]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/balloc.c
Merge branch 'linus' into sched/clock
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / balloc.c
1 /*
2 * linux/fs/ext4/balloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
12 */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
20 #include "ext4.h"
21 #include "ext4_jbd2.h"
22 #include "group.h"
23
24 /*
25 * balloc.c contains the blocks allocation and deallocation routines
26 */
27
28 /*
29 * Calculate the block group number and offset, given a block number
30 */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 ext4_grpblk_t offset;
36
37 blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 if (offsetp)
40 *offsetp = offset;
41 if (blockgrpp)
42 *blockgrpp = blocknr;
43
44 }
45
46 static int ext4_block_in_group(struct super_block *sb, ext4_fsblk_t block,
47 ext4_group_t block_group)
48 {
49 ext4_group_t actual_group;
50 ext4_get_group_no_and_offset(sb, block, &actual_group, NULL);
51 if (actual_group == block_group)
52 return 1;
53 return 0;
54 }
55
56 static int ext4_group_used_meta_blocks(struct super_block *sb,
57 ext4_group_t block_group)
58 {
59 ext4_fsblk_t tmp;
60 struct ext4_sb_info *sbi = EXT4_SB(sb);
61 /* block bitmap, inode bitmap, and inode table blocks */
62 int used_blocks = sbi->s_itb_per_group + 2;
63
64 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
65 struct ext4_group_desc *gdp;
66 struct buffer_head *bh;
67
68 gdp = ext4_get_group_desc(sb, block_group, &bh);
69 if (!ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp),
70 block_group))
71 used_blocks--;
72
73 if (!ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp),
74 block_group))
75 used_blocks--;
76
77 tmp = ext4_inode_table(sb, gdp);
78 for (; tmp < ext4_inode_table(sb, gdp) +
79 sbi->s_itb_per_group; tmp++) {
80 if (!ext4_block_in_group(sb, tmp, block_group))
81 used_blocks -= 1;
82 }
83 }
84 return used_blocks;
85 }
86 /* Initializes an uninitialized block bitmap if given, and returns the
87 * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
89 ext4_group_t block_group, struct ext4_group_desc *gdp)
90 {
91 int bit, bit_max;
92 unsigned free_blocks, group_blocks;
93 struct ext4_sb_info *sbi = EXT4_SB(sb);
94
95 if (bh) {
96 J_ASSERT_BH(bh, buffer_locked(bh));
97
98 /* If checksum is bad mark all blocks used to prevent allocation
99 * essentially implementing a per-group read-only flag. */
100 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
101 ext4_error(sb, __func__,
102 "Checksum bad for group %lu\n", block_group);
103 gdp->bg_free_blocks_count = 0;
104 gdp->bg_free_inodes_count = 0;
105 gdp->bg_itable_unused = 0;
106 memset(bh->b_data, 0xff, sb->s_blocksize);
107 return 0;
108 }
109 memset(bh->b_data, 0, sb->s_blocksize);
110 }
111
112 /* Check for superblock and gdt backups in this group */
113 bit_max = ext4_bg_has_super(sb, block_group);
114
115 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
116 block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
117 sbi->s_desc_per_block) {
118 if (bit_max) {
119 bit_max += ext4_bg_num_gdb(sb, block_group);
120 bit_max +=
121 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
122 }
123 } else { /* For META_BG_BLOCK_GROUPS */
124 bit_max += ext4_bg_num_gdb(sb, block_group);
125 }
126
127 if (block_group == sbi->s_groups_count - 1) {
128 /*
129 * Even though mke2fs always initialize first and last group
130 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
131 * to make sure we calculate the right free blocks
132 */
133 group_blocks = ext4_blocks_count(sbi->s_es) -
134 le32_to_cpu(sbi->s_es->s_first_data_block) -
135 (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
136 } else {
137 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
138 }
139
140 free_blocks = group_blocks - bit_max;
141
142 if (bh) {
143 ext4_fsblk_t start, tmp;
144 int flex_bg = 0;
145
146 for (bit = 0; bit < bit_max; bit++)
147 ext4_set_bit(bit, bh->b_data);
148
149 start = ext4_group_first_block_no(sb, block_group);
150
151 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
152 EXT4_FEATURE_INCOMPAT_FLEX_BG))
153 flex_bg = 1;
154
155 /* Set bits for block and inode bitmaps, and inode table */
156 tmp = ext4_block_bitmap(sb, gdp);
157 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
158 ext4_set_bit(tmp - start, bh->b_data);
159
160 tmp = ext4_inode_bitmap(sb, gdp);
161 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
162 ext4_set_bit(tmp - start, bh->b_data);
163
164 tmp = ext4_inode_table(sb, gdp);
165 for (; tmp < ext4_inode_table(sb, gdp) +
166 sbi->s_itb_per_group; tmp++) {
167 if (!flex_bg ||
168 ext4_block_in_group(sb, tmp, block_group))
169 ext4_set_bit(tmp - start, bh->b_data);
170 }
171 /*
172 * Also if the number of blocks within the group is
173 * less than the blocksize * 8 ( which is the size
174 * of bitmap ), set rest of the block bitmap to 1
175 */
176 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
177 }
178 return free_blocks - ext4_group_used_meta_blocks(sb, block_group);
179 }
180
181
182 /*
183 * The free blocks are managed by bitmaps. A file system contains several
184 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
185 * block for inodes, N blocks for the inode table and data blocks.
186 *
187 * The file system contains group descriptors which are located after the
188 * super block. Each descriptor contains the number of the bitmap block and
189 * the free blocks count in the block. The descriptors are loaded in memory
190 * when a file system is mounted (see ext4_fill_super).
191 */
192
193
194 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
195
196 /**
197 * ext4_get_group_desc() -- load group descriptor from disk
198 * @sb: super block
199 * @block_group: given block group
200 * @bh: pointer to the buffer head to store the block
201 * group descriptor
202 */
203 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
204 ext4_group_t block_group,
205 struct buffer_head ** bh)
206 {
207 unsigned long group_desc;
208 unsigned long offset;
209 struct ext4_group_desc * desc;
210 struct ext4_sb_info *sbi = EXT4_SB(sb);
211
212 if (block_group >= sbi->s_groups_count) {
213 ext4_error (sb, "ext4_get_group_desc",
214 "block_group >= groups_count - "
215 "block_group = %lu, groups_count = %lu",
216 block_group, sbi->s_groups_count);
217
218 return NULL;
219 }
220 smp_rmb();
221
222 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
223 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
224 if (!sbi->s_group_desc[group_desc]) {
225 ext4_error (sb, "ext4_get_group_desc",
226 "Group descriptor not loaded - "
227 "block_group = %lu, group_desc = %lu, desc = %lu",
228 block_group, group_desc, offset);
229 return NULL;
230 }
231
232 desc = (struct ext4_group_desc *)(
233 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
234 offset * EXT4_DESC_SIZE(sb));
235 if (bh)
236 *bh = sbi->s_group_desc[group_desc];
237 return desc;
238 }
239
240 static int ext4_valid_block_bitmap(struct super_block *sb,
241 struct ext4_group_desc *desc,
242 unsigned int block_group,
243 struct buffer_head *bh)
244 {
245 ext4_grpblk_t offset;
246 ext4_grpblk_t next_zero_bit;
247 ext4_fsblk_t bitmap_blk;
248 ext4_fsblk_t group_first_block;
249
250 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
251 /* with FLEX_BG, the inode/block bitmaps and itable
252 * blocks may not be in the group at all
253 * so the bitmap validation will be skipped for those groups
254 * or it has to also read the block group where the bitmaps
255 * are located to verify they are set.
256 */
257 return 1;
258 }
259 group_first_block = ext4_group_first_block_no(sb, block_group);
260
261 /* check whether block bitmap block number is set */
262 bitmap_blk = ext4_block_bitmap(sb, desc);
263 offset = bitmap_blk - group_first_block;
264 if (!ext4_test_bit(offset, bh->b_data))
265 /* bad block bitmap */
266 goto err_out;
267
268 /* check whether the inode bitmap block number is set */
269 bitmap_blk = ext4_inode_bitmap(sb, desc);
270 offset = bitmap_blk - group_first_block;
271 if (!ext4_test_bit(offset, bh->b_data))
272 /* bad block bitmap */
273 goto err_out;
274
275 /* check whether the inode table block number is set */
276 bitmap_blk = ext4_inode_table(sb, desc);
277 offset = bitmap_blk - group_first_block;
278 next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
279 offset + EXT4_SB(sb)->s_itb_per_group,
280 offset);
281 if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
282 /* good bitmap for inode tables */
283 return 1;
284
285 err_out:
286 ext4_error(sb, __func__,
287 "Invalid block bitmap - "
288 "block_group = %d, block = %llu",
289 block_group, bitmap_blk);
290 return 0;
291 }
292 /**
293 * ext4_read_block_bitmap()
294 * @sb: super block
295 * @block_group: given block group
296 *
297 * Read the bitmap for a given block_group,and validate the
298 * bits for block/inode/inode tables are set in the bitmaps
299 *
300 * Return buffer_head on success or NULL in case of failure.
