsv;
75 int want_delete = 0;
76
77 if (!inode->i_nlink && !is_bad_inode(inode)) {
78 want_delete = 1;
79 dquot_initialize(inode);
80 } else {
81 dquot_drop(inode);
82 }
83
84 truncate_inode_pages_final(&inode->i_data);
85
86 if (want_delete) {
87 sb_start_intwrite(inode->i_sb);
88 /* set dtime */
89 EXT2_I(inode)->i_dtime = get_seconds();
90 mark_inode_dirty(inode);
91 __ext2_write_inode(inode, inode_needs_sync(inode));
92 /* truncate to 0 */
93 inode->i_size = 0;
94 if (inode->i_blocks)
95 ext2_truncate_blocks(inode, 0);
96 ext2_xattr_delete_inode(inode);
97 }
98
99 invalidate_inode_buffers(inode);
100 clear_inode(inode);
101
102 ext2_discard_reservation(inode);
103 rsv = EXT2_I(inode)->i_block_alloc_info;
104 EXT2_I(inode)->i_block_alloc_info = NULL;
105 if (unlikely(rsv))
106 kfree(rsv);
107
108 if (want_delete) {
109 ext2_free_inode(inode);
110 sb_end_intwrite(inode->i_sb);
111 }
112 }
113
114 typedef struct {
115 __le32 *p;
116 __le32 key;
117 struct buffer_head *bh;
118 } Indirect;
119
120 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
121 {
122 p->key = *(p->p = v);
123 p->bh = bh;
124 }
125
126 static inline int verify_chain(Indirect *from, Indirect *to)
127 {
128 while (from <= to && from->key == *from->p)
129 from++;
130 return (from > to);
131 }
132
133 /**
134 * ext2_block_to_path - parse the block number into array of offsets
135 * @inode: inode in question (we are only interested in its superblock)
136 * @i_block: block number to be parsed
137 * @offsets: array to store the offsets in
138 * @boundary: set this non-zero if the referred-to block is likely to be
139 * followed (on disk) by an indirect block.
140 * To store the locations of file's data ext2 uses a data structure common
141 * for UNIX filesystems - tree of pointers anchored in the inode, with
142 * data blocks at leaves and indirect blocks in intermediate nodes.
143 * This function translates the block number into path in that tree -
144 * return value is the path length and @offsets[n] is the offset of
145 * pointer to (n+1)th node in the nth one. If @block is out of range
146 * (negative or too large) warning is printed and zero returned.
147 *
148 * Note: function doesn't find node addresses, so no IO is needed. All
149 * we need to know is the capacity of indirect blocks (taken from the
150 * inode->i_sb).
151 */
152
153 /*
154 * Portability note: the last comparison (check that we fit into triple
155 * indirect block) is spelled differently, because otherwise on an
156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
157 * if our filesystem had 8Kb blocks. We might use long long, but that would
158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
159 * i_block would have to be negative in the very beginning, so we would not
160 * get there at all.
161 */
162
163 static int ext2_block_to_path(struct inode *inode,
164 long i_block, int offsets[4], int *boundary)
165 {
166 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168 const long direct_blocks = EXT2_NDIR_BLOCKS,
169 indirect_blocks = ptrs,
170 double_blocks = (1 << (ptrs_bits * 2));
171 int n = 0;
172 int final = 0;
173
174 if (i_block < 0) {
175 ext2_msg(inode->i_sb, KERN_WARNING,
176 "warning: %s: block < 0", __func__);
177 } else if (i_block < direct_blocks) {
178 offsets[n++] = i_block;
179 final = direct_blocks;
180 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
181 offsets[n++] = EXT2_IND_BLOCK;
182 offsets[n++] = i_block;
183 final = ptrs;
184 } else if ((i_block -= indirect_blocks) < double_blocks) {
185 offsets[n++] = EXT2_DIND_BLOCK;
186 offsets[n++] = i_block >> ptrs_bits;
187 offsets[n++] = i_block & (ptrs - 1);
188 final = ptrs;
189 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190 offsets[n++] = EXT2_TIND_BLOCK;
191 offsets[n++] = i_block >> (ptrs_bits * 2);
192 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193 offsets[n++] = i_block & (ptrs - 1);
194 final = ptrs;
195 } else {
196 ext2_msg(inode->i_sb, KERN_WARNING,
197 "warning: %s: block is too big", __func__);
198 }
199 if (boundary)
200 *boundary = final - 1 - (i_block & (ptrs - 1));
201
202 return n;
203 }
204
205 /**
206 * ext2_get_branch - read the chain of indirect blocks leading to data
207 * @inode: inode in question
208 * @depth: depth of the chain (1 - direct pointer, etc.)
209 * @offsets: offsets of pointers in inode/indirect blocks
210 * @chain: place to store the result
211 * @err: here we store the error value
212 *
213 * Function fills the array of triples <key, p, bh> and returns %NULL
214 * if everything went OK or the pointer to the last filled triple
215 * (incomplete one) otherwise. Upon the return chain[i].key contains
216 * the number of (i+1)-th block in the chain (as it is stored in memory,
217 * i.e. little-endian 32-bit), chain[i].p contains the address of that
218 * number (it points into struct inode for i==0 and into the bh->b_data
219 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220 * block for i>0 and NULL for i==0. In other words, it holds the block
221 * numbers of the chain, addresses they were taken from (and where we can
222 * verify that chain did not change) and buffer_heads hosting these
223 * numbers.
224 *
225 * Function stops when it stumbles upon zero pointer (absent block)
226 * (pointer to last triple returned, *@err == 0)
227 * or when it gets an IO error reading an indirect block
228 * (ditto, *@err == -EIO)
229 * or when it notices that chain had been changed while it was reading
230 * (ditto, *@err == -EAGAIN)
231 * or when it reads all @depth-1 indirect blocks successfully and finds
232 * the whole chain, all way to the data (returns %NULL, *err == 0).
