]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/balloc.c
ext4: return error when calling ext4_ext_split failed
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / balloc.c
1 /*
2 * linux/fs/ext4/balloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
12 */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
20 #include "ext4.h"
21 #include "ext4_jbd2.h"
22 #include "group.h"
23
24 /*
25 * balloc.c contains the blocks allocation and deallocation routines
26 */
27
28 /*
29 * Calculate the block group number and offset, given a block number
30 */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 ext4_grpblk_t offset;
36
37 blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 if (offsetp)
40 *offsetp = offset;
41 if (blockgrpp)
42 *blockgrpp = blocknr;
43
44 }
45
46 static int ext4_block_in_group(struct super_block *sb, ext4_fsblk_t block,
47 ext4_group_t block_group)
48 {
49 ext4_group_t actual_group;
50 ext4_get_group_no_and_offset(sb, block, &actual_group, 0);
51 if (actual_group == block_group)
52 return 1;
53 return 0;
54 }
55
56 static int ext4_group_used_meta_blocks(struct super_block *sb,
57 ext4_group_t block_group)
58 {
59 ext4_fsblk_t tmp;
60 struct ext4_sb_info *sbi = EXT4_SB(sb);
61 /* block bitmap, inode bitmap, and inode table blocks */
62 int used_blocks = sbi->s_itb_per_group + 2;
63
64 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
65 struct ext4_group_desc *gdp;
66 struct buffer_head *bh;
67
68 gdp = ext4_get_group_desc(sb, block_group, &bh);
69 if (!ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp),
70 block_group))
71 used_blocks--;
72
73 if (!ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp),
74 block_group))
75 used_blocks--;
76
77 tmp = ext4_inode_table(sb, gdp);
78 for (; tmp < ext4_inode_table(sb, gdp) +
79 sbi->s_itb_per_group; tmp++) {
80 if (!ext4_block_in_group(sb, tmp, block_group))
81 used_blocks -= 1;
82 }
83 }
84 return used_blocks;
85 }
86 /* Initializes an uninitialized block bitmap if given, and returns the
87 * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
89 ext4_group_t block_group, struct ext4_group_desc *gdp)
90 {
91 int bit, bit_max;
92 unsigned free_blocks, group_blocks;
93 struct ext4_sb_info *sbi = EXT4_SB(sb);
94
95 if (bh) {
96 J_ASSERT_BH(bh, buffer_locked(bh));
97
98 /* If checksum is bad mark all blocks used to prevent allocation
99 * essentially implementing a per-group read-only flag. */
100 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
101 ext4_error(sb, __func__,
102 "Checksum bad for group %lu\n", block_group);
103 gdp->bg_free_blocks_count = 0;
104 gdp->bg_free_inodes_count = 0;
105 gdp->bg_itable_unused = 0;
106 memset(bh->b_data, 0xff, sb->s_blocksize);
107 return 0;
108 }
109 memset(bh->b_data, 0, sb->s_blocksize);
110 }
111
112 /* Check for superblock and gdt backups in this group */
113 bit_max = ext4_bg_has_super(sb, block_group);
114
115 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
116 block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
117 sbi->s_desc_per_block) {
118 if (bit_max) {
119 bit_max += ext4_bg_num_gdb(sb, block_group);
120 bit_max +=
121 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
122 }
123 } else { /* For META_BG_BLOCK_GROUPS */
124 int group_rel = (block_group -
125 le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
126 EXT4_DESC_PER_BLOCK(sb);
127 if (group_rel == 0 || group_rel == 1 ||
128 (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
129 bit_max += 1;
130 }
131
132 if (block_group == sbi->s_groups_count - 1) {
133 /*
134 * Even though mke2fs always initialize first and last group
135 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
136 * to make sure we calculate the right free blocks
137 */
138 group_blocks = ext4_blocks_count(sbi->s_es) -
139 le32_to_cpu(sbi->s_es->s_first_data_block) -
140 (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
141 } else {
142 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
143 }
144
145 free_blocks = group_blocks - bit_max;
146
147 if (bh) {
148 ext4_fsblk_t start, tmp;
149 int flex_bg = 0;
150
151 for (bit = 0; bit < bit_max; bit++)
152 ext4_set_bit(bit, bh->b_data);
153
154 start = ext4_group_first_block_no(sb, block_group);
155
156 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
157 EXT4_FEATURE_INCOMPAT_FLEX_BG))
158 flex_bg = 1;
159
160 /* Set bits for block and inode bitmaps, and inode table */
161 tmp = ext4_block_bitmap(sb, gdp);
162 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
163 ext4_set_bit(tmp - start, bh->b_data);
164
165 tmp = ext4_inode_bitmap(sb, gdp);
166 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
167 ext4_set_bit(tmp - start, bh->b_data);
168
169 tmp = ext4_inode_table(sb, gdp);
170 for (; tmp < ext4_inode_table(sb, gdp) +
171 sbi->s_itb_per_group; tmp++) {
172 if (!flex_bg ||
173 ext4_block_in_group(sb, tmp, block_group))
174 ext4_set_bit(tmp - start, bh->b_data);
175 }
176 /*
177 * Also if the number of blocks within the group is
178 * less than the blocksize * 8 ( which is the size
179 * of bitmap ), set rest of the block bitmap to 1
180 */
181 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
182 }
183 return free_blocks - ext4_group_used_meta_blocks(sb, block_group);
184 }
185
186
187 /*
188 * The free blocks are managed by bitmaps. A file system contains several
189 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
190 * block for inodes, N blocks for the inode table and data blocks.
191 *
192 * The file system contains group descriptors which are located after the
193 * super block. Each descriptor contains the number of the bitmap block and
194 * the free blocks count in the block. The descriptors are loaded in memory
195 * when a file system is mounted (see ext4_fill_super).
196 */
197
198
199 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
200
201 /**
202 * ext4_get_group_desc() -- load group descriptor from disk
203 * @sb: super block
204 * @block_group: given block group
205 * @bh: pointer to the buffer head to store the block
206 * group descriptor
207 */
208 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
209 ext4_group_t block_group,
210 struct buffer_head ** bh)
211 {
212 unsigned long group_desc;
213 unsigned long offset;
214 struct ext4_group_desc * desc;
215 struct ext4_sb_info *sbi = EXT4_SB(sb);
216
217 if (block_group >= sbi->s_groups_count) {
218 ext4_error (sb, "ext4_get_group_desc",
219 "block_group >= groups_count - "
220 "block_group = %lu, groups_count = %lu",
221 block_group, sbi->s_groups_count);
222
223 return NULL;
224 }
225 smp_rmb();
226
227 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
228 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
229 if (!sbi->s_group_desc[group_desc]) {
230 ext4_error (sb, "ext4_get_group_desc",
231 "Group descriptor not loaded - "
232 "block_group = %lu, group_desc = %lu, desc = %lu",
233 block_group, group_desc, offset);
234 return NULL;
235 }
236
237 desc = (struct ext4_group_desc *)(
238 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
239 offset * EXT4_DESC_SIZE(sb));
240 if (bh)
241 *bh = sbi->s_group_desc[group_desc];
242 return desc;
243 }
244
245 static int ext4_valid_block_bitmap(struct super_block *sb,
246 struct ext4_group_desc *desc,
247 unsigned int block_group,
248 struct buffer_head *bh)
249 {
250 ext4_grpblk_t offset;
251 ext4_grpblk_t next_zero_bit;
252 ext4_fsblk_t bitmap_blk;
253 ext4_fsblk_t group_first_block;
254
255 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
256 /* with FLEX_BG, the inode/block bitmaps and itable
257 * blocks may not be in the group at all
258 * so the bitmap validation will be skipped for those groups
259 * or it has to also read the block group where the bitmaps
260 * are located to verify they are set.
