]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext2/inode.c
Merge tag 'gvt-fixes-2017-08-23' of https://github.com/01org/gvt-linux into drm-intel...
[mirror_ubuntu-artful-kernel.git] / fs / ext2 / inode.c
1 /*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/dax.h>
29 #include <linux/blkdev.h>
30 #include <linux/quotaops.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/iomap.h>
36 #include <linux/namei.h>
37 #include <linux/uio.h>
38 #include "ext2.h"
39 #include "acl.h"
40 #include "xattr.h"
41
42 static int __ext2_write_inode(struct inode *inode, int do_sync);
43
44 /*
45 * Test whether an inode is a fast symlink.
46 */
47 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48 {
49 int ea_blocks = EXT2_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
52 return (S_ISLNK(inode->i_mode) &&
53 inode->i_blocks - ea_blocks == 0);
54 }
55
56 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
57
58 static void ext2_write_failed(struct address_space *mapping, loff_t to)
59 {
60 struct inode *inode = mapping->host;
61
62 if (to > inode->i_size) {
63 truncate_pagecache(inode, inode->i_size);
64 ext2_truncate_blocks(inode, inode->i_size);
65 }
66 }
67
68 /*
69 * Called at the last iput() if i_nlink is zero.
70 */
71 void ext2_evict_inode(struct inode * inode)
72 {
73 struct ext2_block_alloc_info *rsv;
74 int want_delete = 0;
75
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 dquot_initialize(inode);
79 } else {
80 dquot_drop(inode);
81 }
82
83 truncate_inode_pages_final(&inode->i_data);
84
85 if (want_delete) {
86 sb_start_intwrite(inode->i_sb);
87 /* set dtime */
88 EXT2_I(inode)->i_dtime = get_seconds();
89 mark_inode_dirty(inode);
90 __ext2_write_inode(inode, inode_needs_sync(inode));
91 /* truncate to 0 */
92 inode->i_size = 0;
93 if (inode->i_blocks)
94 ext2_truncate_blocks(inode, 0);
95 ext2_xattr_delete_inode(inode);
96 }
97
98 invalidate_inode_buffers(inode);
99 clear_inode(inode);
100
101 ext2_discard_reservation(inode);
102 rsv = EXT2_I(inode)->i_block_alloc_info;
103 EXT2_I(inode)->i_block_alloc_info = NULL;
104 if (unlikely(rsv))
105 kfree(rsv);
106
107 if (want_delete) {
108 ext2_free_inode(inode);
109 sb_end_intwrite(inode->i_sb);
110 }
111 }
112
113 typedef struct {
114 __le32 *p;
115 __le32 key;
116 struct buffer_head *bh;
117 } Indirect;
118
119 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
120 {
121 p->key = *(p->p = v);
122 p->bh = bh;
123 }
124
125 static inline int verify_chain(Indirect *from, Indirect *to)
126 {
127 while (from <= to && from->key == *from->p)
128 from++;
129 return (from > to);
130 }
131
132 /**
133 * ext2_block_to_path - parse the block number into array of offsets
134 * @inode: inode in question (we are only interested in its superblock)
135 * @i_block: block number to be parsed
136 * @offsets: array to store the offsets in
137 * @boundary: set this non-zero if the referred-to block is likely to be
138 * followed (on disk) by an indirect block.
139 * To store the locations of file's data ext2 uses a data structure common
140 * for UNIX filesystems - tree of pointers anchored in the inode, with
141 * data blocks at leaves and indirect blocks in intermediate nodes.
142 * This function translates the block number into path in that tree -
143 * return value is the path length and @offsets[n] is the offset of
144 * pointer to (n+1)th node in the nth one. If @block is out of range
145 * (negative or too large) warning is printed and zero returned.
146 *
147 * Note: function doesn't find node addresses, so no IO is needed. All
148 * we need to know is the capacity of indirect blocks (taken from the
149 * inode->i_sb).
150 */
151
152 /*
153 * Portability note: the last comparison (check that we fit into triple
154 * indirect block) is spelled differently, because otherwise on an
155 * architecture with 32-bit longs and 8Kb pages we might get into trouble
156 * if our filesystem had 8Kb blocks. We might use long long, but that would
157 * kill us on x86. Oh, well, at least the sign propagation does not matter -
158 * i_block would have to be negative in the very beginning, so we would not
159 * get there at all.
160 */
161
162 static int ext2_block_to_path(struct inode *inode,
163 long i_block, int offsets[4], int *boundary)
164 {
165 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
166 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
167 const long direct_blocks = EXT2_NDIR_BLOCKS,
168 indirect_blocks = ptrs,
169 double_blocks = (1 << (ptrs_bits * 2));
170 int n = 0;
171 int final = 0;
172
173 if (i_block < 0) {
174 ext2_msg(inode->i_sb, KERN_WARNING,
175 "warning: %s: block < 0", __func__);
176 } else if (i_block < direct_blocks) {
177 offsets[n++] = i_block;
178 final = direct_blocks;
179 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
180 offsets[n++] = EXT2_IND_BLOCK;
181 offsets[n++] = i_block;
182 final = ptrs;
183 } else if ((i_block -= indirect_blocks) < double_blocks) {
184 offsets[n++] = EXT2_DIND_BLOCK;
185 offsets[n++] = i_block >> ptrs_bits;
186 offsets[n++] = i_block & (ptrs - 1);
187 final = ptrs;
188 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
189 offsets[n++] = EXT2_TIND_BLOCK;
190 offsets[n++] = i_block >> (ptrs_bits * 2);
191 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
192 offsets[n++] = i_block & (ptrs - 1);
193 final = ptrs;
194 } else {
195 ext2_msg(inode->i_sb, KERN_WARNING,
196 "warning: %s: block is too big", __func__);
197 }
198 if (boundary)
199 *boundary = final - 1 - (i_block & (ptrs - 1));
200
201 return n;
202 }
203
204 /**
205 * ext2_get_branch - read the chain of indirect blocks leading to data
206 * @inode: inode in question
207 * @depth: depth of the chain (1 - direct pointer, etc.)
208 * @offsets: offsets of pointers in inode/indirect blocks
209 * @chain: place to store the result
210 * @err: here we store the error value
211 *
212 * Function fills the array of triples <key, p, bh> and returns %NULL
213 * if everything went OK or the pointer to the last filled triple
214 * (incomplete one) otherwise. Upon the return chain[i].key contains
215 * the number of (i+1)-th block in the chain (as it is stored in memory,
216 * i.e. little-endian 32-bit), chain[i].p contains the address of that
217 * number (it points into struct inode for i==0 and into the bh->b_data
218 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
219 * block for i>0 and NULL for i==0. In other words, it holds the block
220 * numbers of the chain, addresses they were taken from (and where we can
221 * verify that chain did not change) and buffer_heads hosting these
222 * numbers.
