]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/extents.c
ext4: cache all of an extent tree's leaf block upon reading
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
80
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
85 }
86
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
89 {
90 struct ext4_extent_tail *et;
91
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
95
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
106
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
113
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct extent_status *newes);
116
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
120 {
121 int err;
122
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
133
134 return err;
135 }
136
137 /*
138 * could return:
139 * - EROFS
140 * - ENOMEM
141 */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
144 {
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
148 }
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
152 }
153
154 /*
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
159 */
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 struct inode *inode, struct ext4_ext_path *path)
162 {
163 int err;
164 if (path->p_bh) {
165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 /* path points to block */
167 err = __ext4_handle_dirty_metadata(where, line, handle,
168 inode, path->p_bh);
169 } else {
170 /* path points to leaf/index in inode body */
171 err = ext4_mark_inode_dirty(handle, inode);
172 }
173 return err;
174 }
175
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 struct ext4_ext_path *path,
178 ext4_lblk_t block)
179 {
180 if (path) {
181 int depth = path->p_depth;
182 struct ext4_extent *ex;
183
184 /*
185 * Try to predict block placement assuming that we are
186 * filling in a file which will eventually be
187 * non-sparse --- i.e., in the case of libbfd writing
188 * an ELF object sections out-of-order but in a way
189 * the eventually results in a contiguous object or
190 * executable file, or some database extending a table
191 * space file. However, this is actually somewhat
192 * non-ideal if we are writing a sparse file such as
193 * qemu or KVM writing a raw image file that is going
194 * to stay fairly sparse, since it will end up
195 * fragmenting the file system's free space. Maybe we
196 * should have some hueristics or some way to allow
197 * userspace to pass a hint to file system,
198 * especially if the latter case turns out to be
199 * common.
200 */
201 ex = path[depth].p_ext;
202 if (ex) {
203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205
206 if (block > ext_block)
207 return ext_pblk + (block - ext_block);
208 else
209 return ext_pblk - (ext_block - block);
210 }
211
212 /* it looks like index is empty;
213 * try to find starting block from index itself */
214 if (path[depth].p_bh)
215 return path[depth].p_bh->b_blocknr;
216 }
217
218 /* OK. use inode's group */
219 return ext4_inode_to_goal_block(inode);
220 }
221
222 /*
223 * Allocation for a meta data block
224 */
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 struct ext4_ext_path *path,
228 struct ext4_extent *ex, int *err, unsigned int flags)
229 {
230 ext4_fsblk_t goal, newblock;
231
232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 NULL, err);
235 return newblock;
236 }
237
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 {
240 int size;
241
242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 / sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 if (!check && size > 6)
246 size = 6;
247 #endif
248 return size;
249 }
250
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 {
253 int size;
254
255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 / sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 if (!check && size > 5)
259 size = 5;
260 #endif
261 return size;
262 }
263
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 {
266 int size;
267
268 size = sizeof(EXT4_I(inode)->i_data);
269 size -= sizeof(struct ext4_extent_header);
270 size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 if (!check && size > 3)
273 size = 3;
274 #endif
275 return size;
276 }
277
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 int size;
281
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 if (!check && size > 4)
287 size = 4;
288 #endif
289 return size;
290 }
291
292 /*
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
296 */
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298 {
299 struct ext4_inode_info *ei = EXT4_I(inode);
300 int idxs;
301
302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 / sizeof(struct ext4_extent_idx));
304
305 /*
306 * If the new delayed allocation block is contiguous with the
307 * previous da block, it can share index blocks with the
308 * previous block, so we only need to allocate a new index
309 * block every idxs leaf blocks. At ldxs**2 blocks, we need
310 * an additional index block, and at ldxs**3 blocks, yet
311 * another index blocks.
312 */
313 if (ei->i_da_metadata_calc_len &&
314 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 int num = 0;
316
317 if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 num++;
319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 num++;
321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 num++;
323 ei->i_da_metadata_calc_len = 0;
324 } else
325 ei->i_da_metadata_calc_len++;
326 ei->i_da_metadata_calc_last_lblock++;
327 return num;
328 }
329
330 /*
331 * In the worst case we need a new set of index blocks at
332 * every level of the inode's extent tree.
333 */
334 ei->i_da_metadata_calc_len = 1;
335 ei->i_da_metadata_calc_last_lblock = lblock;
336 return ext_depth(inode) + 1;
337 }
338
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
341 {
342 int max;
343
344 if (depth == ext_depth(inode)) {
345 if (depth == 0)
346 max = ext4_ext_space_root(inode, 1);
347 else
348 max = ext4_ext_space_root_idx(inode, 1);
349 } else {
350 if (depth == 0)
351 max = ext4_ext_space_block(inode, 1);
352 else
353 max = ext4_ext_space_block_idx(inode, 1);
354 }
355
356 return max;
357 }
358
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360 {
361 ext4_fsblk_t block = ext4_ext_pblock(ext);
362 int len = ext4_ext_get_actual_len(ext);
363
364 if (len == 0)
365 return 0;
366 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367 }
368
369 static int ext4_valid_extent_idx(struct inode *inode,
370 struct ext4_extent_idx *ext_idx)
371 {
372 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
373
374 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375 }
376
377 static int ext4_valid_extent_entries(struct inode *inode,
378 struct ext4_extent_header *eh,
379 int depth)
380 {
381 unsigned short entries;
382 if (eh->eh_entries == 0)
383 return 1;
384
385 entries = le16_to_cpu(eh->eh_entries);
386
387 if (depth == 0) {
388 /* leaf entries */
389 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
390 while (entries) {
391 if (!ext4_valid_extent(inode, ext))
392 return 0;
393 ext++;
394 entries--;
395 }
396 } else {
397 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
398 while (entries) {
399 if (!ext4_valid_extent_idx(inode, ext_idx))
400 return 0;
401 ext_idx++;
402 entries--;
403 }
404 }
405 return 1;
406 }
407
408 static int __ext4_ext_check(const char *function, unsigned int line,
409 struct inode *inode, struct ext4_extent_header *eh,
410 int depth, ext4_fsblk_t pblk)
411 {
412 const char *error_msg;
413 int max = 0;
414
415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416 error_msg = "invalid magic";
417 goto corrupted;
418 }
419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420 error_msg = "unexpected eh_depth";
421 goto corrupted;
422 }
423 if (unlikely(eh->eh_max == 0)) {
424 error_msg = "invalid eh_max";
425 goto corrupted;
426 }
427 max = ext4_ext_max_entries(inode, depth);
428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429 error_msg = "too large eh_max";
430 goto corrupted;
431 }
432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433 error_msg = "invalid eh_entries";
434 goto corrupted;
435 }
436 if (!ext4_valid_extent_entries(inode, eh, depth)) {
437 error_msg = "invalid extent entries";
438 goto corrupted;
439 }
440 /* Verify checksum on non-root extent tree nodes */
441 if (ext_depth(inode) != depth &&
442 !ext4_extent_block_csum_verify(inode, eh)) {
443 error_msg = "extent tree corrupted";
444 goto corrupted;
445 }
446 return 0;
447
448 corrupted:
449 ext4_error_inode(inode, function, line, 0,
450 "pblk %llu bad header/extent: %s - magic %x, "
451 "entries %u, max %u(%u), depth %u(%u)",
452 (unsigned long long) pblk, error_msg,
453 le16_to_cpu(eh->eh_magic),
454 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
455 max, le16_to_cpu(eh->eh_depth), depth);
456 return -EIO;
457 }
458
459 #define ext4_ext_check(inode, eh, depth, pblk) \
460 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
461
462 int ext4_ext_check_inode(struct inode *inode)
463 {
464 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
465 }
466
467 static struct buffer_head *
468 __read_extent_tree_block(const char *function, unsigned int line,
469 struct inode *inode, ext4_fsblk_t pblk, int depth,
470 int flags)
471 {
472 struct buffer_head *bh;
473 int err;
474
475 bh = sb_getblk(inode->i_sb, pblk);
476 if (unlikely(!bh))
477 return ERR_PTR(-ENOMEM);
478
479 if (!bh_uptodate_or_lock(bh)) {
480 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
481 err = bh_submit_read(bh);
482 if (err < 0)
483 goto errout;
484 }
485 if (buffer_verified(bh))
486 return bh;
487 err = __ext4_ext_check(function, line, inode,
488 ext_block_hdr(bh), depth, pblk);
489 if (err)
490 goto errout;
491 set_buffer_verified(bh);
492 /*
493 * If this is a leaf block, cache all of its entries
494 */
495 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
496 struct ext4_extent_header *eh = ext_block_hdr(bh);
497 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
498 ext4_lblk_t prev = 0;
499 int i;
500
501 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
502 unsigned int status = EXTENT_STATUS_WRITTEN;
503 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
504 int len = ext4_ext_get_actual_len(ex);
505
506 if (prev && (prev != lblk))
507 ext4_es_cache_extent(inode, prev,
508 lblk - prev, ~0,
509 EXTENT_STATUS_HOLE);
510
511 if (ext4_ext_is_uninitialized(ex))
512 status = EXTENT_STATUS_UNWRITTEN;
513 ext4_es_cache_extent(inode, lblk, len,
514 ext4_ext_pblock(ex), status);
515 prev = lblk + len;
516 }
517 }
518 return bh;
519 errout:
520 put_bh(bh);
521 return ERR_PTR(err);
522
523 }
524
525 #define read_extent_tree_block(inode, pblk, depth, flags) \
526 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
527 (depth), (flags))
528
529 #ifdef EXT_DEBUG
530 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
531 {
532 int k, l = path->p_depth;
533
534 ext_debug("path:");
535 for (k = 0; k <= l; k++, path++) {
536 if (path->p_idx) {
537 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
538 ext4_idx_pblock(path->p_idx));
539 } else if (path->p_ext) {
540 ext_debug(" %d:[%d]%d:%llu ",
541 le32_to_cpu(path->p_ext->ee_block),
542 ext4_ext_is_uninitialized(path->p_ext),
543 ext4_ext_get_actual_len(path->p_ext),
544 ext4_ext_pblock(path->p_ext));
545 } else
546 ext_debug(" []");
547 }
548 ext_debug("\n");
549 }
550
551 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
552 {
553 int depth = ext_depth(inode);
554 struct ext4_extent_header *eh;
555 struct ext4_extent *ex;
556 int i;
557
558 if (!path)
559 return;
560
561 eh = path[depth].p_hdr;
562 ex = EXT_FIRST_EXTENT(eh);
563
564 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
565
566 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
567 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
568 ext4_ext_is_uninitialized(ex),
569 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
570 }
571 ext_debug("\n");
572 }
573
574 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
575 ext4_fsblk_t newblock, int level)
576 {
577 int depth = ext_depth(inode);
578 struct ext4_extent *ex;
579
580 if (depth != level) {
581 struct ext4_extent_idx *idx;
582 idx = path[level].p_idx;
583 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
584 ext_debug("%d: move %d:%llu in new index %llu\n", level,
585 le32_to_cpu(idx->ei_block),
586 ext4_idx_pblock(idx),
587 newblock);
588 idx++;
589 }
590
591 return;
592 }
593
594 ex = path[depth].p_ext;
595 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
596 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
597 le32_to_cpu(ex->ee_block),
598 ext4_ext_pblock(ex),
599 ext4_ext_is_uninitialized(ex),
600 ext4_ext_get_actual_len(ex),
601 newblock);
602 ex++;
603 }
604 }
605
606 #else
607 #define ext4_ext_show_path(inode, path)
608 #define ext4_ext_show_leaf(inode, path)
609 #define ext4_ext_show_move(inode, path, newblock, level)
610 #endif
611
612 void ext4_ext_drop_refs(struct ext4_ext_path *path)
613 {
614 int depth = path->p_depth;
615 int i;
616
617 for (i = 0; i <= depth; i++, path++)
618 if (path->p_bh) {
619 brelse(path->p_bh);
620 path->p_bh = NULL;
621 }
622 }
623
624 /*
625 * ext4_ext_binsearch_idx:
626 * binary search for the closest index of the given block
627 * the header must be checked before calling this
628 */
629 static void
630 ext4_ext_binsearch_idx(struct inode *inode,
631 struct ext4_ext_path *path, ext4_lblk_t block)
632 {
633 struct ext4_extent_header *eh = path->p_hdr;
634 struct ext4_extent_idx *r, *l, *m;
635
636
637 ext_debug("binsearch for %u(idx): ", block);
638
639 l = EXT_FIRST_INDEX(eh) + 1;
640 r = EXT_LAST_INDEX(eh);
641 while (l <= r) {
642 m = l + (r - l) / 2;
643 if (block < le32_to_cpu(m->ei_block))
644 r = m - 1;
645 else
646 l = m + 1;
647 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
648 m, le32_to_cpu(m->ei_block),
649 r, le32_to_cpu(r->ei_block));
650 }
651
652 path->p_idx = l - 1;
653 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
654 ext4_idx_pblock(path->p_idx));
655
656 #ifdef CHECK_BINSEARCH
657 {
658 struct ext4_extent_idx *chix, *ix;
659 int k;
660
661 chix = ix = EXT_FIRST_INDEX(eh);
662 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
663 if (k != 0 &&
664 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
665 printk(KERN_DEBUG "k=%d, ix=0x%p, "
666 "first=0x%p\n", k,
667 ix, EXT_FIRST_INDEX(eh));
668 printk(KERN_DEBUG "%u <= %u\n",
669 le32_to_cpu(ix->ei_block),
670 le32_to_cpu(ix[-1].ei_block));
671 }
672 BUG_ON(k && le32_to_cpu(ix->ei_block)
673 <= le32_to_cpu(ix[-1].ei_block));
674 if (block < le32_to_cpu(ix->ei_block))
675 break;
676 chix = ix;
677 }
678 BUG_ON(chix != path->p_idx);
679 }
680 #endif
681
682 }
683
684 /*
685 * ext4_ext_binsearch:
686 * binary search for closest extent of the given block
687 * the header must be checked before calling this
688 */
689 static void
690 ext4_ext_binsearch(struct inode *inode,
691 struct ext4_ext_path *path, ext4_lblk_t block)
692 {
693 struct ext4_extent_header *eh = path->p_hdr;
694 struct ext4_extent *r, *l, *m;
695
696 if (eh->eh_entries == 0) {
697 /*
698 * this leaf is empty:
699 * we get such a leaf in split/add case
700 */
701 return;
702 }
703
704 ext_debug("binsearch for %u: ", block);
705
706 l = EXT_FIRST_EXTENT(eh) + 1;
707 r = EXT_LAST_EXTENT(eh);
708
709 while (l <= r) {
710 m = l + (r - l) / 2;
711 if (block < le32_to_cpu(m->ee_block))
712 r = m - 1;
713 else
714 l = m + 1;
715 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
716 m, le32_to_cpu(m->ee_block),
717 r, le32_to_cpu(r->ee_block));
718 }
719
720 path->p_ext = l - 1;
721 ext_debug(" -> %d:%llu:[%d]%d ",
722 le32_to_cpu(path->p_ext->ee_block),
723 ext4_ext_pblock(path->p_ext),
724 ext4_ext_is_uninitialized(path->p_ext),
725 ext4_ext_get_actual_len(path->p_ext));
726
727 #ifdef CHECK_BINSEARCH
728 {
729 struct ext4_extent *chex, *ex;
730 int k;
731
732 chex = ex = EXT_FIRST_EXTENT(eh);
733 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
734 BUG_ON(k && le32_to_cpu(ex->ee_block)
735 <= le32_to_cpu(ex[-1].ee_block));
736 if (block < le32_to_cpu(ex->ee_block))
737 break;
738 chex = ex;
739 }
740 BUG_ON(chex != path->p_ext);
741 }
742 #endif
743
744 }
745
746 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
747 {
748 struct ext4_extent_header *eh;
749
750 eh = ext_inode_hdr(inode);
751 eh->eh_depth = 0;
752 eh->eh_entries = 0;
753 eh->eh_magic = EXT4_EXT_MAGIC;
754 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
755 ext4_mark_inode_dirty(handle, inode);
756 return 0;
757 }
758
759 struct ext4_ext_path *
760 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
761 struct ext4_ext_path *path, int flags)
762 {
763 struct ext4_extent_header *eh;
764 struct buffer_head *bh;
765 short int depth, i, ppos = 0, alloc = 0;
766 int ret;
767
768 eh = ext_inode_hdr(inode);
769 depth = ext_depth(inode);
770
771 /* account possible depth increase */
772 if (!path) {
773 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
774 GFP_NOFS);
775 if (!path)
776 return ERR_PTR(-ENOMEM);
777 alloc = 1;
778 }
779 path[0].p_hdr = eh;
780 path[0].p_bh = NULL;
781
782 i = depth;
783 /* walk through the tree */
784 while (i) {
785 ext_debug("depth %d: num %d, max %d\n",
786 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
787
788 ext4_ext_binsearch_idx(inode, path + ppos, block);
789 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
790 path[ppos].p_depth = i;
791 path[ppos].p_ext = NULL;
792
793 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
794 flags);
795 if (IS_ERR(bh)) {
796 ret = PTR_ERR(bh);
797 goto err;
798 }
799
800 eh = ext_block_hdr(bh);
801 ppos++;
802 if (unlikely(ppos > depth)) {
803 put_bh(bh);
804 EXT4_ERROR_INODE(inode,
805 "ppos %d > depth %d", ppos, depth);
806 ret = -EIO;
807 goto err;
808 }
809 path[ppos].p_bh = bh;
810 path[ppos].p_hdr = eh;
811 }
812
813 path[ppos].p_depth = i;
814 path[ppos].p_ext = NULL;
815 path[ppos].p_idx = NULL;
816
817 /* find extent */
818 ext4_ext_binsearch(inode, path + ppos, block);
819 /* if not an empty leaf */
820 if (path[ppos].p_ext)
821 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
822
823 ext4_ext_show_path(inode, path);
824
825 return path;
826
827 err:
828 ext4_ext_drop_refs(path);
829 if (alloc)
830 kfree(path);
831 return ERR_PTR(ret);
832 }
833
834 /*
835 * ext4_ext_insert_index:
836 * insert new index [@logical;@ptr] into the block at @curp;
837 * check where to insert: before @curp or after @curp
838 */
839 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
840 struct ext4_ext_path *curp,
841 int logical, ext4_fsblk_t ptr)
842 {
843 struct ext4_extent_idx *ix;
844 int len, err;
845
846 err = ext4_ext_get_access(handle, inode, curp);
847 if (err)
848 return err;
849
850 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
851 EXT4_ERROR_INODE(inode,
852 "logical %d == ei_block %d!",
853 logical, le32_to_cpu(curp->p_idx->ei_block));
854 return -EIO;
855 }
856
857 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
858 >= le16_to_cpu(curp->p_hdr->eh_max))) {
859 EXT4_ERROR_INODE(inode,
860 "eh_entries %d >= eh_max %d!",
861 le16_to_cpu(curp->p_hdr->eh_entries),
862 le16_to_cpu(curp->p_hdr->eh_max));
863 return -EIO;
864 }
865
866 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
867 /* insert after */
868 ext_debug("insert new index %d after: %llu\n", logical, ptr);
869 ix = curp->p_idx + 1;
870 } else {
871 /* insert before */
872 ext_debug("insert new index %d before: %llu\n", logical, ptr);
873 ix = curp->p_idx;
874 }
875
876 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
877 BUG_ON(len < 0);
878 if (len > 0) {
879 ext_debug("insert new index %d: "
880 "move %d indices from 0x%p to 0x%p\n",
881 logical, len, ix, ix + 1);
882 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
883 }
884
885 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
886 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
887 return -EIO;
888 }
889
890 ix->ei_block = cpu_to_le32(logical);
891 ext4_idx_store_pblock(ix, ptr);
892 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
893
894 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
895 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
896 return -EIO;
897 }
898
899 err = ext4_ext_dirty(handle, inode, curp);
900 ext4_std_error(inode->i_sb, err);
901
902 return err;
903 }
904
905 /*
906 * ext4_ext_split:
907 * inserts new subtree into the path, using free index entry
908 * at depth @at:
909 * - allocates all needed blocks (new leaf and all intermediate index blocks)
910 * - makes decision where to split
911 * - moves remaining extents and index entries (right to the split point)
912 * into the newly allocated blocks
913 * - initializes subtree
914 */
915 static int ext4_ext_split(handle_t *handle, struct inode *inode,
916 unsigned int flags,
917 struct ext4_ext_path *path,
918 struct ext4_extent *newext, int at)
919 {
920 struct buffer_head *bh = NULL;
921 int depth = ext_depth(inode);
922 struct ext4_extent_header *neh;
923 struct ext4_extent_idx *fidx;
924 int i = at, k, m, a;
925 ext4_fsblk_t newblock, oldblock;
926 __le32 border;
927 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
928 int err = 0;
929
930 /* make decision: where to split? */
931 /* FIXME: now decision is simplest: at current extent */
932
933 /* if current leaf will be split, then we should use
934 * border from split point */
935 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
936 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
937 return -EIO;
938 }
939 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
940 border = path[depth].p_ext[1].ee_block;
941 ext_debug("leaf will be split."