261 */
262 return 1;
263 }
264 group_first_block = ext4_group_first_block_no(sb, block_group);
265
266 /* check whether block bitmap block number is set */
267 bitmap_blk = ext4_block_bitmap(sb, desc);
268 offset = bitmap_blk - group_first_block;
269 if (!ext4_test_bit(offset, bh->b_data))
270 /* bad block bitmap */
271 goto err_out;
272
273 /* check whether the inode bitmap block number is set */
274 bitmap_blk = ext4_inode_bitmap(sb, desc);
275 offset = bitmap_blk - group_first_block;
276 if (!ext4_test_bit(offset, bh->b_data))
277 /* bad block bitmap */
278 goto err_out;
279
280 /* check whether the inode table block number is set */
281 bitmap_blk = ext4_inode_table(sb, desc);
282 offset = bitmap_blk - group_first_block;
283 next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
284 offset + EXT4_SB(sb)->s_itb_per_group,
285 offset);
286 if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
287 /* good bitmap for inode tables */
288 return 1;
289
290 err_out:
291 ext4_error(sb, __func__,
292 "Invalid block bitmap - "
293 "block_group = %d, block = %llu",
294 block_group, bitmap_blk);
295 return 0;
296 }
297 /**
298 * ext4_read_block_bitmap()
299 * @sb: super block
300 * @block_group: given block group
301 *
302 * Read the bitmap for a given block_group,and validate the
303 * bits for block/inode/inode tables are set in the bitmaps
304 *
305 * Return buffer_head on success or NULL in case of failure.
306 */
307 struct buffer_head *
308 ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
309 {
310 struct ext4_group_desc * desc;
311 struct buffer_head * bh = NULL;
312 ext4_fsblk_t bitmap_blk;
313
314 desc = ext4_get_group_desc(sb, block_group, NULL);
315 if (!desc)
316 return NULL;
317 bitmap_blk = ext4_block_bitmap(sb, desc);
318 bh = sb_getblk(sb, bitmap_blk);
319 if (unlikely(!bh)) {
320 ext4_error(sb, __func__,
321 "Cannot read block bitmap - "
322 "block_group = %d, block_bitmap = %llu",
323 (int)block_group, (unsigned long long)bitmap_blk);
324 return NULL;
325 }
326 if (bh_uptodate_or_lock(bh))
327 return bh;
328
329 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
330 ext4_init_block_bitmap(sb, bh, block_group, desc);
331 set_buffer_uptodate(bh);
332 unlock_buffer(bh);
333 return bh;
334 }
335 if (bh_submit_read(bh) < 0) {
336 put_bh(bh);
337 ext4_error(sb, __func__,
338 "Cannot read block bitmap - "
339 "block_group = %d, block_bitmap = %llu",
340 (int)block_group, (unsigned long long)bitmap_blk);
341 return NULL;
342 }
343 ext4_valid_block_bitmap(sb, desc, block_group, bh);
344 /*
345 * file system mounted not to panic on error,
346 * continue with corrupt bitmap
347 */
348 return bh;
349 }
350 /*
351 * The reservation window structure operations
352 * --------------------------------------------
353 * Operations include:
354 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
355 *
356 * We use a red-black tree to represent per-filesystem reservation
357 * windows.
358 *
359 */
360
361 /**
362 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
363 * @rb_root: root of per-filesystem reservation rb tree
364 * @verbose: verbose mode
365 * @fn: function which wishes to dump the reservation map
366 *
367 * If verbose is turned on, it will print the whole block reservation
368 * windows(start, end). Otherwise, it will only print out the "bad" windows,
369 * those windows that overlap with their immediate neighbors.
370 */
371 #if 1
372 static void __rsv_window_dump(struct rb_root *root, int verbose,
373 const char *fn)
374 {
375 struct rb_node *n;
376 struct ext4_reserve_window_node *rsv, *prev;
377 int bad;
378
379 restart:
380 n = rb_first(root);
381 bad = 0;
382 prev = NULL;
383
384 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
385 while (n) {
386 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
387 if (verbose)
388 printk("reservation window 0x%p "
389 "start: %llu, end: %llu\n",
390 rsv, rsv->rsv_start, rsv->rsv_end);
391 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
392 printk("Bad reservation %p (start >= end)\n",
393 rsv);
394 bad = 1;
395 }
396 if (prev && prev->rsv_end >= rsv->rsv_start) {
397 printk("Bad reservation %p (prev->end >= start)\n",
398 rsv);
399 bad = 1;
400 }
401 if (bad) {
402 if (!verbose) {
403 printk("Restarting reservation walk in verbose mode\n");
404 verbose = 1;
405 goto restart;
406 }
407 }
408 n = rb_next(n);
409 prev = rsv;
410 }
411 printk("Window map complete.\n");
412 BUG_ON(bad);
413 }
414 #define rsv_window_dump(root, verbose) \
415 __rsv_window_dump((root), (verbose), __func__)
416 #else
417 #define rsv_window_dump(root, verbose) do {} while (0)
418 #endif
419
420 /**
421 * goal_in_my_reservation()
422 * @rsv: inode's reservation window
423 * @grp_goal: given goal block relative to the allocation block group
424 * @group: the current allocation block group
425 * @sb: filesystem super block
426 *
427 * Test if the given goal block (group relative) is within the file's
428 * own block reservation window range.
429 *
430 * If the reservation window is outside the goal allocation group, return 0;
431 * grp_goal (given goal block) could be -1, which means no specific
432 * goal block. In this case, always return 1.
433 * If the goal block is within the reservation window, return 1;
434 * otherwise, return 0;
435 */
436 static int
437 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
438 ext4_group_t group, struct super_block *sb)
439 {
440 ext4_fsblk_t group_first_block, group_last_block;
441
442 group_first_block = ext4_group_first_block_no(sb, group);
443 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
444
445 if ((rsv->_rsv_start > group_last_block) ||
446 (rsv->_rsv_end < group_first_block))
447 return 0;
448 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
449 || (grp_goal + group_first_block > rsv->_rsv_end)))
450 return 0;
451 return 1;
452 }
453
454 /**
455 * search_reserve_window()
456 * @rb_root: root of reservation tree
457 * @goal: target allocation block
458 *
459 * Find the reserved window which includes the goal, or the previous one
460 * if the goal is not in any window.
461 * Returns NULL if there are no windows or if all windows start after the goal.
462 */
463 static struct ext4_reserve_window_node *
464 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
465 {
466 struct rb_node *n = root->rb_node;
467 struct ext4_reserve_window_node *rsv;
468
469 if (!n)
470 return NULL;
471
472 do {
473 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
474
475 if (goal < rsv->rsv_start)
476 n = n->rb_left;
477 else if (goal > rsv->rsv_end)
478 n = n->rb_right;
479 else
480 return rsv;
481 } while (n);
482 /*
483 * We've fallen off the end of the tree: the goal wasn't inside
484 * any particular node. OK, the previous node must be to one
485 * side of the interval containing the goal. If it's the RHS,
486 * we need to back up one.
487 */
488 if (rsv->rsv_start > goal) {
489 n = rb_prev(&rsv->rsv_node);
490 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
491 }
492 return rsv;
493 }
494
495 /**
496 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
497 * @sb: super block
498 * @rsv: reservation window to add
499 *
500 * Must be called with rsv_lock hold.
501 */
502 void ext4_rsv_window_add(struct super_block *sb,
503 struct ext4_reserve_window_node *rsv)
504 {
505 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
506 struct rb_node *node = &rsv->rsv_node;
507 ext4_fsblk_t start = rsv->rsv_start;
508
509 struct rb_node ** p = &root->rb_node;
510 struct rb_node * parent = NULL;
511 struct ext4_reserve_window_node *this;
512
513 while (*p)
514 {
515 parent = *p;
516 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
517
518 if (start < this->rsv_start)
519 p = &(*p)->rb_left;
520 else if (start > this->rsv_end)
521 p = &(*p)->rb_right;
522 else {
523 rsv_window_dump(root, 1);
524 BUG();
525 }
526 }
527
528 rb_link_node(node, parent, p);
529 rb_insert_color(node, root);
530 }
531
532 /**
533 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
534 * @sb: super block
535 * @rsv: reservation window to remove
536 *
537 * Mark the block reservation window as not allocated, and unlink it
538 * from the filesystem reservation window rb tree. Must be called with
539 * rsv_lock hold.
540 */
541 static void rsv_window_remove(struct super_block *sb,
542 struct ext4_reserve_window_node *rsv)
543 {
544 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
545 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
546 rsv->rsv_alloc_hit = 0;
547 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
548 }
549
550 /*
551 * rsv_is_empty() -- Check if the reservation window is allocated.