233 */
234 static Indirect *ext2_get_branch(struct inode *inode,
235 int depth,
236 int *offsets,
237 Indirect chain[4],
238 int *err)
239 {
240 struct super_block *sb = inode->i_sb;
241 Indirect *p = chain;
242 struct buffer_head *bh;
243
244 *err = 0;
245 /* i_data is not going away, no lock needed */
246 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
247 if (!p->key)
248 goto no_block;
249 while (--depth) {
250 bh = sb_bread(sb, le32_to_cpu(p->key));
251 if (!bh)
252 goto failure;
253 read_lock(&EXT2_I(inode)->i_meta_lock);
254 if (!verify_chain(chain, p))
255 goto changed;
256 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257 read_unlock(&EXT2_I(inode)->i_meta_lock);
258 if (!p->key)
259 goto no_block;
260 }
261 return NULL;
262
263 changed:
264 read_unlock(&EXT2_I(inode)->i_meta_lock);
265 brelse(bh);
266 *err = -EAGAIN;
267 goto no_block;
268 failure:
269 *err = -EIO;
270 no_block:
271 return p;
272 }
273
274 /**
275 * ext2_find_near - find a place for allocation with sufficient locality
276 * @inode: owner
277 * @ind: descriptor of indirect block.
278 *
279 * This function returns the preferred place for block allocation.
280 * It is used when heuristic for sequential allocation fails.
281 * Rules are:
282 * + if there is a block to the left of our position - allocate near it.
283 * + if pointer will live in indirect block - allocate near that block.
284 * + if pointer will live in inode - allocate in the same cylinder group.
285 *
286 * In the latter case we colour the starting block by the callers PID to
287 * prevent it from clashing with concurrent allocations for a different inode
288 * in the same block group. The PID is used here so that functionally related
289 * files will be close-by on-disk.
290 *
291 * Caller must make sure that @ind is valid and will stay that way.
292 */
293
294 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
295 {
296 struct ext2_inode_info *ei = EXT2_I(inode);
297 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
298 __le32 *p;
299 ext2_fsblk_t bg_start;
300 ext2_fsblk_t colour;
301
302 /* Try to find previous block */
303 for (p = ind->p - 1; p >= start; p--)
304 if (*p)
305 return le32_to_cpu(*p);
306
307 /* No such thing, so let's try location of indirect block */
308 if (ind->bh)
309 return ind->bh->b_blocknr;
310
311 /*
312 * It is going to be referred from inode itself? OK, just put it into
313 * the same cylinder group then.
314 */
315 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316 colour = (current->pid % 16) *
317 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318 return bg_start + colour;
319 }
320
321 /**
322 * ext2_find_goal - find a preferred place for allocation.
323 * @inode: owner
324 * @block: block we want
325 * @partial: pointer to the last triple within a chain
326 *
327 * Returns preferred place for a block (the goal).
328 */
329
330 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
331 Indirect *partial)
332 {
333 struct ext2_block_alloc_info *block_i;
334
335 block_i = EXT2_I(inode)->i_block_alloc_info;
336
337 /*
338 * try the heuristic for sequential allocation,
339 * failing that at least try to get decent locality.
340 */
341 if (block_i && (block == block_i->last_alloc_logical_block + 1)
342 && (block_i->last_alloc_physical_block != 0)) {
343 return block_i->last_alloc_physical_block + 1;
344 }
345
346 return ext2_find_near(inode, partial);
347 }
348
349 /**
350 * ext2_blks_to_allocate: Look up the block map and count the number
351 * of direct blocks need to be allocated for the given branch.
352 *
353 * @branch: chain of indirect blocks
354 * @k: number of blocks need for indirect blocks
355 * @blks: number of data blocks to be mapped.
356 * @blocks_to_boundary: the offset in the indirect block
357 *
358 * return the total number of blocks to be allocate, including the
359 * direct and indirect blocks.
360 */
361 static int
362 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
363 int blocks_to_boundary)
364 {
365 unsigned long count = 0;
366
367 /*
368 * Simple case, [t,d]Indirect block(s) has not allocated yet
369 * then it's clear blocks on that path have not allocated
370 */
371 if (k > 0) {
372 /* right now don't hanel cross boundary allocation */
373 if (blks < blocks_to_boundary + 1)
374 count += blks;
375 else
376 count += blocks_to_boundary + 1;
377 return count;
378 }
379
380 count++;
381 while (count < blks && count <= blocks_to_boundary
382 && le32_to_cpu(*(branch[0].p + count)) == 0) {
383 count++;
384 }
385 return count;
386 }
387
388 /**
389 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
390 * @indirect_blks: the number of blocks need to allocate for indirect
391 * blocks
392 *
393 * @new_blocks: on return it will store the new block numbers for
394 * the indirect blocks(if needed) and the first direct block,
395 * @blks: on return it will store the total number of allocated
396 * direct blocks
397 */
398 static int ext2_alloc_blocks(struct inode *inode,
399 ext2_fsblk_t goal, int indirect_blks, int blks,
400 ext2_fsblk_t new_blocks[4], int *err)
401 {
402 int target, i;
403 unsigned long count = 0;
404 int index = 0;
405 ext2_fsblk_t current_block = 0;
406 int ret = 0;
407
408 /*
409 * Here we try to allocate the requested multiple blocks at once,
410 * on a best-effort basis.
411 * To build a branch, we should allocate blocks for
412 * the indirect blocks(if not allocated yet), and at least
413 * the first direct block of this branch. That's the
414 * minimum number of blocks need to allocate(required)
415 */
416 target = blks + indirect_blks;
417
418 while (1) {
419 count = target;
420 /* allocating blocks for indirect blocks and direct blocks */
421 current_block = ext2_new_blocks(inode,goal,&count,err);
422 if (*err)
423 goto failed_out;
424
425 target -= count;
426 /* allocate blocks for indirect blocks */
427 while (index < indirect_blks && count) {
428 new_blocks[index++] = current_block++;
429 count--;
430 }
431
432 if (count > 0)
433 break;
434 }
435
436 /* save the new block number for the first direct block */
437 new_blocks[index] = current_block;
438
439 /* total number of blocks allocated for direct blocks */
440 ret = count;
441 *err = 0;
442 return ret;
443 failed_out:
444 for (i = 0; i <index; i++)
445 ext2_free_blocks(inode, new_blocks[i], 1);
446 if (index)
447 mark_inode_dirty(inode);
448 return ret;
449 }
450
451 /**
452 * ext2_alloc_branch - allocate and set up a chain of blocks.
453 * @inode: owner
454 * @num: depth of the chain (number of blocks to allocate)
455 * @offsets: offsets (in the blocks) to store the pointers to next.
456 * @branch: place to store the chain in.
457 *
458 * This function allocates @num blocks, zeroes out all but the last one,
459 * links them into chain and (if we are synchronous) writes them to disk.