942 " next leaf starts at %d\n",
943 le32_to_cpu(border));
944 } else {
945 border = newext->ee_block;
946 ext_debug("leaf will be added."
947 " next leaf starts at %d\n",
948 le32_to_cpu(border));
949 }
950
951 /*
952 * If error occurs, then we break processing
953 * and mark filesystem read-only. index won't
954 * be inserted and tree will be in consistent
955 * state. Next mount will repair buffers too.
956 */
957
958 /*
959 * Get array to track all allocated blocks.
960 * We need this to handle errors and free blocks
961 * upon them.
962 */
963 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
964 if (!ablocks)
965 return -ENOMEM;
966
967 /* allocate all needed blocks */
968 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
969 for (a = 0; a < depth - at; a++) {
970 newblock = ext4_ext_new_meta_block(handle, inode, path,
971 newext, &err, flags);
972 if (newblock == 0)
973 goto cleanup;
974 ablocks[a] = newblock;
975 }
976
977 /* initialize new leaf */
978 newblock = ablocks[--a];
979 if (unlikely(newblock == 0)) {
980 EXT4_ERROR_INODE(inode, "newblock == 0!");
981 err = -EIO;
982 goto cleanup;
983 }
984 bh = sb_getblk(inode->i_sb, newblock);
985 if (unlikely(!bh)) {
986 err = -ENOMEM;
987 goto cleanup;
988 }
989 lock_buffer(bh);
990
991 err = ext4_journal_get_create_access(handle, bh);
992 if (err)
993 goto cleanup;
994
995 neh = ext_block_hdr(bh);
996 neh->eh_entries = 0;
997 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
998 neh->eh_magic = EXT4_EXT_MAGIC;
999 neh->eh_depth = 0;
1000
1001 /* move remainder of path[depth] to the new leaf */
1002 if (unlikely(path[depth].p_hdr->eh_entries !=
1003 path[depth].p_hdr->eh_max)) {
1004 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1005 path[depth].p_hdr->eh_entries,
1006 path[depth].p_hdr->eh_max);
1007 err = -EIO;
1008 goto cleanup;
1009 }
1010 /* start copy from next extent */
1011 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1012 ext4_ext_show_move(inode, path, newblock, depth);
1013 if (m) {
1014 struct ext4_extent *ex;
1015 ex = EXT_FIRST_EXTENT(neh);
1016 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1017 le16_add_cpu(&neh->eh_entries, m);
1018 }
1019
1020 ext4_extent_block_csum_set(inode, neh);
1021 set_buffer_uptodate(bh);
1022 unlock_buffer(bh);
1023
1024 err = ext4_handle_dirty_metadata(handle, inode, bh);
1025 if (err)
1026 goto cleanup;
1027 brelse(bh);
1028 bh = NULL;
1029
1030 /* correct old leaf */
1031 if (m) {
1032 err = ext4_ext_get_access(handle, inode, path + depth);
1033 if (err)
1034 goto cleanup;
1035 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1036 err = ext4_ext_dirty(handle, inode, path + depth);
1037 if (err)
1038 goto cleanup;
1039
1040 }
1041
1042 /* create intermediate indexes */
1043 k = depth - at - 1;
1044 if (unlikely(k < 0)) {
1045 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1046 err = -EIO;
1047 goto cleanup;
1048 }
1049 if (k)
1050 ext_debug("create %d intermediate indices\n", k);
1051 /* insert new index into current index block */
1052 /* current depth stored in i var */
1053 i = depth - 1;
1054 while (k--) {
1055 oldblock = newblock;
1056 newblock = ablocks[--a];
1057 bh = sb_getblk(inode->i_sb, newblock);
1058 if (unlikely(!bh)) {
1059 err = -ENOMEM;
1060 goto cleanup;
1061 }
1062 lock_buffer(bh);
1063
1064 err = ext4_journal_get_create_access(handle, bh);
1065 if (err)
1066 goto cleanup;
1067
1068 neh = ext_block_hdr(bh);
1069 neh->eh_entries = cpu_to_le16(1);
1070 neh->eh_magic = EXT4_EXT_MAGIC;
1071 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1072 neh->eh_depth = cpu_to_le16(depth - i);
1073 fidx = EXT_FIRST_INDEX(neh);
1074 fidx->ei_block = border;
1075 ext4_idx_store_pblock(fidx, oldblock);
1076
1077 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1078 i, newblock, le32_to_cpu(border), oldblock);
1079
1080 /* move remainder of path[i] to the new index block */
1081 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1082 EXT_LAST_INDEX(path[i].p_hdr))) {
1083 EXT4_ERROR_INODE(inode,
1084 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1085 le32_to_cpu(path[i].p_ext->ee_block));
1086 err = -EIO;
1087 goto cleanup;
1088 }
1089 /* start copy indexes */
1090 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1091 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1092 EXT_MAX_INDEX(path[i].p_hdr));
1093 ext4_ext_show_move(inode, path, newblock, i);
1094 if (m) {
1095 memmove(++fidx, path[i].p_idx,
1096 sizeof(struct ext4_extent_idx) * m);
1097 le16_add_cpu(&neh->eh_entries, m);
1098 }
1099 ext4_extent_block_csum_set(inode, neh);
1100 set_buffer_uptodate(bh);
1101 unlock_buffer(bh);
1102
1103 err = ext4_handle_dirty_metadata(handle, inode, bh);
1104 if (err)
1105 goto cleanup;
1106 brelse(bh);
1107 bh = NULL;
1108
1109 /* correct old index */
1110 if (m) {
1111 err = ext4_ext_get_access(handle, inode, path + i);
1112 if (err)
1113 goto cleanup;
1114 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1115 err = ext4_ext_dirty(handle, inode, path + i);
1116 if (err)
1117 goto cleanup;
1118 }
1119
1120 i--;
1121 }
1122
1123 /* insert new index */
1124 err = ext4_ext_insert_index(handle, inode, path + at,
1125 le32_to_cpu(border), newblock);
1126
1127 cleanup:
1128 if (bh) {
1129 if (buffer_locked(bh))
1130 unlock_buffer(bh);
1131 brelse(bh);
1132 }
1133
1134 if (err) {
1135 /* free all allocated blocks in error case */
1136 for (i = 0; i < depth; i++) {
1137 if (!ablocks[i])
1138 continue;
1139 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1140 EXT4_FREE_BLOCKS_METADATA);
1141 }
1142 }
1143 kfree(ablocks);
1144
1145 return err;
1146 }
1147
1148 /*
1149 * ext4_ext_grow_indepth:
1150 * implements tree growing procedure:
1151 * - allocates new block
1152 * - moves top-level data (index block or leaf) into the new block
1153 * - initializes new top-level, creating index that points to the
1154 * just created block
1155 */
1156 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1157 unsigned int flags,
1158 struct ext4_extent *newext)
1159 {
1160 struct ext4_extent_header *neh;
1161 struct buffer_head *bh;
1162 ext4_fsblk_t newblock;
1163 int err = 0;
1164
1165 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1166 newext, &err, flags);
1167 if (newblock == 0)
1168 return err;
1169
1170 bh = sb_getblk(inode->i_sb, newblock);
1171 if (unlikely(!bh))
1172 return -ENOMEM;
1173 lock_buffer(bh);
1174
1175 err = ext4_journal_get_create_access(handle, bh);
1176 if (err) {
1177 unlock_buffer(bh);
1178 goto out;
1179 }
1180
1181 /* move top-level index/leaf into new block */
1182 memmove(bh->b_data, EXT4_I(inode)->i_data,
1183 sizeof(EXT4_I(inode)->i_data));
1184
1185 /* set size of new block */
1186 neh = ext_block_hdr(bh);
1187 /* old root could have indexes or leaves
1188 * so calculate e_max right way */
1189 if (ext_depth(inode))
1190 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1191 else
1192 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1193 neh->eh_magic = EXT4_EXT_MAGIC;
1194 ext4_extent_block_csum_set(inode, neh);
1195 set_buffer_uptodate(bh);
1196 unlock_buffer(bh);
1197
1198 err = ext4_handle_dirty_metadata(handle, inode, bh);
1199 if (err)
1200 goto out;
1201
1202 /* Update top-level index: num,max,pointer */
1203 neh = ext_inode_hdr(inode);
1204 neh->eh_entries = cpu_to_le16(1);
1205 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1206 if (neh->eh_depth == 0) {
1207 /* Root extent block becomes index block */
1208 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1209 EXT_FIRST_INDEX(neh)->ei_block =
1210 EXT_FIRST_EXTENT(neh)->ee_block;
1211 }
1212 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1213 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1214 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1215 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1216
1217 le16_add_cpu(&neh->eh_depth, 1);
1218 ext4_mark_inode_dirty(handle, inode);
1219 out:
1220 brelse(bh);
1221
1222 return err;
1223 }
1224
1225 /*
1226 * ext4_ext_create_new_leaf:
1227 * finds empty index and adds new leaf.
1228 * if no free index is found, then it requests in-depth growing.