552 * @rsv: given reservation window to check
553 *
554 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
555 */
556 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
557 {
558 /* a valid reservation end block could not be 0 */
559 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
560 }
561
562 /**
563 * ext4_init_block_alloc_info()
564 * @inode: file inode structure
565 *
566 * Allocate and initialize the reservation window structure, and
567 * link the window to the ext4 inode structure at last
568 *
569 * The reservation window structure is only dynamically allocated
570 * and linked to ext4 inode the first time the open file
571 * needs a new block. So, before every ext4_new_block(s) call, for
572 * regular files, we should check whether the reservation window
573 * structure exists or not. In the latter case, this function is called.
574 * Fail to do so will result in block reservation being turned off for that
575 * open file.
576 *
577 * This function is called from ext4_get_blocks_handle(), also called
578 * when setting the reservation window size through ioctl before the file
579 * is open for write (needs block allocation).
580 *
581 * Needs down_write(i_data_sem) protection prior to call this function.
582 */
583 void ext4_init_block_alloc_info(struct inode *inode)
584 {
585 struct ext4_inode_info *ei = EXT4_I(inode);
586 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
587 struct super_block *sb = inode->i_sb;
588
589 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
590 if (block_i) {
591 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
592
593 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
594 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
595
596 /*
597 * if filesystem is mounted with NORESERVATION, the goal
598 * reservation window size is set to zero to indicate
599 * block reservation is off
600 */
601 if (!test_opt(sb, RESERVATION))
602 rsv->rsv_goal_size = 0;
603 else
604 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
605 rsv->rsv_alloc_hit = 0;
606 block_i->last_alloc_logical_block = 0;
607 block_i->last_alloc_physical_block = 0;
608 }
609 ei->i_block_alloc_info = block_i;
610 }
611
612 /**
613 * ext4_discard_reservation()
614 * @inode: inode
615 *
616 * Discard(free) block reservation window on last file close, or truncate
617 * or at last iput().
618 *
619 * It is being called in three cases:
620 * ext4_release_file(): last writer close the file
621 * ext4_clear_inode(): last iput(), when nobody link to this file.
622 * ext4_truncate(): when the block indirect map is about to change.
623 *
624 */
625 void ext4_discard_reservation(struct inode *inode)
626 {
627 struct ext4_inode_info *ei = EXT4_I(inode);
628 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
629 struct ext4_reserve_window_node *rsv;
630 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
631
632 ext4_mb_discard_inode_preallocations(inode);
633
634 if (!block_i)
635 return;
636
637 rsv = &block_i->rsv_window_node;
638 if (!rsv_is_empty(&rsv->rsv_window)) {
639 spin_lock(rsv_lock);
640 if (!rsv_is_empty(&rsv->rsv_window))
641 rsv_window_remove(inode->i_sb, rsv);
642 spin_unlock(rsv_lock);
643 }
644 }
645
646 /**
647 * ext4_free_blocks_sb() -- Free given blocks and update quota
648 * @handle: handle to this transaction
649 * @sb: super block
650 * @block: start physcial block to free
651 * @count: number of blocks to free
652 * @pdquot_freed_blocks: pointer to quota
653 */
654 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
655 ext4_fsblk_t block, unsigned long count,
656 unsigned long *pdquot_freed_blocks)
657 {
658 struct buffer_head *bitmap_bh = NULL;
659 struct buffer_head *gd_bh;
660 ext4_group_t block_group;
661 ext4_grpblk_t bit;
662 unsigned long i;
663 unsigned long overflow;
664 struct ext4_group_desc * desc;
665 struct ext4_super_block * es;
666 struct ext4_sb_info *sbi;
667 int err = 0, ret;
668 ext4_grpblk_t group_freed;
669
670 *pdquot_freed_blocks = 0;
671 sbi = EXT4_SB(sb);
672 es = sbi->s_es;
673 if (block < le32_to_cpu(es->s_first_data_block) ||
674 block + count < block ||
675 block + count > ext4_blocks_count(es)) {
676 ext4_error (sb, "ext4_free_blocks",
677 "Freeing blocks not in datazone - "
678 "block = %llu, count = %lu", block, count);
679 goto error_return;
680 }
681
682 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
683
684 do_more:
685 overflow = 0;
686 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
687 /*
688 * Check to see if we are freeing blocks across a group
689 * boundary.
690 */
691 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
692 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
693 count -= overflow;
694 }
695 brelse(bitmap_bh);
696 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
697 if (!bitmap_bh)
698 goto error_return;
699 desc = ext4_get_group_desc (sb, block_group, &gd_bh);
700 if (!desc)
701 goto error_return;
702
703 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
704 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
705 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
706 in_range(block + count - 1, ext4_inode_table(sb, desc),
707 sbi->s_itb_per_group)) {
708 ext4_error (sb, "ext4_free_blocks",
709 "Freeing blocks in system zones - "
710 "Block = %llu, count = %lu",
711 block, count);
712 goto error_return;
713 }
714
715 /*
716 * We are about to start releasing blocks in the bitmap,
717 * so we need undo access.
718 */
719 /* @@@ check errors */
720 BUFFER_TRACE(bitmap_bh, "getting undo access");
721 err = ext4_journal_get_undo_access(handle, bitmap_bh);
722 if (err)
723 goto error_return;
724
725 /*
726 * We are about to modify some metadata. Call the journal APIs
727 * to unshare ->b_data if a currently-committing transaction is
728 * using it
729 */
730 BUFFER_TRACE(gd_bh, "get_write_access");
731 err = ext4_journal_get_write_access(handle, gd_bh);
732 if (err)
733 goto error_return;
734
735 jbd_lock_bh_state(bitmap_bh);
736
737 for (i = 0, group_freed = 0; i < count; i++) {
738 /*
739 * An HJ special. This is expensive...
740 */
741 #ifdef CONFIG_JBD2_DEBUG
742 jbd_unlock_bh_state(bitmap_bh);
743 {
744 struct buffer_head *debug_bh;
745 debug_bh = sb_find_get_block(sb, block + i);
746 if (debug_bh) {
747 BUFFER_TRACE(debug_bh, "Deleted!");
748 if (!bh2jh(bitmap_bh)->b_committed_data)
749 BUFFER_TRACE(debug_bh,
750 "No commited data in bitmap");
751 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
752 __brelse(debug_bh);
753 }
754 }
755 jbd_lock_bh_state(bitmap_bh);
756 #endif
757 if (need_resched()) {
758 jbd_unlock_bh_state(bitmap_bh);
759 cond_resched();
760 jbd_lock_bh_state(bitmap_bh);
761 }
762 /* @@@ This prevents newly-allocated data from being
763 * freed and then reallocated within the same
764 * transaction.
765 *
766 * Ideally we would want to allow that to happen, but to
767 * do so requires making jbd2_journal_forget() capable of
768 * revoking the queued write of a data block, which
769 * implies blocking on the journal lock. *forget()
770 * cannot block due to truncate races.
771 *
772 * Eventually we can fix this by making jbd2_journal_forget()
773 * return a status indicating whether or not it was able
774 * to revoke the buffer. On successful revoke, it is
775 * safe not to set the allocation bit in the committed
776 * bitmap, because we know that there is no outstanding
777 * activity on the buffer any more and so it is safe to
778 * reallocate it.
779 */
780 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
781 J_ASSERT_BH(bitmap_bh,
782 bh2jh(bitmap_bh)->b_committed_data != NULL);
783 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
784 bh2jh(bitmap_bh)->b_committed_data);
785
786 /*
787 * We clear the bit in the bitmap after setting the committed
788 * data bit, because this is the reverse order to that which
789 * the allocator uses.