301 */
302 struct buffer_head *
303 ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
304 {
305 struct ext4_group_desc * desc;
306 struct buffer_head * bh = NULL;
307 ext4_fsblk_t bitmap_blk;
308
309 desc = ext4_get_group_desc(sb, block_group, NULL);
310 if (!desc)
311 return NULL;
312 bitmap_blk = ext4_block_bitmap(sb, desc);
313 bh = sb_getblk(sb, bitmap_blk);
314 if (unlikely(!bh)) {
315 ext4_error(sb, __func__,
316 "Cannot read block bitmap - "
317 "block_group = %lu, block_bitmap = %llu",
318 block_group, bitmap_blk);
319 return NULL;
320 }
321 if (bh_uptodate_or_lock(bh))
322 return bh;
323
324 spin_lock(sb_bgl_lock(EXT4_SB(sb), block_group));
325 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
326 ext4_init_block_bitmap(sb, bh, block_group, desc);
327 set_buffer_uptodate(bh);
328 unlock_buffer(bh);
329 spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group));
330 return bh;
331 }
332 spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group));
333 if (bh_submit_read(bh) < 0) {
334 put_bh(bh);
335 ext4_error(sb, __func__,
336 "Cannot read block bitmap - "
337 "block_group = %lu, block_bitmap = %llu",
338 block_group, bitmap_blk);
339 return NULL;
340 }
341 ext4_valid_block_bitmap(sb, desc, block_group, bh);
342 /*
343 * file system mounted not to panic on error,
344 * continue with corrupt bitmap
345 */
346 return bh;
347 }
348 /*
349 * The reservation window structure operations
350 * --------------------------------------------
351 * Operations include:
352 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
353 *
354 * We use a red-black tree to represent per-filesystem reservation
355 * windows.
356 *
357 */
358
359 /**
360 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
361 * @rb_root: root of per-filesystem reservation rb tree
362 * @verbose: verbose mode
363 * @fn: function which wishes to dump the reservation map
364 *
365 * If verbose is turned on, it will print the whole block reservation
366 * windows(start, end). Otherwise, it will only print out the "bad" windows,
367 * those windows that overlap with their immediate neighbors.
368 */
369 #if 1
370 static void __rsv_window_dump(struct rb_root *root, int verbose,
371 const char *fn)
372 {
373 struct rb_node *n;
374 struct ext4_reserve_window_node *rsv, *prev;
375 int bad;
376
377 restart:
378 n = rb_first(root);
379 bad = 0;
380 prev = NULL;
381
382 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
383 while (n) {
384 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
385 if (verbose)
386 printk("reservation window 0x%p "
387 "start: %llu, end: %llu\n",
388 rsv, rsv->rsv_start, rsv->rsv_end);
389 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
390 printk("Bad reservation %p (start >= end)\n",
391 rsv);
392 bad = 1;
393 }
394 if (prev && prev->rsv_end >= rsv->rsv_start) {
395 printk("Bad reservation %p (prev->end >= start)\n",
396 rsv);
397 bad = 1;
398 }
399 if (bad) {
400 if (!verbose) {
401 printk("Restarting reservation walk in verbose mode\n");
402 verbose = 1;
403 goto restart;
404 }
405 }
406 n = rb_next(n);
407 prev = rsv;
408 }
409 printk("Window map complete.\n");
410 BUG_ON(bad);
411 }
412 #define rsv_window_dump(root, verbose) \
413 __rsv_window_dump((root), (verbose), __func__)
414 #else
415 #define rsv_window_dump(root, verbose) do {} while (0)
416 #endif
417
418 /**
419 * goal_in_my_reservation()
420 * @rsv: inode's reservation window
421 * @grp_goal: given goal block relative to the allocation block group
422 * @group: the current allocation block group
423 * @sb: filesystem super block
424 *
425 * Test if the given goal block (group relative) is within the file's
426 * own block reservation window range.
427 *
428 * If the reservation window is outside the goal allocation group, return 0;
429 * grp_goal (given goal block) could be -1, which means no specific
430 * goal block. In this case, always return 1.
431 * If the goal block is within the reservation window, return 1;
432 * otherwise, return 0;
433 */
434 static int
435 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
436 ext4_group_t group, struct super_block *sb)
437 {
438 ext4_fsblk_t group_first_block, group_last_block;
439
440 group_first_block = ext4_group_first_block_no(sb, group);
441 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
442
443 if ((rsv->_rsv_start > group_last_block) ||
444 (rsv->_rsv_end < group_first_block))
445 return 0;
446 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
447 || (grp_goal + group_first_block > rsv->_rsv_end)))
448 return 0;
449 return 1;
450 }
451
452 /**
453 * search_reserve_window()
454 * @rb_root: root of reservation tree
455 * @goal: target allocation block
456 *
457 * Find the reserved window which includes the goal, or the previous one
458 * if the goal is not in any window.
459 * Returns NULL if there are no windows or if all windows start after the goal.
460 */
461 static struct ext4_reserve_window_node *
462 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
463 {
464 struct rb_node *n = root->rb_node;
465 struct ext4_reserve_window_node *rsv;
466
467 if (!n)
468 return NULL;
469
470 do {
471 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
472
473 if (goal < rsv->rsv_start)
474 n = n->rb_left;
475 else if (goal > rsv->rsv_end)
476 n = n->rb_right;
477 else
478 return rsv;
479 } while (n);
480 /*
481 * We've fallen off the end of the tree: the goal wasn't inside
482 * any particular node. OK, the previous node must be to one
483 * side of the interval containing the goal. If it's the RHS,
484 * we need to back up one.
485 */
486 if (rsv->rsv_start > goal) {
487 n = rb_prev(&rsv->rsv_node);
488 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
489 }
490 return rsv;
491 }
492
493 /**
494 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
495 * @sb: super block
496 * @rsv: reservation window to add
497 *
498 * Must be called with rsv_lock hold.
499 */
500 void ext4_rsv_window_add(struct super_block *sb,
501 struct ext4_reserve_window_node *rsv)
502 {
503 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
504 struct rb_node *node = &rsv->rsv_node;
505 ext4_fsblk_t start = rsv->rsv_start;
506
507 struct rb_node ** p = &root->rb_node;
508 struct rb_node * parent = NULL;
509 struct ext4_reserve_window_node *this;
510
511 while (*p)
512 {
513 parent = *p;
514 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
515
516 if (start < this->rsv_start)
517 p = &(*p)->rb_left;
518 else if (start > this->rsv_end)
519 p = &(*p)->rb_right;
520 else {
521 rsv_window_dump(root, 1);
522 BUG();
523 }
524 }
525
526 rb_link_node(node, parent, p);
527 rb_insert_color(node, root);
528 }
529
530 /**
531 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
532 * @sb: super block
533 * @rsv: reservation window to remove
534 *
535 * Mark the block reservation window as not allocated, and unlink it
536 * from the filesystem reservation window rb tree. Must be called with
537 * rsv_lock hold.
538 */
539 static void rsv_window_remove(struct super_block *sb,
540 struct ext4_reserve_window_node *rsv)
541 {
542 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
543 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
544 rsv->rsv_alloc_hit = 0;
545 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
546 }
547
548 /*
549 * rsv_is_empty() -- Check if the reservation window is allocated.
550 * @rsv: given reservation window to check
551 *
552 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
553 */
554 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
555 {
556 /* a valid reservation end block could not be 0 */
557 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
558 }
559
560 /**
561 * ext4_init_block_alloc_info()
562 * @inode: file inode structure
563 *
564 * Allocate and initialize the reservation window structure, and
565 * link the window to the ext4 inode structure at last
566 *
567 * The reservation window structure is only dynamically allocated
568 * and linked to ext4 inode the first time the open file
569 * needs a new block. So, before every ext4_new_block(s) call, for
570 * regular files, we should check whether the reservation window
571 * structure exists or not. In the latter case, this function is called.
572 * Fail to do so will result in block reservation being turned off for that
573 * open file.
574 *
575 * This function is called from ext4_get_blocks_handle(), also called
576 * when setting the reservation window size through ioctl before the file
577 * is open for write (needs block allocation).
578 *
579 * Needs down_write(i_data_sem) protection prior to call this function.