223 *
224 * Function stops when it stumbles upon zero pointer (absent block)
225 * (pointer to last triple returned, *@err == 0)
226 * or when it gets an IO error reading an indirect block
227 * (ditto, *@err == -EIO)
228 * or when it notices that chain had been changed while it was reading
229 * (ditto, *@err == -EAGAIN)
230 * or when it reads all @depth-1 indirect blocks successfully and finds
231 * the whole chain, all way to the data (returns %NULL, *err == 0).
232 */
233 static Indirect *ext2_get_branch(struct inode *inode,
234 int depth,
235 int *offsets,
236 Indirect chain[4],
237 int *err)
238 {
239 struct super_block *sb = inode->i_sb;
240 Indirect *p = chain;
241 struct buffer_head *bh;
242
243 *err = 0;
244 /* i_data is not going away, no lock needed */
245 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
246 if (!p->key)
247 goto no_block;
248 while (--depth) {
249 bh = sb_bread(sb, le32_to_cpu(p->key));
250 if (!bh)
251 goto failure;
252 read_lock(&EXT2_I(inode)->i_meta_lock);
253 if (!verify_chain(chain, p))
254 goto changed;
255 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
256 read_unlock(&EXT2_I(inode)->i_meta_lock);
257 if (!p->key)
258 goto no_block;
259 }
260 return NULL;
261
262 changed:
263 read_unlock(&EXT2_I(inode)->i_meta_lock);
264 brelse(bh);
265 *err = -EAGAIN;
266 goto no_block;
267 failure:
268 *err = -EIO;
269 no_block:
270 return p;
271 }
272
273 /**
274 * ext2_find_near - find a place for allocation with sufficient locality
275 * @inode: owner
276 * @ind: descriptor of indirect block.
277 *
278 * This function returns the preferred place for block allocation.
279 * It is used when heuristic for sequential allocation fails.
280 * Rules are:
281 * + if there is a block to the left of our position - allocate near it.
282 * + if pointer will live in indirect block - allocate near that block.
283 * + if pointer will live in inode - allocate in the same cylinder group.
284 *
285 * In the latter case we colour the starting block by the callers PID to
286 * prevent it from clashing with concurrent allocations for a different inode
287 * in the same block group. The PID is used here so that functionally related
288 * files will be close-by on-disk.
289 *
290 * Caller must make sure that @ind is valid and will stay that way.
291 */
292
293 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
294 {
295 struct ext2_inode_info *ei = EXT2_I(inode);
296 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
297 __le32 *p;
298 ext2_fsblk_t bg_start;
299 ext2_fsblk_t colour;
300
301 /* Try to find previous block */
302 for (p = ind->p - 1; p >= start; p--)
303 if (*p)
304 return le32_to_cpu(*p);
305
306 /* No such thing, so let's try location of indirect block */
307 if (ind->bh)
308 return ind->bh->b_blocknr;
309
310 /*
311 * It is going to be referred from inode itself? OK, just put it into
312 * the same cylinder group then.
313 */
314 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
315 colour = (current->pid % 16) *
316 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
317 return bg_start + colour;
318 }
319
320 /**
321 * ext2_find_goal - find a preferred place for allocation.
322 * @inode: owner
323 * @block: block we want
324 * @partial: pointer to the last triple within a chain
325 *
326 * Returns preferred place for a block (the goal).
327 */
328
329 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
330 Indirect *partial)
331 {
332 struct ext2_block_alloc_info *block_i;
333
334 block_i = EXT2_I(inode)->i_block_alloc_info;
335
336 /*
337 * try the heuristic for sequential allocation,
338 * failing that at least try to get decent locality.
339 */
340 if (block_i && (block == block_i->last_alloc_logical_block + 1)
341 && (block_i->last_alloc_physical_block != 0)) {
342 return block_i->last_alloc_physical_block + 1;
343 }
344
345 return ext2_find_near(inode, partial);
346 }
347
348 /**
349 * ext2_blks_to_allocate: Look up the block map and count the number
350 * of direct blocks need to be allocated for the given branch.
351 *
352 * @branch: chain of indirect blocks
353 * @k: number of blocks need for indirect blocks
354 * @blks: number of data blocks to be mapped.
355 * @blocks_to_boundary: the offset in the indirect block
356 *
357 * return the total number of blocks to be allocate, including the
358 * direct and indirect blocks.
359 */
360 static int
361 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362 int blocks_to_boundary)
363 {
364 unsigned long count = 0;
365
366 /*
367 * Simple case, [t,d]Indirect block(s) has not allocated yet
368 * then it's clear blocks on that path have not allocated
369 */
370 if (k > 0) {
371 /* right now don't hanel cross boundary allocation */
372 if (blks < blocks_to_boundary + 1)
373 count += blks;
374 else
375 count += blocks_to_boundary + 1;
376 return count;
377 }
378
379 count++;
380 while (count < blks && count <= blocks_to_boundary
381 && le32_to_cpu(*(branch[0].p + count)) == 0) {
382 count++;
383 }
384 return count;
385 }
386
387 /**
388 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
389 * @indirect_blks: the number of blocks need to allocate for indirect
390 * blocks
391 *
392 * @new_blocks: on return it will store the new block numbers for
393 * the indirect blocks(if needed) and the first direct block,
394 * @blks: on return it will store the total number of allocated
395 * direct blocks
396 */
397 static int ext2_alloc_blocks(struct inode *inode,
398 ext2_fsblk_t goal, int indirect_blks, int blks,
399 ext2_fsblk_t new_blocks[4], int *err)
400 {
401 int target, i;
402 unsigned long count = 0;
403 int index = 0;
404 ext2_fsblk_t current_block = 0;
405 int ret = 0;
406
407 /*
408 * Here we try to allocate the requested multiple blocks at once,
409 * on a best-effort basis.
410 * To build a branch, we should allocate blocks for
411 * the indirect blocks(if not allocated yet), and at least
412 * the first direct block of this branch. That's the
413 * minimum number of blocks need to allocate(required)
414 */
415 target = blks + indirect_blks;
416
417 while (1) {
418 count = target;
419 /* allocating blocks for indirect blocks and direct blocks */
420 current_block = ext2_new_blocks(inode,goal,&count,err);
421 if (*err)
422 goto failed_out;
423
424 target -= count;
425 /* allocate blocks for indirect blocks */
426 while (index < indirect_blks && count) {
427 new_blocks[index++] = current_block++;
428 count--;
429 }
430
431 if (count > 0)
432 break;
433 }
434
435 /* save the new block number for the first direct block */
436 new_blocks[index] = current_block;
437
438 /* total number of blocks allocated for direct blocks */
439 ret = count;
440 *err = 0;
441 return ret;
442 failed_out:
443 for (i = 0; i <index; i++)
444 ext2_free_blocks(inode, new_blocks[i], 1);
445 if (index)
446 mark_inode_dirty(inode);
447 return ret;
448 }
449
450 /**
451 * ext2_alloc_branch - allocate and set up a chain of blocks.