790 */
791 BUFFER_TRACE(bitmap_bh, "clear bit");
792 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
793 bit + i, bitmap_bh->b_data)) {
794 jbd_unlock_bh_state(bitmap_bh);
795 ext4_error(sb, __func__,
796 "bit already cleared for block %llu",
797 (ext4_fsblk_t)(block + i));
798 jbd_lock_bh_state(bitmap_bh);
799 BUFFER_TRACE(bitmap_bh, "bit already cleared");
800 } else {
801 group_freed++;
802 }
803 }
804 jbd_unlock_bh_state(bitmap_bh);
805
806 spin_lock(sb_bgl_lock(sbi, block_group));
807 le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
808 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
809 spin_unlock(sb_bgl_lock(sbi, block_group));
810 percpu_counter_add(&sbi->s_freeblocks_counter, count);
811
812 if (sbi->s_log_groups_per_flex) {
813 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
814 spin_lock(sb_bgl_lock(sbi, flex_group));
815 sbi->s_flex_groups[flex_group].free_blocks += count;
816 spin_unlock(sb_bgl_lock(sbi, flex_group));
817 }
818
819 /* We dirtied the bitmap block */
820 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
821 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
822
823 /* And the group descriptor block */
824 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
825 ret = ext4_journal_dirty_metadata(handle, gd_bh);
826 if (!err) err = ret;
827 *pdquot_freed_blocks += group_freed;
828
829 if (overflow && !err) {
830 block += count;
831 count = overflow;
832 goto do_more;
833 }
834 sb->s_dirt = 1;
835 error_return:
836 brelse(bitmap_bh);
837 ext4_std_error(sb, err);
838 return;
839 }
840
841 /**
842 * ext4_free_blocks() -- Free given blocks and update quota
843 * @handle: handle for this transaction
844 * @inode: inode
845 * @block: start physical block to free
846 * @count: number of blocks to count
847 * @metadata: Are these metadata blocks
848 */
849 void ext4_free_blocks(handle_t *handle, struct inode *inode,
850 ext4_fsblk_t block, unsigned long count,
851 int metadata)
852 {
853 struct super_block * sb;
854 unsigned long dquot_freed_blocks;
855
856 /* this isn't the right place to decide whether block is metadata
857 * inode.c/extents.c knows better, but for safety ... */
858 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
859 ext4_should_journal_data(inode))
860 metadata = 1;
861
862 sb = inode->i_sb;
863
864 if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
865 ext4_free_blocks_sb(handle, sb, block, count,
866 &dquot_freed_blocks);
867 else
868 ext4_mb_free_blocks(handle, inode, block, count,
869 metadata, &dquot_freed_blocks);
870 if (dquot_freed_blocks)
871 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
872 return;
873 }
874
875 /**
876 * ext4_test_allocatable()
877 * @nr: given allocation block group
878 * @bh: bufferhead contains the bitmap of the given block group
879 *
880 * For ext4 allocations, we must not reuse any blocks which are
881 * allocated in the bitmap buffer's "last committed data" copy. This
882 * prevents deletes from freeing up the page for reuse until we have
883 * committed the delete transaction.
884 *
885 * If we didn't do this, then deleting something and reallocating it as
886 * data would allow the old block to be overwritten before the
887 * transaction committed (because we force data to disk before commit).
888 * This would lead to corruption if we crashed between overwriting the
889 * data and committing the delete.
890 *
891 * @@@ We may want to make this allocation behaviour conditional on
892 * data-writes at some point, and disable it for metadata allocations or
893 * sync-data inodes.
894 */
895 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
896 {
897 int ret;
898 struct journal_head *jh = bh2jh(bh);
899
900 if (ext4_test_bit(nr, bh->b_data))
901 return 0;
902
903 jbd_lock_bh_state(bh);
904 if (!jh->b_committed_data)
905 ret = 1;
906 else
907 ret = !ext4_test_bit(nr, jh->b_committed_data);
908 jbd_unlock_bh_state(bh);
909 return ret;
910 }
911
912 /**
913 * bitmap_search_next_usable_block()
914 * @start: the starting block (group relative) of the search
915 * @bh: bufferhead contains the block group bitmap
916 * @maxblocks: the ending block (group relative) of the reservation
917 *
918 * The bitmap search --- search forward alternately through the actual
919 * bitmap on disk and the last-committed copy in journal, until we find a
920 * bit free in both bitmaps.
921 */
922 static ext4_grpblk_t
923 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
924 ext4_grpblk_t maxblocks)
925 {
926 ext4_grpblk_t next;
927 struct journal_head *jh = bh2jh(bh);
928
929 while (start < maxblocks) {
930 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
931 if (next >= maxblocks)
932 return -1;
933 if (ext4_test_allocatable(next, bh))
934 return next;
935 jbd_lock_bh_state(bh);
936 if (jh->b_committed_data)
937 start = ext4_find_next_zero_bit(jh->b_committed_data,
938 maxblocks, next);
939 jbd_unlock_bh_state(bh);
940 }
941 return -1;
942 }
943
944 /**
945 * find_next_usable_block()
946 * @start: the starting block (group relative) to find next
947 * allocatable block in bitmap.
948 * @bh: bufferhead contains the block group bitmap
949 * @maxblocks: the ending block (group relative) for the search
950 *
951 * Find an allocatable block in a bitmap. We honor both the bitmap and
952 * its last-committed copy (if that exists), and perform the "most
953 * appropriate allocation" algorithm of looking for a free block near
954 * the initial goal; then for a free byte somewhere in the bitmap; then
955 * for any free bit in the bitmap.
956 */
957 static ext4_grpblk_t
958 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
959 ext4_grpblk_t maxblocks)
960 {
961 ext4_grpblk_t here, next;
962 char *p, *r;
963
964 if (start > 0) {
965 /*
966 * The goal was occupied; search forward for a free
967 * block within the next XX blocks.
968 *
969 * end_goal is more or less random, but it has to be
970 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
971 * next 64-bit boundary is simple..
972 */
973 ext4_grpblk_t end_goal = (start + 63) & ~63;
974 if (end_goal > maxblocks)
975 end_goal = maxblocks;
976 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
977 if (here < end_goal && ext4_test_allocatable(here, bh))
978 return here;
979 ext4_debug("Bit not found near goal\n");
980 }
981
982 here = start;
983 if (here < 0)
984 here = 0;
985
986 p = ((char *)bh->b_data) + (here >> 3);
987 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
988 next = (r - ((char *)bh->b_data)) << 3;
989
990 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
991 return next;
992
993 /*
994 * The bitmap search --- search forward alternately through the actual
995 * bitmap and the last-committed copy until we find a bit free in
996 * both
997 */
998 here = bitmap_search_next_usable_block(here, bh, maxblocks);
999 return here;
1000 }
1001
1002 /**
1003 * claim_block()
1004 * @block: the free block (group relative) to allocate
1005 * @bh: the bufferhead containts the block group bitmap
1006 *
1007 * We think we can allocate this block in this bitmap. Try to set the bit.
1008 * If that succeeds then check that nobody has allocated and then freed the
1009 * block since we saw that is was not marked in b_committed_data. If it _was_
1010 * allocated and freed then clear the bit in the bitmap again and return
1011 * zero (failure).
1012 */
1013 static inline int
1014 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
1015 {
1016 struct journal_head *jh = bh2jh(bh);
1017 int ret;
1018
1019 if (ext4_set_bit_atomic(lock, block, bh->b_data))
1020 return 0;
1021 jbd_lock_bh_state(bh);
1022 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
1023 ext4_clear_bit_atomic(lock, block, bh->b_data);
1024 ret = 0;
1025 } else {
1026 ret = 1;
1027 }
1028 jbd_unlock_bh_state(bh);
1029 return ret;
1030 }
1031
1032 /**
1033 * ext4_try_to_allocate()
1034 * @sb: superblock
1035 * @handle: handle to this transaction
1036 * @group: given allocation block group
1037 * @bitmap_bh: bufferhead holds the block bitmap
1038 * @grp_goal: given target block within the group
1039 * @count: target number of blocks to allocate
1040 * @my_rsv: reservation window
1041 *
1042 * Attempt to allocate blocks within a give range. Set the range of allocation
1043 * first, then find the first free bit(s) from the bitmap (within the range),
1044 * and at last, allocate the blocks by claiming the found free bit as allocated.
1045 *
1046 * To set the range of this allocation:
1047 * if there is a reservation window, only try to allocate block(s) from the
1048 * file's own reservation window;
1049 * Otherwise, the allocation range starts from the give goal block, ends at
1050 * the block group's last block.
1051 *
1052 * If we failed to allocate the desired block then we may end up crossing to a
1053 * new bitmap. In that case we must release write access to the old one via
1054 * ext4_journal_release_buffer(), else we'll run out of credits.
