]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/crypto_fname.c
7a877e609e5fba6401e7308d880a04c630d1c447
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / crypto_fname.c
1 /*
2 * linux/fs/ext4/crypto_fname.c
3 *
4 * Copyright (C) 2015, Google, Inc.
5 *
6 * This contains functions for filename crypto management in ext4
7 *
8 * Written by Uday Savagaonkar, 2014.
9 *
10 * This has not yet undergone a rigorous security audit.
11 *
12 */
13
14 #include <crypto/hash.h>
15 #include <crypto/sha.h>
16 #include <keys/encrypted-type.h>
17 #include <keys/user-type.h>
18 #include <linux/crypto.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel.h>
21 #include <linux/key.h>
22 #include <linux/key.h>
23 #include <linux/list.h>
24 #include <linux/mempool.h>
25 #include <linux/random.h>
26 #include <linux/scatterlist.h>
27 #include <linux/spinlock_types.h>
28
29 #include "ext4.h"
30 #include "ext4_crypto.h"
31 #include "xattr.h"
32
33 /**
34 * ext4_dir_crypt_complete() -
35 */
36 static void ext4_dir_crypt_complete(struct crypto_async_request *req, int res)
37 {
38 struct ext4_completion_result *ecr = req->data;
39
40 if (res == -EINPROGRESS)
41 return;
42 ecr->res = res;
43 complete(&ecr->completion);
44 }
45
46 bool ext4_valid_filenames_enc_mode(uint32_t mode)
47 {
48 return (mode == EXT4_ENCRYPTION_MODE_AES_256_CTS);
49 }
50
51 /**
52 * ext4_fname_encrypt() -
53 *
54 * This function encrypts the input filename, and returns the length of the
55 * ciphertext. Errors are returned as negative numbers. We trust the caller to
56 * allocate sufficient memory to oname string.
57 */
58 static int ext4_fname_encrypt(struct ext4_fname_crypto_ctx *ctx,
59 const struct qstr *iname,
60 struct ext4_str *oname)
61 {
62 u32 ciphertext_len;
63 struct ablkcipher_request *req = NULL;
64 DECLARE_EXT4_COMPLETION_RESULT(ecr);
65 struct crypto_ablkcipher *tfm = ctx->ctfm;
66 int res = 0;
67 char iv[EXT4_CRYPTO_BLOCK_SIZE];
68 struct scatterlist sg[1];
69 char *workbuf;
70
71 if (iname->len <= 0 || iname->len > ctx->lim)
72 return -EIO;
73
74 ciphertext_len = (iname->len < EXT4_CRYPTO_BLOCK_SIZE) ?
75 EXT4_CRYPTO_BLOCK_SIZE : iname->len;
76 ciphertext_len = (ciphertext_len > ctx->lim)
77 ? ctx->lim : ciphertext_len;
78
79 /* Allocate request */
80 req = ablkcipher_request_alloc(tfm, GFP_NOFS);
81 if (!req) {
82 printk_ratelimited(
83 KERN_ERR "%s: crypto_request_alloc() failed\n", __func__);
84 return -ENOMEM;
85 }
86 ablkcipher_request_set_callback(req,
87 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
88 ext4_dir_crypt_complete, &ecr);
89
90 /* Map the workpage */
91 workbuf = kmap(ctx->workpage);
92
93 /* Copy the input */
94 memcpy(workbuf, iname->name, iname->len);
95 if (iname->len < ciphertext_len)
96 memset(workbuf + iname->len, 0, ciphertext_len - iname->len);
97
98 /* Initialize IV */
99 memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE);
100
101 /* Create encryption request */
102 sg_init_table(sg, 1);
103 sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0);
104 ablkcipher_request_set_crypt(req, sg, sg, iname->len, iv);
105 res = crypto_ablkcipher_encrypt(req);
106 if (res == -EINPROGRESS || res == -EBUSY) {
107 BUG_ON(req->base.data != &ecr);
108 wait_for_completion(&ecr.completion);
109 res = ecr.res;
110 }
111 if (res >= 0) {
112 /* Copy the result to output */
113 memcpy(oname->name, workbuf, ciphertext_len);
114 res = ciphertext_len;
115 }
116 kunmap(ctx->workpage);
117 ablkcipher_request_free(req);
118 if (res < 0) {
119 printk_ratelimited(
120 KERN_ERR "%s: Error (error code %d)\n", __func__, res);
121 }
122 oname->len = ciphertext_len;
123 return res;
124 }
125
126 /*
127 * ext4_fname_decrypt()
128 * This function decrypts the input filename, and returns
129 * the length of the plaintext.