460 * In other words, it prepares a branch that can be spliced onto the
461 * inode. It stores the information about that chain in the branch[], in
462 * the same format as ext2_get_branch() would do. We are calling it after
463 * we had read the existing part of chain and partial points to the last
464 * triple of that (one with zero ->key). Upon the exit we have the same
465 * picture as after the successful ext2_get_block(), except that in one
466 * place chain is disconnected - *branch->p is still zero (we did not
467 * set the last link), but branch->key contains the number that should
468 * be placed into *branch->p to fill that gap.
469 *
470 * If allocation fails we free all blocks we've allocated (and forget
471 * their buffer_heads) and return the error value the from failed
472 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
473 * as described above and return 0.
474 */
475
476 static int ext2_alloc_branch(struct inode *inode,
477 int indirect_blks, int *blks, ext2_fsblk_t goal,
478 int *offsets, Indirect *branch)
479 {
480 int blocksize = inode->i_sb->s_blocksize;
481 int i, n = 0;
482 int err = 0;
483 struct buffer_head *bh;
484 int num;
485 ext2_fsblk_t new_blocks[4];
486 ext2_fsblk_t current_block;
487
488 num = ext2_alloc_blocks(inode, goal, indirect_blks,
489 *blks, new_blocks, &err);
490 if (err)
491 return err;
492
493 branch[0].key = cpu_to_le32(new_blocks[0]);
494 /*
495 * metadata blocks and data blocks are allocated.
496 */
497 for (n = 1; n <= indirect_blks; n++) {
498 /*
499 * Get buffer_head for parent block, zero it out
500 * and set the pointer to new one, then send
501 * parent to disk.
502 */
503 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
504 if (unlikely(!bh)) {
505 err = -ENOMEM;
506 goto failed;
507 }
508 branch[n].bh = bh;
509 lock_buffer(bh);
510 memset(bh->b_data, 0, blocksize);
511 branch[n].p = (__le32 *) bh->b_data + offsets[n];
512 branch[n].key = cpu_to_le32(new_blocks[n]);
513 *branch[n].p = branch[n].key;
514 if ( n == indirect_blks) {
515 current_block = new_blocks[n];
516 /*
517 * End of chain, update the last new metablock of
518 * the chain to point to the new allocated
519 * data blocks numbers
520 */
521 for (i=1; i < num; i++)
522 *(branch[n].p + i) = cpu_to_le32(++current_block);
523 }
524 set_buffer_uptodate(bh);
525 unlock_buffer(bh);
526 mark_buffer_dirty_inode(bh, inode);
527 /* We used to sync bh here if IS_SYNC(inode).
528 * But we now rely upon generic_write_sync()
529 * and b_inode_buffers. But not for directories.
530 */
531 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
532 sync_dirty_buffer(bh);
533 }
534 *blks = num;
535 return err;
536
537 failed:
538 for (i = 1; i < n; i++)
539 bforget(branch[i].bh);
540 for (i = 0; i < indirect_blks; i++)
541 ext2_free_blocks(inode, new_blocks[i], 1);
542 ext2_free_blocks(inode, new_blocks[i], num);
543 return err;
544 }
545
546 /**
547 * ext2_splice_branch - splice the allocated branch onto inode.
548 * @inode: owner
549 * @block: (logical) number of block we are adding
550 * @where: location of missing link
551 * @num: number of indirect blocks we are adding
552 * @blks: number of direct blocks we are adding
553 *
554 * This function fills the missing link and does all housekeeping needed in
555 * inode (->i_blocks, etc.). In case of success we end up with the full
556 * chain to new block and return 0.
557 */
558 static void ext2_splice_branch(struct inode *inode,
559 long block, Indirect *where, int num, int blks)
560 {
561 int i;
562 struct ext2_block_alloc_info *block_i;
563 ext2_fsblk_t current_block;
564
565 block_i = EXT2_I(inode)->i_block_alloc_info;
566
567 /* XXX LOCKING probably should have i_meta_lock ?*/
568 /* That's it */
569
570 *where->p = where->key;
571
572 /*
573 * Update the host buffer_head or inode to point to more just allocated
574 * direct blocks blocks
575 */
576 if (num == 0 && blks > 1) {
577 current_block = le32_to_cpu(where->key) + 1;
578 for (i = 1; i < blks; i++)
579 *(where->p + i ) = cpu_to_le32(current_block++);
580 }
581
582 /*
583 * update the most recently allocated logical & physical block
584 * in i_block_alloc_info, to assist find the proper goal block for next
585 * allocation
586 */
587 if (block_i) {
588 block_i->last_alloc_logical_block = block + blks - 1;
589 block_i->last_alloc_physical_block =
590 le32_to_cpu(where[num].key) + blks - 1;
591 }
592
593 /* We are done with atomic stuff, now do the rest of housekeeping */
594
595 /* had we spliced it onto indirect block? */
596 if (where->bh)
597 mark_buffer_dirty_inode(where->bh, inode);
598
599 inode->i_ctime = current_time(inode);
600 mark_inode_dirty(inode);
601 }
602
603 /*
604 * Allocation strategy is simple: if we have to allocate something, we will
605 * have to go the whole way to leaf. So let's do it before attaching anything
606 * to tree, set linkage between the newborn blocks, write them if sync is
607 * required, recheck the path, free and repeat if check fails, otherwise
608 * set the last missing link (that will protect us from any truncate-generated
609 * removals - all blocks on the path are immune now) and possibly force the
610 * write on the parent block.
611 * That has a nice additional property: no special recovery from the failed
612 * allocations is needed - we simply release blocks and do not touch anything
613 * reachable from inode.
614 *
615 * `handle' can be NULL if create == 0.
616 *
617 * return > 0, # of blocks mapped or allocated.
618 * return = 0, if plain lookup failed.
619 * return < 0, error case.
620 */
621 static int ext2_get_blocks(struct inode *inode,
622 sector_t iblock, unsigned long maxblocks,
623 u32 *bno, bool *new, bool *boundary,
624 int create)
625 {
626 int err;
627 int offsets[4];
628 Indirect chain[4];
629 Indirect *partial;
630 ext2_fsblk_t goal;
631 int indirect_blks;
632 int blocks_to_boundary = 0;
633 int depth;
634 struct ext2_inode_info *ei = EXT2_I(inode);
635 int count = 0;
636 ext2_fsblk_t first_block = 0;
637
638 BUG_ON(maxblocks == 0);
639
640 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
641
642 if (depth == 0)
643 return -EIO;
644
645 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
646 /* Simplest case - block found, no allocation needed */
647 if (!partial) {
648 first_block = le32_to_cpu(chain[depth - 1].key);
649 count++;
650 /*map more blocks*/
651 while (count < maxblocks && count <= blocks_to_boundary) {
652 ext2_fsblk_t blk;
653
654 if (!verify_chain(chain, chain + depth - 1)) {
655 /*
656 * Indirect block might be removed by
657 * truncate while we were reading it.