1055 */
1056 static ext4_grpblk_t
1057 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1058 ext4_group_t group, struct buffer_head *bitmap_bh,
1059 ext4_grpblk_t grp_goal, unsigned long *count,
1060 struct ext4_reserve_window *my_rsv)
1061 {
1062 ext4_fsblk_t group_first_block;
1063 ext4_grpblk_t start, end;
1064 unsigned long num = 0;
1065
1066 /* we do allocation within the reservation window if we have a window */
1067 if (my_rsv) {
1068 group_first_block = ext4_group_first_block_no(sb, group);
1069 if (my_rsv->_rsv_start >= group_first_block)
1070 start = my_rsv->_rsv_start - group_first_block;
1071 else
1072 /* reservation window cross group boundary */
1073 start = 0;
1074 end = my_rsv->_rsv_end - group_first_block + 1;
1075 if (end > EXT4_BLOCKS_PER_GROUP(sb))
1076 /* reservation window crosses group boundary */
1077 end = EXT4_BLOCKS_PER_GROUP(sb);
1078 if ((start <= grp_goal) && (grp_goal < end))
1079 start = grp_goal;
1080 else
1081 grp_goal = -1;
1082 } else {
1083 if (grp_goal > 0)
1084 start = grp_goal;
1085 else
1086 start = 0;
1087 end = EXT4_BLOCKS_PER_GROUP(sb);
1088 }
1089
1090 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1091
1092 repeat:
1093 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1094 grp_goal = find_next_usable_block(start, bitmap_bh, end);
1095 if (grp_goal < 0)
1096 goto fail_access;
1097 if (!my_rsv) {
1098 int i;
1099
1100 for (i = 0; i < 7 && grp_goal > start &&
1101 ext4_test_allocatable(grp_goal - 1,
1102 bitmap_bh);
1103 i++, grp_goal--)
1104 ;
1105 }
1106 }
1107 start = grp_goal;
1108
1109 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1110 grp_goal, bitmap_bh)) {
1111 /*
1112 * The block was allocated by another thread, or it was
1113 * allocated and then freed by another thread
1114 */
1115 start++;
1116 grp_goal++;
1117 if (start >= end)
1118 goto fail_access;
1119 goto repeat;
1120 }
1121 num++;
1122 grp_goal++;
1123 while (num < *count && grp_goal < end
1124 && ext4_test_allocatable(grp_goal, bitmap_bh)
1125 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1126 grp_goal, bitmap_bh)) {
1127 num++;
1128 grp_goal++;
1129 }
1130 *count = num;
1131 return grp_goal - num;
1132 fail_access:
1133 *count = num;
1134 return -1;
1135 }
1136
1137 /**
1138 * find_next_reservable_window():
1139 * find a reservable space within the given range.
1140 * It does not allocate the reservation window for now:
1141 * alloc_new_reservation() will do the work later.
1142 *
1143 * @search_head: the head of the searching list;
1144 * This is not necessarily the list head of the whole filesystem
1145 *
1146 * We have both head and start_block to assist the search
1147 * for the reservable space. The list starts from head,
1148 * but we will shift to the place where start_block is,
1149 * then start from there, when looking for a reservable space.
1150 *
1151 * @size: the target new reservation window size
1152 *
1153 * @group_first_block: the first block we consider to start
1154 * the real search from
1155 *
1156 * @last_block:
1157 * the maximum block number that our goal reservable space
1158 * could start from. This is normally the last block in this
1159 * group. The search will end when we found the start of next
1160 * possible reservable space is out of this boundary.
1161 * This could handle the cross boundary reservation window
1162 * request.
1163 *
1164 * basically we search from the given range, rather than the whole
1165 * reservation double linked list, (start_block, last_block)
1166 * to find a free region that is of my size and has not
1167 * been reserved.
1168 *
1169 */
1170 static int find_next_reservable_window(
1171 struct ext4_reserve_window_node *search_head,
1172 struct ext4_reserve_window_node *my_rsv,
1173 struct super_block * sb,
1174 ext4_fsblk_t start_block,
1175 ext4_fsblk_t last_block)
1176 {
1177 struct rb_node *next;
1178 struct ext4_reserve_window_node *rsv, *prev;
1179 ext4_fsblk_t cur;
1180 int size = my_rsv->rsv_goal_size;
1181
1182 /* TODO: make the start of the reservation window byte-aligned */
1183 /* cur = *start_block & ~7;*/
1184 cur = start_block;
1185 rsv = search_head;
1186 if (!rsv)
1187 return -1;
1188
1189 while (1) {
1190 if (cur <= rsv->rsv_end)
1191 cur = rsv->rsv_end + 1;
1192
1193 /* TODO?
1194 * in the case we could not find a reservable space
1195 * that is what is expected, during the re-search, we could
1196 * remember what's the largest reservable space we could have
1197 * and return that one.
1198 *
1199 * For now it will fail if we could not find the reservable
1200 * space with expected-size (or more)...
1201 */
1202 if (cur > last_block)
1203 return -1; /* fail */
1204
1205 prev = rsv;
1206 next = rb_next(&rsv->rsv_node);
1207 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1208
1209 /*
1210 * Reached the last reservation, we can just append to the
1211 * previous one.
1212 */
1213 if (!next)
1214 break;
1215
1216 if (cur + size <= rsv->rsv_start) {
1217 /*
1218 * Found a reserveable space big enough. We could
1219 * have a reservation across the group boundary here
1220 */
1221 break;
1222 }
1223 }
1224 /*
1225 * we come here either :
1226 * when we reach the end of the whole list,
1227 * and there is empty reservable space after last entry in the list.
1228 * append it to the end of the list.
1229 *
1230 * or we found one reservable space in the middle of the list,
1231 * return the reservation window that we could append to.
1232 * succeed.
1233 */
1234
1235 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1236 rsv_window_remove(sb, my_rsv);
1237
1238 /*
1239 * Let's book the whole avaliable window for now. We will check the
1240 * disk bitmap later and then, if there are free blocks then we adjust
1241 * the window size if it's larger than requested.
1242 * Otherwise, we will remove this node from the tree next time
1243 * call find_next_reservable_window.
1244 */
1245 my_rsv->rsv_start = cur;
1246 my_rsv->rsv_end = cur + size - 1;
1247 my_rsv->rsv_alloc_hit = 0;
1248
1249 if (prev != my_rsv)
1250 ext4_rsv_window_add(sb, my_rsv);
1251
1252 return 0;
1253 }
1254
1255 /**
1256 * alloc_new_reservation()--allocate a new reservation window
1257 *
1258 * To make a new reservation, we search part of the filesystem
1259 * reservation list (the list that inside the group). We try to
1260 * allocate a new reservation window near the allocation goal,
1261 * or the beginning of the group, if there is no goal.
1262 *
1263 * We first find a reservable space after the goal, then from
1264 * there, we check the bitmap for the first free block after
1265 * it. If there is no free block until the end of group, then the
1266 * whole group is full, we failed. Otherwise, check if the free
1267 * block is inside the expected reservable space, if so, we
1268 * succeed.
1269 * If the first free block is outside the reservable space, then
1270 * start from the first free block, we search for next available
1271 * space, and go on.
1272 *
1273 * on succeed, a new reservation will be found and inserted into the list
1274 * It contains at least one free block, and it does not overlap with other
1275 * reservation windows.
1276 *
1277 * failed: we failed to find a reservation window in this group
1278 *
1279 * @rsv: the reservation
1280 *
1281 * @grp_goal: The goal (group-relative). It is where the search for a
1282 * free reservable space should start from.
1283 * if we have a grp_goal(grp_goal >0 ), then start from there,
1284 * no grp_goal(grp_goal = -1), we start from the first block
1285 * of the group.
1286 *
1287 * @sb: the super block
1288 * @group: the group we are trying to allocate in
1289 * @bitmap_bh: the block group block bitmap
1290 *
1291 */
1292 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1293 ext4_grpblk_t grp_goal, struct super_block *sb,
1294 ext4_group_t group, struct buffer_head *bitmap_bh)
1295 {
1296 struct ext4_reserve_window_node *search_head;
1297 ext4_fsblk_t group_first_block, group_end_block, start_block;
1298 ext4_grpblk_t first_free_block;
1299 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1300 unsigned long size;
1301 int ret;
1302 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1303
1304 group_first_block = ext4_group_first_block_no(sb, group);
1305 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1306
1307 if (grp_goal < 0)
1308 start_block = group_first_block;
1309 else
1310 start_block = grp_goal + group_first_block;
1311
1312 size = my_rsv->rsv_goal_size;
1313
1314 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1315 /*
1316 * if the old reservation is cross group boundary
1317 * and if the goal is inside the old reservation window,
1318 * we will come here when we just failed to allocate from
1319 * the first part of the window. We still have another part
1320 * that belongs to the next group. In this case, there is no
1321 * point to discard our window and try to allocate a new one
1322 * in this group(which will fail). we should
1323 * keep the reservation window, just simply move on.