1229 */
1230 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1231 unsigned int mb_flags,
1232 unsigned int gb_flags,
1233 struct ext4_ext_path *path,
1234 struct ext4_extent *newext)
1235 {
1236 struct ext4_ext_path *curp;
1237 int depth, i, err = 0;
1238
1239 repeat:
1240 i = depth = ext_depth(inode);
1241
1242 /* walk up to the tree and look for free index entry */
1243 curp = path + depth;
1244 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1245 i--;
1246 curp--;
1247 }
1248
1249 /* we use already allocated block for index block,
1250 * so subsequent data blocks should be contiguous */
1251 if (EXT_HAS_FREE_INDEX(curp)) {
1252 /* if we found index with free entry, then use that
1253 * entry: create all needed subtree and add new leaf */
1254 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1255 if (err)
1256 goto out;
1257
1258 /* refill path */
1259 ext4_ext_drop_refs(path);
1260 path = ext4_ext_find_extent(inode,
1261 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1262 path, gb_flags);
1263 if (IS_ERR(path))
1264 err = PTR_ERR(path);
1265 } else {
1266 /* tree is full, time to grow in depth */
1267 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1268 if (err)
1269 goto out;
1270
1271 /* refill path */
1272 ext4_ext_drop_refs(path);
1273 path = ext4_ext_find_extent(inode,
1274 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1275 path, gb_flags);
1276 if (IS_ERR(path)) {
1277 err = PTR_ERR(path);
1278 goto out;
1279 }
1280
1281 /*
1282 * only first (depth 0 -> 1) produces free space;
1283 * in all other cases we have to split the grown tree
1284 */
1285 depth = ext_depth(inode);
1286 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1287 /* now we need to split */
1288 goto repeat;
1289 }
1290 }
1291
1292 out:
1293 return err;
1294 }
1295
1296 /*
1297 * search the closest allocated block to the left for *logical
1298 * and returns it at @logical + it's physical address at @phys
1299 * if *logical is the smallest allocated block, the function
1300 * returns 0 at @phys
1301 * return value contains 0 (success) or error code
1302 */
1303 static int ext4_ext_search_left(struct inode *inode,
1304 struct ext4_ext_path *path,
1305 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1306 {
1307 struct ext4_extent_idx *ix;
1308 struct ext4_extent *ex;
1309 int depth, ee_len;
1310
1311 if (unlikely(path == NULL)) {
1312 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1313 return -EIO;
1314 }
1315 depth = path->p_depth;
1316 *phys = 0;
1317
1318 if (depth == 0 && path->p_ext == NULL)
1319 return 0;
1320
1321 /* usually extent in the path covers blocks smaller
1322 * then *logical, but it can be that extent is the
1323 * first one in the file */
1324
1325 ex = path[depth].p_ext;
1326 ee_len = ext4_ext_get_actual_len(ex);
1327 if (*logical < le32_to_cpu(ex->ee_block)) {
1328 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1329 EXT4_ERROR_INODE(inode,
1330 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1331 *logical, le32_to_cpu(ex->ee_block));
1332 return -EIO;
1333 }
1334 while (--depth >= 0) {
1335 ix = path[depth].p_idx;
1336 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1337 EXT4_ERROR_INODE(inode,
1338 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1339 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1340 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1341 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1342 depth);
1343 return -EIO;
1344 }
1345 }
1346 return 0;
1347 }
1348
1349 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1350 EXT4_ERROR_INODE(inode,
1351 "logical %d < ee_block %d + ee_len %d!",
1352 *logical, le32_to_cpu(ex->ee_block), ee_len);
1353 return -EIO;
1354 }
1355
1356 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1357 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1358 return 0;
1359 }
1360
1361 /*
1362 * search the closest allocated block to the right for *logical
1363 * and returns it at @logical + it's physical address at @phys
1364 * if *logical is the largest allocated block, the function
1365 * returns 0 at @phys
1366 * return value contains 0 (success) or error code
1367 */
1368 static int ext4_ext_search_right(struct inode *inode,
1369 struct ext4_ext_path *path,
1370 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1371 struct ext4_extent **ret_ex)
1372 {
1373 struct buffer_head *bh = NULL;
1374 struct ext4_extent_header *eh;
1375 struct ext4_extent_idx *ix;
1376 struct ext4_extent *ex;
1377 ext4_fsblk_t block;
1378 int depth; /* Note, NOT eh_depth; depth from top of tree */
1379 int ee_len;
1380
1381 if (unlikely(path == NULL)) {
1382 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1383 return -EIO;
1384 }
1385 depth = path->p_depth;
1386 *phys = 0;
1387
1388 if (depth == 0 && path->p_ext == NULL)
1389 return 0;
1390
1391 /* usually extent in the path covers blocks smaller
1392 * then *logical, but it can be that extent is the
1393 * first one in the file */
1394
1395 ex = path[depth].p_ext;
1396 ee_len = ext4_ext_get_actual_len(ex);
1397 if (*logical < le32_to_cpu(ex->ee_block)) {
1398 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1399 EXT4_ERROR_INODE(inode,
1400 "first_extent(path[%d].p_hdr) != ex",
1401 depth);
1402 return -EIO;
1403 }
1404 while (--depth >= 0) {
1405 ix = path[depth].p_idx;
1406 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1407 EXT4_ERROR_INODE(inode,
1408 "ix != EXT_FIRST_INDEX *logical %d!",
1409 *logical);
1410 return -EIO;
1411 }
1412 }
1413 goto found_extent;
1414 }
1415
1416 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1417 EXT4_ERROR_INODE(inode,
1418 "logical %d < ee_block %d + ee_len %d!",
1419 *logical, le32_to_cpu(ex->ee_block), ee_len);
1420 return -EIO;
1421 }
1422
1423 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1424 /* next allocated block in this leaf */
1425 ex++;
1426 goto found_extent;
1427 }
1428
1429 /* go up and search for index to the right */
1430 while (--depth >= 0) {
1431 ix = path[depth].p_idx;
1432 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1433 goto got_index;
1434 }
1435
1436 /* we've gone up to the root and found no index to the right */
1437 return 0;
1438
1439 got_index:
1440 /* we've found index to the right, let's
1441 * follow it and find the closest allocated
1442 * block to the right */
1443 ix++;
1444 block = ext4_idx_pblock(ix);
1445 while (++depth < path->p_depth) {
1446 /* subtract from p_depth to get proper eh_depth */
1447 bh = read_extent_tree_block(inode, block,
1448 path->p_depth - depth, 0);
1449 if (IS_ERR(bh))
1450 return PTR_ERR(bh);
1451 eh = ext_block_hdr(bh);
1452 ix = EXT_FIRST_INDEX(eh);
1453 block = ext4_idx_pblock(ix);
1454 put_bh(bh);
1455 }
1456
1457 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1458 if (IS_ERR(bh))
1459 return PTR_ERR(bh);
1460 eh = ext_block_hdr(bh);
1461 ex = EXT_FIRST_EXTENT(eh);
1462 found_extent:
1463 *logical = le32_to_cpu(ex->ee_block);
1464 *phys = ext4_ext_pblock(ex);
1465 *ret_ex = ex;
1466 if (bh)
1467 put_bh(bh);
1468 return 0;
1469 }
1470
1471 /*
1472 * ext4_ext_next_allocated_block:
1473 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1474 * NOTE: it considers block number from index entry as
1475 * allocated block. Thus, index entries have to be consistent
1476 * with leaves.
1477 */
1478 static ext4_lblk_t
1479 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1480 {
1481 int depth;
1482
1483 BUG_ON(path == NULL);
1484 depth = path->p_depth;
1485
1486 if (depth == 0 && path->p_ext == NULL)
1487 return EXT_MAX_BLOCKS;
1488
1489 while (depth >= 0) {
1490 if (depth == path->p_depth) {
1491 /* leaf */
1492 if (path[depth].p_ext &&
1493 path[depth].p_ext !=
1494 EXT_LAST_EXTENT(path[depth].p_hdr))
1495 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1496 } else {
1497 /* index */
1498 if (path[depth].p_idx !=
1499 EXT_LAST_INDEX(path[depth].p_hdr))
1500 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1501 }
1502 depth--;
1503 }
1504
1505 return EXT_MAX_BLOCKS;
1506 }
1507
1508 /*
1509 * ext4_ext_next_leaf_block:
1510 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1511 */
1512 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1513 {
1514 int depth;
1515
1516 BUG_ON(path == NULL);
1517 depth = path->p_depth;
1518
1519 /* zero-tree has no leaf blocks at all */
1520 if (depth == 0)
1521 return EXT_MAX_BLOCKS;
1522
1523 /* go to index block */
1524 depth--;
1525
1526 while (depth >= 0) {
1527 if (path[depth].p_idx !=
1528 EXT_LAST_INDEX(path[depth].p_hdr))
1529 return (ext4_lblk_t)
1530 le32_to_cpu(path[depth].p_idx[1].ei_block);
1531 depth--;
1532 }
1533
1534 return EXT_MAX_BLOCKS;
1535 }
1536
1537 /*
1538 * ext4_ext_correct_indexes:
1539 * if leaf gets modified and modified extent is first in the leaf,
1540 * then we have to correct all indexes above.
1541 * TODO: do we need to correct tree in all cases?
1542 */
1543 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1544 struct ext4_ext_path *path)
1545 {
1546 struct ext4_extent_header *eh;
1547 int depth = ext_depth(inode);
1548 struct ext4_extent *ex;
1549 __le32 border;
1550 int k, err = 0;
1551
1552 eh = path[depth].p_hdr;
1553 ex = path[depth].p_ext;
1554
1555 if (unlikely(ex == NULL || eh == NULL)) {
1556 EXT4_ERROR_INODE(inode,
1557 "ex %p == NULL or eh %p == NULL", ex, eh);
1558 return -EIO;
1559 }
1560
1561 if (depth == 0) {
1562 /* there is no tree at all */
1563 return 0;
1564 }
1565
1566 if (ex != EXT_FIRST_EXTENT(eh)) {
1567 /* we correct tree if first leaf got modified only */
1568 return 0;
1569 }
1570
1571 /*
1572 * TODO: we need correction if border is smaller than current one
1573 */
1574 k = depth - 1;
1575 border = path[depth].p_ext->ee_block;
1576 err = ext4_ext_get_access(handle, inode, path + k);
1577 if (err)
1578 return err;
1579 path[k].p_idx->ei_block = border;
1580 err = ext4_ext_dirty(handle, inode, path + k);
1581 if (err)
1582 return err;
1583
1584 while (k--) {
1585 /* change all left-side indexes */
1586 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1587 break;
1588 err = ext4_ext_get_access(handle, inode, path + k);
1589 if (err)
1590 break;
1591 path[k].p_idx->ei_block = border;
1592 err = ext4_ext_dirty(handle, inode, path + k);
1593 if (err)
1594 break;
1595 }
1596
1597 return err;
1598 }
1599
1600 int
1601 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1602 struct ext4_extent *ex2)
1603 {
1604 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1605
1606 /*
1607 * Make sure that both extents are initialized. We don't merge
1608 * uninitialized extents so that we can be sure that end_io code has
1609 * the extent that was written properly split out and conversion to
1610 * initialized is trivial.
1611 */
1612 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1613 return 0;
1614
1615 if (ext4_ext_is_uninitialized(ex1))
1616 max_len = EXT_UNINIT_MAX_LEN;
1617 else
1618 max_len = EXT_INIT_MAX_LEN;
1619
1620 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1621 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1622
1623 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1624 le32_to_cpu(ex2->ee_block))
1625 return 0;
1626
1627 /*
1628 * To allow future support for preallocated extents to be added
1629 * as an RO_COMPAT feature, refuse to merge to extents if
1630 * this can result in the top bit of ee_len being set.
1631 */
1632 if (ext1_ee_len + ext2_ee_len > max_len)
1633 return 0;
1634 #ifdef AGGRESSIVE_TEST
1635 if (ext1_ee_len >= 4)
1636 return 0;
1637 #endif
1638
1639 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1640 return 1;
1641 return 0;
1642 }
1643
1644 /*
1645 * This function tries to merge the "ex" extent to the next extent in the tree.
1646 * It always tries to merge towards right. If you want to merge towards
1647 * left, pass "ex - 1" as argument instead of "ex".
1648 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1649 * 1 if they got merged.
1650 */
1651 static int ext4_ext_try_to_merge_right(struct inode *inode,
1652 struct ext4_ext_path *path,
1653 struct ext4_extent *ex)
1654 {
1655 struct ext4_extent_header *eh;
1656 unsigned int depth, len;
1657 int merge_done = 0;
1658 int uninitialized = 0;
1659
1660 depth = ext_depth(inode);
1661 BUG_ON(path[depth].p_hdr == NULL);
1662 eh = path[depth].p_hdr;
1663
1664 while (ex < EXT_LAST_EXTENT(eh)) {
1665 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1666 break;
1667 /* merge with next extent! */
1668 if (ext4_ext_is_uninitialized(ex))
1669 uninitialized = 1;
1670 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1671 + ext4_ext_get_actual_len(ex + 1));
1672 if (uninitialized)
1673 ext4_ext_mark_uninitialized(ex);
1674
1675 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1676 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1677 * sizeof(struct ext4_extent);
1678 memmove(ex + 1, ex + 2, len);
1679 }
1680 le16_add_cpu(&eh->eh_entries, -1);
1681 merge_done = 1;
1682 WARN_ON(eh->eh_entries == 0);
1683 if (!eh->eh_entries)
1684 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1685 }
1686
1687 return merge_done;
1688 }
1689
1690 /*
1691 * This function does a very simple check to see if we can collapse
1692 * an extent tree with a single extent tree leaf block into the inode.
1693 */
1694 static void ext4_ext_try_to_merge_up(handle_t *handle,
1695 struct inode *inode,
1696 struct ext4_ext_path *path)
1697 {
1698 size_t s;
1699 unsigned max_root = ext4_ext_space_root(inode, 0);
1700 ext4_fsblk_t blk;
1701
1702 if ((path[0].p_depth != 1) ||
1703 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1704 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1705 return;
1706
1707 /*
1708 * We need to modify the block allocation bitmap and the block
1709 * group descriptor to release the extent tree block. If we
1710 * can't get the journal credits, give up.
1711 */
1712 if (ext4_journal_extend(handle, 2))
1713 return;
1714
1715 /*
1716 * Copy the extent data up to the inode
1717 */
1718 blk = ext4_idx_pblock(path[0].p_idx);
1719 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1720 sizeof(struct ext4_extent_idx);
1721 s += sizeof(struct ext4_extent_header);
1722
1723 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1724 path[0].p_depth = 0;
1725 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1726 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1727 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1728
1729 brelse(path[1].p_bh);
1730 ext4_free_blocks(handle, inode, NULL, blk, 1,
1731 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1732 }
1733
1734 /*
1735 * This function tries to merge the @ex extent to neighbours in the tree.
1736 * return 1 if merge left else 0.
1737 */
1738 static void ext4_ext_try_to_merge(handle_t *handle,
1739 struct inode *inode,
1740 struct ext4_ext_path *path,
1741 struct ext4_extent *ex) {
1742 struct ext4_extent_header *eh;
1743 unsigned int depth;
1744 int merge_done = 0;
1745
1746 depth = ext_depth(inode);
1747 BUG_ON(path[depth].p_hdr == NULL);
1748 eh = path[depth].p_hdr;
1749
1750 if (ex > EXT_FIRST_EXTENT(eh))
1751 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1752
1753 if (!merge_done)
1754 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1755
1756 ext4_ext_try_to_merge_up(handle, inode, path);
1757 }
1758
1759 /*
1760 * check if a portion of the "newext" extent overlaps with an
1761 * existing extent.
1762 *
1763 * If there is an overlap discovered, it updates the length of the newext
1764 * such that there will be no overlap, and then returns 1.
1765 * If there is no overlap found, it returns 0.
1766 */
1767 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1768 struct inode *inode,
1769 struct ext4_extent *newext,
1770 struct ext4_ext_path *path)
1771 {
1772 ext4_lblk_t b1, b2;
1773 unsigned int depth, len1;
1774 unsigned int ret = 0;
1775
1776 b1 = le32_to_cpu(newext->ee_block);
1777 len1 = ext4_ext_get_actual_len(newext);
1778 depth = ext_depth(inode);
1779 if (!path[depth].p_ext)
1780 goto out;
1781 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1782 b2 &= ~(sbi->s_cluster_ratio - 1);
1783
1784 /*
1785 * get the next allocated block if the extent in the path
1786 * is before the requested block(s)
1787 */
1788 if (b2 < b1) {
1789 b2 = ext4_ext_next_allocated_block(path);
1790 if (b2 == EXT_MAX_BLOCKS)
1791 goto out;
1792 b2 &= ~(sbi->s_cluster_ratio - 1);
1793 }
1794
1795 /* check for wrap through zero on extent logical start block*/
1796 if (b1 + len1 < b1) {
1797 len1 = EXT_MAX_BLOCKS - b1;
1798 newext->ee_len = cpu_to_le16(len1);
1799 ret = 1;
1800 }
1801
1802 /* check for overlap */
1803 if (b1 + len1 > b2) {
1804 newext->ee_len = cpu_to_le16(b2 - b1);
1805 ret = 1;
1806 }
1807 out:
1808 return ret;
1809 }
1810
1811 /*
1812 * ext4_ext_insert_extent:
1813 * tries to merge requsted extent into the existing extent or
1814 * inserts requested extent as new one into the tree,
1815 * creating new leaf in the no-space case.
1816 */
1817 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1818 struct ext4_ext_path *path,
1819 struct ext4_extent *newext, int gb_flags)
1820 {
1821 struct ext4_extent_header *eh;
1822 struct ext4_extent *ex, *fex;
1823 struct ext4_extent *nearex; /* nearest extent */
1824 struct ext4_ext_path *npath = NULL;
1825 int depth, len, err;
1826 ext4_lblk_t next;
1827 unsigned uninitialized = 0;
1828 int mb_flags = 0;
1829
1830 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1831 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1832 return -EIO;
1833 }
1834 depth = ext_depth(inode);
1835 ex = path[depth].p_ext;
1836 eh = path[depth].p_hdr;
1837 if (unlikely(path[depth].p_hdr == NULL)) {
1838 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1839 return -EIO;
1840 }
1841
1842 /* try to insert block into found extent and return */
1843 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1844
1845 /*
1846 * Try to see whether we should rather test the extent on
1847 * right from ex, or from the left of ex. This is because
1848 * ext4_ext_find_extent() can return either extent on the
1849 * left, or on the right from the searched position. This
1850 * will make merging more effective.
1851 */
1852 if (ex < EXT_LAST_EXTENT(eh) &&
1853 (le32_to_cpu(ex->ee_block) +
1854 ext4_ext_get_actual_len(ex) <
1855 le32_to_cpu(newext->ee_block))) {
1856 ex += 1;
1857 goto prepend;
1858 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1859 (le32_to_cpu(newext->ee_block) +
1860 ext4_ext_get_actual_len(newext) <
1861 le32_to_cpu(ex->ee_block)))
1862 ex -= 1;
1863
1864 /* Try to append newex to the ex */
1865 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1866 ext_debug("append [%d]%d block to %u:[%d]%d"
1867 "(from %llu)\n",
1868 ext4_ext_is_uninitialized(newext),
1869 ext4_ext_get_actual_len(newext),
1870 le32_to_cpu(ex->ee_block),
1871 ext4_ext_is_uninitialized(ex),
1872 ext4_ext_get_actual_len(ex),
1873 ext4_ext_pblock(ex));
1874 err = ext4_ext_get_access(handle, inode,
1875 path + depth);
1876 if (err)
1877 return err;
1878
1879 /*
1880 * ext4_can_extents_be_merged should have checked
1881 * that either both extents are uninitialized, or
1882 * both aren't. Thus we need to check only one of
1883 * them here.
1884 */
1885 if (ext4_ext_is_uninitialized(ex))
1886 uninitialized = 1;
1887 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1888 + ext4_ext_get_actual_len(newext));
1889 if (uninitialized)
1890 ext4_ext_mark_uninitialized(ex);
1891 eh = path[depth].p_hdr;
1892 nearex = ex;
1893 goto merge;
1894 }
1895
1896 prepend:
1897 /* Try to prepend newex to the ex */
1898 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1899 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1900 "(from %llu)\n",
1901 le32_to_cpu(newext->ee_block),
1902 ext4_ext_is_uninitialized(newext),
1903 ext4_ext_get_actual_len(newext),
1904 le32_to_cpu(ex->ee_block),
1905 ext4_ext_is_uninitialized(ex),
1906 ext4_ext_get_actual_len(ex),
1907 ext4_ext_pblock(ex));
1908 err = ext4_ext_get_access(handle, inode,
1909 path + depth);
1910 if (err)
1911 return err;
1912
1913 /*
1914 * ext4_can_extents_be_merged should have checked
1915 * that either both extents are uninitialized, or
1916 * both aren't. Thus we need to check only one of
1917 * them here.