130 * Errors are returned as negative numbers.
131 * We trust the caller to allocate sufficient memory to oname string.
132 */
133 static int ext4_fname_decrypt(struct ext4_fname_crypto_ctx *ctx,
134 const struct ext4_str *iname,
135 struct ext4_str *oname)
136 {
137 struct ext4_str tmp_in[2], tmp_out[1];
138 struct ablkcipher_request *req = NULL;
139 DECLARE_EXT4_COMPLETION_RESULT(ecr);
140 struct scatterlist sg[1];
141 struct crypto_ablkcipher *tfm = ctx->ctfm;
142 int res = 0;
143 char iv[EXT4_CRYPTO_BLOCK_SIZE];
144 char *workbuf;
145
146 if (iname->len <= 0 || iname->len > ctx->lim)
147 return -EIO;
148
149 tmp_in[0].name = iname->name;
150 tmp_in[0].len = iname->len;
151 tmp_out[0].name = oname->name;
152
153 /* Allocate request */
154 req = ablkcipher_request_alloc(tfm, GFP_NOFS);
155 if (!req) {
156 printk_ratelimited(
157 KERN_ERR "%s: crypto_request_alloc() failed\n", __func__);
158 return -ENOMEM;
159 }
160 ablkcipher_request_set_callback(req,
161 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
162 ext4_dir_crypt_complete, &ecr);
163
164 /* Map the workpage */
165 workbuf = kmap(ctx->workpage);
166
167 /* Copy the input */
168 memcpy(workbuf, iname->name, iname->len);
169
170 /* Initialize IV */
171 memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE);
172
173 /* Create encryption request */
174 sg_init_table(sg, 1);
175 sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0);
176 ablkcipher_request_set_crypt(req, sg, sg, iname->len, iv);
177 res = crypto_ablkcipher_decrypt(req);
178 if (res == -EINPROGRESS || res == -EBUSY) {
179 BUG_ON(req->base.data != &ecr);
180 wait_for_completion(&ecr.completion);
181 res = ecr.res;
182 }
183 if (res >= 0) {
184 /* Copy the result to output */
185 memcpy(oname->name, workbuf, iname->len);
186 res = iname->len;
187 }
188 kunmap(ctx->workpage);
189 ablkcipher_request_free(req);
190 if (res < 0) {
191 printk_ratelimited(
192 KERN_ERR "%s: Error in ext4_fname_encrypt (error code %d)\n",
193 __func__, res);
194 return res;
195 }
196
197 oname->len = strnlen(oname->name, iname->len);
198 return oname->len;
199 }
200
201 static const char *lookup_table =
202 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
203
204 /**
205 * ext4_fname_encode_digest() -
206 *
207 * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
208 * The encoded string is roughly 4/3 times the size of the input string.
209 */
210 static int digest_encode(const char *src, int len, char *dst)
211 {
212 int i = 0, bits = 0, ac = 0;
213 char *cp = dst;
214
215 while (i < len) {
216 ac += (((unsigned char) src[i]) << bits);
217 bits += 8;
218 do {
219 *cp++ = lookup_table[ac & 0x3f];
220 ac >>= 6;
221 bits -= 6;
222 } while (bits >= 6);
223 i++;
224 }
225 if (bits)
226 *cp++ = lookup_table[ac & 0x3f];
227 return cp - dst;
228 }
229
230 static int digest_decode(const char *src, int len, char *dst)
231 {
232 int i = 0, bits = 0, ac = 0;
233 const char *p;
234 char *cp = dst;
235
236 while (i < len) {
237 p = strchr(lookup_table, src[i]);
238 if (p == NULL || src[i] == 0)
239 return -2;
240 ac += (p - lookup_table) << bits;
241 bits += 6;
242 if (bits >= 8) {
243 *cp++ = ac & 0xff;
244 ac >>= 8;
245 bits -= 8;
246 }
247 i++;
248 }
249 if (ac)
250 return -1;
251 return cp - dst;
252 }
253
254 /**
255 * ext4_free_fname_crypto_ctx() -
256 *
257 * Frees up a crypto context.