452 * @inode: owner
453 * @num: depth of the chain (number of blocks to allocate)
454 * @offsets: offsets (in the blocks) to store the pointers to next.
455 * @branch: place to store the chain in.
456 *
457 * This function allocates @num blocks, zeroes out all but the last one,
458 * links them into chain and (if we are synchronous) writes them to disk.
459 * In other words, it prepares a branch that can be spliced onto the
460 * inode. It stores the information about that chain in the branch[], in
461 * the same format as ext2_get_branch() would do. We are calling it after
462 * we had read the existing part of chain and partial points to the last
463 * triple of that (one with zero ->key). Upon the exit we have the same
464 * picture as after the successful ext2_get_block(), except that in one
465 * place chain is disconnected - *branch->p is still zero (we did not
466 * set the last link), but branch->key contains the number that should
467 * be placed into *branch->p to fill that gap.
468 *
469 * If allocation fails we free all blocks we've allocated (and forget
470 * their buffer_heads) and return the error value the from failed
471 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
472 * as described above and return 0.
473 */
474
475 static int ext2_alloc_branch(struct inode *inode,
476 int indirect_blks, int *blks, ext2_fsblk_t goal,
477 int *offsets, Indirect *branch)
478 {
479 int blocksize = inode->i_sb->s_blocksize;
480 int i, n = 0;
481 int err = 0;
482 struct buffer_head *bh;
483 int num;
484 ext2_fsblk_t new_blocks[4];
485 ext2_fsblk_t current_block;
486
487 num = ext2_alloc_blocks(inode, goal, indirect_blks,
488 *blks, new_blocks, &err);
489 if (err)
490 return err;
491
492 branch[0].key = cpu_to_le32(new_blocks[0]);
493 /*
494 * metadata blocks and data blocks are allocated.
495 */
496 for (n = 1; n <= indirect_blks; n++) {
497 /*
498 * Get buffer_head for parent block, zero it out
499 * and set the pointer to new one, then send
500 * parent to disk.
501 */
502 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
503 if (unlikely(!bh)) {
504 err = -ENOMEM;
505 goto failed;
506 }
507 branch[n].bh = bh;
508 lock_buffer(bh);
509 memset(bh->b_data, 0, blocksize);
510 branch[n].p = (__le32 *) bh->b_data + offsets[n];
511 branch[n].key = cpu_to_le32(new_blocks[n]);
512 *branch[n].p = branch[n].key;
513 if ( n == indirect_blks) {
514 current_block = new_blocks[n];
515 /*
516 * End of chain, update the last new metablock of
517 * the chain to point to the new allocated
518 * data blocks numbers
519 */
520 for (i=1; i < num; i++)
521 *(branch[n].p + i) = cpu_to_le32(++current_block);
522 }
523 set_buffer_uptodate(bh);
524 unlock_buffer(bh);
525 mark_buffer_dirty_inode(bh, inode);
526 /* We used to sync bh here if IS_SYNC(inode).
527 * But we now rely upon generic_write_sync()
528 * and b_inode_buffers. But not for directories.
529 */
530 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
531 sync_dirty_buffer(bh);
532 }
533 *blks = num;
534 return err;
535
536 failed:
537 for (i = 1; i < n; i++)
538 bforget(branch[i].bh);
539 for (i = 0; i < indirect_blks; i++)
540 ext2_free_blocks(inode, new_blocks[i], 1);
541 ext2_free_blocks(inode, new_blocks[i], num);
542 return err;
543 }
544
545 /**
546 * ext2_splice_branch - splice the allocated branch onto inode.
547 * @inode: owner
548 * @block: (logical) number of block we are adding
549 * @where: location of missing link
550 * @num: number of indirect blocks we are adding
551 * @blks: number of direct blocks we are adding
552 *
553 * This function fills the missing link and does all housekeeping needed in
554 * inode (->i_blocks, etc.). In case of success we end up with the full
555 * chain to new block and return 0.
556 */
557 static void ext2_splice_branch(struct inode *inode,
558 long block, Indirect *where, int num, int blks)
559 {
560 int i;
561 struct ext2_block_alloc_info *block_i;
562 ext2_fsblk_t current_block;
563
564 block_i = EXT2_I(inode)->i_block_alloc_info;
565
566 /* XXX LOCKING probably should have i_meta_lock ?*/
567 /* That's it */
568
569 *where->p = where->key;
570
571 /*
572 * Update the host buffer_head or inode to point to more just allocated
573 * direct blocks blocks
574 */
575 if (num == 0 && blks > 1) {
576 current_block = le32_to_cpu(where->key) + 1;
577 for (i = 1; i < blks; i++)
578 *(where->p + i ) = cpu_to_le32(current_block++);
579 }
580
581 /*
582 * update the most recently allocated logical & physical block
583 * in i_block_alloc_info, to assist find the proper goal block for next
584 * allocation
585 */
586 if (block_i) {
587 block_i->last_alloc_logical_block = block + blks - 1;
588 block_i->last_alloc_physical_block =
589 le32_to_cpu(where[num].key) + blks - 1;
590 }
591
592 /* We are done with atomic stuff, now do the rest of housekeeping */
593
594 /* had we spliced it onto indirect block? */
595 if (where->bh)
596 mark_buffer_dirty_inode(where->bh, inode);
597
598 inode->i_ctime = current_time(inode);
599 mark_inode_dirty(inode);
600 }
601
602 /*
603 * Allocation strategy is simple: if we have to allocate something, we will
604 * have to go the whole way to leaf. So let's do it before attaching anything
605 * to tree, set linkage between the newborn blocks, write them if sync is
606 * required, recheck the path, free and repeat if check fails, otherwise
607 * set the last missing link (that will protect us from any truncate-generated
608 * removals - all blocks on the path are immune now) and possibly force the
609 * write on the parent block.
610 * That has a nice additional property: no special recovery from the failed
611 * allocations is needed - we simply release blocks and do not touch anything
612 * reachable from inode.
613 *
614 * `handle' can be NULL if create == 0.
615 *
616 * return > 0, # of blocks mapped or allocated.
617 * return = 0, if plain lookup failed.
618 * return < 0, error case.