1918 */
1919 if (ext4_ext_is_uninitialized(ex))
1920 uninitialized = 1;
1921 ex->ee_block = newext->ee_block;
1922 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1923 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1924 + ext4_ext_get_actual_len(newext));
1925 if (uninitialized)
1926 ext4_ext_mark_uninitialized(ex);
1927 eh = path[depth].p_hdr;
1928 nearex = ex;
1929 goto merge;
1930 }
1931 }
1932
1933 depth = ext_depth(inode);
1934 eh = path[depth].p_hdr;
1935 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1936 goto has_space;
1937
1938 /* probably next leaf has space for us? */
1939 fex = EXT_LAST_EXTENT(eh);
1940 next = EXT_MAX_BLOCKS;
1941 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1942 next = ext4_ext_next_leaf_block(path);
1943 if (next != EXT_MAX_BLOCKS) {
1944 ext_debug("next leaf block - %u\n", next);
1945 BUG_ON(npath != NULL);
1946 npath = ext4_ext_find_extent(inode, next, NULL, 0);
1947 if (IS_ERR(npath))
1948 return PTR_ERR(npath);
1949 BUG_ON(npath->p_depth != path->p_depth);
1950 eh = npath[depth].p_hdr;
1951 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1952 ext_debug("next leaf isn't full(%d)\n",
1953 le16_to_cpu(eh->eh_entries));
1954 path = npath;
1955 goto has_space;
1956 }
1957 ext_debug("next leaf has no free space(%d,%d)\n",
1958 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1959 }
1960
1961 /*
1962 * There is no free space in the found leaf.
1963 * We're gonna add a new leaf in the tree.
1964 */
1965 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
1966 mb_flags = EXT4_MB_USE_RESERVED;
1967 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
1968 path, newext);
1969 if (err)
1970 goto cleanup;
1971 depth = ext_depth(inode);
1972 eh = path[depth].p_hdr;
1973
1974 has_space:
1975 nearex = path[depth].p_ext;
1976
1977 err = ext4_ext_get_access(handle, inode, path + depth);
1978 if (err)
1979 goto cleanup;
1980
1981 if (!nearex) {
1982 /* there is no extent in this leaf, create first one */
1983 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1984 le32_to_cpu(newext->ee_block),
1985 ext4_ext_pblock(newext),
1986 ext4_ext_is_uninitialized(newext),
1987 ext4_ext_get_actual_len(newext));
1988 nearex = EXT_FIRST_EXTENT(eh);
1989 } else {
1990 if (le32_to_cpu(newext->ee_block)
1991 > le32_to_cpu(nearex->ee_block)) {
1992 /* Insert after */
1993 ext_debug("insert %u:%llu:[%d]%d before: "
1994 "nearest %p\n",
1995 le32_to_cpu(newext->ee_block),
1996 ext4_ext_pblock(newext),
1997 ext4_ext_is_uninitialized(newext),
1998 ext4_ext_get_actual_len(newext),
1999 nearex);
2000 nearex++;
2001 } else {
2002 /* Insert before */
2003 BUG_ON(newext->ee_block == nearex->ee_block);
2004 ext_debug("insert %u:%llu:[%d]%d after: "
2005 "nearest %p\n",
2006 le32_to_cpu(newext->ee_block),
2007 ext4_ext_pblock(newext),
2008 ext4_ext_is_uninitialized(newext),
2009 ext4_ext_get_actual_len(newext),
2010 nearex);
2011 }
2012 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2013 if (len > 0) {
2014 ext_debug("insert %u:%llu:[%d]%d: "
2015 "move %d extents from 0x%p to 0x%p\n",
2016 le32_to_cpu(newext->ee_block),
2017 ext4_ext_pblock(newext),
2018 ext4_ext_is_uninitialized(newext),
2019 ext4_ext_get_actual_len(newext),
2020 len, nearex, nearex + 1);
2021 memmove(nearex + 1, nearex,
2022 len * sizeof(struct ext4_extent));
2023 }
2024 }
2025
2026 le16_add_cpu(&eh->eh_entries, 1);
2027 path[depth].p_ext = nearex;
2028 nearex->ee_block = newext->ee_block;
2029 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2030 nearex->ee_len = newext->ee_len;
2031
2032 merge:
2033 /* try to merge extents */
2034 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2035 ext4_ext_try_to_merge(handle, inode, path, nearex);
2036
2037
2038 /* time to correct all indexes above */
2039 err = ext4_ext_correct_indexes(handle, inode, path);
2040 if (err)
2041 goto cleanup;
2042
2043 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2044
2045 cleanup:
2046 if (npath) {
2047 ext4_ext_drop_refs(npath);
2048 kfree(npath);
2049 }
2050 return err;
2051 }
2052
2053 static int ext4_fill_fiemap_extents(struct inode *inode,
2054 ext4_lblk_t block, ext4_lblk_t num,
2055 struct fiemap_extent_info *fieinfo)
2056 {
2057 struct ext4_ext_path *path = NULL;
2058 struct ext4_extent *ex;
2059 struct extent_status es;
2060 ext4_lblk_t next, next_del, start = 0, end = 0;
2061 ext4_lblk_t last = block + num;
2062 int exists, depth = 0, err = 0;
2063 unsigned int flags = 0;
2064 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2065
2066 while (block < last && block != EXT_MAX_BLOCKS) {
2067 num = last - block;
2068 /* find extent for this block */
2069 down_read(&EXT4_I(inode)->i_data_sem);
2070
2071 if (path && ext_depth(inode) != depth) {
2072 /* depth was changed. we have to realloc path */
2073 kfree(path);
2074 path = NULL;
2075 }
2076
2077 path = ext4_ext_find_extent(inode, block, path, 0);
2078 if (IS_ERR(path)) {
2079 up_read(&EXT4_I(inode)->i_data_sem);
2080 err = PTR_ERR(path);
2081 path = NULL;
2082 break;
2083 }
2084
2085 depth = ext_depth(inode);
2086 if (unlikely(path[depth].p_hdr == NULL)) {
2087 up_read(&EXT4_I(inode)->i_data_sem);
2088 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2089 err = -EIO;
2090 break;
2091 }
2092 ex = path[depth].p_ext;
2093 next = ext4_ext_next_allocated_block(path);
2094 ext4_ext_drop_refs(path);
2095
2096 flags = 0;
2097 exists = 0;
2098 if (!ex) {
2099 /* there is no extent yet, so try to allocate
2100 * all requested space */
2101 start = block;
2102 end = block + num;
2103 } else if (le32_to_cpu(ex->ee_block) > block) {
2104 /* need to allocate space before found extent */
2105 start = block;
2106 end = le32_to_cpu(ex->ee_block);
2107 if (block + num < end)
2108 end = block + num;
2109 } else if (block >= le32_to_cpu(ex->ee_block)
2110 + ext4_ext_get_actual_len(ex)) {
2111 /* need to allocate space after found extent */
2112 start = block;
2113 end = block + num;
2114 if (end >= next)
2115 end = next;
2116 } else if (block >= le32_to_cpu(ex->ee_block)) {
2117 /*
2118 * some part of requested space is covered
2119 * by found extent
2120 */
2121 start = block;
2122 end = le32_to_cpu(ex->ee_block)
2123 + ext4_ext_get_actual_len(ex);
2124 if (block + num < end)
2125 end = block + num;
2126 exists = 1;
2127 } else {
2128 BUG();
2129 }
2130 BUG_ON(end <= start);
2131
2132 if (!exists) {
2133 es.es_lblk = start;
2134 es.es_len = end - start;
2135 es.es_pblk = 0;
2136 } else {
2137 es.es_lblk = le32_to_cpu(ex->ee_block);
2138 es.es_len = ext4_ext_get_actual_len(ex);
2139 es.es_pblk = ext4_ext_pblock(ex);
2140 if (ext4_ext_is_uninitialized(ex))
2141 flags |= FIEMAP_EXTENT_UNWRITTEN;
2142 }
2143
2144 /*
2145 * Find delayed extent and update es accordingly. We call
2146 * it even in !exists case to find out whether es is the
2147 * last existing extent or not.
2148 */
2149 next_del = ext4_find_delayed_extent(inode, &es);
2150 if (!exists && next_del) {
2151 exists = 1;
2152 flags |= (FIEMAP_EXTENT_DELALLOC |
2153 FIEMAP_EXTENT_UNKNOWN);
2154 }
2155 up_read(&EXT4_I(inode)->i_data_sem);
2156
2157 if (unlikely(es.es_len == 0)) {
2158 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2159 err = -EIO;
2160 break;
2161 }
2162
2163 /*
2164 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2165 * we need to check next == EXT_MAX_BLOCKS because it is
2166 * possible that an extent is with unwritten and delayed
2167 * status due to when an extent is delayed allocated and
2168 * is allocated by fallocate status tree will track both of
2169 * them in a extent.
2170 *
2171 * So we could return a unwritten and delayed extent, and
2172 * its block is equal to 'next'.
2173 */
2174 if (next == next_del && next == EXT_MAX_BLOCKS) {
2175 flags |= FIEMAP_EXTENT_LAST;
2176 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2177 next != EXT_MAX_BLOCKS)) {
2178 EXT4_ERROR_INODE(inode,
2179 "next extent == %u, next "
2180 "delalloc extent = %u",
2181 next, next_del);
2182 err = -EIO;
2183 break;
2184 }
2185 }
2186
2187 if (exists) {
2188 err = fiemap_fill_next_extent(fieinfo,
2189 (__u64)es.es_lblk << blksize_bits,
2190 (__u64)es.es_pblk << blksize_bits,
2191 (__u64)es.es_len << blksize_bits,
2192 flags);
2193 if (err < 0)
2194 break;
2195 if (err == 1) {
2196 err = 0;
2197 break;
2198 }
2199 }
2200
2201 block = es.es_lblk + es.es_len;
2202 }
2203
2204 if (path) {
2205 ext4_ext_drop_refs(path);
2206 kfree(path);
2207 }
2208
2209 return err;
2210 }
2211
2212 /*
2213 * ext4_ext_put_gap_in_cache:
2214 * calculate boundaries of the gap that the requested block fits into
2215 * and cache this gap
2216 */
2217 static void
2218 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2219 ext4_lblk_t block)
2220 {
2221 int depth = ext_depth(inode);
2222 unsigned long len;
2223 ext4_lblk_t lblock;
2224 struct ext4_extent *ex;
2225
2226 ex = path[depth].p_ext;
2227 if (ex == NULL) {
2228 /*
2229 * there is no extent yet, so gap is [0;-] and we
2230 * don't cache it
2231 */
2232 ext_debug("cache gap(whole file):");
2233 } else if (block < le32_to_cpu(ex->ee_block)) {
2234 lblock = block;
2235 len = le32_to_cpu(ex->ee_block) - block;
2236 ext_debug("cache gap(before): %u [%u:%u]",
2237 block,
2238 le32_to_cpu(ex->ee_block),
2239 ext4_ext_get_actual_len(ex));
2240 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2241 ext4_es_insert_extent(inode, lblock, len, ~0,
2242 EXTENT_STATUS_HOLE);
2243 } else if (block >= le32_to_cpu(ex->ee_block)
2244 + ext4_ext_get_actual_len(ex)) {
2245 ext4_lblk_t next;
2246 lblock = le32_to_cpu(ex->ee_block)
2247 + ext4_ext_get_actual_len(ex);
2248
2249 next = ext4_ext_next_allocated_block(path);
2250 ext_debug("cache gap(after): [%u:%u] %u",
2251 le32_to_cpu(ex->ee_block),
2252 ext4_ext_get_actual_len(ex),
2253 block);
2254 BUG_ON(next == lblock);
2255 len = next - lblock;
2256 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2257 ext4_es_insert_extent(inode, lblock, len, ~0,
2258 EXTENT_STATUS_HOLE);
2259 } else {
2260 lblock = len = 0;
2261 BUG();
2262 }
2263
2264 ext_debug(" -> %u:%lu\n", lblock, len);
2265 }
2266
2267 /*
2268 * ext4_ext_rm_idx:
2269 * removes index from the index block.
2270 */
2271 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2272 struct ext4_ext_path *path, int depth)
2273 {
2274 int err;
2275 ext4_fsblk_t leaf;
2276
2277 /* free index block */
2278 depth--;
2279 path = path + depth;
2280 leaf = ext4_idx_pblock(path->p_idx);
2281 if (unlikely(path->p_hdr->eh_entries == 0)) {
2282 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2283 return -EIO;
2284 }
2285 err = ext4_ext_get_access(handle, inode, path);
2286 if (err)
2287 return err;
2288
2289 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2290 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2291 len *= sizeof(struct ext4_extent_idx);
2292 memmove(path->p_idx, path->p_idx + 1, len);
2293 }
2294
2295 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2296 err = ext4_ext_dirty(handle, inode, path);
2297 if (err)
2298 return err;
2299 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2300 trace_ext4_ext_rm_idx(inode, leaf);
2301
2302 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2303 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2304
2305 while (--depth >= 0) {
2306 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2307 break;
2308 path--;
2309 err = ext4_ext_get_access(handle, inode, path);
2310 if (err)
2311 break;
2312 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2313 err = ext4_ext_dirty(handle, inode, path);
2314 if (err)
2315 break;
2316 }
2317 return err;
2318 }
2319
2320 /*
2321 * ext4_ext_calc_credits_for_single_extent:
2322 * This routine returns max. credits that needed to insert an extent
2323 * to the extent tree.
2324 * When pass the actual path, the caller should calculate credits
2325 * under i_data_sem.
2326 */
2327 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2328 struct ext4_ext_path *path)
2329 {
2330 if (path) {
2331 int depth = ext_depth(inode);
2332 int ret = 0;
2333
2334 /* probably there is space in leaf? */
2335 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2336 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2337
2338 /*
2339 * There are some space in the leaf tree, no
2340 * need to account for leaf block credit
2341 *
2342 * bitmaps and block group descriptor blocks
2343 * and other metadata blocks still need to be
2344 * accounted.
2345 */
2346 /* 1 bitmap, 1 block group descriptor */
2347 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2348 return ret;
2349 }
2350 }
2351
2352 return ext4_chunk_trans_blocks(inode, nrblocks);
2353 }
2354
2355 /*
2356 * How many index/leaf blocks need to change/allocate to add @extents extents?
2357 *
2358 * If we add a single extent, then in the worse case, each tree level
2359 * index/leaf need to be changed in case of the tree split.
2360 *
2361 * If more extents are inserted, they could cause the whole tree split more
2362 * than once, but this is really rare.
2363 */
2364 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2365 {
2366 int index;
2367 int depth;
2368
2369 /* If we are converting the inline data, only one is needed here. */
2370 if (ext4_has_inline_data(inode))
2371 return 1;
2372
2373 depth = ext_depth(inode);
2374
2375 if (extents <= 1)
2376 index = depth * 2;
2377 else
2378 index = depth * 3;
2379
2380 return index;
2381 }
2382
2383 static inline int get_default_free_blocks_flags(struct inode *inode)
2384 {
2385 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2386 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2387 else if (ext4_should_journal_data(inode))
2388 return EXT4_FREE_BLOCKS_FORGET;
2389 return 0;
2390 }
2391
2392 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2393 struct ext4_extent *ex,
2394 long long *partial_cluster,
2395 ext4_lblk_t from, ext4_lblk_t to)
2396 {
2397 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2398 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2399 ext4_fsblk_t pblk;
2400 int flags = get_default_free_blocks_flags(inode);
2401
2402 /*
2403 * For bigalloc file systems, we never free a partial cluster
2404 * at the beginning of the extent. Instead, we make a note
2405 * that we tried freeing the cluster, and check to see if we
2406 * need to free it on a subsequent call to ext4_remove_blocks,
2407 * or at the end of the ext4_truncate() operation.
2408 */
2409 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2410
2411 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2412 /*
2413 * If we have a partial cluster, and it's different from the
2414 * cluster of the last block, we need to explicitly free the
2415 * partial cluster here.