580 */
581 void ext4_init_block_alloc_info(struct inode *inode)
582 {
583 struct ext4_inode_info *ei = EXT4_I(inode);
584 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
585 struct super_block *sb = inode->i_sb;
586
587 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
588 if (block_i) {
589 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
590
591 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
592 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
593
594 /*
595 * if filesystem is mounted with NORESERVATION, the goal
596 * reservation window size is set to zero to indicate
597 * block reservation is off
598 */
599 if (!test_opt(sb, RESERVATION))
600 rsv->rsv_goal_size = 0;
601 else
602 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
603 rsv->rsv_alloc_hit = 0;
604 block_i->last_alloc_logical_block = 0;
605 block_i->last_alloc_physical_block = 0;
606 }
607 ei->i_block_alloc_info = block_i;
608 }
609
610 /**
611 * ext4_discard_reservation()
612 * @inode: inode
613 *
614 * Discard(free) block reservation window on last file close, or truncate
615 * or at last iput().
616 *
617 * It is being called in three cases:
618 * ext4_release_file(): last writer close the file
619 * ext4_clear_inode(): last iput(), when nobody link to this file.
620 * ext4_truncate(): when the block indirect map is about to change.
621 *
622 */
623 void ext4_discard_reservation(struct inode *inode)
624 {
625 struct ext4_inode_info *ei = EXT4_I(inode);
626 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
627 struct ext4_reserve_window_node *rsv;
628 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
629
630 ext4_mb_discard_inode_preallocations(inode);
631
632 if (!block_i)
633 return;
634
635 rsv = &block_i->rsv_window_node;
636 if (!rsv_is_empty(&rsv->rsv_window)) {
637 spin_lock(rsv_lock);
638 if (!rsv_is_empty(&rsv->rsv_window))
639 rsv_window_remove(inode->i_sb, rsv);
640 spin_unlock(rsv_lock);
641 }
642 }
643
644 /**
645 * ext4_free_blocks_sb() -- Free given blocks and update quota
646 * @handle: handle to this transaction
647 * @sb: super block
648 * @block: start physcial block to free
649 * @count: number of blocks to free
650 * @pdquot_freed_blocks: pointer to quota
651 */
652 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
653 ext4_fsblk_t block, unsigned long count,
654 unsigned long *pdquot_freed_blocks)
655 {
656 struct buffer_head *bitmap_bh = NULL;
657 struct buffer_head *gd_bh;
658 ext4_group_t block_group;
659 ext4_grpblk_t bit;
660 unsigned long i;
661 unsigned long overflow;
662 struct ext4_group_desc * desc;
663 struct ext4_super_block * es;
664 struct ext4_sb_info *sbi;
665 int err = 0, ret;
666 ext4_grpblk_t group_freed;
667
668 *pdquot_freed_blocks = 0;
669 sbi = EXT4_SB(sb);
670 es = sbi->s_es;
671 if (block < le32_to_cpu(es->s_first_data_block) ||
672 block + count < block ||
673 block + count > ext4_blocks_count(es)) {
674 ext4_error (sb, "ext4_free_blocks",
675 "Freeing blocks not in datazone - "
676 "block = %llu, count = %lu", block, count);
677 goto error_return;
678 }
679
680 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
681
682 do_more:
683 overflow = 0;
684 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
685 /*
686 * Check to see if we are freeing blocks across a group
687 * boundary.
688 */
689 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
690 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
691 count -= overflow;
692 }
693 brelse(bitmap_bh);
694 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
695 if (!bitmap_bh)
696 goto error_return;
697 desc = ext4_get_group_desc (sb, block_group, &gd_bh);
698 if (!desc)
699 goto error_return;
700
701 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
702 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
703 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
704 in_range(block + count - 1, ext4_inode_table(sb, desc),
705 sbi->s_itb_per_group)) {
706 ext4_error (sb, "ext4_free_blocks",
707 "Freeing blocks in system zones - "
708 "Block = %llu, count = %lu",
709 block, count);
710 goto error_return;
711 }
712
713 /*
714 * We are about to start releasing blocks in the bitmap,
715 * so we need undo access.
716 */
717 /* @@@ check errors */
718 BUFFER_TRACE(bitmap_bh, "getting undo access");
719 err = ext4_journal_get_undo_access(handle, bitmap_bh);
720 if (err)
721 goto error_return;
722
723 /*
724 * We are about to modify some metadata. Call the journal APIs
725 * to unshare ->b_data if a currently-committing transaction is
726 * using it
727 */
728 BUFFER_TRACE(gd_bh, "get_write_access");
729 err = ext4_journal_get_write_access(handle, gd_bh);
730 if (err)
731 goto error_return;
732
733 jbd_lock_bh_state(bitmap_bh);
734
735 for (i = 0, group_freed = 0; i < count; i++) {
736 /*
737 * An HJ special. This is expensive...
738 */
739 #ifdef CONFIG_JBD2_DEBUG
740 jbd_unlock_bh_state(bitmap_bh);
741 {
742 struct buffer_head *debug_bh;
743 debug_bh = sb_find_get_block(sb, block + i);
744 if (debug_bh) {
745 BUFFER_TRACE(debug_bh, "Deleted!");
746 if (!bh2jh(bitmap_bh)->b_committed_data)
747 BUFFER_TRACE(debug_bh,
748 "No commited data in bitmap");
749 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
750 __brelse(debug_bh);
751 }
752 }
753 jbd_lock_bh_state(bitmap_bh);
754 #endif
755 if (need_resched()) {
756 jbd_unlock_bh_state(bitmap_bh);
757 cond_resched();
758 jbd_lock_bh_state(bitmap_bh);
759 }
760 /* @@@ This prevents newly-allocated data from being
761 * freed and then reallocated within the same
762 * transaction.
763 *
764 * Ideally we would want to allow that to happen, but to
765 * do so requires making jbd2_journal_forget() capable of
766 * revoking the queued write of a data block, which
767 * implies blocking on the journal lock. *forget()
768 * cannot block due to truncate races.
769 *
770 * Eventually we can fix this by making jbd2_journal_forget()
771 * return a status indicating whether or not it was able
772 * to revoke the buffer. On successful revoke, it is
773 * safe not to set the allocation bit in the committed
774 * bitmap, because we know that there is no outstanding
775 * activity on the buffer any more and so it is safe to
776 * reallocate it.
777 */
778 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
779 J_ASSERT_BH(bitmap_bh,
780 bh2jh(bitmap_bh)->b_committed_data != NULL);
781 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
782 bh2jh(bitmap_bh)->b_committed_data);
783
784 /*
785 * We clear the bit in the bitmap after setting the committed
786 * data bit, because this is the reverse order to that which
787 * the allocator uses.
788 */
789 BUFFER_TRACE(bitmap_bh, "clear bit");
790 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
791 bit + i, bitmap_bh->b_data)) {
792 jbd_unlock_bh_state(bitmap_bh);
793 ext4_error(sb, __func__,
794 "bit already cleared for block %llu",
795 (ext4_fsblk_t)(block + i));
796 jbd_lock_bh_state(bitmap_bh);
797 BUFFER_TRACE(bitmap_bh, "bit already cleared");
798 } else {
799 group_freed++;
800 }
801 }
802 jbd_unlock_bh_state(bitmap_bh);
803
804 spin_lock(sb_bgl_lock(sbi, block_group));
805 le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
806 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
807 spin_unlock(sb_bgl_lock(sbi, block_group));
808 percpu_counter_add(&sbi->s_freeblocks_counter, count);
809
810 if (sbi->s_log_groups_per_flex) {
811 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
812 spin_lock(sb_bgl_lock(sbi, flex_group));
813 sbi->s_flex_groups[flex_group].free_blocks += count;
814 spin_unlock(sb_bgl_lock(sbi, flex_group));
815 }
816
817 /* We dirtied the bitmap block */
818 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
819 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
820
821 /* And the group descriptor block */
822 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
823 ret = ext4_journal_dirty_metadata(handle, gd_bh);
824 if (!err) err = ret;
825 *pdquot_freed_blocks += group_freed;
826
827 if (overflow && !err) {
828 block += count;
829 count = overflow;
830 goto do_more;
831 }
832 sb->s_dirt = 1;
833 error_return:
834 brelse(bitmap_bh);
835 ext4_std_error(sb, err);
836 return;
837 }
838
839 /**
840 * ext4_free_blocks() -- Free given blocks and update quota
841 * @handle: handle for this transaction
842 * @inode: inode
843 * @block: start physical block to free
844 * @count: number of blocks to count
845 * @metadata: Are these metadata blocks
846 */
847 void ext4_free_blocks(handle_t *handle, struct inode *inode,
848 ext4_fsblk_t block, unsigned long count,
849 int metadata)
850 {
851 struct super_block * sb;
852 unsigned long dquot_freed_blocks;
853
854 /* this isn't the right place to decide whether block is metadata
855 * inode.c/extents.c knows better, but for safety ... */
856 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
857 ext4_should_journal_data(inode))
858 metadata = 1;
859
860 sb = inode->i_sb;
861
862 if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
863 ext4_free_blocks_sb(handle, sb, block, count,
864 &dquot_freed_blocks);
865 else
866 ext4_mb_free_blocks(handle, inode, block, count,
867 metadata, &dquot_freed_blocks);
868 if (dquot_freed_blocks)
869 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
870 return;
871 }
872
873 /**
874 * ext4_test_allocatable()
875 * @nr: given allocation block group
876 * @bh: bufferhead contains the bitmap of the given block group
877 *
878 * For ext4 allocations, we must not reuse any blocks which are
879 * allocated in the bitmap buffer's "last committed data" copy. This
880 * prevents deletes from freeing up the page for reuse until we have
881 * committed the delete transaction.