619 */
620 static int ext2_get_blocks(struct inode *inode,
621 sector_t iblock, unsigned long maxblocks,
622 u32 *bno, bool *new, bool *boundary,
623 int create)
624 {
625 int err;
626 int offsets[4];
627 Indirect chain[4];
628 Indirect *partial;
629 ext2_fsblk_t goal;
630 int indirect_blks;
631 int blocks_to_boundary = 0;
632 int depth;
633 struct ext2_inode_info *ei = EXT2_I(inode);
634 int count = 0;
635 ext2_fsblk_t first_block = 0;
636
637 BUG_ON(maxblocks == 0);
638
639 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
640
641 if (depth == 0)
642 return -EIO;
643
644 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
645 /* Simplest case - block found, no allocation needed */
646 if (!partial) {
647 first_block = le32_to_cpu(chain[depth - 1].key);
648 count++;
649 /*map more blocks*/
650 while (count < maxblocks && count <= blocks_to_boundary) {
651 ext2_fsblk_t blk;
652
653 if (!verify_chain(chain, chain + depth - 1)) {
654 /*
655 * Indirect block might be removed by
656 * truncate while we were reading it.
657 * Handling of that case: forget what we've
658 * got now, go to reread.
659 */
660 err = -EAGAIN;
661 count = 0;
662 partial = chain + depth - 1;
663 break;
664 }
665 blk = le32_to_cpu(*(chain[depth-1].p + count));
666 if (blk == first_block + count)
667 count++;
668 else
669 break;
670 }
671 if (err != -EAGAIN)
672 goto got_it;
673 }
674
675 /* Next simple case - plain lookup or failed read of indirect block */
676 if (!create || err == -EIO)
677 goto cleanup;
678
679 mutex_lock(&ei->truncate_mutex);
680 /*
681 * If the indirect block is missing while we are reading
682 * the chain(ext2_get_branch() returns -EAGAIN err), or
683 * if the chain has been changed after we grab the semaphore,
684 * (either because another process truncated this branch, or
685 * another get_block allocated this branch) re-grab the chain to see if
686 * the request block has been allocated or not.
687 *
688 * Since we already block the truncate/other get_block
689 * at this point, we will have the current copy of the chain when we
690 * splice the branch into the tree.
691 */
692 if (err == -EAGAIN || !verify_chain(chain, partial)) {
693 while (partial > chain) {
694 brelse(partial->bh);
695 partial--;
696 }
697 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
698 if (!partial) {
699 count++;
700 mutex_unlock(&ei->truncate_mutex);
701 if (err)
702 goto cleanup;
703 goto got_it;
704 }
705 }
706
707 /*
708 * Okay, we need to do block allocation. Lazily initialize the block
709 * allocation info here if necessary
710 */
711 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
712 ext2_init_block_alloc_info(inode);
713
714 goal = ext2_find_goal(inode, iblock, partial);
715
716 /* the number of blocks need to allocate for [d,t]indirect blocks */
717 indirect_blks = (chain + depth) - partial - 1;
718 /*
719 * Next look up the indirect map to count the totoal number of
720 * direct blocks to allocate for this branch.
721 */
722 count = ext2_blks_to_allocate(partial, indirect_blks,
723 maxblocks, blocks_to_boundary);
724 /*
725 * XXX ???? Block out ext2_truncate while we alter the tree
726 */
727 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
728 offsets + (partial - chain), partial);
729
730 if (err) {
731 mutex_unlock(&ei->truncate_mutex);
732 goto cleanup;
733 }
734
735 if (IS_DAX(inode)) {
736 /*
737 * We must unmap blocks before zeroing so that writeback cannot
738 * overwrite zeros with stale data from block device page cache.
739 */
740 clean_bdev_aliases(inode->i_sb->s_bdev,
741 le32_to_cpu(chain[depth-1].key),
742 count);
743 /*
744 * block must be initialised before we put it in the tree
745 * so that it's not found by another thread before it's
746 * initialised
747 */
748 err = sb_issue_zeroout(inode->i_sb,
749 le32_to_cpu(chain[depth-1].key), count,
750 GFP_NOFS);
751 if (err) {
752 mutex_unlock(&ei->truncate_mutex);
753 goto cleanup;
754 }
755 }
756 *new = true;
757
758 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
759 mutex_unlock(&ei->truncate_mutex);
760 got_it:
761 if (count > blocks_to_boundary)
762 *boundary = true;
763 err = count;
764 /* Clean up and exit */
765 partial = chain + depth - 1; /* the whole chain */
766 cleanup:
767 while (partial > chain) {
768 brelse(partial->bh);
769 partial--;
770 }
771 if (err > 0)
772 *bno = le32_to_cpu(chain[depth-1].key);
773 return err;
774 }
775
776 int ext2_get_block(struct inode *inode, sector_t iblock,
777 struct buffer_head *bh_result, int create)
778 {
779 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
780 bool new = false, boundary = false;
781 u32 bno;
782 int ret;
783
784 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
785 create);
786 if (ret <= 0)
787 return ret;
788
789 map_bh(bh_result, inode->i_sb, bno);
790 bh_result->b_size = (ret << inode->i_blkbits);
791 if (new)
792 set_buffer_new(bh_result);
793 if (boundary)
794 set_buffer_boundary(bh_result);
795 return 0;
796
797 }
798
799 #ifdef CONFIG_FS_DAX
800 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
801 unsigned flags, struct iomap *iomap)
802 {
803 struct block_device *bdev;
804 unsigned int blkbits = inode->i_blkbits;
805 unsigned long first_block = offset >> blkbits;
806 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
807 bool new = false, boundary = false;
808 u32 bno;
809 int ret;
810
811 ret = ext2_get_blocks(inode, first_block, max_blocks,
812 &bno, &new, &boundary, flags & IOMAP_WRITE);
813 if (ret < 0)
814 return ret;
815
816 iomap->flags = 0;
817 bdev = inode->i_sb->s_bdev;
818 iomap->bdev = bdev;
819 iomap->offset = (u64)first_block << blkbits;
820 if (blk_queue_dax(bdev->bd_queue))
821 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
822 else
823 iomap->dax_dev = NULL;
824
825 if (ret == 0) {
826 iomap->type = IOMAP_HOLE;
827 iomap->blkno = IOMAP_NULL_BLOCK;
828 iomap->length = 1 << blkbits;
829 } else {
830 iomap->type = IOMAP_MAPPED;
831 iomap->blkno = (sector_t)bno << (blkbits - 9);
832 iomap->length = (u64)ret << blkbits;
833 iomap->flags |= IOMAP_F_MERGED;
834 }
835
836 if (new)
837 iomap->flags |= IOMAP_F_NEW;
838 return 0;
839 }
840
841 static int
842 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
843 ssize_t written, unsigned flags, struct iomap *iomap)
844 {
845 fs_put_dax(iomap->dax_dev);