658 * Handling of that case: forget what we've
659 * got now, go to reread.
660 */
661 err = -EAGAIN;
662 count = 0;
663 partial = chain + depth - 1;
664 break;
665 }
666 blk = le32_to_cpu(*(chain[depth-1].p + count));
667 if (blk == first_block + count)
668 count++;
669 else
670 break;
671 }
672 if (err != -EAGAIN)
673 goto got_it;
674 }
675
676 /* Next simple case - plain lookup or failed read of indirect block */
677 if (!create || err == -EIO)
678 goto cleanup;
679
680 mutex_lock(&ei->truncate_mutex);
681 /*
682 * If the indirect block is missing while we are reading
683 * the chain(ext2_get_branch() returns -EAGAIN err), or
684 * if the chain has been changed after we grab the semaphore,
685 * (either because another process truncated this branch, or
686 * another get_block allocated this branch) re-grab the chain to see if
687 * the request block has been allocated or not.
688 *
689 * Since we already block the truncate/other get_block
690 * at this point, we will have the current copy of the chain when we
691 * splice the branch into the tree.
692 */
693 if (err == -EAGAIN || !verify_chain(chain, partial)) {
694 while (partial > chain) {
695 brelse(partial->bh);
696 partial--;
697 }
698 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
699 if (!partial) {
700 count++;
701 mutex_unlock(&ei->truncate_mutex);
702 if (err)
703 goto cleanup;
704 goto got_it;
705 }
706 }
707
708 /*
709 * Okay, we need to do block allocation. Lazily initialize the block
710 * allocation info here if necessary
711 */
712 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
713 ext2_init_block_alloc_info(inode);
714
715 goal = ext2_find_goal(inode, iblock, partial);
716
717 /* the number of blocks need to allocate for [d,t]indirect blocks */
718 indirect_blks = (chain + depth) - partial - 1;
719 /*
720 * Next look up the indirect map to count the totoal number of
721 * direct blocks to allocate for this branch.
722 */
723 count = ext2_blks_to_allocate(partial, indirect_blks,
724 maxblocks, blocks_to_boundary);
725 /*
726 * XXX ???? Block out ext2_truncate while we alter the tree
727 */
728 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
729 offsets + (partial - chain), partial);
730
731 if (err) {
732 mutex_unlock(&ei->truncate_mutex);
733 goto cleanup;
734 }
735
736 if (IS_DAX(inode)) {
737 /*
738 * We must unmap blocks before zeroing so that writeback cannot
739 * overwrite zeros with stale data from block device page cache.
740 */
741 clean_bdev_aliases(inode->i_sb->s_bdev,
742 le32_to_cpu(chain[depth-1].key),
743 count);
744 /*
745 * block must be initialised before we put it in the tree
746 * so that it's not found by another thread before it's
747 * initialised
748 */
749 err = sb_issue_zeroout(inode->i_sb,
750 le32_to_cpu(chain[depth-1].key), count,
751 GFP_NOFS);
752 if (err) {
753 mutex_unlock(&ei->truncate_mutex);
754 goto cleanup;
755 }
756 }
757 *new = true;
758
759 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
760 mutex_unlock(&ei->truncate_mutex);
761 got_it:
762 if (count > blocks_to_boundary)
763 *boundary = true;
764 err = count;
765 /* Clean up and exit */
766 partial = chain + depth - 1; /* the whole chain */
767 cleanup:
768 while (partial > chain) {
769 brelse(partial->bh);
770 partial--;
771 }
772 if (err > 0)
773 *bno = le32_to_cpu(chain[depth-1].key);
774 return err;
775 }
776
777 int ext2_get_block(struct inode *inode, sector_t iblock,
778 struct buffer_head *bh_result, int create)
779 {
780 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
781 bool new = false, boundary = false;
782 u32 bno;
783 int ret;
784
785 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
786 create);
787 if (ret <= 0)
788 return ret;
789
790 map_bh(bh_result, inode->i_sb, bno);
791 bh_result->b_size = (ret << inode->i_blkbits);
792 if (new)
793 set_buffer_new(bh_result);
794 if (boundary)
795 set_buffer_boundary(bh_result);
796 return 0;
797
798 }
799
800 #ifdef CONFIG_FS_DAX
801 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
802 unsigned flags, struct iomap *iomap)
803 {
804 unsigned int blkbits = inode->i_blkbits;
805 unsigned long first_block = offset >> blkbits;
806 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
807 struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
808 bool new = false, boundary = false;
809 u32 bno;
810 int ret;
811
812 ret = ext2_get_blocks(inode, first_block, max_blocks,
813 &bno, &new, &boundary, flags & IOMAP_WRITE);
814 if (ret < 0)
815 return ret;
816
817 iomap->flags = 0;
818 iomap->bdev = inode->i_sb->s_bdev;
819 iomap->offset = (u64)first_block << blkbits;
820 iomap->dax_dev = sbi->s_daxdev;
821
822 if (ret == 0) {
823 iomap->type = IOMAP_HOLE;
824 iomap->addr = IOMAP_NULL_ADDR;
825 iomap->length = 1 << blkbits;
826 } else {
827 iomap->type = IOMAP_MAPPED;
828 iomap->addr = (u64)bno << blkbits;
829 iomap->length = (u64)ret << blkbits;
830 iomap->flags |= IOMAP_F_MERGED;
831 }
832
833 if (new)
834 iomap->flags |= IOMAP_F_NEW;
835 return 0;
836 }
837
838 static int
839 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
840 ssize_t written, unsigned flags, struct iomap *iomap)
841 {
842 if (iomap->type == IOMAP_MAPPED &&
843 written < length &&
844 (flags & IOMAP_WRITE))
845 ext2_write_failed(inode->i_mapping, offset + length);
846 return 0;
847 }
848
849 const struct iomap_ops ext2_iomap_ops = {
850 .iomap_begin = ext2_iomap_begin,
851 .iomap_end = ext2_iomap_end,
852 };
853 #else
854 /* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
855 const struct iomap_ops ext2_iomap_ops;
856 #endif /* CONFIG_FS_DAX */
857
858 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
859 u64 start, u64 len)
860 {
861 return generic_block_fiemap(inode, fieinfo, start, len,
862 ext2_get_block);
863 }
864
865 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
866 {
867 return block_write_full_page(page, ext2_get_block, wbc);
868 }
869
870 static int ext2_readpage(struct file *file, struct page *page)
871 {