882 *
883 * If we didn't do this, then deleting something and reallocating it as
884 * data would allow the old block to be overwritten before the
885 * transaction committed (because we force data to disk before commit).
886 * This would lead to corruption if we crashed between overwriting the
887 * data and committing the delete.
888 *
889 * @@@ We may want to make this allocation behaviour conditional on
890 * data-writes at some point, and disable it for metadata allocations or
891 * sync-data inodes.
892 */
893 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
894 {
895 int ret;
896 struct journal_head *jh = bh2jh(bh);
897
898 if (ext4_test_bit(nr, bh->b_data))
899 return 0;
900
901 jbd_lock_bh_state(bh);
902 if (!jh->b_committed_data)
903 ret = 1;
904 else
905 ret = !ext4_test_bit(nr, jh->b_committed_data);
906 jbd_unlock_bh_state(bh);
907 return ret;
908 }
909
910 /**
911 * bitmap_search_next_usable_block()
912 * @start: the starting block (group relative) of the search
913 * @bh: bufferhead contains the block group bitmap
914 * @maxblocks: the ending block (group relative) of the reservation
915 *
916 * The bitmap search --- search forward alternately through the actual
917 * bitmap on disk and the last-committed copy in journal, until we find a
918 * bit free in both bitmaps.
919 */
920 static ext4_grpblk_t
921 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
922 ext4_grpblk_t maxblocks)
923 {
924 ext4_grpblk_t next;
925 struct journal_head *jh = bh2jh(bh);
926
927 while (start < maxblocks) {
928 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
929 if (next >= maxblocks)
930 return -1;
931 if (ext4_test_allocatable(next, bh))
932 return next;
933 jbd_lock_bh_state(bh);
934 if (jh->b_committed_data)
935 start = ext4_find_next_zero_bit(jh->b_committed_data,
936 maxblocks, next);
937 jbd_unlock_bh_state(bh);
938 }
939 return -1;
940 }
941
942 /**
943 * find_next_usable_block()
944 * @start: the starting block (group relative) to find next
945 * allocatable block in bitmap.
946 * @bh: bufferhead contains the block group bitmap
947 * @maxblocks: the ending block (group relative) for the search
948 *
949 * Find an allocatable block in a bitmap. We honor both the bitmap and
950 * its last-committed copy (if that exists), and perform the "most
951 * appropriate allocation" algorithm of looking for a free block near
952 * the initial goal; then for a free byte somewhere in the bitmap; then
953 * for any free bit in the bitmap.
954 */
955 static ext4_grpblk_t
956 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
957 ext4_grpblk_t maxblocks)
958 {
959 ext4_grpblk_t here, next;
960 char *p, *r;
961
962 if (start > 0) {
963 /*
964 * The goal was occupied; search forward for a free
965 * block within the next XX blocks.
966 *
967 * end_goal is more or less random, but it has to be
968 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
969 * next 64-bit boundary is simple..
970 */
971 ext4_grpblk_t end_goal = (start + 63) & ~63;
972 if (end_goal > maxblocks)
973 end_goal = maxblocks;
974 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
975 if (here < end_goal && ext4_test_allocatable(here, bh))
976 return here;
977 ext4_debug("Bit not found near goal\n");
978 }
979
980 here = start;
981 if (here < 0)
982 here = 0;
983
984 p = ((char *)bh->b_data) + (here >> 3);
985 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
986 next = (r - ((char *)bh->b_data)) << 3;
987
988 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
989 return next;
990
991 /*
992 * The bitmap search --- search forward alternately through the actual
993 * bitmap and the last-committed copy until we find a bit free in
994 * both
995 */
996 here = bitmap_search_next_usable_block(here, bh, maxblocks);
997 return here;
998 }
999
1000 /**
1001 * claim_block()
1002 * @block: the free block (group relative) to allocate
1003 * @bh: the bufferhead containts the block group bitmap
1004 *
1005 * We think we can allocate this block in this bitmap. Try to set the bit.
1006 * If that succeeds then check that nobody has allocated and then freed the
1007 * block since we saw that is was not marked in b_committed_data. If it _was_
1008 * allocated and freed then clear the bit in the bitmap again and return
1009 * zero (failure).
1010 */
1011 static inline int
1012 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
1013 {
1014 struct journal_head *jh = bh2jh(bh);
1015 int ret;
1016
1017 if (ext4_set_bit_atomic(lock, block, bh->b_data))
1018 return 0;
1019 jbd_lock_bh_state(bh);
1020 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
1021 ext4_clear_bit_atomic(lock, block, bh->b_data);
1022 ret = 0;
1023 } else {
1024 ret = 1;
1025 }
1026 jbd_unlock_bh_state(bh);
1027 return ret;
1028 }
1029
1030 /**
1031 * ext4_try_to_allocate()
1032 * @sb: superblock
1033 * @handle: handle to this transaction
1034 * @group: given allocation block group
1035 * @bitmap_bh: bufferhead holds the block bitmap
1036 * @grp_goal: given target block within the group
1037 * @count: target number of blocks to allocate
1038 * @my_rsv: reservation window
1039 *
1040 * Attempt to allocate blocks within a give range. Set the range of allocation
1041 * first, then find the first free bit(s) from the bitmap (within the range),
1042 * and at last, allocate the blocks by claiming the found free bit as allocated.
1043 *
1044 * To set the range of this allocation:
1045 * if there is a reservation window, only try to allocate block(s) from the
1046 * file's own reservation window;
1047 * Otherwise, the allocation range starts from the give goal block, ends at
1048 * the block group's last block.
1049 *
1050 * If we failed to allocate the desired block then we may end up crossing to a
1051 * new bitmap. In that case we must release write access to the old one via
1052 * ext4_journal_release_buffer(), else we'll run out of credits.
1053 */
1054 static ext4_grpblk_t
1055 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1056 ext4_group_t group, struct buffer_head *bitmap_bh,
1057 ext4_grpblk_t grp_goal, unsigned long *count,
1058 struct ext4_reserve_window *my_rsv)
1059 {
1060 ext4_fsblk_t group_first_block;
1061 ext4_grpblk_t start, end;
1062 unsigned long num = 0;
1063
1064 /* we do allocation within the reservation window if we have a window */
1065 if (my_rsv) {
1066 group_first_block = ext4_group_first_block_no(sb, group);
1067 if (my_rsv->_rsv_start >= group_first_block)
1068 start = my_rsv->_rsv_start - group_first_block;
1069 else
1070 /* reservation window cross group boundary */
1071 start = 0;
1072 end = my_rsv->_rsv_end - group_first_block + 1;
1073 if (end > EXT4_BLOCKS_PER_GROUP(sb))
1074 /* reservation window crosses group boundary */
1075 end = EXT4_BLOCKS_PER_GROUP(sb);
1076 if ((start <= grp_goal) && (grp_goal < end))
1077 start = grp_goal;
1078 else
1079 grp_goal = -1;
1080 } else {
1081 if (grp_goal > 0)
1082 start = grp_goal;
1083 else
1084 start = 0;
1085 end = EXT4_BLOCKS_PER_GROUP(sb);
1086 }
1087
1088 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1089
1090 repeat:
1091 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1092 grp_goal = find_next_usable_block(start, bitmap_bh, end);
1093 if (grp_goal < 0)
1094 goto fail_access;
1095 if (!my_rsv) {
1096 int i;
1097
1098 for (i = 0; i < 7 && grp_goal > start &&
1099 ext4_test_allocatable(grp_goal - 1,
1100 bitmap_bh);
1101 i++, grp_goal--)
1102 ;
1103 }
1104 }
1105 start = grp_goal;
1106
1107 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1108 grp_goal, bitmap_bh)) {
1109 /*
1110 * The block was allocated by another thread, or it was
1111 * allocated and then freed by another thread
1112 */
1113 start++;
1114 grp_goal++;
1115 if (start >= end)
1116 goto fail_access;
1117 goto repeat;
1118 }
1119 num++;
1120 grp_goal++;
1121 while (num < *count && grp_goal < end
1122 && ext4_test_allocatable(grp_goal, bitmap_bh)
1123 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1124 grp_goal, bitmap_bh)) {
1125 num++;
1126 grp_goal++;
1127 }
1128 *count = num;
1129 return grp_goal - num;
1130 fail_access:
1131 *count = num;
1132 return -1;
1133 }
1134
1135 /**
1136 * find_next_reservable_window():
1137 * find a reservable space within the given range.