2416 */
2417 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2418 if ((*partial_cluster > 0) &&
2419 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2420 ext4_free_blocks(handle, inode, NULL,
2421 EXT4_C2B(sbi, *partial_cluster),
2422 sbi->s_cluster_ratio, flags);
2423 *partial_cluster = 0;
2424 }
2425
2426 #ifdef EXTENTS_STATS
2427 {
2428 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2429 spin_lock(&sbi->s_ext_stats_lock);
2430 sbi->s_ext_blocks += ee_len;
2431 sbi->s_ext_extents++;
2432 if (ee_len < sbi->s_ext_min)
2433 sbi->s_ext_min = ee_len;
2434 if (ee_len > sbi->s_ext_max)
2435 sbi->s_ext_max = ee_len;
2436 if (ext_depth(inode) > sbi->s_depth_max)
2437 sbi->s_depth_max = ext_depth(inode);
2438 spin_unlock(&sbi->s_ext_stats_lock);
2439 }
2440 #endif
2441 if (from >= le32_to_cpu(ex->ee_block)
2442 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2443 /* tail removal */
2444 ext4_lblk_t num;
2445 unsigned int unaligned;
2446
2447 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2448 pblk = ext4_ext_pblock(ex) + ee_len - num;
2449 /*
2450 * Usually we want to free partial cluster at the end of the
2451 * extent, except for the situation when the cluster is still
2452 * used by any other extent (partial_cluster is negative).
2453 */
2454 if (*partial_cluster < 0 &&
2455 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2456 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2457
2458 ext_debug("free last %u blocks starting %llu partial %lld\n",
2459 num, pblk, *partial_cluster);
2460 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2461 /*
2462 * If the block range to be freed didn't start at the
2463 * beginning of a cluster, and we removed the entire
2464 * extent and the cluster is not used by any other extent,
2465 * save the partial cluster here, since we might need to
2466 * delete if we determine that the truncate operation has
2467 * removed all of the blocks in the cluster.
2468 *
2469 * On the other hand, if we did not manage to free the whole
2470 * extent, we have to mark the cluster as used (store negative
2471 * cluster number in partial_cluster).
2472 */
2473 unaligned = pblk & (sbi->s_cluster_ratio - 1);
2474 if (unaligned && (ee_len == num) &&
2475 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2476 *partial_cluster = EXT4_B2C(sbi, pblk);
2477 else if (unaligned)
2478 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2479 else if (*partial_cluster > 0)
2480 *partial_cluster = 0;
2481 } else
2482 ext4_error(sbi->s_sb, "strange request: removal(2) "
2483 "%u-%u from %u:%u\n",
2484 from, to, le32_to_cpu(ex->ee_block), ee_len);
2485 return 0;
2486 }
2487
2488
2489 /*
2490 * ext4_ext_rm_leaf() Removes the extents associated with the
2491 * blocks appearing between "start" and "end", and splits the extents
2492 * if "start" and "end" appear in the same extent
2493 *
2494 * @handle: The journal handle
2495 * @inode: The files inode
2496 * @path: The path to the leaf
2497 * @partial_cluster: The cluster which we'll have to free if all extents
2498 * has been released from it. It gets negative in case
2499 * that the cluster is still used.
2500 * @start: The first block to remove
2501 * @end: The last block to remove
2502 */
2503 static int
2504 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2505 struct ext4_ext_path *path,
2506 long long *partial_cluster,
2507 ext4_lblk_t start, ext4_lblk_t end)
2508 {
2509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2510 int err = 0, correct_index = 0;
2511 int depth = ext_depth(inode), credits;
2512 struct ext4_extent_header *eh;
2513 ext4_lblk_t a, b;
2514 unsigned num;
2515 ext4_lblk_t ex_ee_block;
2516 unsigned short ex_ee_len;
2517 unsigned uninitialized = 0;
2518 struct ext4_extent *ex;
2519 ext4_fsblk_t pblk;
2520
2521 /* the header must be checked already in ext4_ext_remove_space() */
2522 ext_debug("truncate since %u in leaf to %u\n", start, end);
2523 if (!path[depth].p_hdr)
2524 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2525 eh = path[depth].p_hdr;
2526 if (unlikely(path[depth].p_hdr == NULL)) {
2527 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2528 return -EIO;
2529 }
2530 /* find where to start removing */
2531 ex = path[depth].p_ext;
2532 if (!ex)
2533 ex = EXT_LAST_EXTENT(eh);
2534
2535 ex_ee_block = le32_to_cpu(ex->ee_block);
2536 ex_ee_len = ext4_ext_get_actual_len(ex);
2537
2538 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2539
2540 while (ex >= EXT_FIRST_EXTENT(eh) &&
2541 ex_ee_block + ex_ee_len > start) {
2542
2543 if (ext4_ext_is_uninitialized(ex))
2544 uninitialized = 1;
2545 else
2546 uninitialized = 0;
2547
2548 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2549 uninitialized, ex_ee_len);
2550 path[depth].p_ext = ex;
2551
2552 a = ex_ee_block > start ? ex_ee_block : start;
2553 b = ex_ee_block+ex_ee_len - 1 < end ?
2554 ex_ee_block+ex_ee_len - 1 : end;
2555
2556 ext_debug(" border %u:%u\n", a, b);
2557
2558 /* If this extent is beyond the end of the hole, skip it */
2559 if (end < ex_ee_block) {
2560 /*
2561 * We're going to skip this extent and move to another,
2562 * so if this extent is not cluster aligned we have
2563 * to mark the current cluster as used to avoid
2564 * accidentally freeing it later on
2565 */
2566 pblk = ext4_ext_pblock(ex);
2567 if (pblk & (sbi->s_cluster_ratio - 1))
2568 *partial_cluster =
2569 -((long long)EXT4_B2C(sbi, pblk));
2570 ex--;
2571 ex_ee_block = le32_to_cpu(ex->ee_block);
2572 ex_ee_len = ext4_ext_get_actual_len(ex);
2573 continue;
2574 } else if (b != ex_ee_block + ex_ee_len - 1) {
2575 EXT4_ERROR_INODE(inode,
2576 "can not handle truncate %u:%u "
2577 "on extent %u:%u",
2578 start, end, ex_ee_block,
2579 ex_ee_block + ex_ee_len - 1);
2580 err = -EIO;
2581 goto out;
2582 } else if (a != ex_ee_block) {
2583 /* remove tail of the extent */
2584 num = a - ex_ee_block;
2585 } else {
2586 /* remove whole extent: excellent! */
2587 num = 0;
2588 }
2589 /*
2590 * 3 for leaf, sb, and inode plus 2 (bmap and group
2591 * descriptor) for each block group; assume two block
2592 * groups plus ex_ee_len/blocks_per_block_group for
2593 * the worst case
2594 */
2595 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2596 if (ex == EXT_FIRST_EXTENT(eh)) {
2597 correct_index = 1;
2598 credits += (ext_depth(inode)) + 1;
2599 }
2600 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2601
2602 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2603 if (err)
2604 goto out;
2605
2606 err = ext4_ext_get_access(handle, inode, path + depth);
2607 if (err)
2608 goto out;
2609
2610 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2611 a, b);
2612 if (err)
2613 goto out;
2614
2615 if (num == 0)
2616 /* this extent is removed; mark slot entirely unused */
2617 ext4_ext_store_pblock(ex, 0);
2618
2619 ex->ee_len = cpu_to_le16(num);
2620 /*
2621 * Do not mark uninitialized if all the blocks in the
2622 * extent have been removed.
2623 */
2624 if (uninitialized && num)
2625 ext4_ext_mark_uninitialized(ex);
2626 /*
2627 * If the extent was completely released,
2628 * we need to remove it from the leaf
2629 */
2630 if (num == 0) {
2631 if (end != EXT_MAX_BLOCKS - 1) {
2632 /*
2633 * For hole punching, we need to scoot all the
2634 * extents up when an extent is removed so that
2635 * we dont have blank extents in the middle
2636 */
2637 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2638 sizeof(struct ext4_extent));
2639
2640 /* Now get rid of the one at the end */
2641 memset(EXT_LAST_EXTENT(eh), 0,
2642 sizeof(struct ext4_extent));
2643 }
2644 le16_add_cpu(&eh->eh_entries, -1);
2645 } else if (*partial_cluster > 0)
2646 *partial_cluster = 0;
2647
2648 err = ext4_ext_dirty(handle, inode, path + depth);
2649 if (err)
2650 goto out;
2651
2652 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2653 ext4_ext_pblock(ex));
2654 ex--;
2655 ex_ee_block = le32_to_cpu(ex->ee_block);
2656 ex_ee_len = ext4_ext_get_actual_len(ex);
2657 }
2658
2659 if (correct_index && eh->eh_entries)
2660 err = ext4_ext_correct_indexes(handle, inode, path);
2661
2662 /*
2663 * Free the partial cluster only if the current extent does not
2664 * reference it. Otherwise we might free used cluster.
2665 */
2666 if (*partial_cluster > 0 &&
2667 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2668 *partial_cluster)) {
2669 int flags = get_default_free_blocks_flags(inode);
2670
2671 ext4_free_blocks(handle, inode, NULL,
2672 EXT4_C2B(sbi, *partial_cluster),
2673 sbi->s_cluster_ratio, flags);
2674 *partial_cluster = 0;
2675 }
2676
2677 /* if this leaf is free, then we should
2678 * remove it from index block above */
2679 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2680 err = ext4_ext_rm_idx(handle, inode, path, depth);
2681
2682 out:
2683 return err;
2684 }
2685
2686 /*
2687 * ext4_ext_more_to_rm:
2688 * returns 1 if current index has to be freed (even partial)
2689 */
2690 static int
2691 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2692 {
2693 BUG_ON(path->p_idx == NULL);
2694
2695 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2696 return 0;
2697
2698 /*
2699 * if truncate on deeper level happened, it wasn't partial,
2700 * so we have to consider current index for truncation
2701 */
2702 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2703 return 0;
2704 return 1;
2705 }
2706
2707 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2708 ext4_lblk_t end)
2709 {
2710 struct super_block *sb = inode->i_sb;
2711 int depth = ext_depth(inode);
2712 struct ext4_ext_path *path = NULL;
2713 long long partial_cluster = 0;
2714 handle_t *handle;
2715 int i = 0, err = 0;
2716
2717 ext_debug("truncate since %u to %u\n", start, end);
2718
2719 /* probably first extent we're gonna free will be last in block */
2720 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2721 if (IS_ERR(handle))
2722 return PTR_ERR(handle);
2723
2724 again:
2725 trace_ext4_ext_remove_space(inode, start, end, depth);
2726
2727 /*
2728 * Check if we are removing extents inside the extent tree. If that
2729 * is the case, we are going to punch a hole inside the extent tree
2730 * so we have to check whether we need to split the extent covering
2731 * the last block to remove so we can easily remove the part of it
2732 * in ext4_ext_rm_leaf().
2733 */
2734 if (end < EXT_MAX_BLOCKS - 1) {
2735 struct ext4_extent *ex;
2736 ext4_lblk_t ee_block;
2737
2738 /* find extent for this block */
2739 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2740 if (IS_ERR(path)) {
2741 ext4_journal_stop(handle);
2742 return PTR_ERR(path);
2743 }
2744 depth = ext_depth(inode);
2745 /* Leaf not may not exist only if inode has no blocks at all */
2746 ex = path[depth].p_ext;
2747 if (!ex) {
2748 if (depth) {
2749 EXT4_ERROR_INODE(inode,
2750 "path[%d].p_hdr == NULL",
2751 depth);
2752 err = -EIO;
2753 }
2754 goto out;
2755 }
2756
2757 ee_block = le32_to_cpu(ex->ee_block);
2758
2759 /*
2760 * See if the last block is inside the extent, if so split
2761 * the extent at 'end' block so we can easily remove the
2762 * tail of the first part of the split extent in
2763 * ext4_ext_rm_leaf().
2764 */
2765 if (end >= ee_block &&
2766 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2767 int split_flag = 0;
2768
2769 if (ext4_ext_is_uninitialized(ex))
2770 split_flag = EXT4_EXT_MARK_UNINIT1 |
2771 EXT4_EXT_MARK_UNINIT2;
2772
2773 /*
2774 * Split the extent in two so that 'end' is the last
2775 * block in the first new extent. Also we should not
2776 * fail removing space due to ENOSPC so try to use
2777 * reserved block if that happens.
2778 */
2779 err = ext4_split_extent_at(handle, inode, path,
2780 end + 1, split_flag,
2781 EXT4_EX_NOCACHE |
2782 EXT4_GET_BLOCKS_PRE_IO |
2783 EXT4_GET_BLOCKS_METADATA_NOFAIL);
2784
2785 if (err < 0)
2786 goto out;
2787 }
2788 }
2789 /*
2790 * We start scanning from right side, freeing all the blocks
2791 * after i_size and walking into the tree depth-wise.
2792 */
2793 depth = ext_depth(inode);
2794 if (path) {
2795 int k = i = depth;
2796 while (--k > 0)
2797 path[k].p_block =
2798 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2799 } else {
2800 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2801 GFP_NOFS);
2802 if (path == NULL) {
2803 ext4_journal_stop(handle);
2804 return -ENOMEM;
2805 }
2806 path[0].p_depth = depth;
2807 path[0].p_hdr = ext_inode_hdr(inode);
2808 i = 0;
2809
2810 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2811 err = -EIO;
2812 goto out;
2813 }
2814 }
2815 err = 0;
2816
2817 while (i >= 0 && err == 0) {
2818 if (i == depth) {
2819 /* this is leaf block */
2820 err = ext4_ext_rm_leaf(handle, inode, path,
2821 &partial_cluster, start,
2822 end);
2823 /* root level has p_bh == NULL, brelse() eats this */
2824 brelse(path[i].p_bh);
2825 path[i].p_bh = NULL;
2826 i--;
2827 continue;
2828 }
2829
2830 /* this is index block */
2831 if (!path[i].p_hdr) {
2832 ext_debug("initialize header\n");
2833 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2834 }
2835
2836 if (!path[i].p_idx) {
2837 /* this level hasn't been touched yet */
2838 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2839 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2840 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2841 path[i].p_hdr,
2842 le16_to_cpu(path[i].p_hdr->eh_entries));
2843 } else {
2844 /* we were already here, see at next index */
2845 path[i].p_idx--;
2846 }
2847
2848 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2849 i, EXT_FIRST_INDEX(path[i].p_hdr),
2850 path[i].p_idx);
2851 if (ext4_ext_more_to_rm(path + i)) {
2852 struct buffer_head *bh;
2853 /* go to the next level */
2854 ext_debug("move to level %d (block %llu)\n",
2855 i + 1, ext4_idx_pblock(path[i].p_idx));
2856 memset(path + i + 1, 0, sizeof(*path));
2857 bh = read_extent_tree_block(inode,
2858 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2859 EXT4_EX_NOCACHE);
2860 if (IS_ERR(bh)) {
2861 /* should we reset i_size? */
2862 err = PTR_ERR(bh);
2863 break;
2864 }
2865 /* Yield here to deal with large extent trees.
2866 * Should be a no-op if we did IO above. */
2867 cond_resched();
2868 if (WARN_ON(i + 1 > depth)) {
2869 err = -EIO;
2870 break;
2871 }
2872 path[i + 1].p_bh = bh;
2873
2874 /* save actual number of indexes since this
2875 * number is changed at the next iteration */
2876 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2877 i++;
2878 } else {
2879 /* we finished processing this index, go up */
2880 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2881 /* index is empty, remove it;
2882 * handle must be already prepared by the
2883 * truncatei_leaf() */
2884 err = ext4_ext_rm_idx(handle, inode, path, i);
2885 }
2886 /* root level has p_bh == NULL, brelse() eats this */
2887 brelse(path[i].p_bh);
2888 path[i].p_bh = NULL;
2889 i--;
2890 ext_debug("return to level %d\n", i);
2891 }
2892 }
2893
2894 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2895 partial_cluster, path->p_hdr->eh_entries);
2896
2897 /* If we still have something in the partial cluster and we have removed
2898 * even the first extent, then we should free the blocks in the partial
2899 * cluster as well. */
2900 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2901 int flags = get_default_free_blocks_flags(inode);
2902
2903 ext4_free_blocks(handle, inode, NULL,
2904 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2905 EXT4_SB(sb)->s_cluster_ratio, flags);
2906 partial_cluster = 0;
2907 }
2908
2909 /* TODO: flexible tree reduction should be here */
2910 if (path->p_hdr->eh_entries == 0) {
2911 /*
2912 * truncate to zero freed all the tree,
2913 * so we need to correct eh_depth
2914 */
2915 err = ext4_ext_get_access(handle, inode, path);
2916 if (err == 0) {
2917 ext_inode_hdr(inode)->eh_depth = 0;
2918 ext_inode_hdr(inode)->eh_max =
2919 cpu_to_le16(ext4_ext_space_root(inode, 0));
2920 err = ext4_ext_dirty(handle, inode, path);
2921 }
2922 }
2923 out:
2924 ext4_ext_drop_refs(path);
2925 kfree(path);
2926 if (err == -EAGAIN) {
2927 path = NULL;
2928 goto again;
2929 }
2930 ext4_journal_stop(handle);
2931
2932 return err;
2933 }
2934
2935 /*
2936 * called at mount time
2937 */
2938 void ext4_ext_init(struct super_block *sb)
2939 {
2940 /*
2941 * possible initialization would be here
2942 */
2943
2944 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2945 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2946 printk(KERN_INFO "EXT4-fs: file extents enabled"
2947 #ifdef AGGRESSIVE_TEST
2948 ", aggressive tests"
2949 #endif
2950 #ifdef CHECK_BINSEARCH
2951 ", check binsearch"
2952 #endif
2953 #ifdef EXTENTS_STATS
2954 ", stats"
2955 #endif
2956 "\n");
2957 #endif
2958 #ifdef EXTENTS_STATS
2959 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2960 EXT4_SB(sb)->s_ext_min = 1 << 30;
2961 EXT4_SB(sb)->s_ext_max = 0;
2962 #endif
2963 }
2964 }
2965
2966 /*
2967 * called at umount time
2968 */
2969 void ext4_ext_release(struct super_block *sb)
2970 {
2971 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2972 return;
2973
2974 #ifdef EXTENTS_STATS
2975 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2976 struct ext4_sb_info *sbi = EXT4_SB(sb);
2977 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2978 sbi->s_ext_blocks, sbi->s_ext_extents,
2979 sbi->s_ext_blocks / sbi->s_ext_extents);
2980 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2981 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2982 }
2983 #endif
2984 }
2985
2986 /* FIXME!! we need to try to merge to left or right after zero-out */
2987 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2988 {
2989 ext4_fsblk_t ee_pblock;
2990 unsigned int ee_len;
2991 int ret;
2992
2993 ee_len = ext4_ext_get_actual_len(ex);
2994 ee_pblock = ext4_ext_pblock(ex);
2995
2996 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2997 if (ret > 0)
2998 ret = 0;
2999
3000 return ret;
3001 }
3002
3003 /*
3004 * ext4_split_extent_at() splits an extent at given block.