872 return mpage_readpage(page, ext2_get_block);
873 }
874
875 static int
876 ext2_readpages(struct file *file, struct address_space *mapping,
877 struct list_head *pages, unsigned nr_pages)
878 {
879 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
880 }
881
882 static int
883 ext2_write_begin(struct file *file, struct address_space *mapping,
884 loff_t pos, unsigned len, unsigned flags,
885 struct page **pagep, void **fsdata)
886 {
887 int ret;
888
889 ret = block_write_begin(mapping, pos, len, flags, pagep,
890 ext2_get_block);
891 if (ret < 0)
892 ext2_write_failed(mapping, pos + len);
893 return ret;
894 }
895
896 static int ext2_write_end(struct file *file, struct address_space *mapping,
897 loff_t pos, unsigned len, unsigned copied,
898 struct page *page, void *fsdata)
899 {
900 int ret;
901
902 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
903 if (ret < len)
904 ext2_write_failed(mapping, pos + len);
905 return ret;
906 }
907
908 static int
909 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
910 loff_t pos, unsigned len, unsigned flags,
911 struct page **pagep, void **fsdata)
912 {
913 int ret;
914
915 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
916 ext2_get_block);
917 if (ret < 0)
918 ext2_write_failed(mapping, pos + len);
919 return ret;
920 }
921
922 static int ext2_nobh_writepage(struct page *page,
923 struct writeback_control *wbc)
924 {
925 return nobh_writepage(page, ext2_get_block, wbc);
926 }
927
928 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
929 {
930 return generic_block_bmap(mapping,block,ext2_get_block);
931 }
932
933 static ssize_t
934 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
935 {
936 struct file *file = iocb->ki_filp;
937 struct address_space *mapping = file->f_mapping;
938 struct inode *inode = mapping->host;
939 size_t count = iov_iter_count(iter);
940 loff_t offset = iocb->ki_pos;
941 ssize_t ret;
942
943 if (WARN_ON_ONCE(IS_DAX(inode)))
944 return -EIO;
945
946 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
947 if (ret < 0 && iov_iter_rw(iter) == WRITE)
948 ext2_write_failed(mapping, offset + count);
949 return ret;
950 }
951
952 static int
953 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
954 {
955 #ifdef CONFIG_FS_DAX
956 if (dax_mapping(mapping)) {
957 return dax_writeback_mapping_range(mapping,
958 mapping->host->i_sb->s_bdev,
959 wbc);
960 }
961 #endif
962
963 return mpage_writepages(mapping, wbc, ext2_get_block);
964 }
965
966 const struct address_space_operations ext2_aops = {
967 .readpage = ext2_readpage,
968 .readpages = ext2_readpages,
969 .writepage = ext2_writepage,
970 .write_begin = ext2_write_begin,
971 .write_end = ext2_write_end,
972 .bmap = ext2_bmap,
973 .direct_IO = ext2_direct_IO,
974 .writepages = ext2_writepages,
975 .migratepage = buffer_migrate_page,
976 .is_partially_uptodate = block_is_partially_uptodate,
977 .error_remove_page = generic_error_remove_page,
978 };
979
980 const struct address_space_operations ext2_nobh_aops = {
981 .readpage = ext2_readpage,
982 .readpages = ext2_readpages,
983 .writepage = ext2_nobh_writepage,
984 .write_begin = ext2_nobh_write_begin,
985 .write_end = nobh_write_end,
986 .bmap = ext2_bmap,
987 .direct_IO = ext2_direct_IO,
988 .writepages = ext2_writepages,
989 .migratepage = buffer_migrate_page,
990 .error_remove_page = generic_error_remove_page,
991 };
992
993 /*
994 * Probably it should be a library function... search for first non-zero word
995 * or memcmp with zero_page, whatever is better for particular architecture.
996 * Linus?
997 */
998 static inline int all_zeroes(__le32 *p, __le32 *q)
999 {
1000 while (p < q)
1001 if (*p++)
1002 return 0;
1003 return 1;
1004 }
1005
1006 /**
1007 * ext2_find_shared - find the indirect blocks for partial truncation.
1008 * @inode: inode in question
1009 * @depth: depth of the affected branch
1010 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1011 * @chain: place to store the pointers to partial indirect blocks
1012 * @top: place to the (detached) top of branch
1013 *
1014 * This is a helper function used by ext2_truncate().
1015 *
1016 * When we do truncate() we may have to clean the ends of several indirect
1017 * blocks but leave the blocks themselves alive. Block is partially
1018 * truncated if some data below the new i_size is referred from it (and
1019 * it is on the path to the first completely truncated data block, indeed).
1020 * We have to free the top of that path along with everything to the right
1021 * of the path. Since no allocation past the truncation point is possible
1022 * until ext2_truncate() finishes, we may safely do the latter, but top
1023 * of branch may require special attention - pageout below the truncation
1024 * point might try to populate it.
1025 *
1026 * We atomically detach the top of branch from the tree, store the block
1027 * number of its root in *@top, pointers to buffer_heads of partially
1028 * truncated blocks - in @chain[].bh and pointers to their last elements
1029 * that should not be removed - in @chain[].p. Return value is the pointer
1030 * to last filled element of @chain.
1031 *
1032 * The work left to caller to do the actual freeing of subtrees:
1033 * a) free the subtree starting from *@top
1034 * b) free the subtrees whose roots are stored in
1035 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1036 * c) free the subtrees growing from the inode past the @chain[0].p
1037 * (no partially truncated stuff there).
1038 */
1039
1040 static Indirect *ext2_find_shared(struct inode *inode,
1041 int depth,
1042 int offsets[4],
1043 Indirect chain[4],
1044 __le32 *top)
1045 {
1046 Indirect *partial, *p;
1047 int k, err;
1048
1049 *top = 0;
1050 for (k = depth; k > 1 && !offsets[k-1]; k--)
1051 ;
1052 partial = ext2_get_branch(inode, k, offsets, chain, &err);
1053 if (!partial)
1054 partial = chain + k-1;
1055 /*
1056 * If the branch acquired continuation since we've looked at it -
1057 * fine, it should all survive and (new) top doesn't belong to us.