258 */
259 void ext4_free_fname_crypto_ctx(struct ext4_fname_crypto_ctx *ctx)
260 {
261 if (ctx == NULL || IS_ERR(ctx))
262 return;
263
264 if (ctx->ctfm && !IS_ERR(ctx->ctfm))
265 crypto_free_ablkcipher(ctx->ctfm);
266 if (ctx->htfm && !IS_ERR(ctx->htfm))
267 crypto_free_hash(ctx->htfm);
268 if (ctx->workpage && !IS_ERR(ctx->workpage))
269 __free_page(ctx->workpage);
270 kfree(ctx);
271 }
272
273 /**
274 * ext4_put_fname_crypto_ctx() -
275 *
276 * Return: The crypto context onto free list. If the free list is above a
277 * threshold, completely frees up the context, and returns the memory.
278 *
279 * TODO: Currently we directly free the crypto context. Eventually we should
280 * add code it to return to free list. Such an approach will increase
281 * efficiency of directory lookup.
282 */
283 void ext4_put_fname_crypto_ctx(struct ext4_fname_crypto_ctx **ctx)
284 {
285 if (*ctx == NULL || IS_ERR(*ctx))
286 return;
287 ext4_free_fname_crypto_ctx(*ctx);
288 *ctx = NULL;
289 }
290
291 /**
292 * ext4_search_fname_crypto_ctx() -
293 */
294 static struct ext4_fname_crypto_ctx *ext4_search_fname_crypto_ctx(
295 const struct ext4_encryption_key *key)
296 {
297 return NULL;
298 }
299
300 /**
301 * ext4_alloc_fname_crypto_ctx() -
302 */
303 struct ext4_fname_crypto_ctx *ext4_alloc_fname_crypto_ctx(
304 const struct ext4_encryption_key *key)
305 {
306 struct ext4_fname_crypto_ctx *ctx;
307
308 ctx = kmalloc(sizeof(struct ext4_fname_crypto_ctx), GFP_NOFS);
309 if (ctx == NULL)
310 return ERR_PTR(-ENOMEM);
311 if (key->mode == EXT4_ENCRYPTION_MODE_INVALID) {
312 /* This will automatically set key mode to invalid
313 * As enum for ENCRYPTION_MODE_INVALID is zero */
314 memset(&ctx->key, 0, sizeof(ctx->key));
315 } else {
316 memcpy(&ctx->key, key, sizeof(struct ext4_encryption_key));
317 }
318 ctx->has_valid_key = (EXT4_ENCRYPTION_MODE_INVALID == key->mode)
319 ? 0 : 1;
320 ctx->ctfm_key_is_ready = 0;
321 ctx->ctfm = NULL;
322 ctx->htfm = NULL;
323 ctx->workpage = NULL;
324 return ctx;
325 }
326
327 /**
328 * ext4_get_fname_crypto_ctx() -
329 *
330 * Allocates a free crypto context and initializes it to hold
331 * the crypto material for the inode.
332 *
333 * Return: NULL if not encrypted. Error value on error. Valid pointer otherwise.
334 */
335 struct ext4_fname_crypto_ctx *ext4_get_fname_crypto_ctx(
336 struct inode *inode, u32 max_ciphertext_len)
337 {
338 struct ext4_fname_crypto_ctx *ctx;
339 struct ext4_inode_info *ei = EXT4_I(inode);
340 int res;
341
342 /* Check if the crypto policy is set on the inode */
343 res = ext4_encrypted_inode(inode);
344 if (res == 0)
345 return NULL;
346
347 if (!ext4_has_encryption_key(inode))
348 ext4_generate_encryption_key(inode);
349
350 /* Get a crypto context based on the key.
351 * A new context is allocated if no context matches the requested key.
352 */
353 ctx = ext4_search_fname_crypto_ctx(&(ei->i_encryption_key));
354 if (ctx == NULL)
355 ctx = ext4_alloc_fname_crypto_ctx(&(ei->i_encryption_key));
356 if (IS_ERR(ctx))
357 return ctx;
358
359 if (ctx->has_valid_key) {
360 if (ctx->key.mode != EXT4_ENCRYPTION_MODE_AES_256_CTS) {
361 printk_once(KERN_WARNING
362 "ext4: unsupported key mode %d\n",
363 ctx->key.mode);
364 return ERR_PTR(-ENOKEY);
365 }
366
367 /* As a first cut, we will allocate new tfm in every call.
