]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext2/inode.c
Merge branch 'for-4.10/fs-unmap' of git://git.kernel.dk/linux-block
[mirror_ubuntu-artful-kernel.git] / fs / ext2 / inode.c
1 /*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/dax.h>
29 #include <linux/blkdev.h>
30 #include <linux/quotaops.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/iomap.h>
36 #include <linux/namei.h>
37 #include <linux/uio.h>
38 #include "ext2.h"
39 #include "acl.h"
40 #include "xattr.h"
41
42 static int __ext2_write_inode(struct inode *inode, int do_sync);
43
44 /*
45 * Test whether an inode is a fast symlink.
46 */
47 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48 {
49 int ea_blocks = EXT2_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
52 return (S_ISLNK(inode->i_mode) &&
53 inode->i_blocks - ea_blocks == 0);
54 }
55
56 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
57
58 static void ext2_write_failed(struct address_space *mapping, loff_t to)
59 {
60 struct inode *inode = mapping->host;
61
62 if (to > inode->i_size) {
63 truncate_pagecache(inode, inode->i_size);
64 ext2_truncate_blocks(inode, inode->i_size);
65 }
66 }
67
68 /*
69 * Called at the last iput() if i_nlink is zero.
70 */
71 void ext2_evict_inode(struct inode * inode)
72 {
73 struct ext2_block_alloc_info *rsv;
74 int want_delete = 0;
75
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 dquot_initialize(inode);
79 } else {
80 dquot_drop(inode);
81 }
82
83 truncate_inode_pages_final(&inode->i_data);
84
85 if (want_delete) {
86 sb_start_intwrite(inode->i_sb);
87 /* set dtime */
88 EXT2_I(inode)->i_dtime = get_seconds();
89 mark_inode_dirty(inode);
90 __ext2_write_inode(inode, inode_needs_sync(inode));
91 /* truncate to 0 */
92 inode->i_size = 0;
93 if (inode->i_blocks)
94 ext2_truncate_blocks(inode, 0);
95 ext2_xattr_delete_inode(inode);
96 }
97
98 invalidate_inode_buffers(inode);
99 clear_inode(inode);
100
101 ext2_discard_reservation(inode);
102 rsv = EXT2_I(inode)->i_block_alloc_info;
103 EXT2_I(inode)->i_block_alloc_info = NULL;
104 if (unlikely(rsv))
105 kfree(rsv);
106
107 if (want_delete) {
108 ext2_free_inode(inode);
109 sb_end_intwrite(inode->i_sb);
110 }
111 }
112
113 typedef struct {
114 __le32 *p;
115 __le32 key;
116 struct buffer_head *bh;
117 } Indirect;
118
119 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
120 {
121 p->key = *(p->p = v);
122 p->bh = bh;
123 }
124
125 static inline int verify_chain(Indirect *from, Indirect *to)
126 {
127 while (from <= to && from->key == *from->p)
128 from++;
129 return (from > to);
130 }
131
132 /**
133 * ext2_block_to_path - parse the block number into array of offsets
134 * @inode: inode in question (we are only interested in its superblock)
135 * @i_block: block number to be parsed
136 * @offsets: array to store the offsets in
137 * @boundary: set this non-zero if the referred-to block is likely to be
138 * followed (on disk) by an indirect block.
139 * To store the locations of file's data ext2 uses a data structure common
140 * for UNIX filesystems - tree of pointers anchored in the inode, with
141 * data blocks at leaves and indirect blocks in intermediate nodes.
142 * This function translates the block number into path in that tree -
143 * return value is the path length and @offsets[n] is the offset of
144 * pointer to (n+1)th node in the nth one. If @block is out of range
145 * (negative or too large) warning is printed and zero returned.
146 *
147 * Note: function doesn't find node addresses, so no IO is needed. All
148 * we need to know is the capacity of indirect blocks (taken from the
149 * inode->i_sb).
150 */
151
152 /*
153 * Portability note: the last comparison (check that we fit into triple
154 * indirect block) is spelled differently, because otherwise on an
155 * architecture with 32-bit longs and 8Kb pages we might get into trouble
156 * if our filesystem had 8Kb blocks. We might use long long, but that would
157 * kill us on x86. Oh, well, at least the sign propagation does not matter -
158 * i_block would have to be negative in the very beginning, so we would not
159 * get there at all.
160 */
161
162 static int ext2_block_to_path(struct inode *inode,
163 long i_block, int offsets[4], int *boundary)
164 {
165 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
166 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
167 const long direct_blocks = EXT2_NDIR_BLOCKS,
168 indirect_blocks = ptrs,
169 double_blocks = (1 << (ptrs_bits * 2));
170 int n = 0;
171 int final = 0;
172
173 if (i_block < 0) {
174 ext2_msg(inode->i_sb, KERN_WARNING,
175 "warning: %s: block < 0", __func__);
176 } else if (i_block < direct_blocks) {
177 offsets[n++] = i_block;
178 final = direct_blocks;
179 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
180 offsets[n++] = EXT2_IND_BLOCK;
181 offsets[n++] = i_block;
182 final = ptrs;
183 } else if ((i_block -= indirect_blocks) < double_blocks) {
184 offsets[n++] = EXT2_DIND_BLOCK;
185 offsets[n++] = i_block >> ptrs_bits;
186 offsets[n++] = i_block & (ptrs - 1);
187 final = ptrs;
188 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
189 offsets[n++] = EXT2_TIND_BLOCK;
190 offsets[n++] = i_block >> (ptrs_bits * 2);
191 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
192 offsets[n++] = i_block & (ptrs - 1);
193 final = ptrs;
194 } else {
195 ext2_msg(inode->i_sb, KERN_WARNING,
196 "warning: %s: block is too big", __func__);
197 }
198 if (boundary)
199 *boundary = final - 1 - (i_block & (ptrs - 1));
200
201 return n;
202 }
203
204 /**
205 * ext2_get_branch - read the chain of indirect blocks leading to data
206 * @inode: inode in question
207 * @depth: depth of the chain (1 - direct pointer, etc.)
208 * @offsets: offsets of pointers in inode/indirect blocks
209 * @chain: place to store the result
210 * @err: here we store the error value
211 *
212 * Function fills the array of triples <key, p, bh> and returns %NULL
213 * if everything went OK or the pointer to the last filled triple
214 * (incomplete one) otherwise. Upon the return chain[i].key contains
215 * the number of (i+1)-th block in the chain (as it is stored in memory,
216 * i.e. little-endian 32-bit), chain[i].p contains the address of that
217 * number (it points into struct inode for i==0 and into the bh->b_data
218 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
219 * block for i>0 and NULL for i==0. In other words, it holds the block
220 * numbers of the chain, addresses they were taken from (and where we can
221 * verify that chain did not change) and buffer_heads hosting these
222 * numbers.