1138 * It does not allocate the reservation window for now:
1139 * alloc_new_reservation() will do the work later.
1140 *
1141 * @search_head: the head of the searching list;
1142 * This is not necessarily the list head of the whole filesystem
1143 *
1144 * We have both head and start_block to assist the search
1145 * for the reservable space. The list starts from head,
1146 * but we will shift to the place where start_block is,
1147 * then start from there, when looking for a reservable space.
1148 *
1149 * @size: the target new reservation window size
1150 *
1151 * @group_first_block: the first block we consider to start
1152 * the real search from
1153 *
1154 * @last_block:
1155 * the maximum block number that our goal reservable space
1156 * could start from. This is normally the last block in this
1157 * group. The search will end when we found the start of next
1158 * possible reservable space is out of this boundary.
1159 * This could handle the cross boundary reservation window
1160 * request.
1161 *
1162 * basically we search from the given range, rather than the whole
1163 * reservation double linked list, (start_block, last_block)
1164 * to find a free region that is of my size and has not
1165 * been reserved.
1166 *
1167 */
1168 static int find_next_reservable_window(
1169 struct ext4_reserve_window_node *search_head,
1170 struct ext4_reserve_window_node *my_rsv,
1171 struct super_block * sb,
1172 ext4_fsblk_t start_block,
1173 ext4_fsblk_t last_block)
1174 {
1175 struct rb_node *next;
1176 struct ext4_reserve_window_node *rsv, *prev;
1177 ext4_fsblk_t cur;
1178 int size = my_rsv->rsv_goal_size;
1179
1180 /* TODO: make the start of the reservation window byte-aligned */
1181 /* cur = *start_block & ~7;*/
1182 cur = start_block;
1183 rsv = search_head;
1184 if (!rsv)
1185 return -1;
1186
1187 while (1) {
1188 if (cur <= rsv->rsv_end)
1189 cur = rsv->rsv_end + 1;
1190
1191 /* TODO?
1192 * in the case we could not find a reservable space
1193 * that is what is expected, during the re-search, we could
1194 * remember what's the largest reservable space we could have
1195 * and return that one.
1196 *
1197 * For now it will fail if we could not find the reservable
1198 * space with expected-size (or more)...
1199 */
1200 if (cur > last_block)
1201 return -1; /* fail */
1202
1203 prev = rsv;
1204 next = rb_next(&rsv->rsv_node);
1205 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1206
1207 /*
1208 * Reached the last reservation, we can just append to the
1209 * previous one.
1210 */
1211 if (!next)
1212 break;
1213
1214 if (cur + size <= rsv->rsv_start) {
1215 /*
1216 * Found a reserveable space big enough. We could
1217 * have a reservation across the group boundary here
1218 */
1219 break;
1220 }
1221 }
1222 /*
1223 * we come here either :
1224 * when we reach the end of the whole list,
1225 * and there is empty reservable space after last entry in the list.
1226 * append it to the end of the list.
1227 *
1228 * or we found one reservable space in the middle of the list,
1229 * return the reservation window that we could append to.
1230 * succeed.
1231 */
1232
1233 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1234 rsv_window_remove(sb, my_rsv);
1235
1236 /*
1237 * Let's book the whole avaliable window for now. We will check the
1238 * disk bitmap later and then, if there are free blocks then we adjust
1239 * the window size if it's larger than requested.
1240 * Otherwise, we will remove this node from the tree next time
1241 * call find_next_reservable_window.
1242 */
1243 my_rsv->rsv_start = cur;
1244 my_rsv->rsv_end = cur + size - 1;
1245 my_rsv->rsv_alloc_hit = 0;
1246
1247 if (prev != my_rsv)
1248 ext4_rsv_window_add(sb, my_rsv);
1249
1250 return 0;
1251 }
1252
1253 /**
1254 * alloc_new_reservation()--allocate a new reservation window
1255 *
1256 * To make a new reservation, we search part of the filesystem
1257 * reservation list (the list that inside the group). We try to
1258 * allocate a new reservation window near the allocation goal,
1259 * or the beginning of the group, if there is no goal.
1260 *
1261 * We first find a reservable space after the goal, then from
1262 * there, we check the bitmap for the first free block after
1263 * it. If there is no free block until the end of group, then the
1264 * whole group is full, we failed. Otherwise, check if the free
1265 * block is inside the expected reservable space, if so, we
1266 * succeed.
1267 * If the first free block is outside the reservable space, then
1268 * start from the first free block, we search for next available
1269 * space, and go on.
1270 *
1271 * on succeed, a new reservation will be found and inserted into the list
1272 * It contains at least one free block, and it does not overlap with other
1273 * reservation windows.
1274 *
1275 * failed: we failed to find a reservation window in this group
1276 *
1277 * @rsv: the reservation
1278 *
1279 * @grp_goal: The goal (group-relative). It is where the search for a
1280 * free reservable space should start from.
1281 * if we have a grp_goal(grp_goal >0 ), then start from there,
1282 * no grp_goal(grp_goal = -1), we start from the first block
1283 * of the group.
1284 *
1285 * @sb: the super block
1286 * @group: the group we are trying to allocate in
1287 * @bitmap_bh: the block group block bitmap
1288 *
1289 */
1290 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1291 ext4_grpblk_t grp_goal, struct super_block *sb,
1292 ext4_group_t group, struct buffer_head *bitmap_bh)
1293 {
1294 struct ext4_reserve_window_node *search_head;
1295 ext4_fsblk_t group_first_block, group_end_block, start_block;
1296 ext4_grpblk_t first_free_block;
1297 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1298 unsigned long size;
1299 int ret;
1300 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1301
1302 group_first_block = ext4_group_first_block_no(sb, group);
1303 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1304
1305 if (grp_goal < 0)
1306 start_block = group_first_block;
1307 else
1308 start_block = grp_goal + group_first_block;
1309
1310 size = my_rsv->rsv_goal_size;
1311
1312 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1313 /*
1314 * if the old reservation is cross group boundary
1315 * and if the goal is inside the old reservation window,
1316 * we will come here when we just failed to allocate from
1317 * the first part of the window. We still have another part
1318 * that belongs to the next group. In this case, there is no
1319 * point to discard our window and try to allocate a new one
1320 * in this group(which will fail). we should
1321 * keep the reservation window, just simply move on.
1322 *
1323 * Maybe we could shift the start block of the reservation
1324 * window to the first block of next group.
1325 */
1326
1327 if ((my_rsv->rsv_start <= group_end_block) &&
1328 (my_rsv->rsv_end > group_end_block) &&
1329 (start_block >= my_rsv->rsv_start))
1330 return -1;
1331
1332 if ((my_rsv->rsv_alloc_hit >
1333 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1334 /*
1335 * if the previously allocation hit ratio is
1336 * greater than 1/2, then we double the size of
1337 * the reservation window the next time,
1338 * otherwise we keep the same size window
1339 */
1340 size = size * 2;
1341 if (size > EXT4_MAX_RESERVE_BLOCKS)
1342 size = EXT4_MAX_RESERVE_BLOCKS;
1343 my_rsv->rsv_goal_size= size;
1344 }
1345 }
1346
1347 spin_lock(rsv_lock);
1348 /*
1349 * shift the search start to the window near the goal block
1350 */
1351 search_head = search_reserve_window(fs_rsv_root, start_block);
1352
1353 /*
1354 * find_next_reservable_window() simply finds a reservable window
1355 * inside the given range(start_block, group_end_block).
1356 *
1357 * To make sure the reservation window has a free bit inside it, we
1358 * need to check the bitmap after we found a reservable window.
1359 */
1360 retry:
1361 ret = find_next_reservable_window(search_head, my_rsv, sb,
1362 start_block, group_end_block);
1363
1364 if (ret == -1) {
1365 if (!rsv_is_empty(&my_rsv->rsv_window))
1366 rsv_window_remove(sb, my_rsv);
1367 spin_unlock(rsv_lock);
1368 return -1;
1369 }
1370
1371 /*
1372 * On success, find_next_reservable_window() returns the
1373 * reservation window where there is a reservable space after it.
1374 * Before we reserve this reservable space, we need
1375 * to make sure there is at least a free block inside this region.
1376 *
1377 * searching the first free bit on the block bitmap and copy of
1378 * last committed bitmap alternatively, until we found a allocatable
1379 * block. Search start from the start block of the reservable space
1380 * we just found.
