]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext3/inode.c
ext3: Add replace-on-truncate hueristics for data=writeback mode
[mirror_ubuntu-zesty-kernel.git] / fs / ext3 / inode.c
1 /*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
43
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45
46 /*
47 * Test whether an inode is a fast symlink.
48 */
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
50 {
51 int ea_blocks = EXT3_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
53
54 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
55 }
56
57 /*
58 * The ext3 forget function must perform a revoke if we are freeing data
59 * which has been journaled. Metadata (eg. indirect blocks) must be
60 * revoked in all cases.
61 *
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
65 */
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67 struct buffer_head *bh, ext3_fsblk_t blocknr)
68 {
69 int err;
70
71 might_sleep();
72
73 BUFFER_TRACE(bh, "enter");
74
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
79
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
84
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
90 }
91 return 0;
92 }
93
94 /*
95 * data!=journal && (is_metadata || should_journal_data(inode))
96 */
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
100 ext3_abort(inode->i_sb, __func__,
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
104 }
105
106 /*
107 * Work out how many blocks we need to proceed with the next chunk of a
108 * truncate transaction.
109 */
110 static unsigned long blocks_for_truncate(struct inode *inode)
111 {
112 unsigned long needed;
113
114 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
122 if (needed < 2)
123 needed = 2;
124
125 /* But we need to bound the transaction so we don't overflow the
126 * journal. */
127 if (needed > EXT3_MAX_TRANS_DATA)
128 needed = EXT3_MAX_TRANS_DATA;
129
130 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
131 }
132
133 /*
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
137 *
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
141 * transaction in the top-level truncate loop. --sct
142 */
143 static handle_t *start_transaction(struct inode *inode)
144 {
145 handle_t *result;
146
147 result = ext3_journal_start(inode, blocks_for_truncate(inode));
148 if (!IS_ERR(result))
149 return result;
150
151 ext3_std_error(inode->i_sb, PTR_ERR(result));
152 return result;
153 }
154
155 /*
156 * Try to extend this transaction for the purposes of truncation.
157 *
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
160 */
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162 {
163 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164 return 0;
165 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166 return 0;
167 return 1;
168 }
169
170 /*
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
173 * this transaction.
174 */
175 static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
176 {
177 jbd_debug(2, "restarting handle %p\n", handle);
178 return ext3_journal_restart(handle, blocks_for_truncate(inode));
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext3_delete_inode (struct inode * inode)
185 {
186 handle_t *handle;
187
188 truncate_inode_pages(&inode->i_data, 0);
189
190 if (is_bad_inode(inode))
191 goto no_delete;
192
193 handle = start_transaction(inode);
194 if (IS_ERR(handle)) {
195 /*
196 * If we're going to skip the normal cleanup, we still need to
197 * make sure that the in-core orphan linked list is properly
198 * cleaned up.
199 */
200 ext3_orphan_del(NULL, inode);
201 goto no_delete;
202 }
203
204 if (IS_SYNC(inode))
205 handle->h_sync = 1;
206 inode->i_size = 0;
207 if (inode->i_blocks)
208 ext3_truncate(inode);
209 /*
210 * Kill off the orphan record which ext3_truncate created.
211 * AKPM: I think this can be inside the above `if'.
212 * Note that ext3_orphan_del() has to be able to cope with the
213 * deletion of a non-existent orphan - this is because we don't
214 * know if ext3_truncate() actually created an orphan record.
215 * (Well, we could do this if we need to, but heck - it works)
216 */
217 ext3_orphan_del(handle, inode);
218 EXT3_I(inode)->i_dtime = get_seconds();
219
220 /*
221 * One subtle ordering requirement: if anything has gone wrong
222 * (transaction abort, IO errors, whatever), then we can still
223 * do these next steps (the fs will already have been marked as
224 * having errors), but we can't free the inode if the mark_dirty
225 * fails.
226 */
227 if (ext3_mark_inode_dirty(handle, inode))
228 /* If that failed, just do the required in-core inode clear. */
229 clear_inode(inode);
230 else
231 ext3_free_inode(handle, inode);
232 ext3_journal_stop(handle);
233 return;
234 no_delete:
235 clear_inode(inode); /* We must guarantee clearing of inode... */
236 }
237
238 typedef struct {
239 __le32 *p;
240 __le32 key;
241 struct buffer_head *bh;
242 } Indirect;
243
244 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
245 {
246 p->key = *(p->p = v);
247 p->bh = bh;
248 }
249
250 static int verify_chain(Indirect *from, Indirect *to)
251 {
252 while (from <= to && from->key == *from->p)
253 from++;
254 return (from > to);
255 }
256
257 /**
258 * ext3_block_to_path - parse the block number into array of offsets
259 * @inode: inode in question (we are only interested in its superblock)
260 * @i_block: block number to be parsed
261 * @offsets: array to store the offsets in
262 * @boundary: set this non-zero if the referred-to block is likely to be
263 * followed (on disk) by an indirect block.
264 *
265 * To store the locations of file's data ext3 uses a data structure common
266 * for UNIX filesystems - tree of pointers anchored in the inode, with
267 * data blocks at leaves and indirect blocks in intermediate nodes.
268 * This function translates the block number into path in that tree -
269 * return value is the path length and @offsets[n] is the offset of
270 * pointer to (n+1)th node in the nth one. If @block is out of range
271 * (negative or too large) warning is printed and zero returned.
272 *
273 * Note: function doesn't find node addresses, so no IO is needed. All
274 * we need to know is the capacity of indirect blocks (taken from the
275 * inode->i_sb).
276 */
277
278 /*
279 * Portability note: the last comparison (check that we fit into triple
280 * indirect block) is spelled differently, because otherwise on an
281 * architecture with 32-bit longs and 8Kb pages we might get into trouble
282 * if our filesystem had 8Kb blocks. We might use long long, but that would
283 * kill us on x86. Oh, well, at least the sign propagation does not matter -
284 * i_block would have to be negative in the very beginning, so we would not
285 * get there at all.
286 */
287
288 static int ext3_block_to_path(struct inode *inode,
289 long i_block, int offsets[4], int *boundary)
290 {
291 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
292 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
293 const long direct_blocks = EXT3_NDIR_BLOCKS,
294 indirect_blocks = ptrs,
295 double_blocks = (1 << (ptrs_bits * 2));
296 int n = 0;
297 int final = 0;
298
299 if (i_block < 0) {
300 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
301 } else if (i_block < direct_blocks) {
302 offsets[n++] = i_block;
303 final = direct_blocks;
304 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
305 offsets[n++] = EXT3_IND_BLOCK;
306 offsets[n++] = i_block;
307 final = ptrs;
308 } else if ((i_block -= indirect_blocks) < double_blocks) {
309 offsets[n++] = EXT3_DIND_BLOCK;
310 offsets[n++] = i_block >> ptrs_bits;
311 offsets[n++] = i_block & (ptrs - 1);
312 final = ptrs;
313 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
314 offsets[n++] = EXT3_TIND_BLOCK;
315 offsets[n++] = i_block >> (ptrs_bits * 2);
316 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else {
320 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
321 }
322 if (boundary)
323 *boundary = final - 1 - (i_block & (ptrs - 1));
324 return n;
325 }
326
327 /**
328 * ext3_get_branch - read the chain of indirect blocks leading to data
329 * @inode: inode in question
330 * @depth: depth of the chain (1 - direct pointer, etc.)
331 * @offsets: offsets of pointers in inode/indirect blocks
332 * @chain: place to store the result
333 * @err: here we store the error value
334 *
335 * Function fills the array of triples <key, p, bh> and returns %NULL
336 * if everything went OK or the pointer to the last filled triple
337 * (incomplete one) otherwise. Upon the return chain[i].key contains
338 * the number of (i+1)-th block in the chain (as it is stored in memory,
339 * i.e. little-endian 32-bit), chain[i].p contains the address of that
340 * number (it points into struct inode for i==0 and into the bh->b_data
341 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
342 * block for i>0 and NULL for i==0. In other words, it holds the block
343 * numbers of the chain, addresses they were taken from (and where we can
344 * verify that chain did not change) and buffer_heads hosting these
345 * numbers.
346 *
347 * Function stops when it stumbles upon zero pointer (absent block)
348 * (pointer to last triple returned, *@err == 0)
349 * or when it gets an IO error reading an indirect block
350 * (ditto, *@err == -EIO)
351 * or when it notices that chain had been changed while it was reading
352 * (ditto, *@err == -EAGAIN)
353 * or when it reads all @depth-1 indirect blocks successfully and finds
354 * the whole chain, all way to the data (returns %NULL, *err == 0).
355 */
356 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
357 Indirect chain[4], int *err)
358 {
359 struct super_block *sb = inode->i_sb;
360 Indirect *p = chain;
361 struct buffer_head *bh;
362
363 *err = 0;
364 /* i_data is not going away, no lock needed */
365 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
366 if (!p->key)
367 goto no_block;
368 while (--depth) {
369 bh = sb_bread(sb, le32_to_cpu(p->key));
370 if (!bh)
371 goto failure;
372 /* Reader: pointers */
373 if (!verify_chain(chain, p))
374 goto changed;
375 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
376 /* Reader: end */
377 if (!p->key)
378 goto no_block;
379 }
380 return NULL;
381
382 changed:
383 brelse(bh);
384 *err = -EAGAIN;
385 goto no_block;
386 failure:
387 *err = -EIO;
388 no_block:
389 return p;
390 }
391
392 /**
393 * ext3_find_near - find a place for allocation with sufficient locality
394 * @inode: owner
395 * @ind: descriptor of indirect block.
396 *
397 * This function returns the preferred place for block allocation.
398 * It is used when heuristic for sequential allocation fails.
399 * Rules are:
400 * + if there is a block to the left of our position - allocate near it.
401 * + if pointer will live in indirect block - allocate near that block.
402 * + if pointer will live in inode - allocate in the same
403 * cylinder group.
404 *
405 * In the latter case we colour the starting block by the callers PID to
406 * prevent it from clashing with concurrent allocations for a different inode
407 * in the same block group. The PID is used here so that functionally related
408 * files will be close-by on-disk.
409 *
410 * Caller must make sure that @ind is valid and will stay that way.
411 */
412 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
413 {
414 struct ext3_inode_info *ei = EXT3_I(inode);
415 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
416 __le32 *p;
417 ext3_fsblk_t bg_start;
418 ext3_grpblk_t colour;
419
420 /* Try to find previous block */
421 for (p = ind->p - 1; p >= start; p--) {
422 if (*p)
423 return le32_to_cpu(*p);
424 }
425
426 /* No such thing, so let's try location of indirect block */
427 if (ind->bh)
428 return ind->bh->b_blocknr;
429
430 /*
431 * It is going to be referred to from the inode itself? OK, just put it
432 * into the same cylinder group then.
433 */
434 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
435 colour = (current->pid % 16) *
436 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
437 return bg_start + colour;
438 }
439
440 /**
441 * ext3_find_goal - find a preferred place for allocation.
442 * @inode: owner
443 * @block: block we want
444 * @partial: pointer to the last triple within a chain
445 *
446 * Normally this function find the preferred place for block allocation,
447 * returns it.
448 */
449
450 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
451 Indirect *partial)
452 {
453 struct ext3_block_alloc_info *block_i;
454
455 block_i = EXT3_I(inode)->i_block_alloc_info;
456
457 /*
458 * try the heuristic for sequential allocation,
459 * failing that at least try to get decent locality.
460 */
461 if (block_i && (block == block_i->last_alloc_logical_block + 1)
462 && (block_i->last_alloc_physical_block != 0)) {
463 return block_i->last_alloc_physical_block + 1;
464 }
465
466 return ext3_find_near(inode, partial);
467 }
468
469 /**
470 * ext3_blks_to_allocate: Look up the block map and count the number
471 * of direct blocks need to be allocated for the given branch.
472 *
473 * @branch: chain of indirect blocks
474 * @k: number of blocks need for indirect blocks
475 * @blks: number of data blocks to be mapped.
476 * @blocks_to_boundary: the offset in the indirect block
477 *
478 * return the total number of blocks to be allocate, including the
479 * direct and indirect blocks.
480 */
481 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
482 int blocks_to_boundary)
483 {
484 unsigned long count = 0;
485
486 /*
487 * Simple case, [t,d]Indirect block(s) has not allocated yet
488 * then it's clear blocks on that path have not allocated
489 */
490 if (k > 0) {
491 /* right now we don't handle cross boundary allocation */
492 if (blks < blocks_to_boundary + 1)
493 count += blks;
494 else
495 count += blocks_to_boundary + 1;
496 return count;
497 }
498
499 count++;
500 while (count < blks && count <= blocks_to_boundary &&
501 le32_to_cpu(*(branch[0].p + count)) == 0) {
502 count++;
503 }
504 return count;
505 }
506
507 /**
508 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
509 * @indirect_blks: the number of blocks need to allocate for indirect
510 * blocks
511 *
512 * @new_blocks: on return it will store the new block numbers for
513 * the indirect blocks(if needed) and the first direct block,
514 * @blks: on return it will store the total number of allocated
515 * direct blocks
516 */
517 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
518 ext3_fsblk_t goal, int indirect_blks, int blks,
519 ext3_fsblk_t new_blocks[4], int *err)
520 {
521 int target, i;
522 unsigned long count = 0;
523 int index = 0;
524 ext3_fsblk_t current_block = 0;
525 int ret = 0;
526
527 /*
528 * Here we try to allocate the requested multiple blocks at once,
529 * on a best-effort basis.