223 *
224 * Function stops when it stumbles upon zero pointer (absent block)
225 * (pointer to last triple returned, *@err == 0)
226 * or when it gets an IO error reading an indirect block
227 * (ditto, *@err == -EIO)
228 * or when it notices that chain had been changed while it was reading
229 * (ditto, *@err == -EAGAIN)
230 * or when it reads all @depth-1 indirect blocks successfully and finds
231 * the whole chain, all way to the data (returns %NULL, *err == 0).
232 */
233 static Indirect *ext2_get_branch(struct inode *inode,
234 int depth,
235 int *offsets,
236 Indirect chain[4],
237 int *err)
238 {
239 struct super_block *sb = inode->i_sb;
240 Indirect *p = chain;
241 struct buffer_head *bh;
242
243 *err = 0;
244 /* i_data is not going away, no lock needed */
245 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
246 if (!p->key)
247 goto no_block;
248 while (--depth) {
249 bh = sb_bread(sb, le32_to_cpu(p->key));
250 if (!bh)
251 goto failure;
252 read_lock(&EXT2_I(inode)->i_meta_lock);
253 if (!verify_chain(chain, p))
254 goto changed;
255 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
256 read_unlock(&EXT2_I(inode)->i_meta_lock);
257 if (!p->key)
258 goto no_block;
259 }
260 return NULL;
261
262 changed:
263 read_unlock(&EXT2_I(inode)->i_meta_lock);
264 brelse(bh);
265 *err = -EAGAIN;
266 goto no_block;
267 failure:
268 *err = -EIO;
269 no_block:
270 return p;
271 }
272
273 /**
274 * ext2_find_near - find a place for allocation with sufficient locality
275 * @inode: owner
276 * @ind: descriptor of indirect block.
277 *
278 * This function returns the preferred place for block allocation.
279 * It is used when heuristic for sequential allocation fails.
280 * Rules are:
281 * + if there is a block to the left of our position - allocate near it.
282 * + if pointer will live in indirect block - allocate near that block.
283 * + if pointer will live in inode - allocate in the same cylinder group.
284 *
285 * In the latter case we colour the starting block by the callers PID to
286 * prevent it from clashing with concurrent allocations for a different inode
287 * in the same block group. The PID is used here so that functionally related
288 * files will be close-by on-disk.
289 *
290 * Caller must make sure that @ind is valid and will stay that way.
291 */
292
293 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
294 {
295 struct ext2_inode_info *ei = EXT2_I(inode);
296 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
297 __le32 *p;
298 ext2_fsblk_t bg_start;
299 ext2_fsblk_t colour;
300
301 /* Try to find previous block */
302 for (p = ind->p - 1; p >= start; p--)
303 if (*p)
304 return le32_to_cpu(*p);
305
306 /* No such thing, so let's try location of indirect block */
307 if (ind->bh)
308 return ind->bh->b_blocknr;
309
310 /*
311 * It is going to be referred from inode itself? OK, just put it into
312 * the same cylinder group then.
313 */
314 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
315 colour = (current->pid % 16) *
316 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
317 return bg_start + colour;
318 }
319
320 /**
321 * ext2_find_goal - find a preferred place for allocation.
322 * @inode: owner
323 * @block: block we want
324 * @partial: pointer to the last triple within a chain
325 *
326 * Returns preferred place for a block (the goal).
327 */
328
329 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
330 Indirect *partial)
331 {
332 struct ext2_block_alloc_info *block_i;
333
334 block_i = EXT2_I(inode)->i_block_alloc_info;
335
336 /*
337 * try the heuristic for sequential allocation,
338 * failing that at least try to get decent locality.
339 */
340 if (block_i && (block == block_i->last_alloc_logical_block + 1)
341 && (block_i->last_alloc_physical_block != 0)) {
342 return block_i->last_alloc_physical_block + 1;
343 }
344
345 return ext2_find_near(inode, partial);
346 }
347
348 /**
349 * ext2_blks_to_allocate: Look up the block map and count the number
350 * of direct blocks need to be allocated for the given branch.
351 *
352 * @branch: chain of indirect blocks
353 * @k: number of blocks need for indirect blocks
354 * @blks: number of data blocks to be mapped.
355 * @blocks_to_boundary: the offset in the indirect block
356 *
357 * return the total number of blocks to be allocate, including the
358 * direct and indirect blocks.
359 */
360 static int
361 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362 int blocks_to_boundary)
363 {
364 unsigned long count = 0;
365
366 /*
367 * Simple case, [t,d]Indirect block(s) has not allocated yet
368 * then it's clear blocks on that path have not allocated
369 */
370 if (k > 0) {
371 /* right now don't hanel cross boundary allocation */
372 if (blks < blocks_to_boundary + 1)
373 count += blks;
374 else
375 count += blocks_to_boundary + 1;
376 return count;
377 }
378
379 count++;
380 while (count < blks && count <= blocks_to_boundary
381 && le32_to_cpu(*(branch[0].p + count)) == 0) {
382 count++;
383 }
384 return count;
385 }
386
387 /**
388 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
389 * @indirect_blks: the number of blocks need to allocate for indirect
390 * blocks
391 *
392 * @new_blocks: on return it will store the new block numbers for
393 * the indirect blocks(if needed) and the first direct block,
394 * @blks: on return it will store the total number of allocated
395 * direct blocks
396 */
397 static int ext2_alloc_blocks(struct inode *inode,
398 ext2_fsblk_t goal, int indirect_blks, int blks,
399 ext2_fsblk_t new_blocks[4], int *err)
400 {
401 int target, i;
402 unsigned long count = 0;
403 int index = 0;
404 ext2_fsblk_t current_block = 0;
405 int ret = 0;
406
407 /*
408 * Here we try to allocate the requested multiple blocks at once,
409 * on a best-effort basis.
410 * To build a branch, we should allocate blocks for
411 * the indirect blocks(if not allocated yet), and at least
412 * the first direct block of this branch. That's the
413 * minimum number of blocks need to allocate(required)
414 */
415 target = blks + indirect_blks;
416
417 while (1) {
418 count = target;
419 /* allocating blocks for indirect blocks and direct blocks */
420 current_block = ext2_new_blocks(inode,goal,&count,err);
421 if (*err)
422 goto failed_out;
423
424 target -= count;
425 /* allocate blocks for indirect blocks */
426 while (index < indirect_blks && count) {
427 new_blocks[index++] = current_block++;
428 count--;
429 }
430
431 if (count > 0)
432 break;
433 }
434
435 /* save the new block number for the first direct block */
436 new_blocks[index] = current_block;
437
438 /* total number of blocks allocated for direct blocks */
439 ret = count;
440 *err = 0;
441 return ret;
442 failed_out:
443 for (i = 0; i <index; i++)
444 ext2_free_blocks(inode, new_blocks[i], 1);
445 if (index)
446 mark_inode_dirty(inode);
447 return ret;
448 }
449
450 /**
451 * ext2_alloc_branch - allocate and set up a chain of blocks.