1381 */
1382 spin_unlock(rsv_lock);
1383 first_free_block = bitmap_search_next_usable_block(
1384 my_rsv->rsv_start - group_first_block,
1385 bitmap_bh, group_end_block - group_first_block + 1);
1386
1387 if (first_free_block < 0) {
1388 /*
1389 * no free block left on the bitmap, no point
1390 * to reserve the space. return failed.
1391 */
1392 spin_lock(rsv_lock);
1393 if (!rsv_is_empty(&my_rsv->rsv_window))
1394 rsv_window_remove(sb, my_rsv);
1395 spin_unlock(rsv_lock);
1396 return -1; /* failed */
1397 }
1398
1399 start_block = first_free_block + group_first_block;
1400 /*
1401 * check if the first free block is within the
1402 * free space we just reserved
1403 */
1404 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1405 return 0; /* success */
1406 /*
1407 * if the first free bit we found is out of the reservable space
1408 * continue search for next reservable space,
1409 * start from where the free block is,
1410 * we also shift the list head to where we stopped last time
1411 */
1412 search_head = my_rsv;
1413 spin_lock(rsv_lock);
1414 goto retry;
1415 }
1416
1417 /**
1418 * try_to_extend_reservation()
1419 * @my_rsv: given reservation window
1420 * @sb: super block
1421 * @size: the delta to extend
1422 *
1423 * Attempt to expand the reservation window large enough to have
1424 * required number of free blocks
1425 *
1426 * Since ext4_try_to_allocate() will always allocate blocks within
1427 * the reservation window range, if the window size is too small,
1428 * multiple blocks allocation has to stop at the end of the reservation
1429 * window. To make this more efficient, given the total number of
1430 * blocks needed and the current size of the window, we try to
1431 * expand the reservation window size if necessary on a best-effort
1432 * basis before ext4_new_blocks() tries to allocate blocks,
1433 */
1434 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1435 struct super_block *sb, int size)
1436 {
1437 struct ext4_reserve_window_node *next_rsv;
1438 struct rb_node *next;
1439 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1440
1441 if (!spin_trylock(rsv_lock))
1442 return;
1443
1444 next = rb_next(&my_rsv->rsv_node);
1445
1446 if (!next)
1447 my_rsv->rsv_end += size;
1448 else {
1449 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1450
1451 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1452 my_rsv->rsv_end += size;
1453 else
1454 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1455 }
1456 spin_unlock(rsv_lock);
1457 }
1458
1459 /**
1460 * ext4_try_to_allocate_with_rsv()
1461 * @sb: superblock
1462 * @handle: handle to this transaction
1463 * @group: given allocation block group
1464 * @bitmap_bh: bufferhead holds the block bitmap
1465 * @grp_goal: given target block within the group
1466 * @count: target number of blocks to allocate
1467 * @my_rsv: reservation window
1468 * @errp: pointer to store the error code
1469 *
1470 * This is the main function used to allocate a new block and its reservation
1471 * window.
1472 *
1473 * Each time when a new block allocation is need, first try to allocate from
1474 * its own reservation. If it does not have a reservation window, instead of
1475 * looking for a free bit on bitmap first, then look up the reservation list to
1476 * see if it is inside somebody else's reservation window, we try to allocate a
1477 * reservation window for it starting from the goal first. Then do the block
1478 * allocation within the reservation window.
1479 *
1480 * This will avoid keeping on searching the reservation list again and
1481 * again when somebody is looking for a free block (without
1482 * reservation), and there are lots of free blocks, but they are all
1483 * being reserved.
1484 *
1485 * We use a red-black tree for the per-filesystem reservation list.
1486 *
1487 */
1488 static ext4_grpblk_t
1489 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1490 ext4_group_t group, struct buffer_head *bitmap_bh,
1491 ext4_grpblk_t grp_goal,
1492 struct ext4_reserve_window_node * my_rsv,
1493 unsigned long *count, int *errp)
1494 {
1495 ext4_fsblk_t group_first_block, group_last_block;
1496 ext4_grpblk_t ret = 0;
1497 int fatal;
1498 unsigned long num = *count;
1499
1500 *errp = 0;
1501
1502 /*
1503 * Make sure we use undo access for the bitmap, because it is critical
1504 * that we do the frozen_data COW on bitmap buffers in all cases even
1505 * if the buffer is in BJ_Forget state in the committing transaction.
1506 */
1507 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1508 fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1509 if (fatal) {
1510 *errp = fatal;
1511 return -1;
1512 }
1513
1514 /*
1515 * we don't deal with reservation when
1516 * filesystem is mounted without reservation
1517 * or the file is not a regular file
1518 * or last attempt to allocate a block with reservation turned on failed
1519 */
1520 if (my_rsv == NULL ) {
1521 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1522 grp_goal, count, NULL);
1523 goto out;
1524 }
1525 /*
1526 * grp_goal is a group relative block number (if there is a goal)
1527 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1528 * first block is a filesystem wide block number
1529 * first block is the block number of the first block in this group
1530 */
1531 group_first_block = ext4_group_first_block_no(sb, group);
1532 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1533
1534 /*
1535 * Basically we will allocate a new block from inode's reservation
1536 * window.
1537 *
1538 * We need to allocate a new reservation window, if:
1539 * a) inode does not have a reservation window; or
1540 * b) last attempt to allocate a block from existing reservation
1541 * failed; or
1542 * c) we come here with a goal and with a reservation window
1543 *
1544 * We do not need to allocate a new reservation window if we come here
1545 * at the beginning with a goal and the goal is inside the window, or
1546 * we don't have a goal but already have a reservation window.
1547 * then we could go to allocate from the reservation window directly.
1548 */
1549 while (1) {
1550 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1551 !goal_in_my_reservation(&my_rsv->rsv_window,
1552 grp_goal, group, sb)) {
1553 if (my_rsv->rsv_goal_size < *count)
1554 my_rsv->rsv_goal_size = *count;
1555 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1556 group, bitmap_bh);
1557 if (ret < 0)
1558 break; /* failed */
1559
1560 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1561 grp_goal, group, sb))
1562 grp_goal = -1;
1563 } else if (grp_goal >= 0) {
1564 int curr = my_rsv->rsv_end -
1565 (grp_goal + group_first_block) + 1;
1566
1567 if (curr < *count)
1568 try_to_extend_reservation(my_rsv, sb,
1569 *count - curr);
1570 }
1571
1572 if ((my_rsv->rsv_start > group_last_block) ||
1573 (my_rsv->rsv_end < group_first_block)) {
1574 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1575 BUG();
1576 }
1577 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1578 grp_goal, &num, &my_rsv->rsv_window);
1579 if (ret >= 0) {
1580 my_rsv->rsv_alloc_hit += num;
1581 *count = num;
1582 break; /* succeed */
1583 }
1584 num = *count;
1585 }
1586 out:
1587 if (ret >= 0) {
1588 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1589 "bitmap block");
1590 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1591 if (fatal) {
1592 *errp = fatal;
1593 return -1;
1594 }
1595 return ret;
1596 }
1597
1598 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1599 ext4_journal_release_buffer(handle, bitmap_bh);
1600 return ret;
1601 }
1602
1603 /**
1604 * ext4_has_free_blocks()
1605 * @sbi: in-core super block structure.
1606 * @nblocks: number of neeed blocks
1607 *
1608 * Check if filesystem has free blocks available for allocation.
1609 * Return the number of blocks avaible for allocation for this request
1610 * On success, return nblocks
1611 */
1612 ext4_fsblk_t ext4_has_free_blocks(struct ext4_sb_info *sbi,
1613 ext4_fsblk_t nblocks)
1614 {
1615 ext4_fsblk_t free_blocks;
1616 ext4_fsblk_t root_blocks = 0;
1617
1618 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1619
1620 if (!capable(CAP_SYS_RESOURCE) &&
1621 sbi->s_resuid != current->fsuid &&
1622 (sbi->s_resgid == 0 || !in_group_p(sbi->s_resgid)))
1623 root_blocks = ext4_r_blocks_count(sbi->s_es);
1624 #ifdef CONFIG_SMP
1625 if (free_blocks - root_blocks < FBC_BATCH)
1626 free_blocks =
1627 percpu_counter_sum_and_set(&sbi->s_freeblocks_counter);
1628 #endif
1629 if (free_blocks - root_blocks < nblocks)
1630 return free_blocks - root_blocks;
1631 return nblocks;
1632 }
1633
1634
1635 /**
1636 * ext4_should_retry_alloc()
1637 * @sb: super block
1638 * @retries number of attemps has been made
1639 *
1640 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1641 * it is profitable to retry the operation, this function will wait
1642 * for the current or commiting transaction to complete, and then
1643 * return TRUE.