530 * To build a branch, we should allocate blocks for
531 * the indirect blocks(if not allocated yet), and at least
532 * the first direct block of this branch. That's the
533 * minimum number of blocks need to allocate(required)
534 */
535 target = blks + indirect_blks;
536
537 while (1) {
538 count = target;
539 /* allocating blocks for indirect blocks and direct blocks */
540 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
541 if (*err)
542 goto failed_out;
543
544 target -= count;
545 /* allocate blocks for indirect blocks */
546 while (index < indirect_blks && count) {
547 new_blocks[index++] = current_block++;
548 count--;
549 }
550
551 if (count > 0)
552 break;
553 }
554
555 /* save the new block number for the first direct block */
556 new_blocks[index] = current_block;
557
558 /* total number of blocks allocated for direct blocks */
559 ret = count;
560 *err = 0;
561 return ret;
562 failed_out:
563 for (i = 0; i <index; i++)
564 ext3_free_blocks(handle, inode, new_blocks[i], 1);
565 return ret;
566 }
567
568 /**
569 * ext3_alloc_branch - allocate and set up a chain of blocks.
570 * @inode: owner
571 * @indirect_blks: number of allocated indirect blocks
572 * @blks: number of allocated direct blocks
573 * @offsets: offsets (in the blocks) to store the pointers to next.
574 * @branch: place to store the chain in.
575 *
576 * This function allocates blocks, zeroes out all but the last one,
577 * links them into chain and (if we are synchronous) writes them to disk.
578 * In other words, it prepares a branch that can be spliced onto the
579 * inode. It stores the information about that chain in the branch[], in
580 * the same format as ext3_get_branch() would do. We are calling it after
581 * we had read the existing part of chain and partial points to the last
582 * triple of that (one with zero ->key). Upon the exit we have the same
583 * picture as after the successful ext3_get_block(), except that in one
584 * place chain is disconnected - *branch->p is still zero (we did not
585 * set the last link), but branch->key contains the number that should
586 * be placed into *branch->p to fill that gap.
587 *
588 * If allocation fails we free all blocks we've allocated (and forget
589 * their buffer_heads) and return the error value the from failed
590 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
591 * as described above and return 0.
592 */
593 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
594 int indirect_blks, int *blks, ext3_fsblk_t goal,
595 int *offsets, Indirect *branch)
596 {
597 int blocksize = inode->i_sb->s_blocksize;
598 int i, n = 0;
599 int err = 0;
600 struct buffer_head *bh;
601 int num;
602 ext3_fsblk_t new_blocks[4];
603 ext3_fsblk_t current_block;
604
605 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
606 *blks, new_blocks, &err);
607 if (err)
608 return err;
609
610 branch[0].key = cpu_to_le32(new_blocks[0]);
611 /*
612 * metadata blocks and data blocks are allocated.
613 */
614 for (n = 1; n <= indirect_blks; n++) {
615 /*
616 * Get buffer_head for parent block, zero it out
617 * and set the pointer to new one, then send
618 * parent to disk.
619 */
620 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
621 branch[n].bh = bh;
622 lock_buffer(bh);
623 BUFFER_TRACE(bh, "call get_create_access");
624 err = ext3_journal_get_create_access(handle, bh);
625 if (err) {
626 unlock_buffer(bh);
627 brelse(bh);
628 goto failed;
629 }
630
631 memset(bh->b_data, 0, blocksize);
632 branch[n].p = (__le32 *) bh->b_data + offsets[n];
633 branch[n].key = cpu_to_le32(new_blocks[n]);
634 *branch[n].p = branch[n].key;
635 if ( n == indirect_blks) {
636 current_block = new_blocks[n];
637 /*
638 * End of chain, update the last new metablock of
639 * the chain to point to the new allocated
640 * data blocks numbers
641 */
642 for (i=1; i < num; i++)
643 *(branch[n].p + i) = cpu_to_le32(++current_block);
644 }
645 BUFFER_TRACE(bh, "marking uptodate");
646 set_buffer_uptodate(bh);
647 unlock_buffer(bh);
648
649 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
650 err = ext3_journal_dirty_metadata(handle, bh);
651 if (err)
652 goto failed;
653 }
654 *blks = num;
655 return err;
656 failed:
657 /* Allocation failed, free what we already allocated */
658 for (i = 1; i <= n ; i++) {
659 BUFFER_TRACE(branch[i].bh, "call journal_forget");
660 ext3_journal_forget(handle, branch[i].bh);
661 }
662 for (i = 0; i <indirect_blks; i++)
663 ext3_free_blocks(handle, inode, new_blocks[i], 1);
664
665 ext3_free_blocks(handle, inode, new_blocks[i], num);
666
667 return err;
668 }
669
670 /**
671 * ext3_splice_branch - splice the allocated branch onto inode.
672 * @inode: owner
673 * @block: (logical) number of block we are adding
674 * @chain: chain of indirect blocks (with a missing link - see
675 * ext3_alloc_branch)
676 * @where: location of missing link
677 * @num: number of indirect blocks we are adding
678 * @blks: number of direct blocks we are adding
679 *
680 * This function fills the missing link and does all housekeeping needed in
681 * inode (->i_blocks, etc.). In case of success we end up with the full
682 * chain to new block and return 0.
683 */
684 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
685 long block, Indirect *where, int num, int blks)
686 {
687 int i;
688 int err = 0;
689 struct ext3_block_alloc_info *block_i;
690 ext3_fsblk_t current_block;
691
692 block_i = EXT3_I(inode)->i_block_alloc_info;
693 /*
694 * If we're splicing into a [td]indirect block (as opposed to the
695 * inode) then we need to get write access to the [td]indirect block
696 * before the splice.
697 */
698 if (where->bh) {
699 BUFFER_TRACE(where->bh, "get_write_access");
700 err = ext3_journal_get_write_access(handle, where->bh);
701 if (err)
702 goto err_out;
703 }
704 /* That's it */
705
706 *where->p = where->key;
707
708 /*
709 * Update the host buffer_head or inode to point to more just allocated
710 * direct blocks blocks
711 */
712 if (num == 0 && blks > 1) {
713 current_block = le32_to_cpu(where->key) + 1;
714 for (i = 1; i < blks; i++)
715 *(where->p + i ) = cpu_to_le32(current_block++);
716 }
717
718 /*
719 * update the most recently allocated logical & physical block
720 * in i_block_alloc_info, to assist find the proper goal block for next
721 * allocation
722 */
723 if (block_i) {
724 block_i->last_alloc_logical_block = block + blks - 1;
725 block_i->last_alloc_physical_block =
726 le32_to_cpu(where[num].key) + blks - 1;
727 }
728
729 /* We are done with atomic stuff, now do the rest of housekeeping */
730
731 inode->i_ctime = CURRENT_TIME_SEC;
732 ext3_mark_inode_dirty(handle, inode);
733
734 /* had we spliced it onto indirect block? */
735 if (where->bh) {
736 /*
737 * If we spliced it onto an indirect block, we haven't
738 * altered the inode. Note however that if it is being spliced
739 * onto an indirect block at the very end of the file (the
740 * file is growing) then we *will* alter the inode to reflect
741 * the new i_size. But that is not done here - it is done in
742 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
743 */
744 jbd_debug(5, "splicing indirect only\n");
745 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
746 err = ext3_journal_dirty_metadata(handle, where->bh);
747 if (err)
748 goto err_out;
749 } else {
750 /*
751 * OK, we spliced it into the inode itself on a direct block.
752 * Inode was dirtied above.
753 */
754 jbd_debug(5, "splicing direct\n");
755 }
756 return err;
757
758 err_out:
759 for (i = 1; i <= num; i++) {
760 BUFFER_TRACE(where[i].bh, "call journal_forget");
761 ext3_journal_forget(handle, where[i].bh);
762 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
763 }
764 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
765
766 return err;
767 }
768
769 /*
770 * Allocation strategy is simple: if we have to allocate something, we will
771 * have to go the whole way to leaf. So let's do it before attaching anything
772 * to tree, set linkage between the newborn blocks, write them if sync is
773 * required, recheck the path, free and repeat if check fails, otherwise
774 * set the last missing link (that will protect us from any truncate-generated
775 * removals - all blocks on the path are immune now) and possibly force the
776 * write on the parent block.
777 * That has a nice additional property: no special recovery from the failed
778 * allocations is needed - we simply release blocks and do not touch anything
779 * reachable from inode.
780 *
781 * `handle' can be NULL if create == 0.
782 *
783 * The BKL may not be held on entry here. Be sure to take it early.
784 * return > 0, # of blocks mapped or allocated.
785 * return = 0, if plain lookup failed.
786 * return < 0, error case.
787 */
788 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
789 sector_t iblock, unsigned long maxblocks,
790 struct buffer_head *bh_result,
791 int create, int extend_disksize)
792 {
793 int err = -EIO;
794 int offsets[4];
795 Indirect chain[4];
796 Indirect *partial;
797 ext3_fsblk_t goal;
798 int indirect_blks;
799 int blocks_to_boundary = 0;
800 int depth;
801 struct ext3_inode_info *ei = EXT3_I(inode);
802 int count = 0;
803 ext3_fsblk_t first_block = 0;
804
805
806 J_ASSERT(handle != NULL || create == 0);
807 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
808
809 if (depth == 0)
810 goto out;
811
812 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
813
814 /* Simplest case - block found, no allocation needed */
815 if (!partial) {
816 first_block = le32_to_cpu(chain[depth - 1].key);
817 clear_buffer_new(bh_result);
818 count++;
819 /*map more blocks*/
820 while (count < maxblocks && count <= blocks_to_boundary) {
821 ext3_fsblk_t blk;
822
823 if (!verify_chain(chain, partial)) {
824 /*
825 * Indirect block might be removed by
826 * truncate while we were reading it.
827 * Handling of that case: forget what we've
828 * got now. Flag the err as EAGAIN, so it
829 * will reread.
830 */
831 err = -EAGAIN;
832 count = 0;
833 break;
834 }
835 blk = le32_to_cpu(*(chain[depth-1].p + count));
836
837 if (blk == first_block + count)
838 count++;
839 else
840 break;
841 }
842 if (err != -EAGAIN)
843 goto got_it;
844 }
845
846 /* Next simple case - plain lookup or failed read of indirect block */
847 if (!create || err == -EIO)
848 goto cleanup;
849
850 mutex_lock(&ei->truncate_mutex);
851
852 /*
853 * If the indirect block is missing while we are reading
854 * the chain(ext3_get_branch() returns -EAGAIN err), or
855 * if the chain has been changed after we grab the semaphore,
856 * (either because another process truncated this branch, or
857 * another get_block allocated this branch) re-grab the chain to see if
858 * the request block has been allocated or not.
859 *
860 * Since we already block the truncate/other get_block
861 * at this point, we will have the current copy of the chain when we
862 * splice the branch into the tree.
863 */
864 if (err == -EAGAIN || !verify_chain(chain, partial)) {
865 while (partial > chain) {
866 brelse(partial->bh);
867 partial--;
868 }
869 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
870 if (!partial) {
871 count++;
872 mutex_unlock(&ei->truncate_mutex);
873 if (err)
874 goto cleanup;
875 clear_buffer_new(bh_result);
876 goto got_it;
877 }
878 }
879
880 /*
881 * Okay, we need to do block allocation. Lazily initialize the block
882 * allocation info here if necessary
883 */
884 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
885 ext3_init_block_alloc_info(inode);
886
887 goal = ext3_find_goal(inode, iblock, partial);
888
889 /* the number of blocks need to allocate for [d,t]indirect blocks */
890 indirect_blks = (chain + depth) - partial - 1;
891
892 /*
893 * Next look up the indirect map to count the totoal number of
894 * direct blocks to allocate for this branch.