452 * @inode: owner
453 * @num: depth of the chain (number of blocks to allocate)
454 * @offsets: offsets (in the blocks) to store the pointers to next.
455 * @branch: place to store the chain in.
456 *
457 * This function allocates @num blocks, zeroes out all but the last one,
458 * links them into chain and (if we are synchronous) writes them to disk.
459 * In other words, it prepares a branch that can be spliced onto the
460 * inode. It stores the information about that chain in the branch[], in
461 * the same format as ext2_get_branch() would do. We are calling it after
462 * we had read the existing part of chain and partial points to the last
463 * triple of that (one with zero ->key). Upon the exit we have the same
464 * picture as after the successful ext2_get_block(), except that in one
465 * place chain is disconnected - *branch->p is still zero (we did not
466 * set the last link), but branch->key contains the number that should
467 * be placed into *branch->p to fill that gap.
468 *
469 * If allocation fails we free all blocks we've allocated (and forget
470 * their buffer_heads) and return the error value the from failed
471 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
472 * as described above and return 0.
473 */
474
475 static int ext2_alloc_branch(struct inode *inode,
476 int indirect_blks, int *blks, ext2_fsblk_t goal,
477 int *offsets, Indirect *branch)
478 {
479 int blocksize = inode->i_sb->s_blocksize;
480 int i, n = 0;
481 int err = 0;
482 struct buffer_head *bh;
483 int num;
484 ext2_fsblk_t new_blocks[4];
485 ext2_fsblk_t current_block;
486
487 num = ext2_alloc_blocks(inode, goal, indirect_blks,
488 *blks, new_blocks, &err);
489 if (err)
490 return err;
491
492 branch[0].key = cpu_to_le32(new_blocks[0]);
493 /*
494 * metadata blocks and data blocks are allocated.
495 */
496 for (n = 1; n <= indirect_blks; n++) {
497 /*
498 * Get buffer_head for parent block, zero it out
499 * and set the pointer to new one, then send
500 * parent to disk.
501 */
502 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
503 if (unlikely(!bh)) {
504 err = -ENOMEM;
505 goto failed;
506 }
507 branch[n].bh = bh;
508 lock_buffer(bh);
509 memset(bh->b_data, 0, blocksize);
510 branch[n].p = (__le32 *) bh->b_data + offsets[n];
511 branch[n].key = cpu_to_le32(new_blocks[n]);
512 *branch[n].p = branch[n].key;
513 if ( n == indirect_blks) {
514 current_block = new_blocks[n];
515 /*
516 * End of chain, update the last new metablock of
517 * the chain to point to the new allocated
518 * data blocks numbers
519 */
520 for (i=1; i < num; i++)
521 *(branch[n].p + i) = cpu_to_le32(++current_block);
522 }
523 set_buffer_uptodate(bh);
524 unlock_buffer(bh);
525 mark_buffer_dirty_inode(bh, inode);
526 /* We used to sync bh here if IS_SYNC(inode).
527 * But we now rely upon generic_write_sync()
528 * and b_inode_buffers. But not for directories.
529 */
530 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
531 sync_dirty_buffer(bh);
532 }
533 *blks = num;
534 return err;
535
536 failed:
537 for (i = 1; i < n; i++)
538 bforget(branch[i].bh);
539 for (i = 0; i < indirect_blks; i++)
540 ext2_free_blocks(inode, new_blocks[i], 1);
541 ext2_free_blocks(inode, new_blocks[i], num);
542 return err;
543 }
544
545 /**
546 * ext2_splice_branch - splice the allocated branch onto inode.
547 * @inode: owner
548 * @block: (logical) number of block we are adding
549 * @where: location of missing link
550 * @num: number of indirect blocks we are adding
551 * @blks: number of direct blocks we are adding
552 *
553 * This function fills the missing link and does all housekeeping needed in
554 * inode (->i_blocks, etc.). In case of success we end up with the full
555 * chain to new block and return 0.
556 */
557 static void ext2_splice_branch(struct inode *inode,
558 long block, Indirect *where, int num, int blks)
559 {
560 int i;
561 struct ext2_block_alloc_info *block_i;
562 ext2_fsblk_t current_block;
563
564 block_i = EXT2_I(inode)->i_block_alloc_info;
565
566 /* XXX LOCKING probably should have i_meta_lock ?*/
567 /* That's it */
568
569 *where->p = where->key;
570
571 /*
572 * Update the host buffer_head or inode to point to more just allocated
573 * direct blocks blocks
574 */
575 if (num == 0 && blks > 1) {
576 current_block = le32_to_cpu(where->key) + 1;
577 for (i = 1; i < blks; i++)
578 *(where->p + i ) = cpu_to_le32(current_block++);
579 }
580
581 /*
582 * update the most recently allocated logical & physical block
583 * in i_block_alloc_info, to assist find the proper goal block for next
584 * allocation
585 */
586 if (block_i) {
587 block_i->last_alloc_logical_block = block + blks - 1;
588 block_i->last_alloc_physical_block =
589 le32_to_cpu(where[num].key) + blks - 1;
590 }
591
592 /* We are done with atomic stuff, now do the rest of housekeeping */
593
594 /* had we spliced it onto indirect block? */
595 if (where->bh)
596 mark_buffer_dirty_inode(where->bh, inode);
597
598 inode->i_ctime = current_time(inode);
599 mark_inode_dirty(inode);
600 }
601
602 /*
603 * Allocation strategy is simple: if we have to allocate something, we will
604 * have to go the whole way to leaf. So let's do it before attaching anything
605 * to tree, set linkage between the newborn blocks, write them if sync is
606 * required, recheck the path, free and repeat if check fails, otherwise
607 * set the last missing link (that will protect us from any truncate-generated
608 * removals - all blocks on the path are immune now) and possibly force the
609 * write on the parent block.
610 * That has a nice additional property: no special recovery from the failed
611 * allocations is needed - we simply release blocks and do not touch anything
612 * reachable from inode.
613 *
614 * `handle' can be NULL if create == 0.
615 *
616 * return > 0, # of blocks mapped or allocated.
617 * return = 0, if plain lookup failed.
618 * return < 0, error case.