1324 *
1325 * Maybe we could shift the start block of the reservation
1326 * window to the first block of next group.
1327 */
1328
1329 if ((my_rsv->rsv_start <= group_end_block) &&
1330 (my_rsv->rsv_end > group_end_block) &&
1331 (start_block >= my_rsv->rsv_start))
1332 return -1;
1333
1334 if ((my_rsv->rsv_alloc_hit >
1335 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1336 /*
1337 * if the previously allocation hit ratio is
1338 * greater than 1/2, then we double the size of
1339 * the reservation window the next time,
1340 * otherwise we keep the same size window
1341 */
1342 size = size * 2;
1343 if (size > EXT4_MAX_RESERVE_BLOCKS)
1344 size = EXT4_MAX_RESERVE_BLOCKS;
1345 my_rsv->rsv_goal_size= size;
1346 }
1347 }
1348
1349 spin_lock(rsv_lock);
1350 /*
1351 * shift the search start to the window near the goal block
1352 */
1353 search_head = search_reserve_window(fs_rsv_root, start_block);
1354
1355 /*
1356 * find_next_reservable_window() simply finds a reservable window
1357 * inside the given range(start_block, group_end_block).
1358 *
1359 * To make sure the reservation window has a free bit inside it, we
1360 * need to check the bitmap after we found a reservable window.
1361 */
1362 retry:
1363 ret = find_next_reservable_window(search_head, my_rsv, sb,
1364 start_block, group_end_block);
1365
1366 if (ret == -1) {
1367 if (!rsv_is_empty(&my_rsv->rsv_window))
1368 rsv_window_remove(sb, my_rsv);
1369 spin_unlock(rsv_lock);
1370 return -1;
1371 }
1372
1373 /*
1374 * On success, find_next_reservable_window() returns the
1375 * reservation window where there is a reservable space after it.
1376 * Before we reserve this reservable space, we need
1377 * to make sure there is at least a free block inside this region.
1378 *
1379 * searching the first free bit on the block bitmap and copy of
1380 * last committed bitmap alternatively, until we found a allocatable
1381 * block. Search start from the start block of the reservable space
1382 * we just found.
1383 */
1384 spin_unlock(rsv_lock);
1385 first_free_block = bitmap_search_next_usable_block(
1386 my_rsv->rsv_start - group_first_block,
1387 bitmap_bh, group_end_block - group_first_block + 1);
1388
1389 if (first_free_block < 0) {
1390 /*
1391 * no free block left on the bitmap, no point
1392 * to reserve the space. return failed.
1393 */
1394 spin_lock(rsv_lock);
1395 if (!rsv_is_empty(&my_rsv->rsv_window))
1396 rsv_window_remove(sb, my_rsv);
1397 spin_unlock(rsv_lock);
1398 return -1; /* failed */
1399 }
1400
1401 start_block = first_free_block + group_first_block;
1402 /*
1403 * check if the first free block is within the
1404 * free space we just reserved
1405 */
1406 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1407 return 0; /* success */
1408 /*
1409 * if the first free bit we found is out of the reservable space
1410 * continue search for next reservable space,
1411 * start from where the free block is,
1412 * we also shift the list head to where we stopped last time
1413 */
1414 search_head = my_rsv;
1415 spin_lock(rsv_lock);
1416 goto retry;
1417 }
1418
1419 /**
1420 * try_to_extend_reservation()
1421 * @my_rsv: given reservation window
1422 * @sb: super block
1423 * @size: the delta to extend
1424 *
1425 * Attempt to expand the reservation window large enough to have
1426 * required number of free blocks
1427 *
1428 * Since ext4_try_to_allocate() will always allocate blocks within
1429 * the reservation window range, if the window size is too small,
1430 * multiple blocks allocation has to stop at the end of the reservation
1431 * window. To make this more efficient, given the total number of
1432 * blocks needed and the current size of the window, we try to
1433 * expand the reservation window size if necessary on a best-effort
1434 * basis before ext4_new_blocks() tries to allocate blocks,
1435 */
1436 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1437 struct super_block *sb, int size)
1438 {
1439 struct ext4_reserve_window_node *next_rsv;
1440 struct rb_node *next;
1441 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1442
1443 if (!spin_trylock(rsv_lock))
1444 return;
1445
1446 next = rb_next(&my_rsv->rsv_node);
1447
1448 if (!next)
1449 my_rsv->rsv_end += size;
1450 else {
1451 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1452
1453 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1454 my_rsv->rsv_end += size;
1455 else
1456 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1457 }
1458 spin_unlock(rsv_lock);
1459 }
1460
1461 /**
1462 * ext4_try_to_allocate_with_rsv()
1463 * @sb: superblock
1464 * @handle: handle to this transaction
1465 * @group: given allocation block group
1466 * @bitmap_bh: bufferhead holds the block bitmap
1467 * @grp_goal: given target block within the group
1468 * @count: target number of blocks to allocate
1469 * @my_rsv: reservation window
1470 * @errp: pointer to store the error code
1471 *
1472 * This is the main function used to allocate a new block and its reservation
1473 * window.
1474 *
1475 * Each time when a new block allocation is need, first try to allocate from
1476 * its own reservation. If it does not have a reservation window, instead of
1477 * looking for a free bit on bitmap first, then look up the reservation list to
1478 * see if it is inside somebody else's reservation window, we try to allocate a
1479 * reservation window for it starting from the goal first. Then do the block
1480 * allocation within the reservation window.
1481 *
1482 * This will avoid keeping on searching the reservation list again and
1483 * again when somebody is looking for a free block (without
1484 * reservation), and there are lots of free blocks, but they are all
1485 * being reserved.
1486 *
1487 * We use a red-black tree for the per-filesystem reservation list.
1488 *
1489 */
1490 static ext4_grpblk_t
1491 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1492 ext4_group_t group, struct buffer_head *bitmap_bh,
1493 ext4_grpblk_t grp_goal,
1494 struct ext4_reserve_window_node * my_rsv,
1495 unsigned long *count, int *errp)
1496 {
1497 ext4_fsblk_t group_first_block, group_last_block;
1498 ext4_grpblk_t ret = 0;
1499 int fatal;
1500 unsigned long num = *count;
1501
1502 *errp = 0;
1503
1504 /*
1505 * Make sure we use undo access for the bitmap, because it is critical
1506 * that we do the frozen_data COW on bitmap buffers in all cases even
1507 * if the buffer is in BJ_Forget state in the committing transaction.
1508 */
1509 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1510 fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1511 if (fatal) {
1512 *errp = fatal;
1513 return -1;
1514 }
1515
1516 /*
1517 * we don't deal with reservation when
1518 * filesystem is mounted without reservation
1519 * or the file is not a regular file
1520 * or last attempt to allocate a block with reservation turned on failed
1521 */
1522 if (my_rsv == NULL ) {
1523 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1524 grp_goal, count, NULL);
1525 goto out;
1526 }
1527 /*
1528 * grp_goal is a group relative block number (if there is a goal)
1529 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1530 * first block is a filesystem wide block number
1531 * first block is the block number of the first block in this group
1532 */
1533 group_first_block = ext4_group_first_block_no(sb, group);
1534 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1535
1536 /*
1537 * Basically we will allocate a new block from inode's reservation
1538 * window.
1539 *
1540 * We need to allocate a new reservation window, if:
1541 * a) inode does not have a reservation window; or
1542 * b) last attempt to allocate a block from existing reservation
1543 * failed; or
1544 * c) we come here with a goal and with a reservation window
1545 *
1546 * We do not need to allocate a new reservation window if we come here
1547 * at the beginning with a goal and the goal is inside the window, or
1548 * we don't have a goal but already have a reservation window.
1549 * then we could go to allocate from the reservation window directly.