368 * later, we will keep the tfm around, in case the key gets
369 * re-used */
370 if (ctx->ctfm == NULL) {
371 ctx->ctfm = crypto_alloc_ablkcipher("cts(cbc(aes))",
372 0, 0);
373 }
374 if (IS_ERR(ctx->ctfm)) {
375 res = PTR_ERR(ctx->ctfm);
376 printk(
377 KERN_DEBUG "%s: error (%d) allocating crypto tfm\n",
378 __func__, res);
379 ctx->ctfm = NULL;
380 ext4_put_fname_crypto_ctx(&ctx);
381 return ERR_PTR(res);
382 }
383 if (ctx->ctfm == NULL) {
384 printk(
385 KERN_DEBUG "%s: could not allocate crypto tfm\n",
386 __func__);
387 ext4_put_fname_crypto_ctx(&ctx);
388 return ERR_PTR(-ENOMEM);
389 }
390 if (ctx->workpage == NULL)
391 ctx->workpage = alloc_page(GFP_NOFS);
392 if (IS_ERR(ctx->workpage)) {
393 res = PTR_ERR(ctx->workpage);
394 printk(
395 KERN_DEBUG "%s: error (%d) allocating work page\n",
396 __func__, res);
397 ctx->workpage = NULL;
398 ext4_put_fname_crypto_ctx(&ctx);
399 return ERR_PTR(res);
400 }
401 if (ctx->workpage == NULL) {
402 printk(
403 KERN_DEBUG "%s: could not allocate work page\n",
404 __func__);
405 ext4_put_fname_crypto_ctx(&ctx);
406 return ERR_PTR(-ENOMEM);
407 }
408 ctx->lim = max_ciphertext_len;
409 crypto_ablkcipher_clear_flags(ctx->ctfm, ~0);
410 crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctx->ctfm),
411 CRYPTO_TFM_REQ_WEAK_KEY);
412
413 /* If we are lucky, we will get a context that is already
414 * set up with the right key. Else, we will have to
415 * set the key */
416 if (!ctx->ctfm_key_is_ready) {
417 /* Since our crypto objectives for filename encryption
418 * are pretty weak,
419 * we directly use the inode master key */
420 res = crypto_ablkcipher_setkey(ctx->ctfm,
421 ctx->key.raw, ctx->key.size);
422 if (res) {
423 ext4_put_fname_crypto_ctx(&ctx);
424 return ERR_PTR(-EIO);
425 }
426 ctx->ctfm_key_is_ready = 1;
427 } else {
428 /* In the current implementation, key should never be
429 * marked "ready" for a context that has just been
430 * allocated. So we should never reach here */
431 BUG();
432 }
433 }
434 if (ctx->htfm == NULL)
435 ctx->htfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
436 if (IS_ERR(ctx->htfm)) {
437 res = PTR_ERR(ctx->htfm);
438 printk(KERN_DEBUG "%s: error (%d) allocating hash tfm\n",
439 __func__, res);
440 ctx->htfm = NULL;
441 ext4_put_fname_crypto_ctx(&ctx);
442 return ERR_PTR(res);
443 }
444 if (ctx->htfm == NULL) {
445 printk(KERN_DEBUG "%s: could not allocate hash tfm\n",
446 __func__);
447 ext4_put_fname_crypto_ctx(&ctx);
448 return ERR_PTR(-ENOMEM);
449 }
450
451 return ctx;
452 }
453
454 /**
455 * ext4_fname_crypto_round_up() -
456 *
457 * Return: The next multiple of block size
458 */
459 u32 ext4_fname_crypto_round_up(u32 size, u32 blksize)
460 {
461 return ((size+blksize-1)/blksize)*blksize;
462 }
463
464 /**
465 * ext4_fname_crypto_namelen_on_disk() -
466 */
467 int ext4_fname_crypto_namelen_on_disk(struct ext4_fname_crypto_ctx *ctx,
468 u32 namelen)
469 {
470 u32 ciphertext_len;
471
472 if (ctx == NULL)
473 return -EIO;
474 if (!(ctx->has_valid_key))
475 return -EACCES;
476 ciphertext_len = (namelen < EXT4_CRYPTO_BLOCK_SIZE) ?