895 */
896 count = ext3_blks_to_allocate(partial, indirect_blks,
897 maxblocks, blocks_to_boundary);
898 /*
899 * Block out ext3_truncate while we alter the tree
900 */
901 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
902 offsets + (partial - chain), partial);
903
904 /*
905 * The ext3_splice_branch call will free and forget any buffers
906 * on the new chain if there is a failure, but that risks using
907 * up transaction credits, especially for bitmaps where the
908 * credits cannot be returned. Can we handle this somehow? We
909 * may need to return -EAGAIN upwards in the worst case. --sct
910 */
911 if (!err)
912 err = ext3_splice_branch(handle, inode, iblock,
913 partial, indirect_blks, count);
914 /*
915 * i_disksize growing is protected by truncate_mutex. Don't forget to
916 * protect it if you're about to implement concurrent
917 * ext3_get_block() -bzzz
918 */
919 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
920 ei->i_disksize = inode->i_size;
921 mutex_unlock(&ei->truncate_mutex);
922 if (err)
923 goto cleanup;
924
925 set_buffer_new(bh_result);
926 got_it:
927 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
928 if (count > blocks_to_boundary)
929 set_buffer_boundary(bh_result);
930 err = count;
931 /* Clean up and exit */
932 partial = chain + depth - 1; /* the whole chain */
933 cleanup:
934 while (partial > chain) {
935 BUFFER_TRACE(partial->bh, "call brelse");
936 brelse(partial->bh);
937 partial--;
938 }
939 BUFFER_TRACE(bh_result, "returned");
940 out:
941 return err;
942 }
943
944 /* Maximum number of blocks we map for direct IO at once. */
945 #define DIO_MAX_BLOCKS 4096
946 /*
947 * Number of credits we need for writing DIO_MAX_BLOCKS:
948 * We need sb + group descriptor + bitmap + inode -> 4
949 * For B blocks with A block pointers per block we need:
950 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
951 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
952 */
953 #define DIO_CREDITS 25
954
955 static int ext3_get_block(struct inode *inode, sector_t iblock,
956 struct buffer_head *bh_result, int create)
957 {
958 handle_t *handle = ext3_journal_current_handle();
959 int ret = 0, started = 0;
960 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
961
962 if (create && !handle) { /* Direct IO write... */
963 if (max_blocks > DIO_MAX_BLOCKS)
964 max_blocks = DIO_MAX_BLOCKS;
965 handle = ext3_journal_start(inode, DIO_CREDITS +
966 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
967 if (IS_ERR(handle)) {
968 ret = PTR_ERR(handle);
969 goto out;
970 }
971 started = 1;
972 }
973
974 ret = ext3_get_blocks_handle(handle, inode, iblock,
975 max_blocks, bh_result, create, 0);
976 if (ret > 0) {
977 bh_result->b_size = (ret << inode->i_blkbits);
978 ret = 0;
979 }
980 if (started)
981 ext3_journal_stop(handle);
982 out:
983 return ret;
984 }
985
986 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
987 u64 start, u64 len)
988 {
989 return generic_block_fiemap(inode, fieinfo, start, len,
990 ext3_get_block);
991 }
992
993 /*
994 * `handle' can be NULL if create is zero
995 */
996 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
997 long block, int create, int *errp)
998 {
999 struct buffer_head dummy;
1000 int fatal = 0, err;
1001
1002 J_ASSERT(handle != NULL || create == 0);
1003
1004 dummy.b_state = 0;
1005 dummy.b_blocknr = -1000;
1006 buffer_trace_init(&dummy.b_history);
1007 err = ext3_get_blocks_handle(handle, inode, block, 1,
1008 &dummy, create, 1);
1009 /*
1010 * ext3_get_blocks_handle() returns number of blocks
1011 * mapped. 0 in case of a HOLE.
1012 */
1013 if (err > 0) {
1014 if (err > 1)
1015 WARN_ON(1);
1016 err = 0;
1017 }
1018 *errp = err;
1019 if (!err && buffer_mapped(&dummy)) {
1020 struct buffer_head *bh;
1021 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1022 if (!bh) {
1023 *errp = -EIO;
1024 goto err;
1025 }
1026 if (buffer_new(&dummy)) {
1027 J_ASSERT(create != 0);
1028 J_ASSERT(handle != NULL);
1029
1030 /*
1031 * Now that we do not always journal data, we should
1032 * keep in mind whether this should always journal the
1033 * new buffer as metadata. For now, regular file
1034 * writes use ext3_get_block instead, so it's not a
1035 * problem.
1036 */
1037 lock_buffer(bh);
1038 BUFFER_TRACE(bh, "call get_create_access");
1039 fatal = ext3_journal_get_create_access(handle, bh);
1040 if (!fatal && !buffer_uptodate(bh)) {
1041 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1042 set_buffer_uptodate(bh);
1043 }
1044 unlock_buffer(bh);
1045 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1046 err = ext3_journal_dirty_metadata(handle, bh);
1047 if (!fatal)
1048 fatal = err;
1049 } else {
1050 BUFFER_TRACE(bh, "not a new buffer");
1051 }
1052 if (fatal) {
1053 *errp = fatal;
1054 brelse(bh);
1055 bh = NULL;
1056 }
1057 return bh;
1058 }
1059 err:
1060 return NULL;
1061 }
1062
1063 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1064 int block, int create, int *err)
1065 {
1066 struct buffer_head * bh;
1067
1068 bh = ext3_getblk(handle, inode, block, create, err);
1069 if (!bh)
1070 return bh;
1071 if (buffer_uptodate(bh))
1072 return bh;
1073 ll_rw_block(READ_META, 1, &bh);
1074 wait_on_buffer(bh);
1075 if (buffer_uptodate(bh))
1076 return bh;
1077 put_bh(bh);
1078 *err = -EIO;
1079 return NULL;
1080 }
1081
1082 static int walk_page_buffers( handle_t *handle,
1083 struct buffer_head *head,
1084 unsigned from,
1085 unsigned to,
1086 int *partial,
1087 int (*fn)( handle_t *handle,
1088 struct buffer_head *bh))
1089 {
1090 struct buffer_head *bh;
1091 unsigned block_start, block_end;
1092 unsigned blocksize = head->b_size;
1093 int err, ret = 0;
1094 struct buffer_head *next;
1095
1096 for ( bh = head, block_start = 0;
1097 ret == 0 && (bh != head || !block_start);
1098 block_start = block_end, bh = next)
1099 {
1100 next = bh->b_this_page;
1101 block_end = block_start + blocksize;
1102 if (block_end <= from || block_start >= to) {
1103 if (partial && !buffer_uptodate(bh))
1104 *partial = 1;
1105 continue;
1106 }
1107 err = (*fn)(handle, bh);
1108 if (!ret)
1109 ret = err;
1110 }
1111 return ret;
1112 }
1113
1114 /*
1115 * To preserve ordering, it is essential that the hole instantiation and
1116 * the data write be encapsulated in a single transaction. We cannot
1117 * close off a transaction and start a new one between the ext3_get_block()
1118 * and the commit_write(). So doing the journal_start at the start of
1119 * prepare_write() is the right place.
1120 *
1121 * Also, this function can nest inside ext3_writepage() ->
1122 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1123 * has generated enough buffer credits to do the whole page. So we won't
1124 * block on the journal in that case, which is good, because the caller may
1125 * be PF_MEMALLOC.
1126 *
1127 * By accident, ext3 can be reentered when a transaction is open via
1128 * quota file writes. If we were to commit the transaction while thus
1129 * reentered, there can be a deadlock - we would be holding a quota
1130 * lock, and the commit would never complete if another thread had a
1131 * transaction open and was blocking on the quota lock - a ranking
1132 * violation.
1133 *
1134 * So what we do is to rely on the fact that journal_stop/journal_start
1135 * will _not_ run commit under these circumstances because handle->h_ref
1136 * is elevated. We'll still have enough credits for the tiny quotafile
1137 * write.
1138 */
1139 static int do_journal_get_write_access(handle_t *handle,
1140 struct buffer_head *bh)
1141 {
1142 if (!buffer_mapped(bh) || buffer_freed(bh))
1143 return 0;
1144 return ext3_journal_get_write_access(handle, bh);
1145 }
1146
1147 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1148 loff_t pos, unsigned len, unsigned flags,
1149 struct page **pagep, void **fsdata)
1150 {
1151 struct inode *inode = mapping->host;
1152 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1153 handle_t *handle;
1154 int retries = 0;
1155 struct page *page;
1156 pgoff_t index;
1157 unsigned from, to;
1158
1159 index = pos >> PAGE_CACHE_SHIFT;
1160 from = pos & (PAGE_CACHE_SIZE - 1);
1161 to = from + len;
1162
1163 retry:
1164 page = grab_cache_page_write_begin(mapping, index, flags);
1165 if (!page)
1166 return -ENOMEM;
1167 *pagep = page;
1168
1169 handle = ext3_journal_start(inode, needed_blocks);
1170 if (IS_ERR(handle)) {
1171 unlock_page(page);
1172 page_cache_release(page);
1173 ret = PTR_ERR(handle);
1174 goto out;
1175 }
1176 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1177 ext3_get_block);
1178 if (ret)
1179 goto write_begin_failed;
1180
1181 if (ext3_should_journal_data(inode)) {
1182 ret = walk_page_buffers(handle, page_buffers(page),
1183 from, to, NULL, do_journal_get_write_access);
1184 }
1185 write_begin_failed:
1186 if (ret) {
1187 ext3_journal_stop(handle);
1188 unlock_page(page);
1189 page_cache_release(page);
1190 /*
1191 * block_write_begin may have instantiated a few blocks
1192 * outside i_size. Trim these off again. Don't need
1193 * i_size_read because we hold i_mutex.
1194 */
1195 if (pos + len > inode->i_size)
1196 vmtruncate(inode, inode->i_size);
1197 }
1198 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1199 goto retry;
1200 out:
1201 return ret;
1202 }
1203
1204
1205 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1206 {
1207 int err = journal_dirty_data(handle, bh);
1208 if (err)
1209 ext3_journal_abort_handle(__func__, __func__,
1210 bh, handle, err);
1211 return err;
1212 }
1213
1214 /* For write_end() in data=journal mode */
1215 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1216 {
1217 if (!buffer_mapped(bh) || buffer_freed(bh))
1218 return 0;
1219 set_buffer_uptodate(bh);
1220 return ext3_journal_dirty_metadata(handle, bh);
1221 }
1222
1223 /*
1224 * Generic write_end handler for ordered and writeback ext3 journal modes.
1225 * We can't use generic_write_end, because that unlocks the page and we need to
1226 * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
1227 * after block_write_end.
1228 */
1229 static int ext3_generic_write_end(struct file *file,
1230 struct address_space *mapping,
1231 loff_t pos, unsigned len, unsigned copied,
1232 struct page *page, void *fsdata)
1233 {
1234 struct inode *inode = file->f_mapping->host;
1235
1236 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1237
1238 if (pos+copied > inode->i_size) {
1239 i_size_write(inode, pos+copied);
1240 mark_inode_dirty(inode);
1241 }
1242
1243 return copied;
1244 }
1245
1246 /*
1247 * We need to pick up the new inode size which generic_commit_write gave us
1248 * `file' can be NULL - eg, when called from page_symlink().
1249 *
1250 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1251 * buffers are managed internally.
1252 */
1253 static int ext3_ordered_write_end(struct file *file,
1254 struct address_space *mapping,
1255 loff_t pos, unsigned len, unsigned copied,
1256 struct page *page, void *fsdata)
1257 {
1258 handle_t *handle = ext3_journal_current_handle();
1259 struct inode *inode = file->f_mapping->host;
1260 unsigned from, to;
1261 int ret = 0, ret2;
1262
1263 from = pos & (PAGE_CACHE_SIZE - 1);
1264 to = from + len;
1265
1266 ret = walk_page_buffers(handle, page_buffers(page),
1267 from, to, NULL, ext3_journal_dirty_data);
1268
1269 if (ret == 0) {
1270 /*
1271 * generic_write_end() will run mark_inode_dirty() if i_size
1272 * changes. So let's piggyback the i_disksize mark_inode_dirty
1273 * into that.
1274 */
1275 loff_t new_i_size;
1276
1277 new_i_size = pos + copied;
1278 if (new_i_size > EXT3_I(inode)->i_disksize)
1279 EXT3_I(inode)->i_disksize = new_i_size;
1280 ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
1281 page, fsdata);
1282 copied = ret2;
1283 if (ret2 < 0)
1284 ret = ret2;
1285 }
1286 ret2 = ext3_journal_stop(handle);
1287 if (!ret)
1288 ret = ret2;
1289 unlock_page(page);
1290 page_cache_release(page);
1291
1292 return ret ? ret : copied;
1293 }
1294
1295 static int ext3_writeback_write_end(struct file *file,
1296 struct address_space *mapping,
1297 loff_t pos, unsigned len, unsigned copied,
1298 struct page *page, void *fsdata)
1299 {
1300 handle_t *handle = ext3_journal_current_handle();
1301 struct inode *inode = file->f_mapping->host;
1302 int ret = 0, ret2;
1303 loff_t new_i_size;
1304
1305 new_i_size = pos + copied;
1306 if (new_i_size > EXT3_I(inode)->i_disksize)
1307 EXT3_I(inode)->i_disksize = new_i_size;
1308
1309 ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
1310 page, fsdata);
1311 copied = ret2;
1312 if (ret2 < 0)
1313 ret = ret2;
1314
1315 ret2 = ext3_journal_stop(handle);
1316 if (!ret)
1317 ret = ret2;
1318 unlock_page(page);
1319 page_cache_release(page);
1320
1321 return ret ? ret : copied;
1322 }
1323
1324 static int ext3_journalled_write_end(struct file *file,
1325 struct address_space *mapping,
1326 loff_t pos, unsigned len, unsigned copied,
1327 struct page *page, void *fsdata)
1328 {
1329 handle_t *handle = ext3_journal_current_handle();
1330 struct inode *inode = mapping->host;
1331 int ret = 0, ret2;
1332 int partial = 0;
1333 unsigned from, to;
1334
1335 from = pos & (PAGE_CACHE_SIZE - 1);
1336 to = from + len;
1337
1338 if (copied < len) {
1339 if (!PageUptodate(page))
1340 copied = 0;
1341 page_zero_new_buffers(page, from+copied, to);
1342 }
1343
1344 ret = walk_page_buffers(handle, page_buffers(page), from,
1345 to, &partial, write_end_fn);
1346 if (!partial)
1347 SetPageUptodate(page);
1348 if (pos+copied > inode->i_size)
1349 i_size_write(inode, pos+copied);
1350 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1351 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1352 EXT3_I(inode)->i_disksize = inode->i_size;
1353 ret2 = ext3_mark_inode_dirty(handle, inode);
1354 if (!ret)
1355 ret = ret2;
1356 }
1357
1358 ret2 = ext3_journal_stop(handle);
1359 if (!ret)
1360 ret = ret2;
1361 unlock_page(page);
1362 page_cache_release(page);
1363
1364 return ret ? ret : copied;
1365 }
1366
1367 /*
1368 * bmap() is special. It gets used by applications such as lilo and by
1369 * the swapper to find the on-disk block of a specific piece of data.