1550 */
1551 while (1) {
1552 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1553 !goal_in_my_reservation(&my_rsv->rsv_window,
1554 grp_goal, group, sb)) {
1555 if (my_rsv->rsv_goal_size < *count)
1556 my_rsv->rsv_goal_size = *count;
1557 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1558 group, bitmap_bh);
1559 if (ret < 0)
1560 break; /* failed */
1561
1562 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1563 grp_goal, group, sb))
1564 grp_goal = -1;
1565 } else if (grp_goal >= 0) {
1566 int curr = my_rsv->rsv_end -
1567 (grp_goal + group_first_block) + 1;
1568
1569 if (curr < *count)
1570 try_to_extend_reservation(my_rsv, sb,
1571 *count - curr);
1572 }
1573
1574 if ((my_rsv->rsv_start > group_last_block) ||
1575 (my_rsv->rsv_end < group_first_block)) {
1576 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1577 BUG();
1578 }
1579 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1580 grp_goal, &num, &my_rsv->rsv_window);
1581 if (ret >= 0) {
1582 my_rsv->rsv_alloc_hit += num;
1583 *count = num;
1584 break; /* succeed */
1585 }
1586 num = *count;
1587 }
1588 out:
1589 if (ret >= 0) {
1590 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1591 "bitmap block");
1592 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1593 if (fatal) {
1594 *errp = fatal;
1595 return -1;
1596 }
1597 return ret;
1598 }
1599
1600 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1601 ext4_journal_release_buffer(handle, bitmap_bh);
1602 return ret;
1603 }
1604
1605 /**
1606 * ext4_has_free_blocks()
1607 * @sbi: in-core super block structure.
1608 *
1609 * Check if filesystem has at least 1 free block available for allocation.
1610 */
1611 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1612 {
1613 ext4_fsblk_t free_blocks, root_blocks;
1614
1615 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1616 root_blocks = ext4_r_blocks_count(sbi->s_es);
1617 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1618 sbi->s_resuid != current->fsuid &&
1619 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1620 return 0;
1621 }
1622 return 1;
1623 }
1624
1625 /**
1626 * ext4_should_retry_alloc()
1627 * @sb: super block
1628 * @retries number of attemps has been made
1629 *
1630 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1631 * it is profitable to retry the operation, this function will wait
1632 * for the current or commiting transaction to complete, and then
1633 * return TRUE.
1634 *
1635 * if the total number of retries exceed three times, return FALSE.
1636 */
1637 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1638 {
1639 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1640 return 0;
1641
1642 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1643
1644 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1645 }
1646
1647 /**
1648 * ext4_new_blocks_old() -- core block(s) allocation function
1649 * @handle: handle to this transaction
1650 * @inode: file inode
1651 * @goal: given target block(filesystem wide)
1652 * @count: target number of blocks to allocate
1653 * @errp: error code
1654 *
1655 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1656 * allocate block(s) from the block group contains the goal block first. If that
1657 * fails, it will try to allocate block(s) from other block groups without
1658 * any specific goal block.
1659 *
1660 */
1661 ext4_fsblk_t ext4_new_blocks_old(handle_t *handle, struct inode *inode,
1662 ext4_fsblk_t goal, unsigned long *count, int *errp)
1663 {
1664 struct buffer_head *bitmap_bh = NULL;
1665 struct buffer_head *gdp_bh;
1666 ext4_group_t group_no;
1667 ext4_group_t goal_group;
1668 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1669 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1670 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */
1671 ext4_group_t bgi; /* blockgroup iteration index */
1672 int fatal = 0, err;
1673 int performed_allocation = 0;
1674 ext4_grpblk_t free_blocks; /* number of free blocks in a group */
1675 struct super_block *sb;
1676 struct ext4_group_desc *gdp;
1677 struct ext4_super_block *es;
1678 struct ext4_sb_info *sbi;
1679 struct ext4_reserve_window_node *my_rsv = NULL;
1680 struct ext4_block_alloc_info *block_i;
1681 unsigned short windowsz = 0;
1682 ext4_group_t ngroups;
1683 unsigned long num = *count;
1684
1685 *errp = -ENOSPC;
1686 sb = inode->i_sb;
1687 if (!sb) {
1688 printk("ext4_new_block: nonexistent device");
1689 return 0;
1690 }
1691
1692 /*
1693 * Check quota for allocation of this block.
1694 */
1695 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1696 *errp = -EDQUOT;
1697 return 0;
1698 }
1699
1700 sbi = EXT4_SB(sb);
1701 es = EXT4_SB(sb)->s_es;
1702 ext4_debug("goal=%llu.\n", goal);
1703 /*
1704 * Allocate a block from reservation only when
1705 * filesystem is mounted with reservation(default,-o reservation), and
1706 * it's a regular file, and
1707 * the desired window size is greater than 0 (One could use ioctl
1708 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1709 * reservation on that particular file)
1710 */
1711 block_i = EXT4_I(inode)->i_block_alloc_info;
1712 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1713 my_rsv = &block_i->rsv_window_node;
1714
1715 if (!ext4_has_free_blocks(sbi)) {
1716 *errp = -ENOSPC;
1717 goto out;
1718 }
1719
1720 /*
1721 * First, test whether the goal block is free.
1722 */
1723 if (goal < le32_to_cpu(es->s_first_data_block) ||
1724 goal >= ext4_blocks_count(es))
1725 goal = le32_to_cpu(es->s_first_data_block);
1726 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1727 goal_group = group_no;
1728 retry_alloc:
1729 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1730 if (!gdp)
1731 goto io_error;
1732
1733 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1734 /*
1735 * if there is not enough free blocks to make a new resevation
1736 * turn off reservation for this allocation
1737 */
1738 if (my_rsv && (free_blocks < windowsz)
1739 && (rsv_is_empty(&my_rsv->rsv_window)))
1740 my_rsv = NULL;
1741
1742 if (free_blocks > 0) {
1743 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1744 if (!bitmap_bh)
1745 goto io_error;
1746 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1747 group_no, bitmap_bh, grp_target_blk,
1748 my_rsv, &num, &fatal);
1749 if (fatal)
1750 goto out;
1751 if (grp_alloc_blk >= 0)
1752 goto allocated;
1753 }
1754
1755 ngroups = EXT4_SB(sb)->s_groups_count;
1756 smp_rmb();
1757
1758 /*
1759 * Now search the rest of the groups. We assume that
1760 * group_no and gdp correctly point to the last group visited.
1761 */
1762 for (bgi = 0; bgi < ngroups; bgi++) {
1763 group_no++;
1764 if (group_no >= ngroups)
1765 group_no = 0;
1766 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1767 if (!gdp)
1768 goto io_error;
1769 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1770 /*
1771 * skip this group if the number of
1772 * free blocks is less than half of the reservation
1773 * window size.
1774 */
1775 if (free_blocks <= (windowsz/2))
1776 continue;
1777
1778 brelse(bitmap_bh);
1779 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1780 if (!bitmap_bh)
1781 goto io_error;
1782 /*
1783 * try to allocate block(s) from this group, without a goal(-1).
1784 */
1785 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1786 group_no, bitmap_bh, -1, my_rsv,
1787 &num, &fatal);
1788 if (fatal)
1789 goto out;
1790 if (grp_alloc_blk >= 0)
1791 goto allocated;
1792 }
1793 /*
1794 * We may end up a bogus ealier ENOSPC error due to
1795 * filesystem is "full" of reservations, but
1796 * there maybe indeed free blocks avaliable on disk
1797 * In this case, we just forget about the reservations
1798 * just do block allocation as without reservations.