3005 *
3006 * @handle: the journal handle
3007 * @inode: the file inode
3008 * @path: the path to the extent
3009 * @split: the logical block where the extent is splitted.
3010 * @split_flags: indicates if the extent could be zeroout if split fails, and
3011 * the states(init or uninit) of new extents.
3012 * @flags: flags used to insert new extent to extent tree.
3013 *
3014 *
3015 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3016 * of which are deterimined by split_flag.
3017 *
3018 * There are two cases:
3019 * a> the extent are splitted into two extent.
3020 * b> split is not needed, and just mark the extent.
3021 *
3022 * return 0 on success.
3023 */
3024 static int ext4_split_extent_at(handle_t *handle,
3025 struct inode *inode,
3026 struct ext4_ext_path *path,
3027 ext4_lblk_t split,
3028 int split_flag,
3029 int flags)
3030 {
3031 ext4_fsblk_t newblock;
3032 ext4_lblk_t ee_block;
3033 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3034 struct ext4_extent *ex2 = NULL;
3035 unsigned int ee_len, depth;
3036 int err = 0;
3037
3038 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3039 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3040
3041 ext_debug("ext4_split_extents_at: inode %lu, logical"
3042 "block %llu\n", inode->i_ino, (unsigned long long)split);
3043
3044 ext4_ext_show_leaf(inode, path);
3045
3046 depth = ext_depth(inode);
3047 ex = path[depth].p_ext;
3048 ee_block = le32_to_cpu(ex->ee_block);
3049 ee_len = ext4_ext_get_actual_len(ex);
3050 newblock = split - ee_block + ext4_ext_pblock(ex);
3051
3052 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3053 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3054 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3055 EXT4_EXT_MARK_UNINIT1 |
3056 EXT4_EXT_MARK_UNINIT2));
3057
3058 err = ext4_ext_get_access(handle, inode, path + depth);
3059 if (err)
3060 goto out;
3061
3062 if (split == ee_block) {
3063 /*
3064 * case b: block @split is the block that the extent begins with
3065 * then we just change the state of the extent, and splitting
3066 * is not needed.
3067 */
3068 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3069 ext4_ext_mark_uninitialized(ex);
3070 else
3071 ext4_ext_mark_initialized(ex);
3072
3073 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3074 ext4_ext_try_to_merge(handle, inode, path, ex);
3075
3076 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3077 goto out;
3078 }
3079
3080 /* case a */
3081 memcpy(&orig_ex, ex, sizeof(orig_ex));
3082 ex->ee_len = cpu_to_le16(split - ee_block);
3083 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3084 ext4_ext_mark_uninitialized(ex);
3085
3086 /*
3087 * path may lead to new leaf, not to original leaf any more
3088 * after ext4_ext_insert_extent() returns,
3089 */
3090 err = ext4_ext_dirty(handle, inode, path + depth);
3091 if (err)
3092 goto fix_extent_len;
3093
3094 ex2 = &newex;
3095 ex2->ee_block = cpu_to_le32(split);
3096 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3097 ext4_ext_store_pblock(ex2, newblock);
3098 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3099 ext4_ext_mark_uninitialized(ex2);
3100
3101 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3102 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3103 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3104 if (split_flag & EXT4_EXT_DATA_VALID1) {
3105 err = ext4_ext_zeroout(inode, ex2);
3106 zero_ex.ee_block = ex2->ee_block;
3107 zero_ex.ee_len = cpu_to_le16(
3108 ext4_ext_get_actual_len(ex2));
3109 ext4_ext_store_pblock(&zero_ex,
3110 ext4_ext_pblock(ex2));
3111 } else {
3112 err = ext4_ext_zeroout(inode, ex);
3113 zero_ex.ee_block = ex->ee_block;
3114 zero_ex.ee_len = cpu_to_le16(
3115 ext4_ext_get_actual_len(ex));
3116 ext4_ext_store_pblock(&zero_ex,
3117 ext4_ext_pblock(ex));
3118 }
3119 } else {
3120 err = ext4_ext_zeroout(inode, &orig_ex);
3121 zero_ex.ee_block = orig_ex.ee_block;
3122 zero_ex.ee_len = cpu_to_le16(
3123 ext4_ext_get_actual_len(&orig_ex));
3124 ext4_ext_store_pblock(&zero_ex,
3125 ext4_ext_pblock(&orig_ex));
3126 }
3127
3128 if (err)
3129 goto fix_extent_len;
3130 /* update the extent length and mark as initialized */
3131 ex->ee_len = cpu_to_le16(ee_len);
3132 ext4_ext_try_to_merge(handle, inode, path, ex);
3133 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3134 if (err)
3135 goto fix_extent_len;
3136
3137 /* update extent status tree */
3138 err = ext4_es_zeroout(inode, &zero_ex);
3139
3140 goto out;
3141 } else if (err)
3142 goto fix_extent_len;
3143
3144 out:
3145 ext4_ext_show_leaf(inode, path);
3146 return err;
3147
3148 fix_extent_len:
3149 ex->ee_len = orig_ex.ee_len;
3150 ext4_ext_dirty(handle, inode, path + depth);
3151 return err;
3152 }
3153
3154 /*
3155 * ext4_split_extents() splits an extent and mark extent which is covered
3156 * by @map as split_flags indicates
3157 *
3158 * It may result in splitting the extent into multiple extents (upto three)
3159 * There are three possibilities:
3160 * a> There is no split required
3161 * b> Splits in two extents: Split is happening at either end of the extent
3162 * c> Splits in three extents: Somone is splitting in middle of the extent
3163 *
3164 */
3165 static int ext4_split_extent(handle_t *handle,
3166 struct inode *inode,
3167 struct ext4_ext_path *path,
3168 struct ext4_map_blocks *map,
3169 int split_flag,
3170 int flags)
3171 {
3172 ext4_lblk_t ee_block;
3173 struct ext4_extent *ex;
3174 unsigned int ee_len, depth;
3175 int err = 0;
3176 int uninitialized;
3177 int split_flag1, flags1;
3178 int allocated = map->m_len;
3179
3180 depth = ext_depth(inode);
3181 ex = path[depth].p_ext;
3182 ee_block = le32_to_cpu(ex->ee_block);
3183 ee_len = ext4_ext_get_actual_len(ex);
3184 uninitialized = ext4_ext_is_uninitialized(ex);
3185
3186 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3187 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3188 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3189 if (uninitialized)
3190 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3191 EXT4_EXT_MARK_UNINIT2;
3192 if (split_flag & EXT4_EXT_DATA_VALID2)
3193 split_flag1 |= EXT4_EXT_DATA_VALID1;
3194 err = ext4_split_extent_at(handle, inode, path,
3195 map->m_lblk + map->m_len, split_flag1, flags1);
3196 if (err)
3197 goto out;
3198 } else {
3199 allocated = ee_len - (map->m_lblk - ee_block);
3200 }
3201 /*
3202 * Update path is required because previous ext4_split_extent_at() may
3203 * result in split of original leaf or extent zeroout.
3204 */
3205 ext4_ext_drop_refs(path);
3206 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3207 if (IS_ERR(path))
3208 return PTR_ERR(path);
3209 depth = ext_depth(inode);
3210 ex = path[depth].p_ext;
3211 uninitialized = ext4_ext_is_uninitialized(ex);
3212 split_flag1 = 0;
3213
3214 if (map->m_lblk >= ee_block) {
3215 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3216 if (uninitialized) {
3217 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3218 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3219 EXT4_EXT_MARK_UNINIT2);
3220 }
3221 err = ext4_split_extent_at(handle, inode, path,
3222 map->m_lblk, split_flag1, flags);
3223 if (err)
3224 goto out;
3225 }
3226
3227 ext4_ext_show_leaf(inode, path);
3228 out:
3229 return err ? err : allocated;
3230 }
3231
3232 /*
3233 * This function is called by ext4_ext_map_blocks() if someone tries to write
3234 * to an uninitialized extent. It may result in splitting the uninitialized
3235 * extent into multiple extents (up to three - one initialized and two
3236 * uninitialized).
3237 * There are three possibilities:
3238 * a> There is no split required: Entire extent should be initialized
3239 * b> Splits in two extents: Write is happening at either end of the extent
3240 * c> Splits in three extents: Somone is writing in middle of the extent
3241 *
3242 * Pre-conditions:
3243 * - The extent pointed to by 'path' is uninitialized.
3244 * - The extent pointed to by 'path' contains a superset
3245 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3246 *
3247 * Post-conditions on success:
3248 * - the returned value is the number of blocks beyond map->l_lblk
3249 * that are allocated and initialized.
3250 * It is guaranteed to be >= map->m_len.
3251 */
3252 static int ext4_ext_convert_to_initialized(handle_t *handle,
3253 struct inode *inode,
3254 struct ext4_map_blocks *map,
3255 struct ext4_ext_path *path,
3256 int flags)
3257 {
3258 struct ext4_sb_info *sbi;
3259 struct ext4_extent_header *eh;
3260 struct ext4_map_blocks split_map;
3261 struct ext4_extent zero_ex;
3262 struct ext4_extent *ex, *abut_ex;
3263 ext4_lblk_t ee_block, eof_block;
3264 unsigned int ee_len, depth, map_len = map->m_len;
3265 int allocated = 0, max_zeroout = 0;
3266 int err = 0;
3267 int split_flag = 0;
3268
3269 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3270 "block %llu, max_blocks %u\n", inode->i_ino,
3271 (unsigned long long)map->m_lblk, map_len);
3272
3273 sbi = EXT4_SB(inode->i_sb);
3274 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3275 inode->i_sb->s_blocksize_bits;
3276 if (eof_block < map->m_lblk + map_len)
3277 eof_block = map->m_lblk + map_len;
3278
3279 depth = ext_depth(inode);
3280 eh = path[depth].p_hdr;
3281 ex = path[depth].p_ext;
3282 ee_block = le32_to_cpu(ex->ee_block);
3283 ee_len = ext4_ext_get_actual_len(ex);
3284 zero_ex.ee_len = 0;
3285
3286 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3287
3288 /* Pre-conditions */
3289 BUG_ON(!ext4_ext_is_uninitialized(ex));
3290 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3291
3292 /*
3293 * Attempt to transfer newly initialized blocks from the currently
3294 * uninitialized extent to its neighbor. This is much cheaper
3295 * than an insertion followed by a merge as those involve costly
3296 * memmove() calls. Transferring to the left is the common case in
3297 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3298 * followed by append writes.
3299 *
3300 * Limitations of the current logic:
3301 * - L1: we do not deal with writes covering the whole extent.
3302 * This would require removing the extent if the transfer
3303 * is possible.
3304 * - L2: we only attempt to merge with an extent stored in the
3305 * same extent tree node.
3306 */
3307 if ((map->m_lblk == ee_block) &&
3308 /* See if we can merge left */
3309 (map_len < ee_len) && /*L1*/
3310 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3311 ext4_lblk_t prev_lblk;
3312 ext4_fsblk_t prev_pblk, ee_pblk;
3313 unsigned int prev_len;
3314
3315 abut_ex = ex - 1;
3316 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3317 prev_len = ext4_ext_get_actual_len(abut_ex);
3318 prev_pblk = ext4_ext_pblock(abut_ex);
3319 ee_pblk = ext4_ext_pblock(ex);
3320
3321 /*
3322 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3323 * upon those conditions:
3324 * - C1: abut_ex is initialized,
3325 * - C2: abut_ex is logically abutting ex,
3326 * - C3: abut_ex is physically abutting ex,
3327 * - C4: abut_ex can receive the additional blocks without
3328 * overflowing the (initialized) length limit.
3329 */
3330 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3331 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3332 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3333 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3334 err = ext4_ext_get_access(handle, inode, path + depth);
3335 if (err)
3336 goto out;
3337
3338 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3339 map, ex, abut_ex);
3340
3341 /* Shift the start of ex by 'map_len' blocks */
3342 ex->ee_block = cpu_to_le32(ee_block + map_len);
3343 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3344 ex->ee_len = cpu_to_le16(ee_len - map_len);
3345 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3346
3347 /* Extend abut_ex by 'map_len' blocks */
3348 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3349
3350 /* Result: number of initialized blocks past m_lblk */
3351 allocated = map_len;
3352 }
3353 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3354 (map_len < ee_len) && /*L1*/
3355 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3356 /* See if we can merge right */
3357 ext4_lblk_t next_lblk;
3358 ext4_fsblk_t next_pblk, ee_pblk;
3359 unsigned int next_len;
3360
3361 abut_ex = ex + 1;
3362 next_lblk = le32_to_cpu(abut_ex->ee_block);
3363 next_len = ext4_ext_get_actual_len(abut_ex);
3364 next_pblk = ext4_ext_pblock(abut_ex);
3365 ee_pblk = ext4_ext_pblock(ex);
3366
3367 /*
3368 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3369 * upon those conditions:
3370 * - C1: abut_ex is initialized,
3371 * - C2: abut_ex is logically abutting ex,
3372 * - C3: abut_ex is physically abutting ex,
3373 * - C4: abut_ex can receive the additional blocks without
3374 * overflowing the (initialized) length limit.
3375 */
3376 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3377 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3378 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3379 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3380 err = ext4_ext_get_access(handle, inode, path + depth);
3381 if (err)
3382 goto out;
3383
3384 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3385 map, ex, abut_ex);
3386
3387 /* Shift the start of abut_ex by 'map_len' blocks */
3388 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3389 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3390 ex->ee_len = cpu_to_le16(ee_len - map_len);
3391 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3392
3393 /* Extend abut_ex by 'map_len' blocks */
3394 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3395
3396 /* Result: number of initialized blocks past m_lblk */
3397 allocated = map_len;
3398 }
3399 }
3400 if (allocated) {
3401 /* Mark the block containing both extents as dirty */
3402 ext4_ext_dirty(handle, inode, path + depth);
3403
3404 /* Update path to point to the right extent */
3405 path[depth].p_ext = abut_ex;
3406 goto out;
3407 } else
3408 allocated = ee_len - (map->m_lblk - ee_block);
3409
3410 WARN_ON(map->m_lblk < ee_block);
3411 /*
3412 * It is safe to convert extent to initialized via explicit
3413 * zeroout only if extent is fully insde i_size or new_size.
3414 */
3415 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3416
3417 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3418 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3419 (inode->i_sb->s_blocksize_bits - 10);
3420
3421 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3422 if (max_zeroout && (ee_len <= max_zeroout)) {
3423 err = ext4_ext_zeroout(inode, ex);
3424 if (err)
3425 goto out;
3426 zero_ex.ee_block = ex->ee_block;
3427 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3428 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3429
3430 err = ext4_ext_get_access(handle, inode, path + depth);
3431 if (err)
3432 goto out;
3433 ext4_ext_mark_initialized(ex);
3434 ext4_ext_try_to_merge(handle, inode, path, ex);
3435 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3436 goto out;
3437 }
3438
3439 /*
3440 * four cases:
3441 * 1. split the extent into three extents.