1370 *
1371 * Naturally, this is dangerous if the block concerned is still in the
1372 * journal. If somebody makes a swapfile on an ext3 data-journaling
1373 * filesystem and enables swap, then they may get a nasty shock when the
1374 * data getting swapped to that swapfile suddenly gets overwritten by
1375 * the original zero's written out previously to the journal and
1376 * awaiting writeback in the kernel's buffer cache.
1377 *
1378 * So, if we see any bmap calls here on a modified, data-journaled file,
1379 * take extra steps to flush any blocks which might be in the cache.
1380 */
1381 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1382 {
1383 struct inode *inode = mapping->host;
1384 journal_t *journal;
1385 int err;
1386
1387 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1388 /*
1389 * This is a REALLY heavyweight approach, but the use of
1390 * bmap on dirty files is expected to be extremely rare:
1391 * only if we run lilo or swapon on a freshly made file
1392 * do we expect this to happen.
1393 *
1394 * (bmap requires CAP_SYS_RAWIO so this does not
1395 * represent an unprivileged user DOS attack --- we'd be
1396 * in trouble if mortal users could trigger this path at
1397 * will.)
1398 *
1399 * NB. EXT3_STATE_JDATA is not set on files other than
1400 * regular files. If somebody wants to bmap a directory
1401 * or symlink and gets confused because the buffer
1402 * hasn't yet been flushed to disk, they deserve
1403 * everything they get.
1404 */
1405
1406 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1407 journal = EXT3_JOURNAL(inode);
1408 journal_lock_updates(journal);
1409 err = journal_flush(journal);
1410 journal_unlock_updates(journal);
1411
1412 if (err)
1413 return 0;
1414 }
1415
1416 return generic_block_bmap(mapping,block,ext3_get_block);
1417 }
1418
1419 static int bget_one(handle_t *handle, struct buffer_head *bh)
1420 {
1421 get_bh(bh);
1422 return 0;
1423 }
1424
1425 static int bput_one(handle_t *handle, struct buffer_head *bh)
1426 {
1427 put_bh(bh);
1428 return 0;
1429 }
1430
1431 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1432 {
1433 if (buffer_mapped(bh))
1434 return ext3_journal_dirty_data(handle, bh);
1435 return 0;
1436 }
1437
1438 /*
1439 * Note that we always start a transaction even if we're not journalling
1440 * data. This is to preserve ordering: any hole instantiation within
1441 * __block_write_full_page -> ext3_get_block() should be journalled
1442 * along with the data so we don't crash and then get metadata which
1443 * refers to old data.
1444 *
1445 * In all journalling modes block_write_full_page() will start the I/O.
1446 *
1447 * Problem:
1448 *
1449 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1450 * ext3_writepage()
1451 *
1452 * Similar for:
1453 *
1454 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1455 *
1456 * Same applies to ext3_get_block(). We will deadlock on various things like
1457 * lock_journal and i_truncate_mutex.
1458 *
1459 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1460 * allocations fail.
1461 *
1462 * 16May01: If we're reentered then journal_current_handle() will be
1463 * non-zero. We simply *return*.
1464 *
1465 * 1 July 2001: @@@ FIXME:
1466 * In journalled data mode, a data buffer may be metadata against the
1467 * current transaction. But the same file is part of a shared mapping
1468 * and someone does a writepage() on it.
1469 *
1470 * We will move the buffer onto the async_data list, but *after* it has
1471 * been dirtied. So there's a small window where we have dirty data on
1472 * BJ_Metadata.
1473 *
1474 * Note that this only applies to the last partial page in the file. The
1475 * bit which block_write_full_page() uses prepare/commit for. (That's
1476 * broken code anyway: it's wrong for msync()).
1477 *
1478 * It's a rare case: affects the final partial page, for journalled data
1479 * where the file is subject to bith write() and writepage() in the same
1480 * transction. To fix it we'll need a custom block_write_full_page().
1481 * We'll probably need that anyway for journalling writepage() output.
1482 *
1483 * We don't honour synchronous mounts for writepage(). That would be
1484 * disastrous. Any write() or metadata operation will sync the fs for
1485 * us.
1486 *
1487 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1488 * we don't need to open a transaction here.
1489 */
1490 static int ext3_ordered_writepage(struct page *page,
1491 struct writeback_control *wbc)
1492 {
1493 struct inode *inode = page->mapping->host;
1494 struct buffer_head *page_bufs;
1495 handle_t *handle = NULL;
1496 int ret = 0;
1497 int err;
1498
1499 J_ASSERT(PageLocked(page));
1500
1501 /*
1502 * We give up here if we're reentered, because it might be for a
1503 * different filesystem.
1504 */
1505 if (ext3_journal_current_handle())
1506 goto out_fail;
1507
1508 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1509
1510 if (IS_ERR(handle)) {
1511 ret = PTR_ERR(handle);
1512 goto out_fail;
1513 }
1514
1515 if (!page_has_buffers(page)) {
1516 create_empty_buffers(page, inode->i_sb->s_blocksize,
1517 (1 << BH_Dirty)|(1 << BH_Uptodate));
1518 }
1519 page_bufs = page_buffers(page);
1520 walk_page_buffers(handle, page_bufs, 0,
1521 PAGE_CACHE_SIZE, NULL, bget_one);
1522
1523 ret = block_write_full_page(page, ext3_get_block, wbc);
1524
1525 /*
1526 * The page can become unlocked at any point now, and
1527 * truncate can then come in and change things. So we
1528 * can't touch *page from now on. But *page_bufs is
1529 * safe due to elevated refcount.
1530 */
1531
1532 /*
1533 * And attach them to the current transaction. But only if
1534 * block_write_full_page() succeeded. Otherwise they are unmapped,
1535 * and generally junk.
1536 */
1537 if (ret == 0) {
1538 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1539 NULL, journal_dirty_data_fn);
1540 if (!ret)
1541 ret = err;
1542 }
1543 walk_page_buffers(handle, page_bufs, 0,
1544 PAGE_CACHE_SIZE, NULL, bput_one);
1545 err = ext3_journal_stop(handle);
1546 if (!ret)
1547 ret = err;
1548 return ret;
1549
1550 out_fail:
1551 redirty_page_for_writepage(wbc, page);
1552 unlock_page(page);
1553 return ret;
1554 }
1555
1556 static int ext3_writeback_writepage(struct page *page,
1557 struct writeback_control *wbc)
1558 {
1559 struct inode *inode = page->mapping->host;
1560 handle_t *handle = NULL;
1561 int ret = 0;
1562 int err;
1563
1564 if (ext3_journal_current_handle())
1565 goto out_fail;
1566
1567 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1568 if (IS_ERR(handle)) {
1569 ret = PTR_ERR(handle);
1570 goto out_fail;
1571 }
1572
1573 if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1574 ret = nobh_writepage(page, ext3_get_block, wbc);
1575 else
1576 ret = block_write_full_page(page, ext3_get_block, wbc);
1577
1578 err = ext3_journal_stop(handle);
1579 if (!ret)
1580 ret = err;
1581 return ret;
1582
1583 out_fail:
1584 redirty_page_for_writepage(wbc, page);
1585 unlock_page(page);
1586 return ret;
1587 }
1588
1589 static int ext3_journalled_writepage(struct page *page,
1590 struct writeback_control *wbc)
1591 {
1592 struct inode *inode = page->mapping->host;
1593 handle_t *handle = NULL;
1594 int ret = 0;
1595 int err;
1596
1597 if (ext3_journal_current_handle())
1598 goto no_write;
1599
1600 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1601 if (IS_ERR(handle)) {
1602 ret = PTR_ERR(handle);
1603 goto no_write;
1604 }
1605
1606 if (!page_has_buffers(page) || PageChecked(page)) {
1607 /*
1608 * It's mmapped pagecache. Add buffers and journal it. There
1609 * doesn't seem much point in redirtying the page here.
1610 */
1611 ClearPageChecked(page);
1612 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1613 ext3_get_block);
1614 if (ret != 0) {
1615 ext3_journal_stop(handle);
1616 goto out_unlock;
1617 }
1618 ret = walk_page_buffers(handle, page_buffers(page), 0,
1619 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1620
1621 err = walk_page_buffers(handle, page_buffers(page), 0,
1622 PAGE_CACHE_SIZE, NULL, write_end_fn);
1623 if (ret == 0)
1624 ret = err;
1625 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1626 unlock_page(page);
1627 } else {
1628 /*
1629 * It may be a page full of checkpoint-mode buffers. We don't
1630 * really know unless we go poke around in the buffer_heads.
1631 * But block_write_full_page will do the right thing.
1632 */
1633 ret = block_write_full_page(page, ext3_get_block, wbc);
1634 }
1635 err = ext3_journal_stop(handle);
1636 if (!ret)
1637 ret = err;
1638 out:
1639 return ret;
1640
1641 no_write:
1642 redirty_page_for_writepage(wbc, page);
1643 out_unlock:
1644 unlock_page(page);
1645 goto out;
1646 }
1647
1648 static int ext3_readpage(struct file *file, struct page *page)
1649 {
1650 return mpage_readpage(page, ext3_get_block);
1651 }
1652
1653 static int
1654 ext3_readpages(struct file *file, struct address_space *mapping,
1655 struct list_head *pages, unsigned nr_pages)
1656 {
1657 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1658 }
1659
1660 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1661 {
1662 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1663
1664 /*
1665 * If it's a full truncate we just forget about the pending dirtying
1666 */
1667 if (offset == 0)
1668 ClearPageChecked(page);
1669
1670 journal_invalidatepage(journal, page, offset);
1671 }
1672
1673 static int ext3_releasepage(struct page *page, gfp_t wait)
1674 {
1675 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1676
1677 WARN_ON(PageChecked(page));
1678 if (!page_has_buffers(page))
1679 return 0;
1680 return journal_try_to_free_buffers(journal, page, wait);
1681 }
1682
1683 /*
1684 * If the O_DIRECT write will extend the file then add this inode to the
1685 * orphan list. So recovery will truncate it back to the original size
1686 * if the machine crashes during the write.
1687 *
1688 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1689 * crashes then stale disk data _may_ be exposed inside the file. But current
1690 * VFS code falls back into buffered path in that case so we are safe.
1691 */
1692 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1693 const struct iovec *iov, loff_t offset,
1694 unsigned long nr_segs)
1695 {
1696 struct file *file = iocb->ki_filp;
1697 struct inode *inode = file->f_mapping->host;
1698 struct ext3_inode_info *ei = EXT3_I(inode);
1699 handle_t *handle;
1700 ssize_t ret;
1701 int orphan = 0;
1702 size_t count = iov_length(iov, nr_segs);
1703
1704 if (rw == WRITE) {
1705 loff_t final_size = offset + count;
1706
1707 if (final_size > inode->i_size) {
1708 /* Credits for sb + inode write */
1709 handle = ext3_journal_start(inode, 2);
1710 if (IS_ERR(handle)) {
1711 ret = PTR_ERR(handle);
1712 goto out;
1713 }
1714 ret = ext3_orphan_add(handle, inode);
1715 if (ret) {
1716 ext3_journal_stop(handle);
1717 goto out;
1718 }
1719 orphan = 1;
1720 ei->i_disksize = inode->i_size;
1721 ext3_journal_stop(handle);
1722 }
1723 }
1724
1725 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1726 offset, nr_segs,
1727 ext3_get_block, NULL);
1728
1729 if (orphan) {
1730 int err;
1731
1732 /* Credits for sb + inode write */
1733 handle = ext3_journal_start(inode, 2);
1734 if (IS_ERR(handle)) {
1735 /* This is really bad luck. We've written the data
1736 * but cannot extend i_size. Bail out and pretend
1737 * the write failed... */
1738 ret = PTR_ERR(handle);
1739 goto out;
1740 }
1741 if (inode->i_nlink)
1742 ext3_orphan_del(handle, inode);
1743 if (ret > 0) {
1744 loff_t end = offset + ret;
1745 if (end > inode->i_size) {
1746 ei->i_disksize = end;
1747 i_size_write(inode, end);
1748 /*
1749 * We're going to return a positive `ret'
1750 * here due to non-zero-length I/O, so there's
1751 * no way of reporting error returns from
1752 * ext3_mark_inode_dirty() to userspace. So
1753 * ignore it.
1754 */
1755 ext3_mark_inode_dirty(handle, inode);
1756 }
1757 }
1758 err = ext3_journal_stop(handle);
1759 if (ret == 0)
1760 ret = err;
1761 }
1762 out:
1763 return ret;
1764 }
1765
1766 /*
1767 * Pages can be marked dirty completely asynchronously from ext3's journalling
1768 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1769 * much here because ->set_page_dirty is called under VFS locks. The page is
1770 * not necessarily locked.
1771 *
1772 * We cannot just dirty the page and leave attached buffers clean, because the
1773 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1774 * or jbddirty because all the journalling code will explode.