1644 *
1645 * if the total number of retries exceed three times, return FALSE.
1646 */
1647 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1648 {
1649 if (!ext4_has_free_blocks(EXT4_SB(sb), 1) || (*retries)++ > 3)
1650 return 0;
1651
1652 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1653
1654 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1655 }
1656
1657 /**
1658 * ext4_old_new_blocks() -- core block bitmap based block allocation function
1659 *
1660 * @handle: handle to this transaction
1661 * @inode: file inode
1662 * @goal: given target block(filesystem wide)
1663 * @count: target number of blocks to allocate
1664 * @errp: error code
1665 *
1666 * ext4_old_new_blocks uses a goal block to assist allocation and look up
1667 * the block bitmap directly to do block allocation. It tries to
1668 * allocate block(s) from the block group contains the goal block first. If
1669 * that fails, it will try to allocate block(s) from other block groups
1670 * without any specific goal block.
1671 *
1672 * This function is called when -o nomballoc mount option is enabled
1673 *
1674 */
1675 ext4_fsblk_t ext4_old_new_blocks(handle_t *handle, struct inode *inode,
1676 ext4_fsblk_t goal, unsigned long *count, int *errp)
1677 {
1678 struct buffer_head *bitmap_bh = NULL;
1679 struct buffer_head *gdp_bh;
1680 ext4_group_t group_no;
1681 ext4_group_t goal_group;
1682 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1683 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1684 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */
1685 ext4_group_t bgi; /* blockgroup iteration index */
1686 int fatal = 0, err;
1687 int performed_allocation = 0;
1688 ext4_grpblk_t free_blocks; /* number of free blocks in a group */
1689 struct super_block *sb;
1690 struct ext4_group_desc *gdp;
1691 struct ext4_super_block *es;
1692 struct ext4_sb_info *sbi;
1693 struct ext4_reserve_window_node *my_rsv = NULL;
1694 struct ext4_block_alloc_info *block_i;
1695 unsigned short windowsz = 0;
1696 ext4_group_t ngroups;
1697 unsigned long num = *count;
1698
1699 sb = inode->i_sb;
1700 if (!sb) {
1701 *errp = -ENODEV;
1702 printk("ext4_new_block: nonexistent device");
1703 return 0;
1704 }
1705
1706 sbi = EXT4_SB(sb);
1707 if (!EXT4_I(inode)->i_delalloc_reserved_flag) {
1708 /*
1709 * With delalloc we already reserved the blocks
1710 */
1711 *count = ext4_has_free_blocks(sbi, *count);
1712 }
1713 if (*count == 0) {
1714 *errp = -ENOSPC;
1715 return 0; /*return with ENOSPC error */
1716 }
1717 num = *count;
1718
1719 /*
1720 * Check quota for allocation of this block.
1721 */
1722 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1723 *errp = -EDQUOT;
1724 return 0;
1725 }
1726
1727 sbi = EXT4_SB(sb);
1728 es = EXT4_SB(sb)->s_es;
1729 ext4_debug("goal=%llu.\n", goal);
1730 /*
1731 * Allocate a block from reservation only when
1732 * filesystem is mounted with reservation(default,-o reservation), and
1733 * it's a regular file, and
1734 * the desired window size is greater than 0 (One could use ioctl
1735 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1736 * reservation on that particular file)
1737 */
1738 block_i = EXT4_I(inode)->i_block_alloc_info;
1739 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1740 my_rsv = &block_i->rsv_window_node;
1741
1742 /*
1743 * First, test whether the goal block is free.
1744 */
1745 if (goal < le32_to_cpu(es->s_first_data_block) ||
1746 goal >= ext4_blocks_count(es))
1747 goal = le32_to_cpu(es->s_first_data_block);
1748 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1749 goal_group = group_no;
1750 retry_alloc:
1751 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1752 if (!gdp)
1753 goto io_error;
1754
1755 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1756 /*
1757 * if there is not enough free blocks to make a new resevation
1758 * turn off reservation for this allocation
1759 */
1760 if (my_rsv && (free_blocks < windowsz)
1761 && (rsv_is_empty(&my_rsv->rsv_window)))
1762 my_rsv = NULL;
1763
1764 if (free_blocks > 0) {
1765 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1766 if (!bitmap_bh)
1767 goto io_error;
1768 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1769 group_no, bitmap_bh, grp_target_blk,
1770 my_rsv, &num, &fatal);
1771 if (fatal)
1772 goto out;
1773 if (grp_alloc_blk >= 0)
1774 goto allocated;
1775 }
1776
1777 ngroups = EXT4_SB(sb)->s_groups_count;
1778 smp_rmb();
1779
1780 /*
1781 * Now search the rest of the groups. We assume that
1782 * group_no and gdp correctly point to the last group visited.
1783 */
1784 for (bgi = 0; bgi < ngroups; bgi++) {
1785 group_no++;
1786 if (group_no >= ngroups)
1787 group_no = 0;
1788 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1789 if (!gdp)
1790 goto io_error;
1791 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1792 /*
1793 * skip this group if the number of
1794 * free blocks is less than half of the reservation
1795 * window size.
1796 */
1797 if (free_blocks <= (windowsz/2))
1798 continue;
1799
1800 brelse(bitmap_bh);
1801 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1802 if (!bitmap_bh)
1803 goto io_error;
1804 /*
1805 * try to allocate block(s) from this group, without a goal(-1).
1806 */
1807 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1808 group_no, bitmap_bh, -1, my_rsv,
1809 &num, &fatal);
1810 if (fatal)
1811 goto out;
1812 if (grp_alloc_blk >= 0)
1813 goto allocated;
1814 }
1815 /*
1816 * We may end up a bogus ealier ENOSPC error due to
1817 * filesystem is "full" of reservations, but
1818 * there maybe indeed free blocks avaliable on disk
1819 * In this case, we just forget about the reservations
1820 * just do block allocation as without reservations.
1821 */
1822 if (my_rsv) {
1823 my_rsv = NULL;
1824 windowsz = 0;
1825 group_no = goal_group;
1826 goto retry_alloc;
1827 }
1828 /* No space left on the device */
1829 *errp = -ENOSPC;
1830 goto out;
1831
1832 allocated:
1833
1834 ext4_debug("using block group %lu(%d)\n",
1835 group_no, gdp->bg_free_blocks_count);
1836
1837 BUFFER_TRACE(gdp_bh, "get_write_access");
1838 fatal = ext4_journal_get_write_access(handle, gdp_bh);
1839 if (fatal)
1840 goto out;
1841
1842 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1843
1844 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1845 in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1846 in_range(ret_block, ext4_inode_table(sb, gdp),
1847 EXT4_SB(sb)->s_itb_per_group) ||
1848 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1849 EXT4_SB(sb)->s_itb_per_group)) {
1850 ext4_error(sb, "ext4_new_block",
1851 "Allocating block in system zone - "
1852 "blocks from %llu, length %lu",
1853 ret_block, num);
1854 /*
1855 * claim_block marked the blocks we allocated
1856 * as in use. So we may want to selectively
1857 * mark some of the blocks as free
1858 */
1859 goto retry_alloc;
1860 }
1861
1862 performed_allocation = 1;
1863
1864 #ifdef CONFIG_JBD2_DEBUG
1865 {
1866 struct buffer_head *debug_bh;
1867
1868 /* Record bitmap buffer state in the newly allocated block */
1869 debug_bh = sb_find_get_block(sb, ret_block);
1870 if (debug_bh) {
1871 BUFFER_TRACE(debug_bh, "state when allocated");
1872 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1873 brelse(debug_bh);
1874 }
1875 }
1876 jbd_lock_bh_state(bitmap_bh);
1877 spin_lock(sb_bgl_lock(sbi, group_no));
1878 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1879 int i;
1880
1881 for (i = 0; i < num; i++) {
1882 if (ext4_test_bit(grp_alloc_blk+i,
1883 bh2jh(bitmap_bh)->b_committed_data)) {
1884 printk("%s: block was unexpectedly set in "
1885 "b_committed_data\n", __func__);
1886 }
1887 }
1888 }
1889 ext4_debug("found bit %d\n", grp_alloc_blk);
1890 spin_unlock(sb_bgl_lock(sbi, group_no));
1891 jbd_unlock_bh_state(bitmap_bh);
1892 #endif
1893
1894 if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1895 ext4_error(sb, "ext4_new_block",
1896 "block(%llu) >= blocks count(%llu) - "
1897 "block_group = %lu, es == %p ", ret_block,
1898 ext4_blocks_count(es), group_no, es);
1899 goto out;
1900 }
1901
1902 /*
1903 * It is up to the caller to add the new buffer to a journal
1904 * list of some description. We don't know in advance whether
1905 * the caller wants to use it as metadata or data.