619 */
620 static int ext2_get_blocks(struct inode *inode,
621 sector_t iblock, unsigned long maxblocks,
622 u32 *bno, bool *new, bool *boundary,
623 int create)
624 {
625 int err;
626 int offsets[4];
627 Indirect chain[4];
628 Indirect *partial;
629 ext2_fsblk_t goal;
630 int indirect_blks;
631 int blocks_to_boundary = 0;
632 int depth;
633 struct ext2_inode_info *ei = EXT2_I(inode);
634 int count = 0;
635 ext2_fsblk_t first_block = 0;
636
637 BUG_ON(maxblocks == 0);
638
639 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
640
641 if (depth == 0)
642 return -EIO;
643
644 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
645 /* Simplest case - block found, no allocation needed */
646 if (!partial) {
647 first_block = le32_to_cpu(chain[depth - 1].key);
648 count++;
649 /*map more blocks*/
650 while (count < maxblocks && count <= blocks_to_boundary) {
651 ext2_fsblk_t blk;
652
653 if (!verify_chain(chain, chain + depth - 1)) {
654 /*
655 * Indirect block might be removed by
656 * truncate while we were reading it.
657 * Handling of that case: forget what we've
658 * got now, go to reread.
659 */
660 err = -EAGAIN;
661 count = 0;
662 break;
663 }
664 blk = le32_to_cpu(*(chain[depth-1].p + count));
665 if (blk == first_block + count)
666 count++;
667 else
668 break;
669 }
670 if (err != -EAGAIN)
671 goto got_it;
672 }
673
674 /* Next simple case - plain lookup or failed read of indirect block */
675 if (!create || err == -EIO)
676 goto cleanup;
677
678 mutex_lock(&ei->truncate_mutex);
679 /*
680 * If the indirect block is missing while we are reading
681 * the chain(ext2_get_branch() returns -EAGAIN err), or
682 * if the chain has been changed after we grab the semaphore,
683 * (either because another process truncated this branch, or
684 * another get_block allocated this branch) re-grab the chain to see if
685 * the request block has been allocated or not.
686 *
687 * Since we already block the truncate/other get_block
688 * at this point, we will have the current copy of the chain when we
689 * splice the branch into the tree.
690 */
691 if (err == -EAGAIN || !verify_chain(chain, partial)) {
692 while (partial > chain) {
693 brelse(partial->bh);
694 partial--;
695 }
696 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
697 if (!partial) {
698 count++;
699 mutex_unlock(&ei->truncate_mutex);
700 if (err)
701 goto cleanup;
702 goto got_it;
703 }
704 }
705
706 /*
707 * Okay, we need to do block allocation. Lazily initialize the block
708 * allocation info here if necessary
709 */
710 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
711 ext2_init_block_alloc_info(inode);
712
713 goal = ext2_find_goal(inode, iblock, partial);
714
715 /* the number of blocks need to allocate for [d,t]indirect blocks */
716 indirect_blks = (chain + depth) - partial - 1;
717 /*
718 * Next look up the indirect map to count the totoal number of
719 * direct blocks to allocate for this branch.
720 */
721 count = ext2_blks_to_allocate(partial, indirect_blks,
722 maxblocks, blocks_to_boundary);
723 /*
724 * XXX ???? Block out ext2_truncate while we alter the tree
725 */
726 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
727 offsets + (partial - chain), partial);
728
729 if (err) {
730 mutex_unlock(&ei->truncate_mutex);
731 goto cleanup;
732 }
733
734 if (IS_DAX(inode)) {
735 /*
736 * We must unmap blocks before zeroing so that writeback cannot
737 * overwrite zeros with stale data from block device page cache.
738 */
739 clean_bdev_aliases(inode->i_sb->s_bdev,
740 le32_to_cpu(chain[depth-1].key),
741 count);
742 /*
743 * block must be initialised before we put it in the tree
744 * so that it's not found by another thread before it's
745 * initialised
746 */
747 err = sb_issue_zeroout(inode->i_sb,
748 le32_to_cpu(chain[depth-1].key), count,
749 GFP_NOFS);
750 if (err) {
751 mutex_unlock(&ei->truncate_mutex);
752 goto cleanup;
753 }
754 } else {
755 *new = true;
756 }
757
758 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
759 mutex_unlock(&ei->truncate_mutex);
760 got_it:
761 if (count > blocks_to_boundary)
762 *boundary = true;
763 err = count;
764 /* Clean up and exit */
765 partial = chain + depth - 1; /* the whole chain */
766 cleanup:
767 while (partial > chain) {
768 brelse(partial->bh);
769 partial--;
770 }
771 if (err > 0)
772 *bno = le32_to_cpu(chain[depth-1].key);
773 return err;
774 }
775
776 int ext2_get_block(struct inode *inode, sector_t iblock,
777 struct buffer_head *bh_result, int create)
778 {
779 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
780 bool new = false, boundary = false;
781 u32 bno;
782 int ret;
783
784 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
785 create);
786 if (ret <= 0)
787 return ret;
788
789 map_bh(bh_result, inode->i_sb, bno);
790 bh_result->b_size = (ret << inode->i_blkbits);
791 if (new)
792 set_buffer_new(bh_result);
793 if (boundary)
794 set_buffer_boundary(bh_result);
795 return 0;
796
797 }
798
799 #ifdef CONFIG_FS_DAX
800 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
801 unsigned flags, struct iomap *iomap)
802 {
803 unsigned int blkbits = inode->i_blkbits;
804 unsigned long first_block = offset >> blkbits;
805 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
806 bool new = false, boundary = false;
807 u32 bno;
808 int ret;
809
810 ret = ext2_get_blocks(inode, first_block, max_blocks,
811 &bno, &new, &boundary, flags & IOMAP_WRITE);
812 if (ret < 0)
813 return ret;
814
815 iomap->flags = 0;
816 iomap->bdev = inode->i_sb->s_bdev;
817 iomap->offset = (u64)first_block << blkbits;
818
819 if (ret == 0) {
820 iomap->type = IOMAP_HOLE;
821 iomap->blkno = IOMAP_NULL_BLOCK;
822 iomap->length = 1 << blkbits;
823 } else {
824 iomap->type = IOMAP_MAPPED;
825 iomap->blkno = (sector_t)bno << (blkbits - 9);
826 iomap->length = (u64)ret << blkbits;
827 iomap->flags |= IOMAP_F_MERGED;
828 }
829
830 if (new)
831 iomap->flags |= IOMAP_F_NEW;
832 return 0;
833 }
834
835 static int
836 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
837 ssize_t written, unsigned flags, struct iomap *iomap)
838 {
839 if (iomap->type == IOMAP_MAPPED &&
840 written < length &&
841 (flags & IOMAP_WRITE))
842 ext2_write_failed(inode->i_mapping, offset + length);
843 return 0;
844 }
845
846 struct iomap_ops ext2_iomap_ops = {
847 .iomap_begin = ext2_iomap_begin,
848 .iomap_end = ext2_iomap_end,
849 };
850 #else
851 /* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
852 struct iomap_ops ext2_iomap_ops;