1775 *
1776 * So what we do is to mark the page "pending dirty" and next time writepage
1777 * is called, propagate that into the buffers appropriately.
1778 */
1779 static int ext3_journalled_set_page_dirty(struct page *page)
1780 {
1781 SetPageChecked(page);
1782 return __set_page_dirty_nobuffers(page);
1783 }
1784
1785 static const struct address_space_operations ext3_ordered_aops = {
1786 .readpage = ext3_readpage,
1787 .readpages = ext3_readpages,
1788 .writepage = ext3_ordered_writepage,
1789 .sync_page = block_sync_page,
1790 .write_begin = ext3_write_begin,
1791 .write_end = ext3_ordered_write_end,
1792 .bmap = ext3_bmap,
1793 .invalidatepage = ext3_invalidatepage,
1794 .releasepage = ext3_releasepage,
1795 .direct_IO = ext3_direct_IO,
1796 .migratepage = buffer_migrate_page,
1797 .is_partially_uptodate = block_is_partially_uptodate,
1798 };
1799
1800 static const struct address_space_operations ext3_writeback_aops = {
1801 .readpage = ext3_readpage,
1802 .readpages = ext3_readpages,
1803 .writepage = ext3_writeback_writepage,
1804 .sync_page = block_sync_page,
1805 .write_begin = ext3_write_begin,
1806 .write_end = ext3_writeback_write_end,
1807 .bmap = ext3_bmap,
1808 .invalidatepage = ext3_invalidatepage,
1809 .releasepage = ext3_releasepage,
1810 .direct_IO = ext3_direct_IO,
1811 .migratepage = buffer_migrate_page,
1812 .is_partially_uptodate = block_is_partially_uptodate,
1813 };
1814
1815 static const struct address_space_operations ext3_journalled_aops = {
1816 .readpage = ext3_readpage,
1817 .readpages = ext3_readpages,
1818 .writepage = ext3_journalled_writepage,
1819 .sync_page = block_sync_page,
1820 .write_begin = ext3_write_begin,
1821 .write_end = ext3_journalled_write_end,
1822 .set_page_dirty = ext3_journalled_set_page_dirty,
1823 .bmap = ext3_bmap,
1824 .invalidatepage = ext3_invalidatepage,
1825 .releasepage = ext3_releasepage,
1826 .is_partially_uptodate = block_is_partially_uptodate,
1827 };
1828
1829 void ext3_set_aops(struct inode *inode)
1830 {
1831 if (ext3_should_order_data(inode))
1832 inode->i_mapping->a_ops = &ext3_ordered_aops;
1833 else if (ext3_should_writeback_data(inode))
1834 inode->i_mapping->a_ops = &ext3_writeback_aops;
1835 else
1836 inode->i_mapping->a_ops = &ext3_journalled_aops;
1837 }
1838
1839 /*
1840 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1841 * up to the end of the block which corresponds to `from'.
1842 * This required during truncate. We need to physically zero the tail end
1843 * of that block so it doesn't yield old data if the file is later grown.
1844 */
1845 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1846 struct address_space *mapping, loff_t from)
1847 {
1848 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1849 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1850 unsigned blocksize, iblock, length, pos;
1851 struct inode *inode = mapping->host;
1852 struct buffer_head *bh;
1853 int err = 0;
1854
1855 blocksize = inode->i_sb->s_blocksize;
1856 length = blocksize - (offset & (blocksize - 1));
1857 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1858
1859 /*
1860 * For "nobh" option, we can only work if we don't need to
1861 * read-in the page - otherwise we create buffers to do the IO.
1862 */
1863 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1864 ext3_should_writeback_data(inode) && PageUptodate(page)) {
1865 zero_user(page, offset, length);
1866 set_page_dirty(page);
1867 goto unlock;
1868 }
1869
1870 if (!page_has_buffers(page))
1871 create_empty_buffers(page, blocksize, 0);
1872
1873 /* Find the buffer that contains "offset" */
1874 bh = page_buffers(page);
1875 pos = blocksize;
1876 while (offset >= pos) {
1877 bh = bh->b_this_page;
1878 iblock++;
1879 pos += blocksize;
1880 }
1881
1882 err = 0;
1883 if (buffer_freed(bh)) {
1884 BUFFER_TRACE(bh, "freed: skip");
1885 goto unlock;
1886 }
1887
1888 if (!buffer_mapped(bh)) {
1889 BUFFER_TRACE(bh, "unmapped");
1890 ext3_get_block(inode, iblock, bh, 0);
1891 /* unmapped? It's a hole - nothing to do */
1892 if (!buffer_mapped(bh)) {
1893 BUFFER_TRACE(bh, "still unmapped");
1894 goto unlock;
1895 }
1896 }
1897
1898 /* Ok, it's mapped. Make sure it's up-to-date */
1899 if (PageUptodate(page))
1900 set_buffer_uptodate(bh);
1901
1902 if (!buffer_uptodate(bh)) {
1903 err = -EIO;
1904 ll_rw_block(READ, 1, &bh);
1905 wait_on_buffer(bh);
1906 /* Uhhuh. Read error. Complain and punt. */
1907 if (!buffer_uptodate(bh))
1908 goto unlock;
1909 }
1910
1911 if (ext3_should_journal_data(inode)) {
1912 BUFFER_TRACE(bh, "get write access");
1913 err = ext3_journal_get_write_access(handle, bh);
1914 if (err)
1915 goto unlock;
1916 }
1917
1918 zero_user(page, offset, length);
1919 BUFFER_TRACE(bh, "zeroed end of block");
1920
1921 err = 0;
1922 if (ext3_should_journal_data(inode)) {
1923 err = ext3_journal_dirty_metadata(handle, bh);
1924 } else {
1925 if (ext3_should_order_data(inode))
1926 err = ext3_journal_dirty_data(handle, bh);
1927 mark_buffer_dirty(bh);
1928 }
1929
1930 unlock:
1931 unlock_page(page);
1932 page_cache_release(page);
1933 return err;
1934 }
1935
1936 /*
1937 * Probably it should be a library function... search for first non-zero word
1938 * or memcmp with zero_page, whatever is better for particular architecture.
1939 * Linus?
1940 */
1941 static inline int all_zeroes(__le32 *p, __le32 *q)
1942 {
1943 while (p < q)
1944 if (*p++)
1945 return 0;
1946 return 1;
1947 }
1948
1949 /**
1950 * ext3_find_shared - find the indirect blocks for partial truncation.
1951 * @inode: inode in question
1952 * @depth: depth of the affected branch
1953 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1954 * @chain: place to store the pointers to partial indirect blocks
1955 * @top: place to the (detached) top of branch
1956 *
1957 * This is a helper function used by ext3_truncate().
1958 *
1959 * When we do truncate() we may have to clean the ends of several
1960 * indirect blocks but leave the blocks themselves alive. Block is
1961 * partially truncated if some data below the new i_size is refered
1962 * from it (and it is on the path to the first completely truncated
1963 * data block, indeed). We have to free the top of that path along
1964 * with everything to the right of the path. Since no allocation
1965 * past the truncation point is possible until ext3_truncate()
1966 * finishes, we may safely do the latter, but top of branch may
1967 * require special attention - pageout below the truncation point
1968 * might try to populate it.
1969 *
1970 * We atomically detach the top of branch from the tree, store the
1971 * block number of its root in *@top, pointers to buffer_heads of
1972 * partially truncated blocks - in @chain[].bh and pointers to
1973 * their last elements that should not be removed - in
1974 * @chain[].p. Return value is the pointer to last filled element
1975 * of @chain.
1976 *
1977 * The work left to caller to do the actual freeing of subtrees:
1978 * a) free the subtree starting from *@top
1979 * b) free the subtrees whose roots are stored in
1980 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1981 * c) free the subtrees growing from the inode past the @chain[0].
1982 * (no partially truncated stuff there). */
1983
1984 static Indirect *ext3_find_shared(struct inode *inode, int depth,
1985 int offsets[4], Indirect chain[4], __le32 *top)
1986 {
1987 Indirect *partial, *p;
1988 int k, err;
1989
1990 *top = 0;
1991 /* Make k index the deepest non-null offest + 1 */
1992 for (k = depth; k > 1 && !offsets[k-1]; k--)
1993 ;
1994 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1995 /* Writer: pointers */
1996 if (!partial)
1997 partial = chain + k-1;
1998 /*
1999 * If the branch acquired continuation since we've looked at it -
2000 * fine, it should all survive and (new) top doesn't belong to us.
2001 */
2002 if (!partial->key && *partial->p)
2003 /* Writer: end */
2004 goto no_top;
2005 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2006 ;
2007 /*
2008 * OK, we've found the last block that must survive. The rest of our
2009 * branch should be detached before unlocking. However, if that rest
2010 * of branch is all ours and does not grow immediately from the inode
2011 * it's easier to cheat and just decrement partial->p.
2012 */
2013 if (p == chain + k - 1 && p > chain) {
2014 p->p--;
2015 } else {
2016 *top = *p->p;
2017 /* Nope, don't do this in ext3. Must leave the tree intact */
2018 #if 0
2019 *p->p = 0;
2020 #endif
2021 }
2022 /* Writer: end */
2023
2024 while(partial > p) {
2025 brelse(partial->bh);
2026 partial--;
2027 }
2028 no_top:
2029 return partial;
2030 }
2031
2032 /*
2033 * Zero a number of block pointers in either an inode or an indirect block.
2034 * If we restart the transaction we must again get write access to the
2035 * indirect block for further modification.
2036 *
2037 * We release `count' blocks on disk, but (last - first) may be greater
2038 * than `count' because there can be holes in there.
2039 */
2040 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2041 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2042 unsigned long count, __le32 *first, __le32 *last)
2043 {
2044 __le32 *p;
2045 if (try_to_extend_transaction(handle, inode)) {
2046 if (bh) {
2047 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2048 ext3_journal_dirty_metadata(handle, bh);
2049 }
2050 ext3_mark_inode_dirty(handle, inode);
2051 ext3_journal_test_restart(handle, inode);
2052 if (bh) {
2053 BUFFER_TRACE(bh, "retaking write access");
2054 ext3_journal_get_write_access(handle, bh);
2055 }
2056 }
2057
2058 /*
2059 * Any buffers which are on the journal will be in memory. We find
2060 * them on the hash table so journal_revoke() will run journal_forget()
2061 * on them. We've already detached each block from the file, so
2062 * bforget() in journal_forget() should be safe.
2063 *
2064 * AKPM: turn on bforget in journal_forget()!!!
2065 */
2066 for (p = first; p < last; p++) {
2067 u32 nr = le32_to_cpu(*p);
2068 if (nr) {
2069 struct buffer_head *bh;
2070
2071 *p = 0;
2072 bh = sb_find_get_block(inode->i_sb, nr);
2073 ext3_forget(handle, 0, inode, bh, nr);
2074 }
2075 }
2076
2077 ext3_free_blocks(handle, inode, block_to_free, count);
2078 }
2079
2080 /**
2081 * ext3_free_data - free a list of data blocks
2082 * @handle: handle for this transaction
2083 * @inode: inode we are dealing with
2084 * @this_bh: indirect buffer_head which contains *@first and *@last
2085 * @first: array of block numbers
2086 * @last: points immediately past the end of array
2087 *
2088 * We are freeing all blocks refered from that array (numbers are stored as
2089 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2090 *
2091 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2092 * blocks are contiguous then releasing them at one time will only affect one
2093 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2094 * actually use a lot of journal space.
2095 *
2096 * @this_bh will be %NULL if @first and @last point into the inode's direct
2097 * block pointers.
2098 */
2099 static void ext3_free_data(handle_t *handle, struct inode *inode,
2100 struct buffer_head *this_bh,
2101 __le32 *first, __le32 *last)
2102 {
2103 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
2104 unsigned long count = 0; /* Number of blocks in the run */
2105 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2106 corresponding to
2107 block_to_free */
2108 ext3_fsblk_t nr; /* Current block # */
2109 __le32 *p; /* Pointer into inode/ind
2110 for current block */
2111 int err;
2112
2113 if (this_bh) { /* For indirect block */
2114 BUFFER_TRACE(this_bh, "get_write_access");
2115 err = ext3_journal_get_write_access(handle, this_bh);
2116 /* Important: if we can't update the indirect pointers
2117 * to the blocks, we can't free them. */
2118 if (err)
2119 return;
2120 }
2121
2122 for (p = first; p < last; p++) {
2123 nr = le32_to_cpu(*p);
2124 if (nr) {
2125 /* accumulate blocks to free if they're contiguous */
2126 if (count == 0) {
2127 block_to_free = nr;
2128 block_to_free_p = p;
2129 count = 1;
2130 } else if (nr == block_to_free + count) {
2131 count++;
2132 } else {
2133 ext3_clear_blocks(handle, inode, this_bh,
2134 block_to_free,
2135 count, block_to_free_p, p);
2136 block_to_free = nr;
2137 block_to_free_p = p;
2138 count = 1;
2139 }
2140 }
2141 }
2142
2143 if (count > 0)
2144 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2145 count, block_to_free_p, p);
2146
2147 if (this_bh) {
2148 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2149
2150 /*
2151 * The buffer head should have an attached journal head at this
2152 * point. However, if the data is corrupted and an indirect
2153 * block pointed to itself, it would have been detached when
2154 * the block was cleared. Check for this instead of OOPSing.