846 if (iomap->type == IOMAP_MAPPED &&
847 written < length &&
848 (flags & IOMAP_WRITE))
849 ext2_write_failed(inode->i_mapping, offset + length);
850 return 0;
851 }
852
853 const struct iomap_ops ext2_iomap_ops = {
854 .iomap_begin = ext2_iomap_begin,
855 .iomap_end = ext2_iomap_end,
856 };
857 #else
858 /* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
859 const struct iomap_ops ext2_iomap_ops;
860 #endif /* CONFIG_FS_DAX */
861
862 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
863 u64 start, u64 len)
864 {
865 return generic_block_fiemap(inode, fieinfo, start, len,
866 ext2_get_block);
867 }
868
869 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
870 {
871 return block_write_full_page(page, ext2_get_block, wbc);
872 }
873
874 static int ext2_readpage(struct file *file, struct page *page)
875 {
876 return mpage_readpage(page, ext2_get_block);
877 }
878
879 static int
880 ext2_readpages(struct file *file, struct address_space *mapping,
881 struct list_head *pages, unsigned nr_pages)
882 {
883 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
884 }
885
886 static int
887 ext2_write_begin(struct file *file, struct address_space *mapping,
888 loff_t pos, unsigned len, unsigned flags,
889 struct page **pagep, void **fsdata)
890 {
891 int ret;
892
893 ret = block_write_begin(mapping, pos, len, flags, pagep,
894 ext2_get_block);
895 if (ret < 0)
896 ext2_write_failed(mapping, pos + len);
897 return ret;
898 }
899
900 static int ext2_write_end(struct file *file, struct address_space *mapping,
901 loff_t pos, unsigned len, unsigned copied,
902 struct page *page, void *fsdata)
903 {
904 int ret;
905
906 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
907 if (ret < len)
908 ext2_write_failed(mapping, pos + len);
909 return ret;
910 }
911
912 static int
913 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
914 loff_t pos, unsigned len, unsigned flags,
915 struct page **pagep, void **fsdata)
916 {
917 int ret;
918
919 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
920 ext2_get_block);
921 if (ret < 0)
922 ext2_write_failed(mapping, pos + len);
923 return ret;
924 }
925
926 static int ext2_nobh_writepage(struct page *page,
927 struct writeback_control *wbc)
928 {
929 return nobh_writepage(page, ext2_get_block, wbc);
930 }
931
932 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
933 {
934 return generic_block_bmap(mapping,block,ext2_get_block);
935 }
936
937 static ssize_t
938 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
939 {
940 struct file *file = iocb->ki_filp;
941 struct address_space *mapping = file->f_mapping;
942 struct inode *inode = mapping->host;
943 size_t count = iov_iter_count(iter);
944 loff_t offset = iocb->ki_pos;
945 ssize_t ret;
946
947 if (WARN_ON_ONCE(IS_DAX(inode)))
948 return -EIO;
949
950 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
951 if (ret < 0 && iov_iter_rw(iter) == WRITE)
952 ext2_write_failed(mapping, offset + count);
953 return ret;
954 }
955
956 static int
957 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
958 {
959 #ifdef CONFIG_FS_DAX
960 if (dax_mapping(mapping)) {
961 return dax_writeback_mapping_range(mapping,
962 mapping->host->i_sb->s_bdev,
963 wbc);
964 }
965 #endif
966
967 return mpage_writepages(mapping, wbc, ext2_get_block);
968 }
969
970 const struct address_space_operations ext2_aops = {
971 .readpage = ext2_readpage,
972 .readpages = ext2_readpages,
973 .writepage = ext2_writepage,
974 .write_begin = ext2_write_begin,
975 .write_end = ext2_write_end,
976 .bmap = ext2_bmap,
977 .direct_IO = ext2_direct_IO,
978 .writepages = ext2_writepages,
979 .migratepage = buffer_migrate_page,
980 .is_partially_uptodate = block_is_partially_uptodate,
981 .error_remove_page = generic_error_remove_page,
982 };
983
984 const struct address_space_operations ext2_nobh_aops = {
985 .readpage = ext2_readpage,
986 .readpages = ext2_readpages,
987 .writepage = ext2_nobh_writepage,
988 .write_begin = ext2_nobh_write_begin,
989 .write_end = nobh_write_end,
990 .bmap = ext2_bmap,
991 .direct_IO = ext2_direct_IO,
992 .writepages = ext2_writepages,
993 .migratepage = buffer_migrate_page,
994 .error_remove_page = generic_error_remove_page,
995 };
996
997 /*
998 * Probably it should be a library function... search for first non-zero word
999 * or memcmp with zero_page, whatever is better for particular architecture.
1000 * Linus?
1001 */
1002 static inline int all_zeroes(__le32 *p, __le32 *q)
1003 {
1004 while (p < q)
1005 if (*p++)
1006 return 0;
1007 return 1;
1008 }
1009
1010 /**
1011 * ext2_find_shared - find the indirect blocks for partial truncation.
1012 * @inode: inode in question
1013 * @depth: depth of the affected branch
1014 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1015 * @chain: place to store the pointers to partial indirect blocks
1016 * @top: place to the (detached) top of branch
1017 *
1018 * This is a helper function used by ext2_truncate().
1019 *
1020 * When we do truncate() we may have to clean the ends of several indirect
1021 * blocks but leave the blocks themselves alive. Block is partially
1022 * truncated if some data below the new i_size is referred from it (and
1023 * it is on the path to the first completely truncated data block, indeed).
1024 * We have to free the top of that path along with everything to the right
1025 * of the path. Since no allocation past the truncation point is possible
1026 * until ext2_truncate() finishes, we may safely do the latter, but top
1027 * of branch may require special attention - pageout below the truncation
1028 * point might try to populate it.
1029 *
1030 * We atomically detach the top of branch from the tree, store the block
1031 * number of its root in *@top, pointers to buffer_heads of partially
1032 * truncated blocks - in @chain[].bh and pointers to their last elements
1033 * that should not be removed - in @chain[].p. Return value is the pointer
1034 * to last filled element of @chain.
1035 *
1036 * The work left to caller to do the actual freeing of subtrees:
1037 * a) free the subtree starting from *@top
1038 * b) free the subtrees whose roots are stored in
1039 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1040 * c) free the subtrees growing from the inode past the @chain[0].p
1041 * (no partially truncated stuff there).