477 EXT4_CRYPTO_BLOCK_SIZE : namelen;
478 ciphertext_len = (ciphertext_len > ctx->lim)
479 ? ctx->lim : ciphertext_len;
480 return (int) ciphertext_len;
481 }
482
483 /**
484 * ext4_fname_crypto_alloc_obuff() -
485 *
486 * Allocates an output buffer that is sufficient for the crypto operation
487 * specified by the context and the direction.
488 */
489 int ext4_fname_crypto_alloc_buffer(struct ext4_fname_crypto_ctx *ctx,
490 u32 ilen, struct ext4_str *crypto_str)
491 {
492 unsigned int olen;
493
494 if (!ctx)
495 return -EIO;
496 olen = ext4_fname_crypto_round_up(ilen, EXT4_CRYPTO_BLOCK_SIZE);
497 crypto_str->len = olen;
498 if (olen < EXT4_FNAME_CRYPTO_DIGEST_SIZE*2)
499 olen = EXT4_FNAME_CRYPTO_DIGEST_SIZE*2;
500 /* Allocated buffer can hold one more character to null-terminate the
501 * string */
502 crypto_str->name = kmalloc(olen+1, GFP_NOFS);
503 if (!(crypto_str->name))
504 return -ENOMEM;
505 return 0;
506 }
507
508 /**
509 * ext4_fname_crypto_free_buffer() -
510 *
511 * Frees the buffer allocated for crypto operation.
512 */
513 void ext4_fname_crypto_free_buffer(struct ext4_str *crypto_str)
514 {
515 if (!crypto_str)
516 return;
517 kfree(crypto_str->name);
518 crypto_str->name = NULL;
519 }
520
521 /**
522 * ext4_fname_disk_to_usr() - converts a filename from disk space to user space
523 */
524 int _ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx,
525 struct dx_hash_info *hinfo,
526 const struct ext4_str *iname,
527 struct ext4_str *oname)
528 {
529 char buf[24];
530 int ret;
531
532 if (ctx == NULL)
533 return -EIO;
534 if (iname->len < 3) {
535 /*Check for . and .. */
536 if (iname->name[0] == '.' && iname->name[iname->len-1] == '.') {
537 oname->name[0] = '.';
538 oname->name[iname->len-1] = '.';
539 oname->len = iname->len;
540 return oname->len;
541 }
542 }
543 if (ctx->has_valid_key)
544 return ext4_fname_decrypt(ctx, iname, oname);
545
546 if (iname->len <= EXT4_FNAME_CRYPTO_DIGEST_SIZE) {
547 ret = digest_encode(iname->name, iname->len, oname->name);
548 oname->len = ret;
549 return ret;
550 }
551 if (hinfo) {
552 memcpy(buf, &hinfo->hash, 4);
553 memcpy(buf+4, &hinfo->minor_hash, 4);
554 } else
555 memset(buf, 0, 8);
556 memcpy(buf + 8, iname->name + iname->len - 16, 16);
557 oname->name[0] = '_';
558 ret = digest_encode(buf, 24, oname->name+1);
559 oname->len = ret + 1;
560 return ret + 1;
561 }
562
563 int ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx,
564 struct dx_hash_info *hinfo,
565 const struct ext4_dir_entry_2 *de,
566 struct ext4_str *oname)
567 {
568 struct ext4_str iname = {.name = (unsigned char *) de->name,
569 .len = de->name_len };
570
571 return _ext4_fname_disk_to_usr(ctx, hinfo, &iname, oname);
572 }
573
574
575 /**
576 * ext4_fname_usr_to_disk() - converts a filename from user space to disk space
577 */
578 int ext4_fname_usr_to_disk(struct ext4_fname_crypto_ctx *ctx,
579 const struct qstr *iname,
580 struct ext4_str *oname)
581 {
582 int res;
583
584 if (ctx == NULL)
585 return -EIO;
586 if (iname->len < 3) {
587 /*Check for . and .. */
588 if (iname->name[0] == '.' &&
589 iname->name[iname->len-1] == '.') {