2155 */
2156 if (bh2jh(this_bh))
2157 ext3_journal_dirty_metadata(handle, this_bh);
2158 else
2159 ext3_error(inode->i_sb, "ext3_free_data",
2160 "circular indirect block detected, "
2161 "inode=%lu, block=%llu",
2162 inode->i_ino,
2163 (unsigned long long)this_bh->b_blocknr);
2164 }
2165 }
2166
2167 /**
2168 * ext3_free_branches - free an array of branches
2169 * @handle: JBD handle for this transaction
2170 * @inode: inode we are dealing with
2171 * @parent_bh: the buffer_head which contains *@first and *@last
2172 * @first: array of block numbers
2173 * @last: pointer immediately past the end of array
2174 * @depth: depth of the branches to free
2175 *
2176 * We are freeing all blocks refered from these branches (numbers are
2177 * stored as little-endian 32-bit) and updating @inode->i_blocks
2178 * appropriately.
2179 */
2180 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2181 struct buffer_head *parent_bh,
2182 __le32 *first, __le32 *last, int depth)
2183 {
2184 ext3_fsblk_t nr;
2185 __le32 *p;
2186
2187 if (is_handle_aborted(handle))
2188 return;
2189
2190 if (depth--) {
2191 struct buffer_head *bh;
2192 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2193 p = last;
2194 while (--p >= first) {
2195 nr = le32_to_cpu(*p);
2196 if (!nr)
2197 continue; /* A hole */
2198
2199 /* Go read the buffer for the next level down */
2200 bh = sb_bread(inode->i_sb, nr);
2201
2202 /*
2203 * A read failure? Report error and clear slot
2204 * (should be rare).
2205 */
2206 if (!bh) {
2207 ext3_error(inode->i_sb, "ext3_free_branches",
2208 "Read failure, inode=%lu, block="E3FSBLK,
2209 inode->i_ino, nr);
2210 continue;
2211 }
2212
2213 /* This zaps the entire block. Bottom up. */
2214 BUFFER_TRACE(bh, "free child branches");
2215 ext3_free_branches(handle, inode, bh,
2216 (__le32*)bh->b_data,
2217 (__le32*)bh->b_data + addr_per_block,
2218 depth);
2219
2220 /*
2221 * We've probably journalled the indirect block several
2222 * times during the truncate. But it's no longer
2223 * needed and we now drop it from the transaction via
2224 * journal_revoke().
2225 *
2226 * That's easy if it's exclusively part of this
2227 * transaction. But if it's part of the committing
2228 * transaction then journal_forget() will simply
2229 * brelse() it. That means that if the underlying
2230 * block is reallocated in ext3_get_block(),
2231 * unmap_underlying_metadata() will find this block
2232 * and will try to get rid of it. damn, damn.
2233 *
2234 * If this block has already been committed to the
2235 * journal, a revoke record will be written. And
2236 * revoke records must be emitted *before* clearing
2237 * this block's bit in the bitmaps.
2238 */
2239 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2240
2241 /*
2242 * Everything below this this pointer has been
2243 * released. Now let this top-of-subtree go.
2244 *
2245 * We want the freeing of this indirect block to be
2246 * atomic in the journal with the updating of the
2247 * bitmap block which owns it. So make some room in
2248 * the journal.
2249 *
2250 * We zero the parent pointer *after* freeing its
2251 * pointee in the bitmaps, so if extend_transaction()
2252 * for some reason fails to put the bitmap changes and
2253 * the release into the same transaction, recovery
2254 * will merely complain about releasing a free block,
2255 * rather than leaking blocks.
2256 */
2257 if (is_handle_aborted(handle))
2258 return;
2259 if (try_to_extend_transaction(handle, inode)) {
2260 ext3_mark_inode_dirty(handle, inode);
2261 ext3_journal_test_restart(handle, inode);
2262 }
2263
2264 ext3_free_blocks(handle, inode, nr, 1);
2265
2266 if (parent_bh) {
2267 /*
2268 * The block which we have just freed is
2269 * pointed to by an indirect block: journal it
2270 */
2271 BUFFER_TRACE(parent_bh, "get_write_access");
2272 if (!ext3_journal_get_write_access(handle,
2273 parent_bh)){
2274 *p = 0;
2275 BUFFER_TRACE(parent_bh,
2276 "call ext3_journal_dirty_metadata");
2277 ext3_journal_dirty_metadata(handle,
2278 parent_bh);
2279 }
2280 }
2281 }
2282 } else {
2283 /* We have reached the bottom of the tree. */
2284 BUFFER_TRACE(parent_bh, "free data blocks");
2285 ext3_free_data(handle, inode, parent_bh, first, last);
2286 }
2287 }
2288
2289 int ext3_can_truncate(struct inode *inode)
2290 {
2291 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2292 return 0;
2293 if (S_ISREG(inode->i_mode))
2294 return 1;
2295 if (S_ISDIR(inode->i_mode))
2296 return 1;
2297 if (S_ISLNK(inode->i_mode))
2298 return !ext3_inode_is_fast_symlink(inode);
2299 return 0;
2300 }
2301
2302 /*
2303 * ext3_truncate()
2304 *
2305 * We block out ext3_get_block() block instantiations across the entire
2306 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2307 * simultaneously on behalf of the same inode.
2308 *
2309 * As we work through the truncate and commmit bits of it to the journal there
2310 * is one core, guiding principle: the file's tree must always be consistent on
2311 * disk. We must be able to restart the truncate after a crash.
2312 *
2313 * The file's tree may be transiently inconsistent in memory (although it
2314 * probably isn't), but whenever we close off and commit a journal transaction,
2315 * the contents of (the filesystem + the journal) must be consistent and
2316 * restartable. It's pretty simple, really: bottom up, right to left (although
2317 * left-to-right works OK too).
2318 *
2319 * Note that at recovery time, journal replay occurs *before* the restart of
2320 * truncate against the orphan inode list.
2321 *
2322 * The committed inode has the new, desired i_size (which is the same as
2323 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2324 * that this inode's truncate did not complete and it will again call
2325 * ext3_truncate() to have another go. So there will be instantiated blocks
2326 * to the right of the truncation point in a crashed ext3 filesystem. But
2327 * that's fine - as long as they are linked from the inode, the post-crash
2328 * ext3_truncate() run will find them and release them.
2329 */
2330 void ext3_truncate(struct inode *inode)
2331 {
2332 handle_t *handle;
2333 struct ext3_inode_info *ei = EXT3_I(inode);
2334 __le32 *i_data = ei->i_data;
2335 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2336 struct address_space *mapping = inode->i_mapping;
2337 int offsets[4];
2338 Indirect chain[4];
2339 Indirect *partial;
2340 __le32 nr = 0;
2341 int n;
2342 long last_block;
2343 unsigned blocksize = inode->i_sb->s_blocksize;
2344 struct page *page;
2345
2346 if (!ext3_can_truncate(inode))
2347 return;
2348
2349 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2350 ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
2351
2352 /*
2353 * We have to lock the EOF page here, because lock_page() nests
2354 * outside journal_start().
2355 */
2356 if ((inode->i_size & (blocksize - 1)) == 0) {
2357 /* Block boundary? Nothing to do */
2358 page = NULL;
2359 } else {
2360 page = grab_cache_page(mapping,
2361 inode->i_size >> PAGE_CACHE_SHIFT);
2362 if (!page)
2363 return;
2364 }
2365
2366 handle = start_transaction(inode);
2367 if (IS_ERR(handle)) {
2368 if (page) {
2369 clear_highpage(page);
2370 flush_dcache_page(page);
2371 unlock_page(page);
2372 page_cache_release(page);
2373 }
2374 return; /* AKPM: return what? */
2375 }
2376
2377 last_block = (inode->i_size + blocksize-1)
2378 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2379
2380 if (page)
2381 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2382
2383 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2384 if (n == 0)
2385 goto out_stop; /* error */
2386
2387 /*
2388 * OK. This truncate is going to happen. We add the inode to the
2389 * orphan list, so that if this truncate spans multiple transactions,
2390 * and we crash, we will resume the truncate when the filesystem
2391 * recovers. It also marks the inode dirty, to catch the new size.
2392 *
2393 * Implication: the file must always be in a sane, consistent
2394 * truncatable state while each transaction commits.
2395 */
2396 if (ext3_orphan_add(handle, inode))
2397 goto out_stop;
2398
2399 /*
2400 * The orphan list entry will now protect us from any crash which
2401 * occurs before the truncate completes, so it is now safe to propagate
2402 * the new, shorter inode size (held for now in i_size) into the
2403 * on-disk inode. We do this via i_disksize, which is the value which
2404 * ext3 *really* writes onto the disk inode.
2405 */
2406 ei->i_disksize = inode->i_size;
2407
2408 /*
2409 * From here we block out all ext3_get_block() callers who want to
2410 * modify the block allocation tree.
2411 */
2412 mutex_lock(&ei->truncate_mutex);
2413
2414 if (n == 1) { /* direct blocks */
2415 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2416 i_data + EXT3_NDIR_BLOCKS);
2417 goto do_indirects;
2418 }
2419
2420 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2421 /* Kill the top of shared branch (not detached) */
2422 if (nr) {
2423 if (partial == chain) {
2424 /* Shared branch grows from the inode */
2425 ext3_free_branches(handle, inode, NULL,
2426 &nr, &nr+1, (chain+n-1) - partial);
2427 *partial->p = 0;
2428 /*
2429 * We mark the inode dirty prior to restart,
2430 * and prior to stop. No need for it here.
2431 */
2432 } else {
2433 /* Shared branch grows from an indirect block */
2434 BUFFER_TRACE(partial->bh, "get_write_access");
2435 ext3_free_branches(handle, inode, partial->bh,
2436 partial->p,
2437 partial->p+1, (chain+n-1) - partial);
2438 }
2439 }
2440 /* Clear the ends of indirect blocks on the shared branch */
2441 while (partial > chain) {
2442 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2443 (__le32*)partial->bh->b_data+addr_per_block,
2444 (chain+n-1) - partial);
2445 BUFFER_TRACE(partial->bh, "call brelse");
2446 brelse (partial->bh);
2447 partial--;
2448 }
2449 do_indirects:
2450 /* Kill the remaining (whole) subtrees */
2451 switch (offsets[0]) {
2452 default:
2453 nr = i_data[EXT3_IND_BLOCK];
2454 if (nr) {
2455 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2456 i_data[EXT3_IND_BLOCK] = 0;
2457 }
2458 case EXT3_IND_BLOCK:
2459 nr = i_data[EXT3_DIND_BLOCK];
2460 if (nr) {
2461 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2462 i_data[EXT3_DIND_BLOCK] = 0;
2463 }
2464 case EXT3_DIND_BLOCK:
2465 nr = i_data[EXT3_TIND_BLOCK];
2466 if (nr) {
2467 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2468 i_data[EXT3_TIND_BLOCK] = 0;
2469 }
2470 case EXT3_TIND_BLOCK:
2471 ;
2472 }
2473
2474 ext3_discard_reservation(inode);
2475
2476 mutex_unlock(&ei->truncate_mutex);
2477 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2478 ext3_mark_inode_dirty(handle, inode);
2479
2480 /*
2481 * In a multi-transaction truncate, we only make the final transaction
2482 * synchronous
2483 */
2484 if (IS_SYNC(inode))
2485 handle->h_sync = 1;
2486 out_stop:
2487 /*
2488 * If this was a simple ftruncate(), and the file will remain alive
2489 * then we need to clear up the orphan record which we created above.
2490 * However, if this was a real unlink then we were called by
2491 * ext3_delete_inode(), and we allow that function to clean up the
2492 * orphan info for us.
2493 */
2494 if (inode->i_nlink)
2495 ext3_orphan_del(handle, inode);
2496
2497 ext3_journal_stop(handle);
2498 }
2499
2500 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2501 unsigned long ino, struct ext3_iloc *iloc)
2502 {
2503 unsigned long block_group;
2504 unsigned long offset;
2505 ext3_fsblk_t block;
2506 struct ext3_group_desc *gdp;
2507
2508 if (!ext3_valid_inum(sb, ino)) {
2509 /*
2510 * This error is already checked for in namei.c unless we are
2511 * looking at an NFS filehandle, in which case no error
2512 * report is needed
2513 */
2514 return 0;
2515 }
2516
2517 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2518 gdp = ext3_get_group_desc(sb, block_group, NULL);
2519 if (!gdp)
2520 return 0;
2521 /*
2522 * Figure out the offset within the block group inode table
2523 */
2524 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2525 EXT3_INODE_SIZE(sb);
2526 block = le32_to_cpu(gdp->bg_inode_table) +
2527 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2528
2529 iloc->block_group = block_group;
2530 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2531 return block;
2532 }
2533
2534 /*
2535 * ext3_get_inode_loc returns with an extra refcount against the inode's
2536 * underlying buffer_head on success. If 'in_mem' is true, we have all
2537 * data in memory that is needed to recreate the on-disk version of this
2538 * inode.