1042 */
1043
1044 static Indirect *ext2_find_shared(struct inode *inode,
1045 int depth,
1046 int offsets[4],
1047 Indirect chain[4],
1048 __le32 *top)
1049 {
1050 Indirect *partial, *p;
1051 int k, err;
1052
1053 *top = 0;
1054 for (k = depth; k > 1 && !offsets[k-1]; k--)
1055 ;
1056 partial = ext2_get_branch(inode, k, offsets, chain, &err);
1057 if (!partial)
1058 partial = chain + k-1;
1059 /*
1060 * If the branch acquired continuation since we've looked at it -
1061 * fine, it should all survive and (new) top doesn't belong to us.
1062 */
1063 write_lock(&EXT2_I(inode)->i_meta_lock);
1064 if (!partial->key && *partial->p) {
1065 write_unlock(&EXT2_I(inode)->i_meta_lock);
1066 goto no_top;
1067 }
1068 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1069 ;
1070 /*
1071 * OK, we've found the last block that must survive. The rest of our
1072 * branch should be detached before unlocking. However, if that rest
1073 * of branch is all ours and does not grow immediately from the inode
1074 * it's easier to cheat and just decrement partial->p.
1075 */
1076 if (p == chain + k - 1 && p > chain) {
1077 p->p--;
1078 } else {
1079 *top = *p->p;
1080 *p->p = 0;
1081 }
1082 write_unlock(&EXT2_I(inode)->i_meta_lock);
1083
1084 while(partial > p)
1085 {
1086 brelse(partial->bh);
1087 partial--;
1088 }
1089 no_top:
1090 return partial;
1091 }
1092
1093 /**
1094 * ext2_free_data - free a list of data blocks
1095 * @inode: inode we are dealing with
1096 * @p: array of block numbers
1097 * @q: points immediately past the end of array
1098 *
1099 * We are freeing all blocks referred from that array (numbers are
1100 * stored as little-endian 32-bit) and updating @inode->i_blocks
1101 * appropriately.
1102 */
1103 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1104 {
1105 unsigned long block_to_free = 0, count = 0;
1106 unsigned long nr;
1107
1108 for ( ; p < q ; p++) {
1109 nr = le32_to_cpu(*p);
1110 if (nr) {
1111 *p = 0;
1112 /* accumulate blocks to free if they're contiguous */
1113 if (count == 0)
1114 goto free_this;
1115 else if (block_to_free == nr - count)
1116 count++;
1117 else {
1118 ext2_free_blocks (inode, block_to_free, count);
1119 mark_inode_dirty(inode);
1120 free_this:
1121 block_to_free = nr;
1122 count = 1;
1123 }
1124 }
1125 }
1126 if (count > 0) {
1127 ext2_free_blocks (inode, block_to_free, count);
1128 mark_inode_dirty(inode);
1129 }
1130 }
1131
1132 /**
1133 * ext2_free_branches - free an array of branches
1134 * @inode: inode we are dealing with
1135 * @p: array of block numbers
1136 * @q: pointer immediately past the end of array
1137 * @depth: depth of the branches to free
1138 *
1139 * We are freeing all blocks referred from these branches (numbers are
1140 * stored as little-endian 32-bit) and updating @inode->i_blocks
1141 * appropriately.
1142 */
1143 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1144 {
1145 struct buffer_head * bh;
1146 unsigned long nr;
1147
1148 if (depth--) {
1149 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1150 for ( ; p < q ; p++) {
1151 nr = le32_to_cpu(*p);
1152 if (!nr)
1153 continue;
1154 *p = 0;
1155 bh = sb_bread(inode->i_sb, nr);
1156 /*
1157 * A read failure? Report error and clear slot
1158 * (should be rare).
1159 */
1160 if (!bh) {
1161 ext2_error(inode->i_sb, "ext2_free_branches",
1162 "Read failure, inode=%ld, block=%ld",
1163 inode->i_ino, nr);
1164 continue;
1165 }
1166 ext2_free_branches(inode,
1167 (__le32*)bh->b_data,
1168 (__le32*)bh->b_data + addr_per_block,
1169 depth);
1170 bforget(bh);
1171 ext2_free_blocks(inode, nr, 1);
1172 mark_inode_dirty(inode);
1173 }
1174 } else
1175 ext2_free_data(inode, p, q);
1176 }
1177
1178 /* dax_sem must be held when calling this function */
1179 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1180 {
1181 __le32 *i_data = EXT2_I(inode)->i_data;
1182 struct ext2_inode_info *ei = EXT2_I(inode);
1183 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1184 int offsets[4];
1185 Indirect chain[4];
1186 Indirect *partial;
1187 __le32 nr = 0;
1188 int n;
1189 long iblock;
1190 unsigned blocksize;
1191 blocksize = inode->i_sb->s_blocksize;
1192 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1193
1194 #ifdef CONFIG_FS_DAX
1195 WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1196 #endif
1197
1198 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1199 if (n == 0)
1200 return;
1201
1202 /*
1203 * From here we block out all ext2_get_block() callers who want to
1204 * modify the block allocation tree.
1205 */
1206 mutex_lock(&ei->truncate_mutex);
1207
1208 if (n == 1) {
1209 ext2_free_data(inode, i_data+offsets[0],
1210 i_data + EXT2_NDIR_BLOCKS);
1211 goto do_indirects;
1212 }
1213
1214 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1215 /* Kill the top of shared branch (already detached) */
1216 if (nr) {
1217 if (partial == chain)
1218 mark_inode_dirty(inode);
1219 else
1220 mark_buffer_dirty_inode(partial->bh, inode);
1221 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1222 }
1223 /* Clear the ends of indirect blocks on the shared branch */
1224 while (partial > chain) {
1225 ext2_free_branches(inode,
1226 partial->p + 1,
1227 (__le32*)partial->bh->b_data+addr_per_block,
1228 (chain+n-1) - partial);
1229 mark_buffer_dirty_inode(partial->bh, inode);
1230 brelse (partial->bh);
1231 partial--;
1232 }
1233 do_indirects:
1234 /* Kill the remaining (whole) subtrees */
1235 switch (offsets[0]) {
1236 default:
1237 nr = i_data[EXT2_IND_BLOCK];
1238 if (nr) {
1239 i_data[EXT2_IND_BLOCK] = 0;
1240 mark_inode_dirty(inode);
1241 ext2_free_branches(inode, &nr, &nr+1, 1);
1242 }
1243 case EXT2_IND_BLOCK:
1244 nr = i_data[EXT2_DIND_BLOCK];
1245 if (nr) {
1246 i_data[EXT2_DIND_BLOCK] = 0;
1247 mark_inode_dirty(inode);
1248 ext2_free_branches(inode, &nr, &nr+1, 2);
1249 }
1250 case EXT2_DIND_BLOCK:
1251 nr = i_data[EXT2_TIND_BLOCK];
1252 if (nr) {
1253 i_data[EXT2_TIND_BLOCK] = 0;
1254 mark_inode_dirty(inode);
1255 ext2_free_branches(inode, &nr, &nr+1, 3);
1256 }
1257 case EXT2_TIND_BLOCK:
1258 ;
1259 }
1260
1261 ext2_discard_reservation(inode);
1262
1263 mutex_unlock(&ei->truncate_mutex);
1264 }
1265
1266 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1267 {
1268 /*
1269 * XXX: it seems like a bug here that we don't allow
1270 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1271 * review and fix this.