590 oname->name[0] = '.';
591 oname->name[iname->len-1] = '.';
592 oname->len = iname->len;
593 return oname->len;
594 }
595 }
596 if (ctx->has_valid_key) {
597 res = ext4_fname_encrypt(ctx, iname, oname);
598 return res;
599 }
600 /* Without a proper key, a user is not allowed to modify the filenames
601 * in a directory. Consequently, a user space name cannot be mapped to
602 * a disk-space name */
603 return -EACCES;
604 }
605
606 /*
607 * Calculate the htree hash from a filename from user space
608 */
609 int ext4_fname_usr_to_hash(struct ext4_fname_crypto_ctx *ctx,
610 const struct qstr *iname,
611 struct dx_hash_info *hinfo)
612 {
613 struct ext4_str tmp;
614 int ret = 0;
615 char buf[EXT4_FNAME_CRYPTO_DIGEST_SIZE+1];
616
617 if (!ctx ||
618 ((iname->name[0] == '.') &&
619 ((iname->len == 1) ||
620 ((iname->name[1] == '.') && (iname->len == 2))))) {
621 ext4fs_dirhash(iname->name, iname->len, hinfo);
622 return 0;
623 }
624
625 if (!ctx->has_valid_key && iname->name[0] == '_') {
626 if (iname->len != 33)
627 return -ENOENT;
628 ret = digest_decode(iname->name+1, iname->len, buf);
629 if (ret != 24)
630 return -ENOENT;
631 memcpy(&hinfo->hash, buf, 4);
632 memcpy(&hinfo->minor_hash, buf + 4, 4);
633 return 0;
634 }
635
636 if (!ctx->has_valid_key && iname->name[0] != '_') {
637 if (iname->len > 43)
638 return -ENOENT;
639 ret = digest_decode(iname->name, iname->len, buf);
640 ext4fs_dirhash(buf, ret, hinfo);
641 return 0;
642 }
643
644 /* First encrypt the plaintext name */
645 ret = ext4_fname_crypto_alloc_buffer(ctx, iname->len, &tmp);
646 if (ret < 0)
647 return ret;
648
649 ret = ext4_fname_encrypt(ctx, iname, &tmp);
650 if (ret >= 0) {
651 ext4fs_dirhash(tmp.name, tmp.len, hinfo);
652 ret = 0;
653 }
654
655 ext4_fname_crypto_free_buffer(&tmp);
656 return ret;
657 }
658
659 int ext4_fname_match(struct ext4_fname_crypto_ctx *ctx, struct ext4_str *cstr,
660 int len, const char * const name,
661 struct ext4_dir_entry_2 *de)
662 {
663 int ret = -ENOENT;
664 int bigname = (*name == '_');
665
666 if (ctx->has_valid_key) {
667 if (cstr->name == NULL) {
668 struct qstr istr;
669
670 ret = ext4_fname_crypto_alloc_buffer(ctx, len, cstr);
671 if (ret < 0)
672 goto errout;
673 istr.name = name;
674 istr.len = len;
675 ret = ext4_fname_encrypt(ctx, &istr, cstr);
676 if (ret < 0)
677 goto errout;
678 }
679 } else {
680 if (cstr->name == NULL) {
681 cstr->name = kmalloc(32, GFP_KERNEL);
682 if (cstr->name == NULL)
683 return -ENOMEM;
684 if ((bigname && (len != 33)) ||
685 (!bigname && (len > 43)))
686 goto errout;
687 ret = digest_decode(name+bigname, len-bigname,
688 cstr->name);
689 if (ret < 0) {
690 ret = -ENOENT;
691 goto errout;
692 }
693 cstr->len = ret;
694 }
695 if (bigname) {
696 if (de->name_len < 16)
697 return 0;
698 ret = memcmp(de->name + de->name_len - 16,
699 cstr->name + 8, 16);
700 return (ret == 0) ? 1 : 0;
701 }
702 }
703 if (de->name_len != cstr->len)
704 return 0;
705 ret = memcmp(de->name, cstr->name, cstr->len);
706 return (ret == 0) ? 1 : 0;
707 errout:
708 kfree(cstr->name);
709 cstr->name = NULL;
710 return ret;
711 }