1906 */
1907 spin_lock(sb_bgl_lock(sbi, group_no));
1908 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1909 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1910 le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1911 gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1912 spin_unlock(sb_bgl_lock(sbi, group_no));
1913 if (!EXT4_I(inode)->i_delalloc_reserved_flag)
1914 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1915
1916 if (sbi->s_log_groups_per_flex) {
1917 ext4_group_t flex_group = ext4_flex_group(sbi, group_no);
1918 spin_lock(sb_bgl_lock(sbi, flex_group));
1919 sbi->s_flex_groups[flex_group].free_blocks -= num;
1920 spin_unlock(sb_bgl_lock(sbi, flex_group));
1921 }
1922
1923 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1924 err = ext4_journal_dirty_metadata(handle, gdp_bh);
1925 if (!fatal)
1926 fatal = err;
1927
1928 sb->s_dirt = 1;
1929 if (fatal)
1930 goto out;
1931
1932 *errp = 0;
1933 brelse(bitmap_bh);
1934 DQUOT_FREE_BLOCK(inode, *count-num);
1935 *count = num;
1936 return ret_block;
1937
1938 io_error:
1939 *errp = -EIO;
1940 out:
1941 if (fatal) {
1942 *errp = fatal;
1943 ext4_std_error(sb, fatal);
1944 }
1945 /*
1946 * Undo the block allocation
1947 */
1948 if (!performed_allocation)
1949 DQUOT_FREE_BLOCK(inode, *count);
1950 brelse(bitmap_bh);
1951 return 0;
1952 }
1953
1954 #define EXT4_META_BLOCK 0x1
1955
1956 static ext4_fsblk_t do_blk_alloc(handle_t *handle, struct inode *inode,
1957 ext4_lblk_t iblock, ext4_fsblk_t goal,
1958 unsigned long *count, int *errp, int flags)
1959 {
1960 struct ext4_allocation_request ar;
1961 ext4_fsblk_t ret;
1962
1963 if (!test_opt(inode->i_sb, MBALLOC)) {
1964 return ext4_old_new_blocks(handle, inode, goal, count, errp);
1965 }
1966
1967 memset(&ar, 0, sizeof(ar));
1968 /* Fill with neighbour allocated blocks */
1969
1970 ar.inode = inode;
1971 ar.goal = goal;
1972 ar.len = *count;
1973 ar.logical = iblock;
1974
1975 if (S_ISREG(inode->i_mode) && !(flags & EXT4_META_BLOCK))
1976 /* enable in-core preallocation for data block allocation */
1977 ar.flags = EXT4_MB_HINT_DATA;
1978 else
1979 /* disable in-core preallocation for non-regular files */
1980 ar.flags = 0;
1981
1982 ret = ext4_mb_new_blocks(handle, &ar, errp);
1983 *count = ar.len;
1984 return ret;
1985 }
1986
1987 /*
1988 * ext4_new_meta_blocks() -- allocate block for meta data (indexing) blocks
1989 *
1990 * @handle: handle to this transaction
1991 * @inode: file inode
1992 * @goal: given target block(filesystem wide)
1993 * @count: total number of blocks need
1994 * @errp: error code
1995 *
1996 * Return 1st allocated block numberon success, *count stores total account
1997 * error stores in errp pointer
1998 */
1999 ext4_fsblk_t ext4_new_meta_blocks(handle_t *handle, struct inode *inode,
2000 ext4_fsblk_t goal, unsigned long *count, int *errp)
2001 {
2002 ext4_fsblk_t ret;
2003 ret = do_blk_alloc(handle, inode, 0, goal,
2004 count, errp, EXT4_META_BLOCK);
2005 /*
2006 * Account for the allocated meta blocks
2007 */
2008 if (!(*errp)) {
2009 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2010 EXT4_I(inode)->i_allocated_meta_blocks += *count;
2011 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2012 }
2013 return ret;
2014 }
2015
2016 /*
2017 * ext4_new_meta_block() -- allocate block for meta data (indexing) blocks
2018 *
2019 * @handle: handle to this transaction
2020 * @inode: file inode
2021 * @goal: given target block(filesystem wide)
2022 * @errp: error code
2023 *
2024 * Return allocated block number on success
2025 */
2026 ext4_fsblk_t ext4_new_meta_block(handle_t *handle, struct inode *inode,
2027 ext4_fsblk_t goal, int *errp)
2028 {
2029 unsigned long count = 1;
2030 return ext4_new_meta_blocks(handle, inode, goal, &count, errp);
2031 }
2032
2033 /*
2034 * ext4_new_blocks() -- allocate data blocks
2035 *
2036 * @handle: handle to this transaction
2037 * @inode: file inode
2038 * @goal: given target block(filesystem wide)
2039 * @count: total number of blocks need
2040 * @errp: error code
2041 *
2042 * Return 1st allocated block numberon success, *count stores total account
2043 * error stores in errp pointer
2044 */
2045
2046 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
2047 ext4_lblk_t iblock, ext4_fsblk_t goal,
2048 unsigned long *count, int *errp)
2049 {
2050 return do_blk_alloc(handle, inode, iblock, goal, count, errp, 0);
2051 }
2052
2053 /**
2054 * ext4_count_free_blocks() -- count filesystem free blocks
2055 * @sb: superblock
2056 *
2057 * Adds up the number of free blocks from each block group.
2058 */
2059 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
2060 {
2061 ext4_fsblk_t desc_count;
2062 struct ext4_group_desc *gdp;
2063 ext4_group_t i;
2064 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2065 #ifdef EXT4FS_DEBUG
2066 struct ext4_super_block *es;
2067 ext4_fsblk_t bitmap_count;
2068 unsigned long x;
2069 struct buffer_head *bitmap_bh = NULL;
2070
2071 es = EXT4_SB(sb)->s_es;
2072 desc_count = 0;
2073 bitmap_count = 0;
2074 gdp = NULL;
2075
2076 smp_rmb();
2077 for (i = 0; i < ngroups; i++) {
2078 gdp = ext4_get_group_desc(sb, i, NULL);
2079 if (!gdp)
2080 continue;
2081 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2082 brelse(bitmap_bh);
2083 bitmap_bh = ext4_read_block_bitmap(sb, i);
2084 if (bitmap_bh == NULL)
2085 continue;
2086
2087 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
2088 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
2089 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
2090 bitmap_count += x;
2091 }
2092 brelse(bitmap_bh);
2093 printk("ext4_count_free_blocks: stored = %llu"
2094 ", computed = %llu, %llu\n",
2095 ext4_free_blocks_count(es),
2096 desc_count, bitmap_count);
2097 return bitmap_count;
2098 #else
2099 desc_count = 0;
2100 smp_rmb();
2101 for (i = 0; i < ngroups; i++) {
2102 gdp = ext4_get_group_desc(sb, i, NULL);
2103 if (!gdp)
2104 continue;
2105 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2106 }
2107
2108 return desc_count;
2109 #endif
2110 }
2111
2112 static inline int test_root(ext4_group_t a, int b)
2113 {
2114 int num = b;
2115
2116 while (a > num)
2117 num *= b;
2118 return num == a;
2119 }
2120
2121 static int ext4_group_sparse(ext4_group_t group)
2122 {
2123 if (group <= 1)
2124 return 1;
2125 if (!(group & 1))
2126 return 0;
2127 return (test_root(group, 7) || test_root(group, 5) ||
2128 test_root(group, 3));
2129 }
2130
2131 /**
2132 * ext4_bg_has_super - number of blocks used by the superblock in group
2133 * @sb: superblock for filesystem
2134 * @group: group number to check
2135 *
2136 * Return the number of blocks used by the superblock (primary or backup)
2137 * in this group. Currently this will be only 0 or 1.
2138 */
2139 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
2140 {
2141 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2142 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
2143 !ext4_group_sparse(group))
2144 return 0;
2145 return 1;
2146 }
2147
2148 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2149 ext4_group_t group)
2150 {
2151 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2152 ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2153 ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2154
2155 if (group == first || group == first + 1 || group == last)
2156 return 1;
2157 return 0;
2158 }
2159
2160 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2161 ext4_group_t group)
2162 {
2163 return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2164 }
2165
2166 /**
2167 * ext4_bg_num_gdb - number of blocks used by the group table in group
2168 * @sb: superblock for filesystem
2169 * @group: group number to check
2170 *
2171 * Return the number of blocks used by the group descriptor table
2172 * (primary or backup) in this group. In the future there may be a
2173 * different number of descriptor blocks in each group.
2174 */
2175 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2176 {
2177 unsigned long first_meta_bg =
2178 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2179 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2180
2181 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2182 metagroup < first_meta_bg)
2183 return ext4_bg_num_gdb_nometa(sb,group);
2184
2185 return ext4_bg_num_gdb_meta(sb,group);
2186
2187 }