2539 */
2540 static int __ext3_get_inode_loc(struct inode *inode,
2541 struct ext3_iloc *iloc, int in_mem)
2542 {
2543 ext3_fsblk_t block;
2544 struct buffer_head *bh;
2545
2546 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2547 if (!block)
2548 return -EIO;
2549
2550 bh = sb_getblk(inode->i_sb, block);
2551 if (!bh) {
2552 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2553 "unable to read inode block - "
2554 "inode=%lu, block="E3FSBLK,
2555 inode->i_ino, block);
2556 return -EIO;
2557 }
2558 if (!buffer_uptodate(bh)) {
2559 lock_buffer(bh);
2560
2561 /*
2562 * If the buffer has the write error flag, we have failed
2563 * to write out another inode in the same block. In this
2564 * case, we don't have to read the block because we may
2565 * read the old inode data successfully.
2566 */
2567 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2568 set_buffer_uptodate(bh);
2569
2570 if (buffer_uptodate(bh)) {
2571 /* someone brought it uptodate while we waited */
2572 unlock_buffer(bh);
2573 goto has_buffer;
2574 }
2575
2576 /*
2577 * If we have all information of the inode in memory and this
2578 * is the only valid inode in the block, we need not read the
2579 * block.
2580 */
2581 if (in_mem) {
2582 struct buffer_head *bitmap_bh;
2583 struct ext3_group_desc *desc;
2584 int inodes_per_buffer;
2585 int inode_offset, i;
2586 int block_group;
2587 int start;
2588
2589 block_group = (inode->i_ino - 1) /
2590 EXT3_INODES_PER_GROUP(inode->i_sb);
2591 inodes_per_buffer = bh->b_size /
2592 EXT3_INODE_SIZE(inode->i_sb);
2593 inode_offset = ((inode->i_ino - 1) %
2594 EXT3_INODES_PER_GROUP(inode->i_sb));
2595 start = inode_offset & ~(inodes_per_buffer - 1);
2596
2597 /* Is the inode bitmap in cache? */
2598 desc = ext3_get_group_desc(inode->i_sb,
2599 block_group, NULL);
2600 if (!desc)
2601 goto make_io;
2602
2603 bitmap_bh = sb_getblk(inode->i_sb,
2604 le32_to_cpu(desc->bg_inode_bitmap));
2605 if (!bitmap_bh)
2606 goto make_io;
2607
2608 /*
2609 * If the inode bitmap isn't in cache then the
2610 * optimisation may end up performing two reads instead
2611 * of one, so skip it.
2612 */
2613 if (!buffer_uptodate(bitmap_bh)) {
2614 brelse(bitmap_bh);
2615 goto make_io;
2616 }
2617 for (i = start; i < start + inodes_per_buffer; i++) {
2618 if (i == inode_offset)
2619 continue;
2620 if (ext3_test_bit(i, bitmap_bh->b_data))
2621 break;
2622 }
2623 brelse(bitmap_bh);
2624 if (i == start + inodes_per_buffer) {
2625 /* all other inodes are free, so skip I/O */
2626 memset(bh->b_data, 0, bh->b_size);
2627 set_buffer_uptodate(bh);
2628 unlock_buffer(bh);
2629 goto has_buffer;
2630 }
2631 }
2632
2633 make_io:
2634 /*
2635 * There are other valid inodes in the buffer, this inode
2636 * has in-inode xattrs, or we don't have this inode in memory.
2637 * Read the block from disk.
2638 */
2639 get_bh(bh);
2640 bh->b_end_io = end_buffer_read_sync;
2641 submit_bh(READ_META, bh);
2642 wait_on_buffer(bh);
2643 if (!buffer_uptodate(bh)) {
2644 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2645 "unable to read inode block - "
2646 "inode=%lu, block="E3FSBLK,
2647 inode->i_ino, block);
2648 brelse(bh);
2649 return -EIO;
2650 }
2651 }
2652 has_buffer:
2653 iloc->bh = bh;
2654 return 0;
2655 }
2656
2657 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2658 {
2659 /* We have all inode data except xattrs in memory here. */
2660 return __ext3_get_inode_loc(inode, iloc,
2661 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2662 }
2663
2664 void ext3_set_inode_flags(struct inode *inode)
2665 {
2666 unsigned int flags = EXT3_I(inode)->i_flags;
2667
2668 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2669 if (flags & EXT3_SYNC_FL)
2670 inode->i_flags |= S_SYNC;
2671 if (flags & EXT3_APPEND_FL)
2672 inode->i_flags |= S_APPEND;
2673 if (flags & EXT3_IMMUTABLE_FL)
2674 inode->i_flags |= S_IMMUTABLE;
2675 if (flags & EXT3_NOATIME_FL)
2676 inode->i_flags |= S_NOATIME;
2677 if (flags & EXT3_DIRSYNC_FL)
2678 inode->i_flags |= S_DIRSYNC;
2679 }
2680
2681 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2682 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2683 {
2684 unsigned int flags = ei->vfs_inode.i_flags;
2685
2686 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2687 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2688 if (flags & S_SYNC)
2689 ei->i_flags |= EXT3_SYNC_FL;
2690 if (flags & S_APPEND)
2691 ei->i_flags |= EXT3_APPEND_FL;
2692 if (flags & S_IMMUTABLE)
2693 ei->i_flags |= EXT3_IMMUTABLE_FL;
2694 if (flags & S_NOATIME)
2695 ei->i_flags |= EXT3_NOATIME_FL;
2696 if (flags & S_DIRSYNC)
2697 ei->i_flags |= EXT3_DIRSYNC_FL;
2698 }
2699
2700 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2701 {
2702 struct ext3_iloc iloc;
2703 struct ext3_inode *raw_inode;
2704 struct ext3_inode_info *ei;
2705 struct buffer_head *bh;
2706 struct inode *inode;
2707 long ret;
2708 int block;
2709
2710 inode = iget_locked(sb, ino);
2711 if (!inode)
2712 return ERR_PTR(-ENOMEM);
2713 if (!(inode->i_state & I_NEW))
2714 return inode;
2715
2716 ei = EXT3_I(inode);
2717 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2718 ei->i_acl = EXT3_ACL_NOT_CACHED;
2719 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2720 #endif
2721 ei->i_block_alloc_info = NULL;
2722
2723 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2724 if (ret < 0)
2725 goto bad_inode;
2726 bh = iloc.bh;
2727 raw_inode = ext3_raw_inode(&iloc);
2728 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2729 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2730 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2731 if(!(test_opt (inode->i_sb, NO_UID32))) {
2732 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2733 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2734 }
2735 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2736 inode->i_size = le32_to_cpu(raw_inode->i_size);
2737 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2738 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2739 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2740 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2741
2742 ei->i_state = 0;
2743 ei->i_dir_start_lookup = 0;
2744 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2745 /* We now have enough fields to check if the inode was active or not.
2746 * This is needed because nfsd might try to access dead inodes
2747 * the test is that same one that e2fsck uses
2748 * NeilBrown 1999oct15
2749 */
2750 if (inode->i_nlink == 0) {
2751 if (inode->i_mode == 0 ||
2752 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2753 /* this inode is deleted */
2754 brelse (bh);
2755 ret = -ESTALE;
2756 goto bad_inode;
2757 }
2758 /* The only unlinked inodes we let through here have
2759 * valid i_mode and are being read by the orphan
2760 * recovery code: that's fine, we're about to complete
2761 * the process of deleting those. */
2762 }
2763 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2764 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2765 #ifdef EXT3_FRAGMENTS
2766 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2767 ei->i_frag_no = raw_inode->i_frag;
2768 ei->i_frag_size = raw_inode->i_fsize;
2769 #endif
2770 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2771 if (!S_ISREG(inode->i_mode)) {
2772 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2773 } else {
2774 inode->i_size |=
2775 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2776 }
2777 ei->i_disksize = inode->i_size;
2778 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2779 ei->i_block_group = iloc.block_group;
2780 /*
2781 * NOTE! The in-memory inode i_data array is in little-endian order
2782 * even on big-endian machines: we do NOT byteswap the block numbers!
2783 */
2784 for (block = 0; block < EXT3_N_BLOCKS; block++)
2785 ei->i_data[block] = raw_inode->i_block[block];
2786 INIT_LIST_HEAD(&ei->i_orphan);
2787
2788 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2789 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2790 /*
2791 * When mke2fs creates big inodes it does not zero out
2792 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2793 * so ignore those first few inodes.
2794 */
2795 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2796 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2797 EXT3_INODE_SIZE(inode->i_sb)) {
2798 brelse (bh);
2799 ret = -EIO;
2800 goto bad_inode;
2801 }
2802 if (ei->i_extra_isize == 0) {
2803 /* The extra space is currently unused. Use it. */
2804 ei->i_extra_isize = sizeof(struct ext3_inode) -
2805 EXT3_GOOD_OLD_INODE_SIZE;
2806 } else {
2807 __le32 *magic = (void *)raw_inode +
2808 EXT3_GOOD_OLD_INODE_SIZE +
2809 ei->i_extra_isize;
2810 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2811 ei->i_state |= EXT3_STATE_XATTR;
2812 }
2813 } else
2814 ei->i_extra_isize = 0;
2815
2816 if (S_ISREG(inode->i_mode)) {
2817 inode->i_op = &ext3_file_inode_operations;
2818 inode->i_fop = &ext3_file_operations;
2819 ext3_set_aops(inode);
2820 } else if (S_ISDIR(inode->i_mode)) {
2821 inode->i_op = &ext3_dir_inode_operations;
2822 inode->i_fop = &ext3_dir_operations;
2823 } else if (S_ISLNK(inode->i_mode)) {
2824 if (ext3_inode_is_fast_symlink(inode)) {
2825 inode->i_op = &ext3_fast_symlink_inode_operations;
2826 nd_terminate_link(ei->i_data, inode->i_size,
2827 sizeof(ei->i_data) - 1);
2828 } else {
2829 inode->i_op = &ext3_symlink_inode_operations;
2830 ext3_set_aops(inode);
2831 }
2832 } else {
2833 inode->i_op = &ext3_special_inode_operations;
2834 if (raw_inode->i_block[0])
2835 init_special_inode(inode, inode->i_mode,
2836 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2837 else
2838 init_special_inode(inode, inode->i_mode,
2839 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2840 }
2841 brelse (iloc.bh);
2842 ext3_set_inode_flags(inode);
2843 unlock_new_inode(inode);
2844 return inode;
2845
2846 bad_inode:
2847 iget_failed(inode);
2848 return ERR_PTR(ret);
2849 }
2850
2851 /*
2852 * Post the struct inode info into an on-disk inode location in the
2853 * buffer-cache. This gobbles the caller's reference to the
2854 * buffer_head in the inode location struct.
2855 *
2856 * The caller must have write access to iloc->bh.
2857 */
2858 static int ext3_do_update_inode(handle_t *handle,
2859 struct inode *inode,
2860 struct ext3_iloc *iloc)
2861 {
2862 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2863 struct ext3_inode_info *ei = EXT3_I(inode);
2864 struct buffer_head *bh = iloc->bh;
2865 int err = 0, rc, block;
2866
2867 /* For fields not not tracking in the in-memory inode,
2868 * initialise them to zero for new inodes. */
2869 if (ei->i_state & EXT3_STATE_NEW)
2870 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2871
2872 ext3_get_inode_flags(ei);
2873 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2874 if(!(test_opt(inode->i_sb, NO_UID32))) {
2875 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2876 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2877 /*
2878 * Fix up interoperability with old kernels. Otherwise, old inodes get
2879 * re-used with the upper 16 bits of the uid/gid intact
2880 */
2881 if(!ei->i_dtime) {
2882 raw_inode->i_uid_high =
2883 cpu_to_le16(high_16_bits(inode->i_uid));
2884 raw_inode->i_gid_high =
2885 cpu_to_le16(high_16_bits(inode->i_gid));
2886 } else {
2887 raw_inode->i_uid_high = 0;
2888 raw_inode->i_gid_high = 0;
2889 }
2890 } else {
2891 raw_inode->i_uid_low =
2892 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2893 raw_inode->i_gid_low =
2894 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2895 raw_inode->i_uid_high = 0;
2896 raw_inode->i_gid_high = 0;
2897 }
2898 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2899 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2900 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2901 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2902 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2903 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2904 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2905 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2906 #ifdef EXT3_FRAGMENTS
2907 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2908 raw_inode->i_frag = ei->i_frag_no;
2909 raw_inode->i_fsize = ei->i_frag_size;
2910 #endif
2911 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2912 if (!S_ISREG(inode->i_mode)) {
2913 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2914 } else {
2915 raw_inode->i_size_high =
2916 cpu_to_le32(ei->i_disksize >> 32);
2917 if (ei->i_disksize > 0x7fffffffULL) {
2918 struct super_block *sb = inode->i_sb;
2919 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2920 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2921 EXT3_SB(sb)->s_es->s_rev_level ==
2922 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2923 /* If this is the first large file
2924 * created, add a flag to the superblock.