1058 */
1059 write_lock(&EXT2_I(inode)->i_meta_lock);
1060 if (!partial->key && *partial->p) {
1061 write_unlock(&EXT2_I(inode)->i_meta_lock);
1062 goto no_top;
1063 }
1064 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1065 ;
1066 /*
1067 * OK, we've found the last block that must survive. The rest of our
1068 * branch should be detached before unlocking. However, if that rest
1069 * of branch is all ours and does not grow immediately from the inode
1070 * it's easier to cheat and just decrement partial->p.
1071 */
1072 if (p == chain + k - 1 && p > chain) {
1073 p->p--;
1074 } else {
1075 *top = *p->p;
1076 *p->p = 0;
1077 }
1078 write_unlock(&EXT2_I(inode)->i_meta_lock);
1079
1080 while(partial > p)
1081 {
1082 brelse(partial->bh);
1083 partial--;
1084 }
1085 no_top:
1086 return partial;
1087 }
1088
1089 /**
1090 * ext2_free_data - free a list of data blocks
1091 * @inode: inode we are dealing with
1092 * @p: array of block numbers
1093 * @q: points immediately past the end of array
1094 *
1095 * We are freeing all blocks referred from that array (numbers are
1096 * stored as little-endian 32-bit) and updating @inode->i_blocks
1097 * appropriately.
1098 */
1099 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1100 {
1101 unsigned long block_to_free = 0, count = 0;
1102 unsigned long nr;
1103
1104 for ( ; p < q ; p++) {
1105 nr = le32_to_cpu(*p);
1106 if (nr) {
1107 *p = 0;
1108 /* accumulate blocks to free if they're contiguous */
1109 if (count == 0)
1110 goto free_this;
1111 else if (block_to_free == nr - count)
1112 count++;
1113 else {
1114 ext2_free_blocks (inode, block_to_free, count);
1115 mark_inode_dirty(inode);
1116 free_this:
1117 block_to_free = nr;
1118 count = 1;
1119 }
1120 }
1121 }
1122 if (count > 0) {
1123 ext2_free_blocks (inode, block_to_free, count);
1124 mark_inode_dirty(inode);
1125 }
1126 }
1127
1128 /**
1129 * ext2_free_branches - free an array of branches
1130 * @inode: inode we are dealing with
1131 * @p: array of block numbers
1132 * @q: pointer immediately past the end of array
1133 * @depth: depth of the branches to free
1134 *
1135 * We are freeing all blocks referred from these branches (numbers are
1136 * stored as little-endian 32-bit) and updating @inode->i_blocks
1137 * appropriately.
1138 */
1139 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1140 {
1141 struct buffer_head * bh;
1142 unsigned long nr;
1143
1144 if (depth--) {
1145 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1146 for ( ; p < q ; p++) {
1147 nr = le32_to_cpu(*p);
1148 if (!nr)
1149 continue;
1150 *p = 0;
1151 bh = sb_bread(inode->i_sb, nr);
1152 /*
1153 * A read failure? Report error and clear slot
1154 * (should be rare).
1155 */
1156 if (!bh) {
1157 ext2_error(inode->i_sb, "ext2_free_branches",
1158 "Read failure, inode=%ld, block=%ld",
1159 inode->i_ino, nr);
1160 continue;
1161 }
1162 ext2_free_branches(inode,
1163 (__le32*)bh->b_data,
1164 (__le32*)bh->b_data + addr_per_block,
1165 depth);
1166 bforget(bh);
1167 ext2_free_blocks(inode, nr, 1);
1168 mark_inode_dirty(inode);
1169 }
1170 } else
1171 ext2_free_data(inode, p, q);
1172 }
1173
1174 /* dax_sem must be held when calling this function */
1175 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1176 {
1177 __le32 *i_data = EXT2_I(inode)->i_data;
1178 struct ext2_inode_info *ei = EXT2_I(inode);
1179 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1180 int offsets[4];
1181 Indirect chain[4];
1182 Indirect *partial;
1183 __le32 nr = 0;
1184 int n;
1185 long iblock;
1186 unsigned blocksize;
1187 blocksize = inode->i_sb->s_blocksize;
1188 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1189
1190 #ifdef CONFIG_FS_DAX
1191 WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1192 #endif
1193
1194 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1195 if (n == 0)
1196 return;
1197
1198 /*
1199 * From here we block out all ext2_get_block() callers who want to
1200 * modify the block allocation tree.
1201 */
1202 mutex_lock(&ei->truncate_mutex);
1203
1204 if (n == 1) {
1205 ext2_free_data(inode, i_data+offsets[0],
1206 i_data + EXT2_NDIR_BLOCKS);
1207 goto do_indirects;
1208 }
1209
1210 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1211 /* Kill the top of shared branch (already detached) */
1212 if (nr) {
1213 if (partial == chain)
1214 mark_inode_dirty(inode);
1215 else
1216 mark_buffer_dirty_inode(partial->bh, inode);
1217 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1218 }
1219 /* Clear the ends of indirect blocks on the shared branch */
1220 while (partial > chain) {
1221 ext2_free_branches(inode,
1222 partial->p + 1,
1223 (__le32*)partial->bh->b_data+addr_per_block,
1224 (chain+n-1) - partial);
1225 mark_buffer_dirty_inode(partial->bh, inode);
1226 brelse (partial->bh);
1227 partial--;
1228 }
1229 do_indirects:
1230 /* Kill the remaining (whole) subtrees */
1231 switch (offsets[0]) {
1232 default:
1233 nr = i_data[EXT2_IND_BLOCK];
1234 if (nr) {
1235 i_data[EXT2_IND_BLOCK] = 0;
1236 mark_inode_dirty(inode);
1237 ext2_free_branches(inode, &nr, &nr+1, 1);
1238 }
1239 case EXT2_IND_BLOCK:
1240 nr = i_data[EXT2_DIND_BLOCK];
1241 if (nr) {
1242 i_data[EXT2_DIND_BLOCK] = 0;
1243 mark_inode_dirty(inode);
1244 ext2_free_branches(inode, &nr, &nr+1, 2);
1245 }
1246 case EXT2_DIND_BLOCK:
1247 nr = i_data[EXT2_TIND_BLOCK];
1248 if (nr) {
1249 i_data[EXT2_TIND_BLOCK] = 0;
1250 mark_inode_dirty(inode);
1251 ext2_free_branches(inode, &nr, &nr+1, 3);
1252 }
1253 case EXT2_TIND_BLOCK:
1254 ;
1255 }
1256
1257 ext2_discard_reservation(inode);
1258
1259 mutex_unlock(&ei->truncate_mutex);
1260 }
1261
1262 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1263 {
1264 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1265 S_ISLNK(inode->i_mode)))
1266 return;
1267 if (ext2_inode_is_fast_symlink(inode))
1268 return;
1269
1270 dax_sem_down_write(EXT2_I(inode));
1271 __ext2_truncate_blocks(inode, offset);
1272 dax_sem_up_write(EXT2_I(inode));
1273 }
1274
1275 static int ext2_setsize(struct inode *inode, loff_t newsize)
1276 {
1277 int error;