3442 * 2. split the extent into two extents, zeroout the first half.
3443 * 3. split the extent into two extents, zeroout the second half.
3444 * 4. split the extent into two extents with out zeroout.
3445 */
3446 split_map.m_lblk = map->m_lblk;
3447 split_map.m_len = map->m_len;
3448
3449 if (max_zeroout && (allocated > map->m_len)) {
3450 if (allocated <= max_zeroout) {
3451 /* case 3 */
3452 zero_ex.ee_block =
3453 cpu_to_le32(map->m_lblk);
3454 zero_ex.ee_len = cpu_to_le16(allocated);
3455 ext4_ext_store_pblock(&zero_ex,
3456 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3457 err = ext4_ext_zeroout(inode, &zero_ex);
3458 if (err)
3459 goto out;
3460 split_map.m_lblk = map->m_lblk;
3461 split_map.m_len = allocated;
3462 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3463 /* case 2 */
3464 if (map->m_lblk != ee_block) {
3465 zero_ex.ee_block = ex->ee_block;
3466 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3467 ee_block);
3468 ext4_ext_store_pblock(&zero_ex,
3469 ext4_ext_pblock(ex));
3470 err = ext4_ext_zeroout(inode, &zero_ex);
3471 if (err)
3472 goto out;
3473 }
3474
3475 split_map.m_lblk = ee_block;
3476 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3477 allocated = map->m_len;
3478 }
3479 }
3480
3481 allocated = ext4_split_extent(handle, inode, path,
3482 &split_map, split_flag, flags);
3483 if (allocated < 0)
3484 err = allocated;
3485
3486 out:
3487 /* If we have gotten a failure, don't zero out status tree */
3488 if (!err)
3489 err = ext4_es_zeroout(inode, &zero_ex);
3490 return err ? err : allocated;
3491 }
3492
3493 /*
3494 * This function is called by ext4_ext_map_blocks() from
3495 * ext4_get_blocks_dio_write() when DIO to write
3496 * to an uninitialized extent.
3497 *
3498 * Writing to an uninitialized extent may result in splitting the uninitialized
3499 * extent into multiple initialized/uninitialized extents (up to three)
3500 * There are three possibilities:
3501 * a> There is no split required: Entire extent should be uninitialized
3502 * b> Splits in two extents: Write is happening at either end of the extent
3503 * c> Splits in three extents: Somone is writing in middle of the extent
3504 *
3505 * One of more index blocks maybe needed if the extent tree grow after
3506 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3507 * complete, we need to split the uninitialized extent before DIO submit
3508 * the IO. The uninitialized extent called at this time will be split
3509 * into three uninitialized extent(at most). After IO complete, the part
3510 * being filled will be convert to initialized by the end_io callback function
3511 * via ext4_convert_unwritten_extents().
3512 *
3513 * Returns the size of uninitialized extent to be written on success.
3514 */
3515 static int ext4_split_unwritten_extents(handle_t *handle,
3516 struct inode *inode,
3517 struct ext4_map_blocks *map,
3518 struct ext4_ext_path *path,
3519 int flags)
3520 {
3521 ext4_lblk_t eof_block;
3522 ext4_lblk_t ee_block;
3523 struct ext4_extent *ex;
3524 unsigned int ee_len;
3525 int split_flag = 0, depth;
3526
3527 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3528 "block %llu, max_blocks %u\n", inode->i_ino,
3529 (unsigned long long)map->m_lblk, map->m_len);
3530
3531 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3532 inode->i_sb->s_blocksize_bits;
3533 if (eof_block < map->m_lblk + map->m_len)
3534 eof_block = map->m_lblk + map->m_len;
3535 /*
3536 * It is safe to convert extent to initialized via explicit
3537 * zeroout only if extent is fully insde i_size or new_size.
3538 */
3539 depth = ext_depth(inode);
3540 ex = path[depth].p_ext;
3541 ee_block = le32_to_cpu(ex->ee_block);
3542 ee_len = ext4_ext_get_actual_len(ex);
3543
3544 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3545 split_flag |= EXT4_EXT_MARK_UNINIT2;
3546 if (flags & EXT4_GET_BLOCKS_CONVERT)
3547 split_flag |= EXT4_EXT_DATA_VALID2;
3548 flags |= EXT4_GET_BLOCKS_PRE_IO;
3549 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3550 }
3551
3552 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3553 struct inode *inode,
3554 struct ext4_map_blocks *map,
3555 struct ext4_ext_path *path)
3556 {
3557 struct ext4_extent *ex;
3558 ext4_lblk_t ee_block;
3559 unsigned int ee_len;
3560 int depth;
3561 int err = 0;
3562
3563 depth = ext_depth(inode);
3564 ex = path[depth].p_ext;
3565 ee_block = le32_to_cpu(ex->ee_block);
3566 ee_len = ext4_ext_get_actual_len(ex);
3567
3568 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3569 "block %llu, max_blocks %u\n", inode->i_ino,
3570 (unsigned long long)ee_block, ee_len);
3571
3572 /* If extent is larger than requested it is a clear sign that we still
3573 * have some extent state machine issues left. So extent_split is still
3574 * required.
3575 * TODO: Once all related issues will be fixed this situation should be
3576 * illegal.
3577 */
3578 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3579 #ifdef EXT4_DEBUG
3580 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3581 " len %u; IO logical block %llu, len %u\n",
3582 inode->i_ino, (unsigned long long)ee_block, ee_len,
3583 (unsigned long long)map->m_lblk, map->m_len);
3584 #endif
3585 err = ext4_split_unwritten_extents(handle, inode, map, path,
3586 EXT4_GET_BLOCKS_CONVERT);
3587 if (err < 0)
3588 goto out;
3589 ext4_ext_drop_refs(path);
3590 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3591 if (IS_ERR(path)) {
3592 err = PTR_ERR(path);
3593 goto out;
3594 }
3595 depth = ext_depth(inode);
3596 ex = path[depth].p_ext;
3597 }
3598
3599 err = ext4_ext_get_access(handle, inode, path + depth);
3600 if (err)
3601 goto out;
3602 /* first mark the extent as initialized */
3603 ext4_ext_mark_initialized(ex);
3604
3605 /* note: ext4_ext_correct_indexes() isn't needed here because
3606 * borders are not changed
3607 */
3608 ext4_ext_try_to_merge(handle, inode, path, ex);
3609
3610 /* Mark modified extent as dirty */
3611 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3612 out:
3613 ext4_ext_show_leaf(inode, path);
3614 return err;
3615 }
3616
3617 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3618 sector_t block, int count)
3619 {
3620 int i;
3621 for (i = 0; i < count; i++)
3622 unmap_underlying_metadata(bdev, block + i);
3623 }
3624
3625 /*
3626 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3627 */
3628 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3629 ext4_lblk_t lblk,
3630 struct ext4_ext_path *path,
3631 unsigned int len)
3632 {
3633 int i, depth;
3634 struct ext4_extent_header *eh;
3635 struct ext4_extent *last_ex;
3636
3637 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3638 return 0;
3639
3640 depth = ext_depth(inode);
3641 eh = path[depth].p_hdr;
3642
3643 /*
3644 * We're going to remove EOFBLOCKS_FL entirely in future so we
3645 * do not care for this case anymore. Simply remove the flag
3646 * if there are no extents.
3647 */
3648 if (unlikely(!eh->eh_entries))
3649 goto out;
3650 last_ex = EXT_LAST_EXTENT(eh);
3651 /*
3652 * We should clear the EOFBLOCKS_FL flag if we are writing the
3653 * last block in the last extent in the file. We test this by
3654 * first checking to see if the caller to
3655 * ext4_ext_get_blocks() was interested in the last block (or
3656 * a block beyond the last block) in the current extent. If
3657 * this turns out to be false, we can bail out from this
3658 * function immediately.
3659 */
3660 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3661 ext4_ext_get_actual_len(last_ex))
3662 return 0;
3663 /*
3664 * If the caller does appear to be planning to write at or
3665 * beyond the end of the current extent, we then test to see
3666 * if the current extent is the last extent in the file, by
3667 * checking to make sure it was reached via the rightmost node
3668 * at each level of the tree.
3669 */
3670 for (i = depth-1; i >= 0; i--)
3671 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3672 return 0;
3673 out:
3674 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3675 return ext4_mark_inode_dirty(handle, inode);
3676 }
3677
3678 /**
3679 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3680 *
3681 * Return 1 if there is a delalloc block in the range, otherwise 0.
3682 */
3683 int ext4_find_delalloc_range(struct inode *inode,
3684 ext4_lblk_t lblk_start,
3685 ext4_lblk_t lblk_end)
3686 {
3687 struct extent_status es;
3688
3689 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3690 if (es.es_len == 0)
3691 return 0; /* there is no delay extent in this tree */
3692 else if (es.es_lblk <= lblk_start &&
3693 lblk_start < es.es_lblk + es.es_len)
3694 return 1;
3695 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3696 return 1;
3697 else
3698 return 0;
3699 }
3700
3701 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3702 {
3703 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3704 ext4_lblk_t lblk_start, lblk_end;
3705 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3706 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3707
3708 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3709 }
3710
3711 /**
3712 * Determines how many complete clusters (out of those specified by the 'map')
3713 * are under delalloc and were reserved quota for.
3714 * This function is called when we are writing out the blocks that were
3715 * originally written with their allocation delayed, but then the space was
3716 * allocated using fallocate() before the delayed allocation could be resolved.
3717 * The cases to look for are:
3718 * ('=' indicated delayed allocated blocks
3719 * '-' indicates non-delayed allocated blocks)
3720 * (a) partial clusters towards beginning and/or end outside of allocated range
3721 * are not delalloc'ed.
3722 * Ex:
3723 * |----c---=|====c====|====c====|===-c----|
3724 * |++++++ allocated ++++++|
3725 * ==> 4 complete clusters in above example
3726 *
3727 * (b) partial cluster (outside of allocated range) towards either end is
3728 * marked for delayed allocation. In this case, we will exclude that
3729 * cluster.
3730 * Ex:
3731 * |----====c========|========c========|
3732 * |++++++ allocated ++++++|
3733 * ==> 1 complete clusters in above example
3734 *
3735 * Ex:
3736 * |================c================|
3737 * |++++++ allocated ++++++|
3738 * ==> 0 complete clusters in above example
3739 *
3740 * The ext4_da_update_reserve_space will be called only if we
3741 * determine here that there were some "entire" clusters that span
3742 * this 'allocated' range.
3743 * In the non-bigalloc case, this function will just end up returning num_blks
3744 * without ever calling ext4_find_delalloc_range.
3745 */
3746 static unsigned int
3747 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3748 unsigned int num_blks)
3749 {
3750 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3751 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3752 ext4_lblk_t lblk_from, lblk_to, c_offset;
3753 unsigned int allocated_clusters = 0;
3754
3755 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3756 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3757
3758 /* max possible clusters for this allocation */
3759 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3760
3761 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3762
3763 /* Check towards left side */
3764 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3765 if (c_offset) {
3766 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3767 lblk_to = lblk_from + c_offset - 1;
3768
3769 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3770 allocated_clusters--;
3771 }
3772
3773 /* Now check towards right. */
3774 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3775 if (allocated_clusters && c_offset) {
3776 lblk_from = lblk_start + num_blks;
3777 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3778
3779 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3780 allocated_clusters--;
3781 }
3782
3783 return allocated_clusters;
3784 }
3785
3786 static int
3787 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3788 struct ext4_map_blocks *map,
3789 struct ext4_ext_path *path, int flags,
3790 unsigned int allocated, ext4_fsblk_t newblock)
3791 {
3792 int ret = 0;
3793 int err = 0;
3794 ext4_io_end_t *io = ext4_inode_aio(inode);
3795
3796 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3797 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3798 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3799 flags, allocated);
3800 ext4_ext_show_leaf(inode, path);
3801
3802 /*
3803 * When writing into uninitialized space, we should not fail to
3804 * allocate metadata blocks for the new extent block if needed.
3805 */
3806 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3807
3808 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3809 allocated, newblock);
3810
3811 /* get_block() before submit the IO, split the extent */
3812 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3813 ret = ext4_split_unwritten_extents(handle, inode, map,
3814 path, flags);
3815 if (ret <= 0)
3816 goto out;
3817 /*
3818 * Flag the inode(non aio case) or end_io struct (aio case)
3819 * that this IO needs to conversion to written when IO is
3820 * completed
3821 */
3822 if (io)
3823 ext4_set_io_unwritten_flag(inode, io);
3824 else
3825 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3826 map->m_flags |= EXT4_MAP_UNWRITTEN;
3827 if (ext4_should_dioread_nolock(inode))
3828 map->m_flags |= EXT4_MAP_UNINIT;
3829 goto out;
3830 }
3831 /* IO end_io complete, convert the filled extent to written */
3832 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3833 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3834 path);
3835 if (ret >= 0) {
3836 ext4_update_inode_fsync_trans(handle, inode, 1);
3837 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3838 path, map->m_len);
3839 } else
3840 err = ret;
3841 map->m_flags |= EXT4_MAP_MAPPED;
3842 if (allocated > map->m_len)
3843 allocated = map->m_len;
3844 map->m_len = allocated;
3845 goto out2;
3846 }
3847 /* buffered IO case */
3848 /*
3849 * repeat fallocate creation request
3850 * we already have an unwritten extent
3851 */
3852 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3853 map->m_flags |= EXT4_MAP_UNWRITTEN;
3854 goto map_out;
3855 }
3856
3857 /* buffered READ or buffered write_begin() lookup */
3858 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3859 /*
3860 * We have blocks reserved already. We
3861 * return allocated blocks so that delalloc
3862 * won't do block reservation for us. But
3863 * the buffer head will be unmapped so that
3864 * a read from the block returns 0s.
3865 */
3866 map->m_flags |= EXT4_MAP_UNWRITTEN;
3867 goto out1;
3868 }
3869
3870 /* buffered write, writepage time, convert*/
3871 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3872 if (ret >= 0)
3873 ext4_update_inode_fsync_trans(handle, inode, 1);
3874 out:
3875 if (ret <= 0) {
3876 err = ret;
3877 goto out2;
3878 } else
3879 allocated = ret;
3880 map->m_flags |= EXT4_MAP_NEW;
3881 /*
3882 * if we allocated more blocks than requested
3883 * we need to make sure we unmap the extra block
3884 * allocated. The actual needed block will get
3885 * unmapped later when we find the buffer_head marked
3886 * new.
3887 */
3888 if (allocated > map->m_len) {
3889 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3890 newblock + map->m_len,
3891 allocated - map->m_len);
3892 allocated = map->m_len;
3893 }
3894 map->m_len = allocated;
3895
3896 /*
3897 * If we have done fallocate with the offset that is already
3898 * delayed allocated, we would have block reservation
3899 * and quota reservation done in the delayed write path.
3900 * But fallocate would have already updated quota and block
3901 * count for this offset. So cancel these reservation
3902 */
3903 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3904 unsigned int reserved_clusters;
3905 reserved_clusters = get_reserved_cluster_alloc(inode,
3906 map->m_lblk, map->m_len);
3907 if (reserved_clusters)
3908 ext4_da_update_reserve_space(inode,
3909 reserved_clusters,
3910 0);
3911 }
3912
3913 map_out:
3914 map->m_flags |= EXT4_MAP_MAPPED;
3915 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3916 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3917 map->m_len);
3918 if (err < 0)
3919 goto out2;
3920 }
3921 out1:
3922 if (allocated > map->m_len)
3923 allocated = map->m_len;
3924 ext4_ext_show_leaf(inode, path);
3925 map->m_pblk = newblock;
3926 map->m_len = allocated;
3927 out2:
3928 if (path) {
3929 ext4_ext_drop_refs(path);
3930 kfree(path);
3931 }
3932 return err ? err : allocated;
3933 }
3934
3935 /*
3936 * get_implied_cluster_alloc - check to see if the requested
3937 * allocation (in the map structure) overlaps with a cluster already
3938 * allocated in an extent.
3939 * @sb The filesystem superblock structure
3940 * @map The requested lblk->pblk mapping
3941 * @ex The extent structure which might contain an implied
3942 * cluster allocation
3943 *
3944 * This function is called by ext4_ext_map_blocks() after we failed to
3945 * find blocks that were already in the inode's extent tree. Hence,
3946 * we know that the beginning of the requested region cannot overlap
3947 * the extent from the inode's extent tree. There are three cases we
3948 * want to catch. The first is this case:
3949 *
3950 * |--- cluster # N--|
3951 * |--- extent ---| |---- requested region ---|
3952 * |==========|
3953 *
3954 * The second case that we need to test for is this one:
3955 *
3956 * |--------- cluster # N ----------------|
3957 * |--- requested region --| |------- extent ----|
3958 * |=======================|
3959 *
3960 * The third case is when the requested region lies between two extents
3961 * within the same cluster:
3962 * |------------- cluster # N-------------|
3963 * |----- ex -----| |---- ex_right ----|
3964 * |------ requested region ------|
3965 * |================|
3966 *
3967 * In each of the above cases, we need to set the map->m_pblk and
3968 * map->m_len so it corresponds to the return the extent labelled as
3969 * "|====|" from cluster #N, since it is already in use for data in
3970 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3971 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3972 * as a new "allocated" block region. Otherwise, we will return 0 and
3973 * ext4_ext_map_blocks() will then allocate one or more new clusters
3974 * by calling ext4_mb_new_blocks().