1272 *
1273 * Also would be nice to be able to handle IO errors and such,
1274 * but that's probably too much to ask.
1275 */
1276 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1277 S_ISLNK(inode->i_mode)))
1278 return;
1279 if (ext2_inode_is_fast_symlink(inode))
1280 return;
1281 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1282 return;
1283
1284 dax_sem_down_write(EXT2_I(inode));
1285 __ext2_truncate_blocks(inode, offset);
1286 dax_sem_up_write(EXT2_I(inode));
1287 }
1288
1289 static int ext2_setsize(struct inode *inode, loff_t newsize)
1290 {
1291 int error;
1292
1293 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1294 S_ISLNK(inode->i_mode)))
1295 return -EINVAL;
1296 if (ext2_inode_is_fast_symlink(inode))
1297 return -EINVAL;
1298 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1299 return -EPERM;
1300
1301 inode_dio_wait(inode);
1302
1303 if (IS_DAX(inode)) {
1304 error = iomap_zero_range(inode, newsize,
1305 PAGE_ALIGN(newsize) - newsize, NULL,
1306 &ext2_iomap_ops);
1307 } else if (test_opt(inode->i_sb, NOBH))
1308 error = nobh_truncate_page(inode->i_mapping,
1309 newsize, ext2_get_block);
1310 else
1311 error = block_truncate_page(inode->i_mapping,
1312 newsize, ext2_get_block);
1313 if (error)
1314 return error;
1315
1316 dax_sem_down_write(EXT2_I(inode));
1317 truncate_setsize(inode, newsize);
1318 __ext2_truncate_blocks(inode, newsize);
1319 dax_sem_up_write(EXT2_I(inode));
1320
1321 inode->i_mtime = inode->i_ctime = current_time(inode);
1322 if (inode_needs_sync(inode)) {
1323 sync_mapping_buffers(inode->i_mapping);
1324 sync_inode_metadata(inode, 1);
1325 } else {
1326 mark_inode_dirty(inode);
1327 }
1328
1329 return 0;
1330 }
1331
1332 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1333 struct buffer_head **p)
1334 {
1335 struct buffer_head * bh;
1336 unsigned long block_group;
1337 unsigned long block;
1338 unsigned long offset;
1339 struct ext2_group_desc * gdp;
1340
1341 *p = NULL;
1342 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1343 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1344 goto Einval;
1345
1346 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1347 gdp = ext2_get_group_desc(sb, block_group, NULL);
1348 if (!gdp)
1349 goto Egdp;
1350 /*
1351 * Figure out the offset within the block group inode table
1352 */
1353 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1354 block = le32_to_cpu(gdp->bg_inode_table) +
1355 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1356 if (!(bh = sb_bread(sb, block)))
1357 goto Eio;
1358
1359 *p = bh;
1360 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1361 return (struct ext2_inode *) (bh->b_data + offset);
1362
1363 Einval:
1364 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1365 (unsigned long) ino);
1366 return ERR_PTR(-EINVAL);
1367 Eio:
1368 ext2_error(sb, "ext2_get_inode",
1369 "unable to read inode block - inode=%lu, block=%lu",
1370 (unsigned long) ino, block);
1371 Egdp:
1372 return ERR_PTR(-EIO);
1373 }
1374
1375 void ext2_set_inode_flags(struct inode *inode)
1376 {
1377 unsigned int flags = EXT2_I(inode)->i_flags;
1378
1379 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1380 S_DIRSYNC | S_DAX);
1381 if (flags & EXT2_SYNC_FL)
1382 inode->i_flags |= S_SYNC;
1383 if (flags & EXT2_APPEND_FL)
1384 inode->i_flags |= S_APPEND;
1385 if (flags & EXT2_IMMUTABLE_FL)
1386 inode->i_flags |= S_IMMUTABLE;
1387 if (flags & EXT2_NOATIME_FL)
1388 inode->i_flags |= S_NOATIME;
1389 if (flags & EXT2_DIRSYNC_FL)
1390 inode->i_flags |= S_DIRSYNC;
1391 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1392 inode->i_flags |= S_DAX;
1393 }
1394
1395 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1396 {
1397 struct ext2_inode_info *ei;
1398 struct buffer_head * bh;
1399 struct ext2_inode *raw_inode;
1400 struct inode *inode;
1401 long ret = -EIO;
1402 int n;
1403 uid_t i_uid;
1404 gid_t i_gid;
1405
1406 inode = iget_locked(sb, ino);
1407 if (!inode)
1408 return ERR_PTR(-ENOMEM);
1409 if (!(inode->i_state & I_NEW))
1410 return inode;
1411
1412 ei = EXT2_I(inode);
1413 ei->i_block_alloc_info = NULL;
1414
1415 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1416 if (IS_ERR(raw_inode)) {
1417 ret = PTR_ERR(raw_inode);
1418 goto bad_inode;
1419 }
1420
1421 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1422 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1423 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1424 if (!(test_opt (inode->i_sb, NO_UID32))) {
1425 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1426 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1427 }
1428 i_uid_write(inode, i_uid);
1429 i_gid_write(inode, i_gid);
1430 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1431 inode->i_size = le32_to_cpu(raw_inode->i_size);
1432 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1433 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1434 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1435 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1436 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1437 /* We now have enough fields to check if the inode was active or not.
1438 * This is needed because nfsd might try to access dead inodes
1439 * the test is that same one that e2fsck uses
1440 * NeilBrown 1999oct15
1441 */
1442 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1443 /* this inode is deleted */
1444 brelse (bh);
1445 ret = -ESTALE;
1446 goto bad_inode;
1447 }
1448 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1449 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1450 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1451 ei->i_frag_no = raw_inode->i_frag;
1452 ei->i_frag_size = raw_inode->i_fsize;
1453 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1454 ei->i_dir_acl = 0;
1455
1456 if (ei->i_file_acl &&
1457 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1458 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1459 ei->i_file_acl);
1460 brelse(bh);
1461 ret = -EFSCORRUPTED;
1462 goto bad_inode;
1463 }
1464
1465 if (S_ISREG(inode->i_mode))
1466 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1467 else
1468 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1469 if (i_size_read(inode) < 0) {
1470 ret = -EFSCORRUPTED;
1471 goto bad_inode;
1472 }
1473 ei->i_dtime = 0;
1474 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1475 ei->i_state = 0;
1476 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1477 ei->i_dir_start_lookup = 0;
1478
1479 /*
1480 * NOTE! The in-memory inode i_data array is in little-endian order
1481 * even on big-endian machines: we do NOT byteswap the block numbers!