1799 */
1800 if (my_rsv) {
1801 my_rsv = NULL;
1802 windowsz = 0;
1803 group_no = goal_group;
1804 goto retry_alloc;
1805 }
1806 /* No space left on the device */
1807 *errp = -ENOSPC;
1808 goto out;
1809
1810 allocated:
1811
1812 ext4_debug("using block group %lu(%d)\n",
1813 group_no, gdp->bg_free_blocks_count);
1814
1815 BUFFER_TRACE(gdp_bh, "get_write_access");
1816 fatal = ext4_journal_get_write_access(handle, gdp_bh);
1817 if (fatal)
1818 goto out;
1819
1820 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1821
1822 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1823 in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1824 in_range(ret_block, ext4_inode_table(sb, gdp),
1825 EXT4_SB(sb)->s_itb_per_group) ||
1826 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1827 EXT4_SB(sb)->s_itb_per_group)) {
1828 ext4_error(sb, "ext4_new_block",
1829 "Allocating block in system zone - "
1830 "blocks from %llu, length %lu",
1831 ret_block, num);
1832 /*
1833 * claim_block marked the blocks we allocated
1834 * as in use. So we may want to selectively
1835 * mark some of the blocks as free
1836 */
1837 goto retry_alloc;
1838 }
1839
1840 performed_allocation = 1;
1841
1842 #ifdef CONFIG_JBD2_DEBUG
1843 {
1844 struct buffer_head *debug_bh;
1845
1846 /* Record bitmap buffer state in the newly allocated block */
1847 debug_bh = sb_find_get_block(sb, ret_block);
1848 if (debug_bh) {
1849 BUFFER_TRACE(debug_bh, "state when allocated");
1850 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1851 brelse(debug_bh);
1852 }
1853 }
1854 jbd_lock_bh_state(bitmap_bh);
1855 spin_lock(sb_bgl_lock(sbi, group_no));
1856 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1857 int i;
1858
1859 for (i = 0; i < num; i++) {
1860 if (ext4_test_bit(grp_alloc_blk+i,
1861 bh2jh(bitmap_bh)->b_committed_data)) {
1862 printk("%s: block was unexpectedly set in "
1863 "b_committed_data\n", __func__);
1864 }
1865 }
1866 }
1867 ext4_debug("found bit %d\n", grp_alloc_blk);
1868 spin_unlock(sb_bgl_lock(sbi, group_no));
1869 jbd_unlock_bh_state(bitmap_bh);
1870 #endif
1871
1872 if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1873 ext4_error(sb, "ext4_new_block",
1874 "block(%llu) >= blocks count(%llu) - "
1875 "block_group = %lu, es == %p ", ret_block,
1876 ext4_blocks_count(es), group_no, es);
1877 goto out;
1878 }
1879
1880 /*
1881 * It is up to the caller to add the new buffer to a journal
1882 * list of some description. We don't know in advance whether
1883 * the caller wants to use it as metadata or data.
1884 */
1885 spin_lock(sb_bgl_lock(sbi, group_no));
1886 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1887 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1888 le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1889 gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1890 spin_unlock(sb_bgl_lock(sbi, group_no));
1891 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1892
1893 if (sbi->s_log_groups_per_flex) {
1894 ext4_group_t flex_group = ext4_flex_group(sbi, group_no);
1895 spin_lock(sb_bgl_lock(sbi, flex_group));
1896 sbi->s_flex_groups[flex_group].free_blocks -= num;
1897 spin_unlock(sb_bgl_lock(sbi, flex_group));
1898 }
1899
1900 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1901 err = ext4_journal_dirty_metadata(handle, gdp_bh);
1902 if (!fatal)
1903 fatal = err;
1904
1905 sb->s_dirt = 1;
1906 if (fatal)
1907 goto out;
1908
1909 *errp = 0;
1910 brelse(bitmap_bh);
1911 DQUOT_FREE_BLOCK(inode, *count-num);
1912 *count = num;
1913 return ret_block;
1914
1915 io_error:
1916 *errp = -EIO;
1917 out:
1918 if (fatal) {
1919 *errp = fatal;
1920 ext4_std_error(sb, fatal);
1921 }
1922 /*
1923 * Undo the block allocation
1924 */
1925 if (!performed_allocation)
1926 DQUOT_FREE_BLOCK(inode, *count);
1927 brelse(bitmap_bh);
1928 return 0;
1929 }
1930
1931 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1932 ext4_fsblk_t goal, int *errp)
1933 {
1934 struct ext4_allocation_request ar;
1935 ext4_fsblk_t ret;
1936
1937 if (!test_opt(inode->i_sb, MBALLOC)) {
1938 unsigned long count = 1;
1939 ret = ext4_new_blocks_old(handle, inode, goal, &count, errp);
1940 return ret;
1941 }
1942
1943 memset(&ar, 0, sizeof(ar));
1944 ar.inode = inode;
1945 ar.goal = goal;
1946 ar.len = 1;
1947 ret = ext4_mb_new_blocks(handle, &ar, errp);
1948 return ret;
1949 }
1950
1951 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1952 ext4_fsblk_t goal, unsigned long *count, int *errp)
1953 {
1954 struct ext4_allocation_request ar;
1955 ext4_fsblk_t ret;
1956
1957 if (!test_opt(inode->i_sb, MBALLOC)) {
1958 ret = ext4_new_blocks_old(handle, inode, goal, count, errp);
1959 return ret;
1960 }
1961
1962 memset(&ar, 0, sizeof(ar));
1963 ar.inode = inode;
1964 ar.goal = goal;
1965 ar.len = *count;
1966 ret = ext4_mb_new_blocks(handle, &ar, errp);
1967 *count = ar.len;
1968 return ret;
1969 }
1970
1971
1972 /**
1973 * ext4_count_free_blocks() -- count filesystem free blocks
1974 * @sb: superblock
1975 *
1976 * Adds up the number of free blocks from each block group.
1977 */
1978 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1979 {
1980 ext4_fsblk_t desc_count;
1981 struct ext4_group_desc *gdp;
1982 ext4_group_t i;
1983 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
1984 #ifdef EXT4FS_DEBUG
1985 struct ext4_super_block *es;
1986 ext4_fsblk_t bitmap_count;
1987 unsigned long x;
1988 struct buffer_head *bitmap_bh = NULL;
1989
1990 es = EXT4_SB(sb)->s_es;
1991 desc_count = 0;
1992 bitmap_count = 0;
1993 gdp = NULL;
1994
1995 smp_rmb();
1996 for (i = 0; i < ngroups; i++) {
1997 gdp = ext4_get_group_desc(sb, i, NULL);
1998 if (!gdp)
1999 continue;
2000 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2001 brelse(bitmap_bh);
2002 bitmap_bh = ext4_read_block_bitmap(sb, i);
2003 if (bitmap_bh == NULL)
2004 continue;
2005
2006 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
2007 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
2008 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
2009 bitmap_count += x;
2010 }
2011 brelse(bitmap_bh);
2012 printk("ext4_count_free_blocks: stored = %llu"
2013 ", computed = %llu, %llu\n",
2014 ext4_free_blocks_count(es),
2015 desc_count, bitmap_count);
2016 return bitmap_count;
2017 #else
2018 desc_count = 0;
2019 smp_rmb();
2020 for (i = 0; i < ngroups; i++) {
2021 gdp = ext4_get_group_desc(sb, i, NULL);
2022 if (!gdp)
2023 continue;
2024 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2025 }
2026
2027 return desc_count;
2028 #endif
2029 }
2030
2031 static inline int test_root(ext4_group_t a, int b)
2032 {
2033 int num = b;
2034
2035 while (a > num)
2036 num *= b;
2037 return num == a;
2038 }
2039
2040 static int ext4_group_sparse(ext4_group_t group)
2041 {
2042 if (group <= 1)
2043 return 1;
2044 if (!(group & 1))
2045 return 0;
2046 return (test_root(group, 7) || test_root(group, 5) ||
2047 test_root(group, 3));
2048 }
2049
2050 /**
2051 * ext4_bg_has_super - number of blocks used by the superblock in group
2052 * @sb: superblock for filesystem
2053 * @group: group number to check
2054 *
2055 * Return the number of blocks used by the superblock (primary or backup)
2056 * in this group. Currently this will be only 0 or 1.
2057 */
2058 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
2059 {
2060 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2061 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
2062 !ext4_group_sparse(group))
2063 return 0;
2064 return 1;
2065 }
2066
2067 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2068 ext4_group_t group)
2069 {
2070 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2071 ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2072 ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2073
2074 if (group == first || group == first + 1 || group == last)
2075 return 1;
2076 return 0;
2077 }
2078
2079 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2080 ext4_group_t group)
2081 {
2082 return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2083 }
2084
2085 /**
2086 * ext4_bg_num_gdb - number of blocks used by the group table in group
2087 * @sb: superblock for filesystem
2088 * @group: group number to check
2089 *
2090 * Return the number of blocks used by the group descriptor table
2091 * (primary or backup) in this group. In the future there may be a
2092 * different number of descriptor blocks in each group.
2093 */
2094 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2095 {
2096 unsigned long first_meta_bg =
2097 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2098 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2099
2100 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2101 metagroup < first_meta_bg)
2102 return ext4_bg_num_gdb_nometa(sb,group);
2103
2104 return ext4_bg_num_gdb_meta(sb,group);
2105
2106 }