853 #endif /* CONFIG_FS_DAX */
854
855 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
856 u64 start, u64 len)
857 {
858 return generic_block_fiemap(inode, fieinfo, start, len,
859 ext2_get_block);
860 }
861
862 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
863 {
864 return block_write_full_page(page, ext2_get_block, wbc);
865 }
866
867 static int ext2_readpage(struct file *file, struct page *page)
868 {
869 return mpage_readpage(page, ext2_get_block);
870 }
871
872 static int
873 ext2_readpages(struct file *file, struct address_space *mapping,
874 struct list_head *pages, unsigned nr_pages)
875 {
876 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
877 }
878
879 static int
880 ext2_write_begin(struct file *file, struct address_space *mapping,
881 loff_t pos, unsigned len, unsigned flags,
882 struct page **pagep, void **fsdata)
883 {
884 int ret;
885
886 ret = block_write_begin(mapping, pos, len, flags, pagep,
887 ext2_get_block);
888 if (ret < 0)
889 ext2_write_failed(mapping, pos + len);
890 return ret;
891 }
892
893 static int ext2_write_end(struct file *file, struct address_space *mapping,
894 loff_t pos, unsigned len, unsigned copied,
895 struct page *page, void *fsdata)
896 {
897 int ret;
898
899 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
900 if (ret < len)
901 ext2_write_failed(mapping, pos + len);
902 return ret;
903 }
904
905 static int
906 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
907 loff_t pos, unsigned len, unsigned flags,
908 struct page **pagep, void **fsdata)
909 {
910 int ret;
911
912 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
913 ext2_get_block);
914 if (ret < 0)
915 ext2_write_failed(mapping, pos + len);
916 return ret;
917 }
918
919 static int ext2_nobh_writepage(struct page *page,
920 struct writeback_control *wbc)
921 {
922 return nobh_writepage(page, ext2_get_block, wbc);
923 }
924
925 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
926 {
927 return generic_block_bmap(mapping,block,ext2_get_block);
928 }
929
930 static ssize_t
931 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
932 {
933 struct file *file = iocb->ki_filp;
934 struct address_space *mapping = file->f_mapping;
935 struct inode *inode = mapping->host;
936 size_t count = iov_iter_count(iter);
937 loff_t offset = iocb->ki_pos;
938 ssize_t ret;
939
940 if (WARN_ON_ONCE(IS_DAX(inode)))
941 return -EIO;
942
943 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
944 if (ret < 0 && iov_iter_rw(iter) == WRITE)
945 ext2_write_failed(mapping, offset + count);
946 return ret;
947 }
948
949 static int
950 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
951 {
952 #ifdef CONFIG_FS_DAX
953 if (dax_mapping(mapping)) {
954 return dax_writeback_mapping_range(mapping,
955 mapping->host->i_sb->s_bdev,
956 wbc);
957 }
958 #endif
959
960 return mpage_writepages(mapping, wbc, ext2_get_block);
961 }
962
963 const struct address_space_operations ext2_aops = {
964 .readpage = ext2_readpage,
965 .readpages = ext2_readpages,
966 .writepage = ext2_writepage,
967 .write_begin = ext2_write_begin,
968 .write_end = ext2_write_end,
969 .bmap = ext2_bmap,
970 .direct_IO = ext2_direct_IO,
971 .writepages = ext2_writepages,
972 .migratepage = buffer_migrate_page,
973 .is_partially_uptodate = block_is_partially_uptodate,
974 .error_remove_page = generic_error_remove_page,
975 };
976
977 const struct address_space_operations ext2_nobh_aops = {
978 .readpage = ext2_readpage,
979 .readpages = ext2_readpages,
980 .writepage = ext2_nobh_writepage,
981 .write_begin = ext2_nobh_write_begin,
982 .write_end = nobh_write_end,
983 .bmap = ext2_bmap,
984 .direct_IO = ext2_direct_IO,
985 .writepages = ext2_writepages,
986 .migratepage = buffer_migrate_page,
987 .error_remove_page = generic_error_remove_page,
988 };
989
990 /*
991 * Probably it should be a library function... search for first non-zero word
992 * or memcmp with zero_page, whatever is better for particular architecture.
993 * Linus?
994 */
995 static inline int all_zeroes(__le32 *p, __le32 *q)
996 {
997 while (p < q)
998 if (*p++)
999 return 0;
1000 return 1;
1001 }
1002
1003 /**
1004 * ext2_find_shared - find the indirect blocks for partial truncation.
1005 * @inode: inode in question
1006 * @depth: depth of the affected branch
1007 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1008 * @chain: place to store the pointers to partial indirect blocks
1009 * @top: place to the (detached) top of branch
1010 *
1011 * This is a helper function used by ext2_truncate().
1012 *
1013 * When we do truncate() we may have to clean the ends of several indirect
1014 * blocks but leave the blocks themselves alive. Block is partially
1015 * truncated if some data below the new i_size is referred from it (and
1016 * it is on the path to the first completely truncated data block, indeed).
1017 * We have to free the top of that path along with everything to the right
1018 * of the path. Since no allocation past the truncation point is possible
1019 * until ext2_truncate() finishes, we may safely do the latter, but top
1020 * of branch may require special attention - pageout below the truncation
1021 * point might try to populate it.
1022 *
1023 * We atomically detach the top of branch from the tree, store the block
1024 * number of its root in *@top, pointers to buffer_heads of partially
1025 * truncated blocks - in @chain[].bh and pointers to their last elements
1026 * that should not be removed - in @chain[].p. Return value is the pointer
1027 * to last filled element of @chain.
1028 *
1029 * The work left to caller to do the actual freeing of subtrees:
1030 * a) free the subtree starting from *@top
1031 * b) free the subtrees whose roots are stored in
1032 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1033 * c) free the subtrees growing from the inode past the @chain[0].p
1034 * (no partially truncated stuff there).
1035 */
1036
1037 static Indirect *ext2_find_shared(struct inode *inode,
1038 int depth,
1039 int offsets[4],
1040 Indirect chain[4],
1041 __le32 *top)
1042 {
1043 Indirect *partial, *p;
1044 int k, err;
1045
1046 *top = 0;
1047 for (k = depth; k > 1 && !offsets[k-1]; k--)
1048 ;
1049 partial = ext2_get_branch(inode, k, offsets, chain, &err);
1050 if (!partial)
1051 partial = chain + k-1;
1052 /*
1053 * If the branch acquired continuation since we've looked at it -
1054 * fine, it should all survive and (new) top doesn't belong to us.