1482 */
1483 for (n = 0; n < EXT2_N_BLOCKS; n++)
1484 ei->i_data[n] = raw_inode->i_block[n];
1485
1486 if (S_ISREG(inode->i_mode)) {
1487 inode->i_op = &ext2_file_inode_operations;
1488 if (test_opt(inode->i_sb, NOBH)) {
1489 inode->i_mapping->a_ops = &ext2_nobh_aops;
1490 inode->i_fop = &ext2_file_operations;
1491 } else {
1492 inode->i_mapping->a_ops = &ext2_aops;
1493 inode->i_fop = &ext2_file_operations;
1494 }
1495 } else if (S_ISDIR(inode->i_mode)) {
1496 inode->i_op = &ext2_dir_inode_operations;
1497 inode->i_fop = &ext2_dir_operations;
1498 if (test_opt(inode->i_sb, NOBH))
1499 inode->i_mapping->a_ops = &ext2_nobh_aops;
1500 else
1501 inode->i_mapping->a_ops = &ext2_aops;
1502 } else if (S_ISLNK(inode->i_mode)) {
1503 if (ext2_inode_is_fast_symlink(inode)) {
1504 inode->i_link = (char *)ei->i_data;
1505 inode->i_op = &ext2_fast_symlink_inode_operations;
1506 nd_terminate_link(ei->i_data, inode->i_size,
1507 sizeof(ei->i_data) - 1);
1508 } else {
1509 inode->i_op = &ext2_symlink_inode_operations;
1510 inode_nohighmem(inode);
1511 if (test_opt(inode->i_sb, NOBH))
1512 inode->i_mapping->a_ops = &ext2_nobh_aops;
1513 else
1514 inode->i_mapping->a_ops = &ext2_aops;
1515 }
1516 } else {
1517 inode->i_op = &ext2_special_inode_operations;
1518 if (raw_inode->i_block[0])
1519 init_special_inode(inode, inode->i_mode,
1520 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1521 else
1522 init_special_inode(inode, inode->i_mode,
1523 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1524 }
1525 brelse (bh);
1526 ext2_set_inode_flags(inode);
1527 unlock_new_inode(inode);
1528 return inode;
1529
1530 bad_inode:
1531 iget_failed(inode);
1532 return ERR_PTR(ret);
1533 }
1534
1535 static int __ext2_write_inode(struct inode *inode, int do_sync)
1536 {
1537 struct ext2_inode_info *ei = EXT2_I(inode);
1538 struct super_block *sb = inode->i_sb;
1539 ino_t ino = inode->i_ino;
1540 uid_t uid = i_uid_read(inode);
1541 gid_t gid = i_gid_read(inode);
1542 struct buffer_head * bh;
1543 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1544 int n;
1545 int err = 0;
1546
1547 if (IS_ERR(raw_inode))
1548 return -EIO;
1549
1550 /* For fields not not tracking in the in-memory inode,
1551 * initialise them to zero for new inodes. */
1552 if (ei->i_state & EXT2_STATE_NEW)
1553 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1554
1555 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1556 if (!(test_opt(sb, NO_UID32))) {
1557 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1558 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1559 /*
1560 * Fix up interoperability with old kernels. Otherwise, old inodes get
1561 * re-used with the upper 16 bits of the uid/gid intact
1562 */
1563 if (!ei->i_dtime) {
1564 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1565 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1566 } else {
1567 raw_inode->i_uid_high = 0;
1568 raw_inode->i_gid_high = 0;
1569 }
1570 } else {
1571 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1572 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1573 raw_inode->i_uid_high = 0;
1574 raw_inode->i_gid_high = 0;
1575 }
1576 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1577 raw_inode->i_size = cpu_to_le32(inode->i_size);
1578 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1579 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1580 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1581
1582 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1583 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1584 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1585 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1586 raw_inode->i_frag = ei->i_frag_no;
1587 raw_inode->i_fsize = ei->i_frag_size;
1588 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1589 if (!S_ISREG(inode->i_mode))
1590 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1591 else {
1592 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1593 if (inode->i_size > 0x7fffffffULL) {
1594 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1595 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1596 EXT2_SB(sb)->s_es->s_rev_level ==
1597 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1598 /* If this is the first large file
1599 * created, add a flag to the superblock.
1600 */
1601 spin_lock(&EXT2_SB(sb)->s_lock);
1602 ext2_update_dynamic_rev(sb);
1603 EXT2_SET_RO_COMPAT_FEATURE(sb,
1604 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1605 spin_unlock(&EXT2_SB(sb)->s_lock);
1606 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1607 }
1608 }
1609 }
1610
1611 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1612 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1613 if (old_valid_dev(inode->i_rdev)) {
1614 raw_inode->i_block[0] =
1615 cpu_to_le32(old_encode_dev(inode->i_rdev));
1616 raw_inode->i_block[1] = 0;
1617 } else {
1618 raw_inode->i_block[0] = 0;
1619 raw_inode->i_block[1] =
1620 cpu_to_le32(new_encode_dev(inode->i_rdev));
1621 raw_inode->i_block[2] = 0;
1622 }
1623 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1624 raw_inode->i_block[n] = ei->i_data[n];
1625 mark_buffer_dirty(bh);
1626 if (do_sync) {
1627 sync_dirty_buffer(bh);
1628 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1629 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1630 sb->s_id, (unsigned long) ino);
1631 err = -EIO;
1632 }
1633 }
1634 ei->i_state &= ~EXT2_STATE_NEW;
1635 brelse (bh);
1636 return err;
1637 }
1638
1639 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1640 {
1641 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1642 }
1643
1644 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1645 {
1646 struct inode *inode = d_inode(dentry);
1647 int error;
1648
1649 error = setattr_prepare(dentry, iattr);
1650 if (error)
1651 return error;
1652
1653 if (is_quota_modification(inode, iattr)) {
1654 error = dquot_initialize(inode);
1655 if (error)
1656 return error;
1657 }
1658 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1659 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1660 error = dquot_transfer(inode, iattr);
1661 if (error)
1662 return error;
1663 }
1664 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1665 error = ext2_setsize(inode, iattr->ia_size);
1666 if (error)
1667 return error;
1668 }
1669 setattr_copy(inode, iattr);
1670 if (iattr->ia_valid & ATTR_MODE)
1671 error = posix_acl_chmod(inode, inode->i_mode);
1672 mark_inode_dirty(inode);
1673
1674 return error;
1675 }