1278
1279 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1280 S_ISLNK(inode->i_mode)))
1281 return -EINVAL;
1282 if (ext2_inode_is_fast_symlink(inode))
1283 return -EINVAL;
1284 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1285 return -EPERM;
1286
1287 inode_dio_wait(inode);
1288
1289 if (IS_DAX(inode)) {
1290 error = iomap_zero_range(inode, newsize,
1291 PAGE_ALIGN(newsize) - newsize, NULL,
1292 &ext2_iomap_ops);
1293 } else if (test_opt(inode->i_sb, NOBH))
1294 error = nobh_truncate_page(inode->i_mapping,
1295 newsize, ext2_get_block);
1296 else
1297 error = block_truncate_page(inode->i_mapping,
1298 newsize, ext2_get_block);
1299 if (error)
1300 return error;
1301
1302 dax_sem_down_write(EXT2_I(inode));
1303 truncate_setsize(inode, newsize);
1304 __ext2_truncate_blocks(inode, newsize);
1305 dax_sem_up_write(EXT2_I(inode));
1306
1307 inode->i_mtime = inode->i_ctime = current_time(inode);
1308 if (inode_needs_sync(inode)) {
1309 sync_mapping_buffers(inode->i_mapping);
1310 sync_inode_metadata(inode, 1);
1311 } else {
1312 mark_inode_dirty(inode);
1313 }
1314
1315 return 0;
1316 }
1317
1318 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1319 struct buffer_head **p)
1320 {
1321 struct buffer_head * bh;
1322 unsigned long block_group;
1323 unsigned long block;
1324 unsigned long offset;
1325 struct ext2_group_desc * gdp;
1326
1327 *p = NULL;
1328 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1329 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1330 goto Einval;
1331
1332 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1333 gdp = ext2_get_group_desc(sb, block_group, NULL);
1334 if (!gdp)
1335 goto Egdp;
1336 /*
1337 * Figure out the offset within the block group inode table
1338 */
1339 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1340 block = le32_to_cpu(gdp->bg_inode_table) +
1341 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1342 if (!(bh = sb_bread(sb, block)))
1343 goto Eio;
1344
1345 *p = bh;
1346 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1347 return (struct ext2_inode *) (bh->b_data + offset);
1348
1349 Einval:
1350 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1351 (unsigned long) ino);
1352 return ERR_PTR(-EINVAL);
1353 Eio:
1354 ext2_error(sb, "ext2_get_inode",
1355 "unable to read inode block - inode=%lu, block=%lu",
1356 (unsigned long) ino, block);
1357 Egdp:
1358 return ERR_PTR(-EIO);
1359 }
1360
1361 void ext2_set_inode_flags(struct inode *inode)
1362 {
1363 unsigned int flags = EXT2_I(inode)->i_flags;
1364
1365 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1366 S_DIRSYNC | S_DAX);
1367 if (flags & EXT2_SYNC_FL)
1368 inode->i_flags |= S_SYNC;
1369 if (flags & EXT2_APPEND_FL)
1370 inode->i_flags |= S_APPEND;
1371 if (flags & EXT2_IMMUTABLE_FL)
1372 inode->i_flags |= S_IMMUTABLE;
1373 if (flags & EXT2_NOATIME_FL)
1374 inode->i_flags |= S_NOATIME;
1375 if (flags & EXT2_DIRSYNC_FL)
1376 inode->i_flags |= S_DIRSYNC;
1377 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1378 inode->i_flags |= S_DAX;
1379 }
1380
1381 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1382 {
1383 struct ext2_inode_info *ei;
1384 struct buffer_head * bh;
1385 struct ext2_inode *raw_inode;
1386 struct inode *inode;
1387 long ret = -EIO;
1388 int n;
1389 uid_t i_uid;
1390 gid_t i_gid;
1391
1392 inode = iget_locked(sb, ino);
1393 if (!inode)
1394 return ERR_PTR(-ENOMEM);
1395 if (!(inode->i_state & I_NEW))
1396 return inode;
1397
1398 ei = EXT2_I(inode);
1399 ei->i_block_alloc_info = NULL;
1400
1401 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1402 if (IS_ERR(raw_inode)) {
1403 ret = PTR_ERR(raw_inode);
1404 goto bad_inode;
1405 }
1406
1407 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1408 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1409 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1410 if (!(test_opt (inode->i_sb, NO_UID32))) {
1411 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1412 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1413 }
1414 i_uid_write(inode, i_uid);
1415 i_gid_write(inode, i_gid);
1416 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1417 inode->i_size = le32_to_cpu(raw_inode->i_size);
1418 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1419 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1420 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1421 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1422 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1423 /* We now have enough fields to check if the inode was active or not.
1424 * This is needed because nfsd might try to access dead inodes
1425 * the test is that same one that e2fsck uses
1426 * NeilBrown 1999oct15
1427 */
1428 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1429 /* this inode is deleted */
1430 brelse (bh);
1431 ret = -ESTALE;
1432 goto bad_inode;
1433 }
1434 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1435 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1436 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1437 ei->i_frag_no = raw_inode->i_frag;
1438 ei->i_frag_size = raw_inode->i_fsize;
1439 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1440 ei->i_dir_acl = 0;
1441
1442 if (ei->i_file_acl &&
1443 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1444 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1445 ei->i_file_acl);
1446 brelse(bh);
1447 ret = -EFSCORRUPTED;
1448 goto bad_inode;
1449 }
1450
1451 if (S_ISREG(inode->i_mode))
1452 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1453 else
1454 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1455 if (i_size_read(inode) < 0) {
1456 ret = -EFSCORRUPTED;
1457 goto bad_inode;
1458 }
1459 ei->i_dtime = 0;
1460 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1461 ei->i_state = 0;
1462 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1463 ei->i_dir_start_lookup = 0;
1464
1465 /*
1466 * NOTE! The in-memory inode i_data array is in little-endian order
1467 * even on big-endian machines: we do NOT byteswap the block numbers!