2925 */
2926 err = ext3_journal_get_write_access(handle,
2927 EXT3_SB(sb)->s_sbh);
2928 if (err)
2929 goto out_brelse;
2930 ext3_update_dynamic_rev(sb);
2931 EXT3_SET_RO_COMPAT_FEATURE(sb,
2932 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2933 sb->s_dirt = 1;
2934 handle->h_sync = 1;
2935 err = ext3_journal_dirty_metadata(handle,
2936 EXT3_SB(sb)->s_sbh);
2937 }
2938 }
2939 }
2940 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2941 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2942 if (old_valid_dev(inode->i_rdev)) {
2943 raw_inode->i_block[0] =
2944 cpu_to_le32(old_encode_dev(inode->i_rdev));
2945 raw_inode->i_block[1] = 0;
2946 } else {
2947 raw_inode->i_block[0] = 0;
2948 raw_inode->i_block[1] =
2949 cpu_to_le32(new_encode_dev(inode->i_rdev));
2950 raw_inode->i_block[2] = 0;
2951 }
2952 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2953 raw_inode->i_block[block] = ei->i_data[block];
2954
2955 if (ei->i_extra_isize)
2956 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2957
2958 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2959 rc = ext3_journal_dirty_metadata(handle, bh);
2960 if (!err)
2961 err = rc;
2962 ei->i_state &= ~EXT3_STATE_NEW;
2963
2964 out_brelse:
2965 brelse (bh);
2966 ext3_std_error(inode->i_sb, err);
2967 return err;
2968 }
2969
2970 /*
2971 * ext3_write_inode()
2972 *
2973 * We are called from a few places:
2974 *
2975 * - Within generic_file_write() for O_SYNC files.
2976 * Here, there will be no transaction running. We wait for any running
2977 * trasnaction to commit.
2978 *
2979 * - Within sys_sync(), kupdate and such.
2980 * We wait on commit, if tol to.
2981 *
2982 * - Within prune_icache() (PF_MEMALLOC == true)
2983 * Here we simply return. We can't afford to block kswapd on the
2984 * journal commit.
2985 *
2986 * In all cases it is actually safe for us to return without doing anything,
2987 * because the inode has been copied into a raw inode buffer in
2988 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2989 * knfsd.
2990 *
2991 * Note that we are absolutely dependent upon all inode dirtiers doing the
2992 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2993 * which we are interested.
2994 *
2995 * It would be a bug for them to not do this. The code:
2996 *
2997 * mark_inode_dirty(inode)
2998 * stuff();
2999 * inode->i_size = expr;
3000 *
3001 * is in error because a kswapd-driven write_inode() could occur while
3002 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3003 * will no longer be on the superblock's dirty inode list.
3004 */
3005 int ext3_write_inode(struct inode *inode, int wait)
3006 {
3007 if (current->flags & PF_MEMALLOC)
3008 return 0;
3009
3010 if (ext3_journal_current_handle()) {
3011 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3012 dump_stack();
3013 return -EIO;
3014 }
3015
3016 if (!wait)
3017 return 0;
3018
3019 return ext3_force_commit(inode->i_sb);
3020 }
3021
3022 /*
3023 * ext3_setattr()
3024 *
3025 * Called from notify_change.
3026 *
3027 * We want to trap VFS attempts to truncate the file as soon as
3028 * possible. In particular, we want to make sure that when the VFS
3029 * shrinks i_size, we put the inode on the orphan list and modify
3030 * i_disksize immediately, so that during the subsequent flushing of
3031 * dirty pages and freeing of disk blocks, we can guarantee that any
3032 * commit will leave the blocks being flushed in an unused state on
3033 * disk. (On recovery, the inode will get truncated and the blocks will
3034 * be freed, so we have a strong guarantee that no future commit will
3035 * leave these blocks visible to the user.)
3036 *
3037 * Called with inode->sem down.
3038 */
3039 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3040 {
3041 struct inode *inode = dentry->d_inode;
3042 int error, rc = 0;
3043 const unsigned int ia_valid = attr->ia_valid;
3044
3045 error = inode_change_ok(inode, attr);
3046 if (error)
3047 return error;
3048
3049 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3050 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3051 handle_t *handle;
3052
3053 /* (user+group)*(old+new) structure, inode write (sb,
3054 * inode block, ? - but truncate inode update has it) */
3055 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3056 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3057 if (IS_ERR(handle)) {
3058 error = PTR_ERR(handle);
3059 goto err_out;
3060 }
3061 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3062 if (error) {
3063 ext3_journal_stop(handle);
3064 return error;
3065 }
3066 /* Update corresponding info in inode so that everything is in
3067 * one transaction */
3068 if (attr->ia_valid & ATTR_UID)
3069 inode->i_uid = attr->ia_uid;
3070 if (attr->ia_valid & ATTR_GID)
3071 inode->i_gid = attr->ia_gid;
3072 error = ext3_mark_inode_dirty(handle, inode);
3073 ext3_journal_stop(handle);
3074 }
3075
3076 if (S_ISREG(inode->i_mode) &&
3077 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3078 handle_t *handle;
3079
3080 handle = ext3_journal_start(inode, 3);
3081 if (IS_ERR(handle)) {
3082 error = PTR_ERR(handle);
3083 goto err_out;
3084 }
3085
3086 error = ext3_orphan_add(handle, inode);
3087 EXT3_I(inode)->i_disksize = attr->ia_size;
3088 rc = ext3_mark_inode_dirty(handle, inode);
3089 if (!error)
3090 error = rc;
3091 ext3_journal_stop(handle);
3092 }
3093
3094 rc = inode_setattr(inode, attr);
3095
3096 /* If inode_setattr's call to ext3_truncate failed to get a
3097 * transaction handle at all, we need to clean up the in-core
3098 * orphan list manually. */
3099 if (inode->i_nlink)
3100 ext3_orphan_del(NULL, inode);
3101
3102 if (!rc && (ia_valid & ATTR_MODE))
3103 rc = ext3_acl_chmod(inode);
3104
3105 err_out:
3106 ext3_std_error(inode->i_sb, error);
3107 if (!error)
3108 error = rc;
3109 return error;
3110 }
3111
3112
3113 /*
3114 * How many blocks doth make a writepage()?
3115 *
3116 * With N blocks per page, it may be:
3117 * N data blocks
3118 * 2 indirect block
3119 * 2 dindirect
3120 * 1 tindirect
3121 * N+5 bitmap blocks (from the above)
3122 * N+5 group descriptor summary blocks
3123 * 1 inode block
3124 * 1 superblock.
3125 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3126 *
3127 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3128 *
3129 * With ordered or writeback data it's the same, less the N data blocks.
3130 *
3131 * If the inode's direct blocks can hold an integral number of pages then a
3132 * page cannot straddle two indirect blocks, and we can only touch one indirect
3133 * and dindirect block, and the "5" above becomes "3".
3134 *
3135 * This still overestimates under most circumstances. If we were to pass the
3136 * start and end offsets in here as well we could do block_to_path() on each
3137 * block and work out the exact number of indirects which are touched. Pah.
3138 */
3139
3140 static int ext3_writepage_trans_blocks(struct inode *inode)
3141 {
3142 int bpp = ext3_journal_blocks_per_page(inode);
3143 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3144 int ret;
3145
3146 if (ext3_should_journal_data(inode))
3147 ret = 3 * (bpp + indirects) + 2;
3148 else
3149 ret = 2 * (bpp + indirects) + 2;
3150
3151 #ifdef CONFIG_QUOTA
3152 /* We know that structure was already allocated during DQUOT_INIT so
3153 * we will be updating only the data blocks + inodes */
3154 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
3155 #endif
3156
3157 return ret;
3158 }
3159
3160 /*
3161 * The caller must have previously called ext3_reserve_inode_write().
3162 * Give this, we know that the caller already has write access to iloc->bh.
3163 */
3164 int ext3_mark_iloc_dirty(handle_t *handle,
3165 struct inode *inode, struct ext3_iloc *iloc)
3166 {
3167 int err = 0;
3168
3169 /* the do_update_inode consumes one bh->b_count */
3170 get_bh(iloc->bh);
3171
3172 /* ext3_do_update_inode() does journal_dirty_metadata */
3173 err = ext3_do_update_inode(handle, inode, iloc);
3174 put_bh(iloc->bh);
3175 return err;
3176 }
3177
3178 /*
3179 * On success, We end up with an outstanding reference count against
3180 * iloc->bh. This _must_ be cleaned up later.
3181 */
3182
3183 int
3184 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3185 struct ext3_iloc *iloc)
3186 {
3187 int err = 0;
3188 if (handle) {
3189 err = ext3_get_inode_loc(inode, iloc);
3190 if (!err) {
3191 BUFFER_TRACE(iloc->bh, "get_write_access");
3192 err = ext3_journal_get_write_access(handle, iloc->bh);
3193 if (err) {
3194 brelse(iloc->bh);
3195 iloc->bh = NULL;
3196 }
3197 }
3198 }
3199 ext3_std_error(inode->i_sb, err);
3200 return err;
3201 }
3202
3203 /*
3204 * What we do here is to mark the in-core inode as clean with respect to inode
3205 * dirtiness (it may still be data-dirty).
3206 * This means that the in-core inode may be reaped by prune_icache
3207 * without having to perform any I/O. This is a very good thing,
3208 * because *any* task may call prune_icache - even ones which
3209 * have a transaction open against a different journal.
3210 *
3211 * Is this cheating? Not really. Sure, we haven't written the
3212 * inode out, but prune_icache isn't a user-visible syncing function.
3213 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3214 * we start and wait on commits.
3215 *
3216 * Is this efficient/effective? Well, we're being nice to the system
3217 * by cleaning up our inodes proactively so they can be reaped
3218 * without I/O. But we are potentially leaving up to five seconds'
3219 * worth of inodes floating about which prune_icache wants us to
3220 * write out. One way to fix that would be to get prune_icache()
3221 * to do a write_super() to free up some memory. It has the desired
3222 * effect.
3223 */
3224 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3225 {
3226 struct ext3_iloc iloc;
3227 int err;
3228
3229 might_sleep();
3230 err = ext3_reserve_inode_write(handle, inode, &iloc);
3231 if (!err)
3232 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3233 return err;
3234 }
3235
3236 /*
3237 * ext3_dirty_inode() is called from __mark_inode_dirty()
3238 *
3239 * We're really interested in the case where a file is being extended.
3240 * i_size has been changed by generic_commit_write() and we thus need
3241 * to include the updated inode in the current transaction.
3242 *
3243 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3244 * are allocated to the file.
3245 *
3246 * If the inode is marked synchronous, we don't honour that here - doing
3247 * so would cause a commit on atime updates, which we don't bother doing.
3248 * We handle synchronous inodes at the highest possible level.
3249 */
3250 void ext3_dirty_inode(struct inode *inode)
3251 {
3252 handle_t *current_handle = ext3_journal_current_handle();
3253 handle_t *handle;
3254
3255 handle = ext3_journal_start(inode, 2);
3256 if (IS_ERR(handle))
3257 goto out;
3258 if (current_handle &&
3259 current_handle->h_transaction != handle->h_transaction) {
3260 /* This task has a transaction open against a different fs */
3261 printk(KERN_EMERG "%s: transactions do not match!\n",
3262 __func__);
3263 } else {
3264 jbd_debug(5, "marking dirty. outer handle=%p\n",
3265 current_handle);
3266 ext3_mark_inode_dirty(handle, inode);
3267 }
3268 ext3_journal_stop(handle);
3269 out:
3270 return;
3271 }
3272
3273 #if 0
3274 /*
3275 * Bind an inode's backing buffer_head into this transaction, to prevent
3276 * it from being flushed to disk early. Unlike
3277 * ext3_reserve_inode_write, this leaves behind no bh reference and
3278 * returns no iloc structure, so the caller needs to repeat the iloc
3279 * lookup to mark the inode dirty later.
3280 */
3281 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3282 {
3283 struct ext3_iloc iloc;
3284
3285 int err = 0;
3286 if (handle) {
3287 err = ext3_get_inode_loc(inode, &iloc);
3288 if (!err) {
3289 BUFFER_TRACE(iloc.bh, "get_write_access");
3290 err = journal_get_write_access(handle, iloc.bh);
3291 if (!err)
3292 err = ext3_journal_dirty_metadata(handle,
3293 iloc.bh);
3294 brelse(iloc.bh);
3295 }
3296 }
3297 ext3_std_error(inode->i_sb, err);
3298 return err;
3299 }
3300 #endif
3301
3302 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3303 {
3304 journal_t *journal;
3305 handle_t *handle;
3306 int err;
3307
3308 /*
3309 * We have to be very careful here: changing a data block's
3310 * journaling status dynamically is dangerous. If we write a
3311 * data block to the journal, change the status and then delete
3312 * that block, we risk forgetting to revoke the old log record
3313 * from the journal and so a subsequent replay can corrupt data.
3314 * So, first we make sure that the journal is empty and that
3315 * nobody is changing anything.
3316 */
3317
3318 journal = EXT3_JOURNAL(inode);
3319 if (is_journal_aborted(journal))
3320 return -EROFS;
3321
3322 journal_lock_updates(journal);
3323 journal_flush(journal);
3324
3325 /*
3326 * OK, there are no updates running now, and all cached data is
3327 * synced to disk. We are now in a completely consistent state
3328 * which doesn't have anything in the journal, and we know that
3329 * no filesystem updates are running, so it is safe to modify
3330 * the inode's in-core data-journaling state flag now.
3331 */
3332
3333 if (val)
3334 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3335 else
3336 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3337 ext3_set_aops(inode);
3338
3339 journal_unlock_updates(journal);
3340
3341 /* Finally we can mark the inode as dirty. */
3342
3343 handle = ext3_journal_start(inode, 1);
3344 if (IS_ERR(handle))
3345 return PTR_ERR(handle);
3346
3347 err = ext3_mark_inode_dirty(handle, inode);
3348 handle->h_sync = 1;
3349 ext3_journal_stop(handle);
3350 ext3_std_error(inode->i_sb, err);
3351
3352 return err;
3353 }