1055 */
1056 write_lock(&EXT2_I(inode)->i_meta_lock);
1057 if (!partial->key && *partial->p) {
1058 write_unlock(&EXT2_I(inode)->i_meta_lock);
1059 goto no_top;
1060 }
1061 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1062 ;
1063 /*
1064 * OK, we've found the last block that must survive. The rest of our
1065 * branch should be detached before unlocking. However, if that rest
1066 * of branch is all ours and does not grow immediately from the inode
1067 * it's easier to cheat and just decrement partial->p.
1068 */
1069 if (p == chain + k - 1 && p > chain) {
1070 p->p--;
1071 } else {
1072 *top = *p->p;
1073 *p->p = 0;
1074 }
1075 write_unlock(&EXT2_I(inode)->i_meta_lock);
1076
1077 while(partial > p)
1078 {
1079 brelse(partial->bh);
1080 partial--;
1081 }
1082 no_top:
1083 return partial;
1084 }
1085
1086 /**
1087 * ext2_free_data - free a list of data blocks
1088 * @inode: inode we are dealing with
1089 * @p: array of block numbers
1090 * @q: points immediately past the end of array
1091 *
1092 * We are freeing all blocks referred from that array (numbers are
1093 * stored as little-endian 32-bit) and updating @inode->i_blocks
1094 * appropriately.
1095 */
1096 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1097 {
1098 unsigned long block_to_free = 0, count = 0;
1099 unsigned long nr;
1100
1101 for ( ; p < q ; p++) {
1102 nr = le32_to_cpu(*p);
1103 if (nr) {
1104 *p = 0;
1105 /* accumulate blocks to free if they're contiguous */
1106 if (count == 0)
1107 goto free_this;
1108 else if (block_to_free == nr - count)
1109 count++;
1110 else {
1111 ext2_free_blocks (inode, block_to_free, count);
1112 mark_inode_dirty(inode);
1113 free_this:
1114 block_to_free = nr;
1115 count = 1;
1116 }
1117 }
1118 }
1119 if (count > 0) {
1120 ext2_free_blocks (inode, block_to_free, count);
1121 mark_inode_dirty(inode);
1122 }
1123 }
1124
1125 /**
1126 * ext2_free_branches - free an array of branches
1127 * @inode: inode we are dealing with
1128 * @p: array of block numbers
1129 * @q: pointer immediately past the end of array
1130 * @depth: depth of the branches to free
1131 *
1132 * We are freeing all blocks referred from these branches (numbers are
1133 * stored as little-endian 32-bit) and updating @inode->i_blocks
1134 * appropriately.
1135 */
1136 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1137 {
1138 struct buffer_head * bh;
1139 unsigned long nr;
1140
1141 if (depth--) {
1142 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1143 for ( ; p < q ; p++) {
1144 nr = le32_to_cpu(*p);
1145 if (!nr)
1146 continue;
1147 *p = 0;
1148 bh = sb_bread(inode->i_sb, nr);
1149 /*
1150 * A read failure? Report error and clear slot
1151 * (should be rare).
1152 */
1153 if (!bh) {
1154 ext2_error(inode->i_sb, "ext2_free_branches",
1155 "Read failure, inode=%ld, block=%ld",
1156 inode->i_ino, nr);
1157 continue;
1158 }
1159 ext2_free_branches(inode,
1160 (__le32*)bh->b_data,
1161 (__le32*)bh->b_data + addr_per_block,
1162 depth);
1163 bforget(bh);
1164 ext2_free_blocks(inode, nr, 1);
1165 mark_inode_dirty(inode);
1166 }
1167 } else
1168 ext2_free_data(inode, p, q);
1169 }
1170
1171 /* dax_sem must be held when calling this function */
1172 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1173 {
1174 __le32 *i_data = EXT2_I(inode)->i_data;
1175 struct ext2_inode_info *ei = EXT2_I(inode);
1176 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1177 int offsets[4];
1178 Indirect chain[4];
1179 Indirect *partial;
1180 __le32 nr = 0;
1181 int n;
1182 long iblock;
1183 unsigned blocksize;
1184 blocksize = inode->i_sb->s_blocksize;
1185 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1186
1187 #ifdef CONFIG_FS_DAX
1188 WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1189 #endif
1190
1191 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1192 if (n == 0)
1193 return;
1194
1195 /*
1196 * From here we block out all ext2_get_block() callers who want to
1197 * modify the block allocation tree.
1198 */
1199 mutex_lock(&ei->truncate_mutex);
1200
1201 if (n == 1) {
1202 ext2_free_data(inode, i_data+offsets[0],
1203 i_data + EXT2_NDIR_BLOCKS);
1204 goto do_indirects;
1205 }
1206
1207 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1208 /* Kill the top of shared branch (already detached) */
1209 if (nr) {
1210 if (partial == chain)
1211 mark_inode_dirty(inode);
1212 else
1213 mark_buffer_dirty_inode(partial->bh, inode);
1214 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1215 }
1216 /* Clear the ends of indirect blocks on the shared branch */
1217 while (partial > chain) {
1218 ext2_free_branches(inode,
1219 partial->p + 1,
1220 (__le32*)partial->bh->b_data+addr_per_block,
1221 (chain+n-1) - partial);
1222 mark_buffer_dirty_inode(partial->bh, inode);
1223 brelse (partial->bh);
1224 partial--;
1225 }
1226 do_indirects:
1227 /* Kill the remaining (whole) subtrees */
1228 switch (offsets[0]) {
1229 default:
1230 nr = i_data[EXT2_IND_BLOCK];
1231 if (nr) {
1232 i_data[EXT2_IND_BLOCK] = 0;
1233 mark_inode_dirty(inode);
1234 ext2_free_branches(inode, &nr, &nr+1, 1);
1235 }
1236 case EXT2_IND_BLOCK:
1237 nr = i_data[EXT2_DIND_BLOCK];
1238 if (nr) {
1239 i_data[EXT2_DIND_BLOCK] = 0;
1240 mark_inode_dirty(inode);
1241 ext2_free_branches(inode, &nr, &nr+1, 2);
1242 }
1243 case EXT2_DIND_BLOCK:
1244 nr = i_data[EXT2_TIND_BLOCK];
1245 if (nr) {
1246 i_data[EXT2_TIND_BLOCK] = 0;
1247 mark_inode_dirty(inode);
1248 ext2_free_branches(inode, &nr, &nr+1, 3);
1249 }
1250 case EXT2_TIND_BLOCK:
1251 ;
1252 }
1253
1254 ext2_discard_reservation(inode);
1255
1256 mutex_unlock(&ei->truncate_mutex);
1257 }
1258
1259 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1260 {
1261 /*
1262 * XXX: it seems like a bug here that we don't allow
1263 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1264 * review and fix this.
1265 *
1266 * Also would be nice to be able to handle IO errors and such,
1267 * but that's probably too much to ask.