1468 */
1469 for (n = 0; n < EXT2_N_BLOCKS; n++)
1470 ei->i_data[n] = raw_inode->i_block[n];
1471
1472 if (S_ISREG(inode->i_mode)) {
1473 inode->i_op = &ext2_file_inode_operations;
1474 if (test_opt(inode->i_sb, NOBH)) {
1475 inode->i_mapping->a_ops = &ext2_nobh_aops;
1476 inode->i_fop = &ext2_file_operations;
1477 } else {
1478 inode->i_mapping->a_ops = &ext2_aops;
1479 inode->i_fop = &ext2_file_operations;
1480 }
1481 } else if (S_ISDIR(inode->i_mode)) {
1482 inode->i_op = &ext2_dir_inode_operations;
1483 inode->i_fop = &ext2_dir_operations;
1484 if (test_opt(inode->i_sb, NOBH))
1485 inode->i_mapping->a_ops = &ext2_nobh_aops;
1486 else
1487 inode->i_mapping->a_ops = &ext2_aops;
1488 } else if (S_ISLNK(inode->i_mode)) {
1489 if (ext2_inode_is_fast_symlink(inode)) {
1490 inode->i_link = (char *)ei->i_data;
1491 inode->i_op = &ext2_fast_symlink_inode_operations;
1492 nd_terminate_link(ei->i_data, inode->i_size,
1493 sizeof(ei->i_data) - 1);
1494 } else {
1495 inode->i_op = &ext2_symlink_inode_operations;
1496 inode_nohighmem(inode);
1497 if (test_opt(inode->i_sb, NOBH))
1498 inode->i_mapping->a_ops = &ext2_nobh_aops;
1499 else
1500 inode->i_mapping->a_ops = &ext2_aops;
1501 }
1502 } else {
1503 inode->i_op = &ext2_special_inode_operations;
1504 if (raw_inode->i_block[0])
1505 init_special_inode(inode, inode->i_mode,
1506 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1507 else
1508 init_special_inode(inode, inode->i_mode,
1509 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1510 }
1511 brelse (bh);
1512 ext2_set_inode_flags(inode);
1513 unlock_new_inode(inode);
1514 return inode;
1515
1516 bad_inode:
1517 iget_failed(inode);
1518 return ERR_PTR(ret);
1519 }
1520
1521 static int __ext2_write_inode(struct inode *inode, int do_sync)
1522 {
1523 struct ext2_inode_info *ei = EXT2_I(inode);
1524 struct super_block *sb = inode->i_sb;
1525 ino_t ino = inode->i_ino;
1526 uid_t uid = i_uid_read(inode);
1527 gid_t gid = i_gid_read(inode);
1528 struct buffer_head * bh;
1529 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1530 int n;
1531 int err = 0;
1532
1533 if (IS_ERR(raw_inode))
1534 return -EIO;
1535
1536 /* For fields not not tracking in the in-memory inode,
1537 * initialise them to zero for new inodes. */
1538 if (ei->i_state & EXT2_STATE_NEW)
1539 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1540
1541 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1542 if (!(test_opt(sb, NO_UID32))) {
1543 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1544 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1545 /*
1546 * Fix up interoperability with old kernels. Otherwise, old inodes get
1547 * re-used with the upper 16 bits of the uid/gid intact
1548 */
1549 if (!ei->i_dtime) {
1550 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1551 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1552 } else {
1553 raw_inode->i_uid_high = 0;
1554 raw_inode->i_gid_high = 0;
1555 }
1556 } else {
1557 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1558 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1559 raw_inode->i_uid_high = 0;
1560 raw_inode->i_gid_high = 0;
1561 }
1562 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1563 raw_inode->i_size = cpu_to_le32(inode->i_size);
1564 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1565 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1566 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1567
1568 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1569 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1570 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1571 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1572 raw_inode->i_frag = ei->i_frag_no;
1573 raw_inode->i_fsize = ei->i_frag_size;
1574 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1575 if (!S_ISREG(inode->i_mode))
1576 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1577 else {
1578 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1579 if (inode->i_size > 0x7fffffffULL) {
1580 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1581 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1582 EXT2_SB(sb)->s_es->s_rev_level ==
1583 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1584 /* If this is the first large file
1585 * created, add a flag to the superblock.
1586 */
1587 spin_lock(&EXT2_SB(sb)->s_lock);
1588 ext2_update_dynamic_rev(sb);
1589 EXT2_SET_RO_COMPAT_FEATURE(sb,
1590 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1591 spin_unlock(&EXT2_SB(sb)->s_lock);
1592 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1593 }
1594 }
1595 }
1596
1597 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1598 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1599 if (old_valid_dev(inode->i_rdev)) {
1600 raw_inode->i_block[0] =
1601 cpu_to_le32(old_encode_dev(inode->i_rdev));
1602 raw_inode->i_block[1] = 0;
1603 } else {
1604 raw_inode->i_block[0] = 0;
1605 raw_inode->i_block[1] =
1606 cpu_to_le32(new_encode_dev(inode->i_rdev));
1607 raw_inode->i_block[2] = 0;
1608 }
1609 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1610 raw_inode->i_block[n] = ei->i_data[n];
1611 mark_buffer_dirty(bh);
1612 if (do_sync) {
1613 sync_dirty_buffer(bh);
1614 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1615 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1616 sb->s_id, (unsigned long) ino);
1617 err = -EIO;
1618 }
1619 }
1620 ei->i_state &= ~EXT2_STATE_NEW;
1621 brelse (bh);
1622 return err;
1623 }
1624
1625 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1626 {
1627 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1628 }
1629
1630 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1631 {
1632 struct inode *inode = d_inode(dentry);
1633 int error;
1634
1635 error = setattr_prepare(dentry, iattr);
1636 if (error)
1637 return error;
1638
1639 if (is_quota_modification(inode, iattr)) {
1640 error = dquot_initialize(inode);
1641 if (error)
1642 return error;
1643 }
1644 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1645 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1646 error = dquot_transfer(inode, iattr);
1647 if (error)
1648 return error;
1649 }
1650 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1651 error = ext2_setsize(inode, iattr->ia_size);
1652 if (error)
1653 return error;
1654 }
1655 setattr_copy(inode, iattr);
1656 if (iattr->ia_valid & ATTR_MODE)
1657 error = posix_acl_chmod(inode, inode->i_mode);
1658 mark_inode_dirty(inode);
1659
1660 return error;
1661 }