1268 */
1269 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1270 S_ISLNK(inode->i_mode)))
1271 return;
1272 if (ext2_inode_is_fast_symlink(inode))
1273 return;
1274 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1275 return;
1276
1277 dax_sem_down_write(EXT2_I(inode));
1278 __ext2_truncate_blocks(inode, offset);
1279 dax_sem_up_write(EXT2_I(inode));
1280 }
1281
1282 static int ext2_setsize(struct inode *inode, loff_t newsize)
1283 {
1284 int error;
1285
1286 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1287 S_ISLNK(inode->i_mode)))
1288 return -EINVAL;
1289 if (ext2_inode_is_fast_symlink(inode))
1290 return -EINVAL;
1291 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1292 return -EPERM;
1293
1294 inode_dio_wait(inode);
1295
1296 if (IS_DAX(inode)) {
1297 error = iomap_zero_range(inode, newsize,
1298 PAGE_ALIGN(newsize) - newsize, NULL,
1299 &ext2_iomap_ops);
1300 } else if (test_opt(inode->i_sb, NOBH))
1301 error = nobh_truncate_page(inode->i_mapping,
1302 newsize, ext2_get_block);
1303 else
1304 error = block_truncate_page(inode->i_mapping,
1305 newsize, ext2_get_block);
1306 if (error)
1307 return error;
1308
1309 dax_sem_down_write(EXT2_I(inode));
1310 truncate_setsize(inode, newsize);
1311 __ext2_truncate_blocks(inode, newsize);
1312 dax_sem_up_write(EXT2_I(inode));
1313
1314 inode->i_mtime = inode->i_ctime = current_time(inode);
1315 if (inode_needs_sync(inode)) {
1316 sync_mapping_buffers(inode->i_mapping);
1317 sync_inode_metadata(inode, 1);
1318 } else {
1319 mark_inode_dirty(inode);
1320 }
1321
1322 return 0;
1323 }
1324
1325 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1326 struct buffer_head **p)
1327 {
1328 struct buffer_head * bh;
1329 unsigned long block_group;
1330 unsigned long block;
1331 unsigned long offset;
1332 struct ext2_group_desc * gdp;
1333
1334 *p = NULL;
1335 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1336 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1337 goto Einval;
1338
1339 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1340 gdp = ext2_get_group_desc(sb, block_group, NULL);
1341 if (!gdp)
1342 goto Egdp;
1343 /*
1344 * Figure out the offset within the block group inode table
1345 */
1346 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1347 block = le32_to_cpu(gdp->bg_inode_table) +
1348 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1349 if (!(bh = sb_bread(sb, block)))
1350 goto Eio;
1351
1352 *p = bh;
1353 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1354 return (struct ext2_inode *) (bh->b_data + offset);
1355
1356 Einval:
1357 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1358 (unsigned long) ino);
1359 return ERR_PTR(-EINVAL);
1360 Eio:
1361 ext2_error(sb, "ext2_get_inode",
1362 "unable to read inode block - inode=%lu, block=%lu",
1363 (unsigned long) ino, block);
1364 Egdp:
1365 return ERR_PTR(-EIO);
1366 }
1367
1368 void ext2_set_inode_flags(struct inode *inode)
1369 {
1370 unsigned int flags = EXT2_I(inode)->i_flags;
1371
1372 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1373 S_DIRSYNC | S_DAX);
1374 if (flags & EXT2_SYNC_FL)
1375 inode->i_flags |= S_SYNC;
1376 if (flags & EXT2_APPEND_FL)
1377 inode->i_flags |= S_APPEND;
1378 if (flags & EXT2_IMMUTABLE_FL)
1379 inode->i_flags |= S_IMMUTABLE;
1380 if (flags & EXT2_NOATIME_FL)
1381 inode->i_flags |= S_NOATIME;
1382 if (flags & EXT2_DIRSYNC_FL)
1383 inode->i_flags |= S_DIRSYNC;
1384 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1385 inode->i_flags |= S_DAX;
1386 }
1387
1388 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1389 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1390 {
1391 unsigned int flags = ei->vfs_inode.i_flags;
1392
1393 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1394 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1395 if (flags & S_SYNC)
1396 ei->i_flags |= EXT2_SYNC_FL;
1397 if (flags & S_APPEND)
1398 ei->i_flags |= EXT2_APPEND_FL;
1399 if (flags & S_IMMUTABLE)
1400 ei->i_flags |= EXT2_IMMUTABLE_FL;
1401 if (flags & S_NOATIME)
1402 ei->i_flags |= EXT2_NOATIME_FL;
1403 if (flags & S_DIRSYNC)
1404 ei->i_flags |= EXT2_DIRSYNC_FL;
1405 }
1406
1407 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1408 {
1409 struct ext2_inode_info *ei;
1410 struct buffer_head * bh;
1411 struct ext2_inode *raw_inode;
1412 struct inode *inode;
1413 long ret = -EIO;
1414 int n;
1415 uid_t i_uid;
1416 gid_t i_gid;
1417
1418 inode = iget_locked(sb, ino);
1419 if (!inode)
1420 return ERR_PTR(-ENOMEM);
1421 if (!(inode->i_state & I_NEW))
1422 return inode;
1423
1424 ei = EXT2_I(inode);
1425 ei->i_block_alloc_info = NULL;
1426
1427 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1428 if (IS_ERR(raw_inode)) {
1429 ret = PTR_ERR(raw_inode);
1430 goto bad_inode;
1431 }
1432
1433 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1434 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1435 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1436 if (!(test_opt (inode->i_sb, NO_UID32))) {
1437 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1438 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1439 }
1440 i_uid_write(inode, i_uid);
1441 i_gid_write(inode, i_gid);
1442 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1443 inode->i_size = le32_to_cpu(raw_inode->i_size);
1444 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1445 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1446 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1447 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1448 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1449 /* We now have enough fields to check if the inode was active or not.
1450 * This is needed because nfsd might try to access dead inodes
1451 * the test is that same one that e2fsck uses
1452 * NeilBrown 1999oct15
1453 */
1454 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1455 /* this inode is deleted */
1456 brelse (bh);
1457 ret = -ESTALE;
1458 goto bad_inode;
1459 }
1460 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1461 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1462 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1463 ei->i_frag_no = raw_inode->i_frag;
1464 ei->i_frag_size = raw_inode->i_fsize;
1465 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1466 ei->i_dir_acl = 0;
1467
1468 if (ei->i_file_acl &&
1469 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1470 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1471 ei->i_file_acl);
1472 brelse(bh);
1473 ret = -EFSCORRUPTED;
1474 goto bad_inode;
1475 }
1476
1477 if (S_ISREG(inode->i_mode))
1478 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1479 else
1480 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1481 ei->i_dtime = 0;
1482 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1483 ei->i_state = 0;
1484 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1485 ei->i_dir_start_lookup = 0;
1486
1487 /*
1488 * NOTE! The in-memory inode i_data array is in little-endian order
1489 * even on big-endian machines: we do NOT byteswap the block numbers!
1490 */
1491 for (n = 0; n < EXT2_N_BLOCKS; n++)
1492 ei->i_data[n] = raw_inode->i_block[n];
1493
1494 if (S_ISREG(inode->i_mode)) {
1495 inode->i_op = &ext2_file_inode_operations;
1496 if (test_opt(inode->i_sb, NOBH)) {
1497 inode->i_mapping->a_ops = &ext2_nobh_aops;
1498 inode->i_fop = &ext2_file_operations;
1499 } else {
1500 inode->i_mapping->a_ops = &ext2_aops;
1501 inode->i_fop = &ext2_file_operations;
1502 }
1503 } else if (S_ISDIR(inode->i_mode)) {
1504 inode->i_op = &ext2_dir_inode_operations;
1505 inode->i_fop = &ext2_dir_operations;
1506 if (test_opt(inode->i_sb, NOBH))
1507 inode->i_mapping->a_ops = &ext2_nobh_aops;
1508 else
1509 inode->i_mapping->a_ops = &ext2_aops;
1510 } else if (S_ISLNK(inode->i_mode)) {
1511 if (ext2_inode_is_fast_symlink(inode)) {
1512 inode->i_link = (char *)ei->i_data;
1513 inode->i_op = &ext2_fast_symlink_inode_operations;
1514 nd_terminate_link(ei->i_data, inode->i_size,
1515 sizeof(ei->i_data) - 1);
1516 } else {
1517 inode->i_op = &ext2_symlink_inode_operations;
1518 inode_nohighmem(inode);
1519 if (test_opt(inode->i_sb, NOBH))
1520 inode->i_mapping->a_ops = &ext2_nobh_aops;
1521 else
1522 inode->i_mapping->a_ops = &ext2_aops;
1523 }
1524 } else {
1525 inode->i_op = &ext2_special_inode_operations;
1526 if (raw_inode->i_block[0])
1527 init_special_inode(inode, inode->i_mode,
1528 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1529 else
1530 init_special_inode(inode, inode->i_mode,
1531 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1532 }
1533 brelse (bh);
1534 ext2_set_inode_flags(inode);
1535 unlock_new_inode(inode);
1536 return inode;
1537
1538 bad_inode:
1539 iget_failed(inode);
1540 return ERR_PTR(ret);
1541 }
1542
1543 static int __ext2_write_inode(struct inode *inode, int do_sync)
1544 {
1545 struct ext2_inode_info *ei = EXT2_I(inode);
1546 struct super_block *sb = inode->i_sb;
1547 ino_t ino = inode->i_ino;
1548 uid_t uid = i_uid_read(inode);
1549 gid_t gid = i_gid_read(inode);
1550 struct buffer_head * bh;
1551 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1552 int n;
1553 int err = 0;
1554
1555 if (IS_ERR(raw_inode))
1556 return -EIO;
1557
1558 /* For fields not not tracking in the in-memory inode,
1559 * initialise them to zero for new inodes. */
1560 if (ei->i_state & EXT2_STATE_NEW)
1561 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1562
1563 ext2_get_inode_flags(ei);
1564 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1565 if (!(test_opt(sb, NO_UID32))) {
1566 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1567 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1568 /*
1569 * Fix up interoperability with old kernels. Otherwise, old inodes get
1570 * re-used with the upper 16 bits of the uid/gid intact
1571 */
1572 if (!ei->i_dtime) {
1573 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1574 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1575 } else {
1576 raw_inode->i_uid_high = 0;
1577 raw_inode->i_gid_high = 0;
1578 }
1579 } else {
1580 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1581 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1582 raw_inode->i_uid_high = 0;
1583 raw_inode->i_gid_high = 0;
1584 }
1585 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1586 raw_inode->i_size = cpu_to_le32(inode->i_size);
1587 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1588 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1589 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1590
1591 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1592 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1593 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1594 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1595 raw_inode->i_frag = ei->i_frag_no;
1596 raw_inode->i_fsize = ei->i_frag_size;
1597 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1598 if (!S_ISREG(inode->i_mode))
1599 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1600 else {
1601 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1602 if (inode->i_size > 0x7fffffffULL) {
1603 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1604 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1605 EXT2_SB(sb)->s_es->s_rev_level ==
1606 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1607 /* If this is the first large file
1608 * created, add a flag to the superblock.
1609 */
1610 spin_lock(&EXT2_SB(sb)->s_lock);
1611 ext2_update_dynamic_rev(sb);
1612 EXT2_SET_RO_COMPAT_FEATURE(sb,
1613 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1614 spin_unlock(&EXT2_SB(sb)->s_lock);
1615 ext2_write_super(sb);
1616 }
1617 }
1618 }
1619
1620 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1621 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1622 if (old_valid_dev(inode->i_rdev)) {
1623 raw_inode->i_block[0] =
1624 cpu_to_le32(old_encode_dev(inode->i_rdev));
1625 raw_inode->i_block[1] = 0;
1626 } else {
1627 raw_inode->i_block[0] = 0;
1628 raw_inode->i_block[1] =
1629 cpu_to_le32(new_encode_dev(inode->i_rdev));
1630 raw_inode->i_block[2] = 0;
1631 }
1632 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1633 raw_inode->i_block[n] = ei->i_data[n];
1634 mark_buffer_dirty(bh);
1635 if (do_sync) {
1636 sync_dirty_buffer(bh);
1637 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1638 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1639 sb->s_id, (unsigned long) ino);
1640 err = -EIO;
1641 }
1642 }
1643 ei->i_state &= ~EXT2_STATE_NEW;
1644 brelse (bh);
1645 return err;
1646 }
1647
1648 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1649 {
1650 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1651 }
1652
1653 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1654 {
1655 struct inode *inode = d_inode(dentry);
1656 int error;
1657
1658 error = setattr_prepare(dentry, iattr);
1659 if (error)
1660 return error;
1661
1662 if (is_quota_modification(inode, iattr)) {
1663 error = dquot_initialize(inode);
1664 if (error)
1665 return error;
1666 }
1667 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1668 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1669 error = dquot_transfer(inode, iattr);
1670 if (error)
1671 return error;
1672 }
1673 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1674 error = ext2_setsize(inode, iattr->ia_size);
1675 if (error)
1676 return error;
1677 }
1678 setattr_copy(inode, iattr);
1679 if (iattr->ia_valid & ATTR_MODE)
1680 error = posix_acl_chmod(inode, inode->i_mode);
1681 mark_inode_dirty(inode);
1682
1683 return error;
1684 }