3975 */
3976 static int get_implied_cluster_alloc(struct super_block *sb,
3977 struct ext4_map_blocks *map,
3978 struct ext4_extent *ex,
3979 struct ext4_ext_path *path)
3980 {
3981 struct ext4_sb_info *sbi = EXT4_SB(sb);
3982 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3983 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3984 ext4_lblk_t rr_cluster_start;
3985 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3986 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3987 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3988
3989 /* The extent passed in that we are trying to match */
3990 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3991 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3992
3993 /* The requested region passed into ext4_map_blocks() */
3994 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3995
3996 if ((rr_cluster_start == ex_cluster_end) ||
3997 (rr_cluster_start == ex_cluster_start)) {
3998 if (rr_cluster_start == ex_cluster_end)
3999 ee_start += ee_len - 1;
4000 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
4001 c_offset;
4002 map->m_len = min(map->m_len,
4003 (unsigned) sbi->s_cluster_ratio - c_offset);
4004 /*
4005 * Check for and handle this case:
4006 *
4007 * |--------- cluster # N-------------|
4008 * |------- extent ----|
4009 * |--- requested region ---|
4010 * |===========|
4011 */
4012
4013 if (map->m_lblk < ee_block)
4014 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4015
4016 /*
4017 * Check for the case where there is already another allocated
4018 * block to the right of 'ex' but before the end of the cluster.
4019 *
4020 * |------------- cluster # N-------------|
4021 * |----- ex -----| |---- ex_right ----|
4022 * |------ requested region ------|
4023 * |================|
4024 */
4025 if (map->m_lblk > ee_block) {
4026 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4027 map->m_len = min(map->m_len, next - map->m_lblk);
4028 }
4029
4030 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4031 return 1;
4032 }
4033
4034 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4035 return 0;
4036 }
4037
4038
4039 /*
4040 * Block allocation/map/preallocation routine for extents based files
4041 *
4042 *
4043 * Need to be called with
4044 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4045 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4046 *
4047 * return > 0, number of of blocks already mapped/allocated
4048 * if create == 0 and these are pre-allocated blocks
4049 * buffer head is unmapped
4050 * otherwise blocks are mapped
4051 *
4052 * return = 0, if plain look up failed (blocks have not been allocated)
4053 * buffer head is unmapped
4054 *
4055 * return < 0, error case.
4056 */
4057 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4058 struct ext4_map_blocks *map, int flags)
4059 {
4060 struct ext4_ext_path *path = NULL;
4061 struct ext4_extent newex, *ex, *ex2;
4062 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4063 ext4_fsblk_t newblock = 0;
4064 int free_on_err = 0, err = 0, depth;
4065 unsigned int allocated = 0, offset = 0;
4066 unsigned int allocated_clusters = 0;
4067 struct ext4_allocation_request ar;
4068 ext4_io_end_t *io = ext4_inode_aio(inode);
4069 ext4_lblk_t cluster_offset;
4070 int set_unwritten = 0;
4071
4072 ext_debug("blocks %u/%u requested for inode %lu\n",
4073 map->m_lblk, map->m_len, inode->i_ino);
4074 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4075
4076 /* find extent for this block */
4077 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4078 if (IS_ERR(path)) {
4079 err = PTR_ERR(path);
4080 path = NULL;
4081 goto out2;
4082 }
4083
4084 depth = ext_depth(inode);
4085
4086 /*
4087 * consistent leaf must not be empty;
4088 * this situation is possible, though, _during_ tree modification;
4089 * this is why assert can't be put in ext4_ext_find_extent()
4090 */
4091 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4092 EXT4_ERROR_INODE(inode, "bad extent address "
4093 "lblock: %lu, depth: %d pblock %lld",
4094 (unsigned long) map->m_lblk, depth,
4095 path[depth].p_block);
4096 err = -EIO;
4097 goto out2;
4098 }
4099
4100 ex = path[depth].p_ext;
4101 if (ex) {
4102 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4103 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4104 unsigned short ee_len;
4105
4106 /*
4107 * Uninitialized extents are treated as holes, except that
4108 * we split out initialized portions during a write.
4109 */
4110 ee_len = ext4_ext_get_actual_len(ex);
4111
4112 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4113
4114 /* if found extent covers block, simply return it */
4115 if (in_range(map->m_lblk, ee_block, ee_len)) {
4116 newblock = map->m_lblk - ee_block + ee_start;
4117 /* number of remaining blocks in the extent */
4118 allocated = ee_len - (map->m_lblk - ee_block);
4119 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4120 ee_block, ee_len, newblock);
4121
4122 if (!ext4_ext_is_uninitialized(ex))
4123 goto out;
4124
4125 allocated = ext4_ext_handle_uninitialized_extents(
4126 handle, inode, map, path, flags,
4127 allocated, newblock);
4128 goto out3;
4129 }
4130 }
4131
4132 if ((sbi->s_cluster_ratio > 1) &&
4133 ext4_find_delalloc_cluster(inode, map->m_lblk))
4134 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4135
4136 /*
4137 * requested block isn't allocated yet;
4138 * we couldn't try to create block if create flag is zero
4139 */
4140 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4141 /*
4142 * put just found gap into cache to speed up
4143 * subsequent requests
4144 */
4145 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4146 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4147 goto out2;
4148 }
4149
4150 /*
4151 * Okay, we need to do block allocation.
4152 */
4153 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4154 newex.ee_block = cpu_to_le32(map->m_lblk);
4155 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4156
4157 /*
4158 * If we are doing bigalloc, check to see if the extent returned
4159 * by ext4_ext_find_extent() implies a cluster we can use.
4160 */
4161 if (cluster_offset && ex &&
4162 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4163 ar.len = allocated = map->m_len;
4164 newblock = map->m_pblk;
4165 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4166 goto got_allocated_blocks;
4167 }
4168
4169 /* find neighbour allocated blocks */
4170 ar.lleft = map->m_lblk;
4171 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4172 if (err)
4173 goto out2;
4174 ar.lright = map->m_lblk;
4175 ex2 = NULL;
4176 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4177 if (err)
4178 goto out2;
4179
4180 /* Check if the extent after searching to the right implies a
4181 * cluster we can use. */
4182 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4183 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4184 ar.len = allocated = map->m_len;
4185 newblock = map->m_pblk;
4186 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4187 goto got_allocated_blocks;
4188 }
4189
4190 /*
4191 * See if request is beyond maximum number of blocks we can have in
4192 * a single extent. For an initialized extent this limit is
4193 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4194 * EXT_UNINIT_MAX_LEN.
4195 */
4196 if (map->m_len > EXT_INIT_MAX_LEN &&
4197 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4198 map->m_len = EXT_INIT_MAX_LEN;
4199 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4200 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4201 map->m_len = EXT_UNINIT_MAX_LEN;
4202
4203 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4204 newex.ee_len = cpu_to_le16(map->m_len);
4205 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4206 if (err)
4207 allocated = ext4_ext_get_actual_len(&newex);
4208 else
4209 allocated = map->m_len;
4210
4211 /* allocate new block */
4212 ar.inode = inode;
4213 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4214 ar.logical = map->m_lblk;
4215 /*
4216 * We calculate the offset from the beginning of the cluster
4217 * for the logical block number, since when we allocate a
4218 * physical cluster, the physical block should start at the
4219 * same offset from the beginning of the cluster. This is
4220 * needed so that future calls to get_implied_cluster_alloc()
4221 * work correctly.
4222 */
4223 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4224 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4225 ar.goal -= offset;
4226 ar.logical -= offset;
4227 if (S_ISREG(inode->i_mode))
4228 ar.flags = EXT4_MB_HINT_DATA;
4229 else
4230 /* disable in-core preallocation for non-regular files */
4231 ar.flags = 0;
4232 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4233 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4234 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4235 if (!newblock)
4236 goto out2;
4237 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4238 ar.goal, newblock, allocated);
4239 free_on_err = 1;
4240 allocated_clusters = ar.len;
4241 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4242 if (ar.len > allocated)
4243 ar.len = allocated;
4244
4245 got_allocated_blocks:
4246 /* try to insert new extent into found leaf and return */
4247 ext4_ext_store_pblock(&newex, newblock + offset);
4248 newex.ee_len = cpu_to_le16(ar.len);
4249 /* Mark uninitialized */
4250 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4251 ext4_ext_mark_uninitialized(&newex);
4252 map->m_flags |= EXT4_MAP_UNWRITTEN;
4253 /*
4254 * io_end structure was created for every IO write to an
4255 * uninitialized extent. To avoid unnecessary conversion,
4256 * here we flag the IO that really needs the conversion.
4257 * For non asycn direct IO case, flag the inode state
4258 * that we need to perform conversion when IO is done.
4259 */
4260 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4261 set_unwritten = 1;
4262 if (ext4_should_dioread_nolock(inode))
4263 map->m_flags |= EXT4_MAP_UNINIT;
4264 }
4265
4266 err = 0;
4267 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4268 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4269 path, ar.len);
4270 if (!err)
4271 err = ext4_ext_insert_extent(handle, inode, path,
4272 &newex, flags);
4273
4274 if (!err && set_unwritten) {
4275 if (io)
4276 ext4_set_io_unwritten_flag(inode, io);
4277 else
4278 ext4_set_inode_state(inode,
4279 EXT4_STATE_DIO_UNWRITTEN);
4280 }
4281
4282 if (err && free_on_err) {
4283 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4284 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4285 /* free data blocks we just allocated */
4286 /* not a good idea to call discard here directly,
4287 * but otherwise we'd need to call it every free() */
4288 ext4_discard_preallocations(inode);
4289 ext4_free_blocks(handle, inode, NULL, newblock,
4290 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4291 goto out2;
4292 }
4293
4294 /* previous routine could use block we allocated */
4295 newblock = ext4_ext_pblock(&newex);
4296 allocated = ext4_ext_get_actual_len(&newex);
4297 if (allocated > map->m_len)
4298 allocated = map->m_len;
4299 map->m_flags |= EXT4_MAP_NEW;
4300
4301 /*
4302 * Update reserved blocks/metadata blocks after successful
4303 * block allocation which had been deferred till now.
4304 */
4305 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4306 unsigned int reserved_clusters;
4307 /*
4308 * Check how many clusters we had reserved this allocated range
4309 */
4310 reserved_clusters = get_reserved_cluster_alloc(inode,
4311 map->m_lblk, allocated);
4312 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4313 if (reserved_clusters) {
4314 /*
4315 * We have clusters reserved for this range.
4316 * But since we are not doing actual allocation
4317 * and are simply using blocks from previously
4318 * allocated cluster, we should release the
4319 * reservation and not claim quota.
4320 */
4321 ext4_da_update_reserve_space(inode,
4322 reserved_clusters, 0);
4323 }
4324 } else {
4325 BUG_ON(allocated_clusters < reserved_clusters);
4326 if (reserved_clusters < allocated_clusters) {
4327 struct ext4_inode_info *ei = EXT4_I(inode);
4328 int reservation = allocated_clusters -
4329 reserved_clusters;
4330 /*
4331 * It seems we claimed few clusters outside of
4332 * the range of this allocation. We should give
4333 * it back to the reservation pool. This can
4334 * happen in the following case:
4335 *
4336 * * Suppose s_cluster_ratio is 4 (i.e., each
4337 * cluster has 4 blocks. Thus, the clusters
4338 * are [0-3],[4-7],[8-11]...
4339 * * First comes delayed allocation write for
4340 * logical blocks 10 & 11. Since there were no
4341 * previous delayed allocated blocks in the
4342 * range [8-11], we would reserve 1 cluster
4343 * for this write.
4344 * * Next comes write for logical blocks 3 to 8.
4345 * In this case, we will reserve 2 clusters
4346 * (for [0-3] and [4-7]; and not for [8-11] as
4347 * that range has a delayed allocated blocks.
4348 * Thus total reserved clusters now becomes 3.
4349 * * Now, during the delayed allocation writeout
4350 * time, we will first write blocks [3-8] and
4351 * allocate 3 clusters for writing these
4352 * blocks. Also, we would claim all these
4353 * three clusters above.
4354 * * Now when we come here to writeout the
4355 * blocks [10-11], we would expect to claim
4356 * the reservation of 1 cluster we had made
4357 * (and we would claim it since there are no
4358 * more delayed allocated blocks in the range
4359 * [8-11]. But our reserved cluster count had
4360 * already gone to 0.
4361 *
4362 * Thus, at the step 4 above when we determine
4363 * that there are still some unwritten delayed
4364 * allocated blocks outside of our current
4365 * block range, we should increment the
4366 * reserved clusters count so that when the
4367 * remaining blocks finally gets written, we
4368 * could claim them.
4369 */
4370 dquot_reserve_block(inode,
4371 EXT4_C2B(sbi, reservation));
4372 spin_lock(&ei->i_block_reservation_lock);
4373 ei->i_reserved_data_blocks += reservation;
4374 spin_unlock(&ei->i_block_reservation_lock);
4375 }
4376 /*
4377 * We will claim quota for all newly allocated blocks.
4378 * We're updating the reserved space *after* the
4379 * correction above so we do not accidentally free
4380 * all the metadata reservation because we might
4381 * actually need it later on.
4382 */
4383 ext4_da_update_reserve_space(inode, allocated_clusters,
4384 1);
4385 }
4386 }
4387
4388 /*
4389 * Cache the extent and update transaction to commit on fdatasync only
4390 * when it is _not_ an uninitialized extent.
4391 */
4392 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4393 ext4_update_inode_fsync_trans(handle, inode, 1);
4394 else
4395 ext4_update_inode_fsync_trans(handle, inode, 0);
4396 out:
4397 if (allocated > map->m_len)
4398 allocated = map->m_len;
4399 ext4_ext_show_leaf(inode, path);
4400 map->m_flags |= EXT4_MAP_MAPPED;
4401 map->m_pblk = newblock;
4402 map->m_len = allocated;
4403 out2:
4404 if (path) {
4405 ext4_ext_drop_refs(path);
4406 kfree(path);
4407 }
4408
4409 out3:
4410 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4411 err ? err : allocated);
4412 ext4_es_lru_add(inode);
4413 return err ? err : allocated;
4414 }
4415
4416 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4417 {
4418 struct super_block *sb = inode->i_sb;
4419 ext4_lblk_t last_block;
4420 int err = 0;
4421
4422 /*
4423 * TODO: optimization is possible here.
4424 * Probably we need not scan at all,
4425 * because page truncation is enough.
4426 */
4427
4428 /* we have to know where to truncate from in crash case */
4429 EXT4_I(inode)->i_disksize = inode->i_size;
4430 ext4_mark_inode_dirty(handle, inode);
4431
4432 last_block = (inode->i_size + sb->s_blocksize - 1)
4433 >> EXT4_BLOCK_SIZE_BITS(sb);
4434 retry:
4435 err = ext4_es_remove_extent(inode, last_block,
4436 EXT_MAX_BLOCKS - last_block);
4437 if (err == -ENOMEM) {
4438 cond_resched();
4439 congestion_wait(BLK_RW_ASYNC, HZ/50);
4440 goto retry;
4441 }
4442 if (err) {
4443 ext4_std_error(inode->i_sb, err);
4444 return;
4445 }
4446 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4447 ext4_std_error(inode->i_sb, err);
4448 }
4449
4450 static void ext4_falloc_update_inode(struct inode *inode,
4451 int mode, loff_t new_size, int update_ctime)
4452 {
4453 struct timespec now;
4454
4455 if (update_ctime) {
4456 now = current_fs_time(inode->i_sb);
4457 if (!timespec_equal(&inode->i_ctime, &now))
4458 inode->i_ctime = now;
4459 }
4460 /*
4461 * Update only when preallocation was requested beyond
4462 * the file size.
4463 */
4464 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4465 if (new_size > i_size_read(inode))
4466 i_size_write(inode, new_size);
4467 if (new_size > EXT4_I(inode)->i_disksize)
4468 ext4_update_i_disksize(inode, new_size);
4469 } else {
4470 /*
4471 * Mark that we allocate beyond EOF so the subsequent truncate
4472 * can proceed even if the new size is the same as i_size.
4473 */
4474 if (new_size > i_size_read(inode))
4475 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4476 }
4477
4478 }
4479
4480 /*
4481 * preallocate space for a file. This implements ext4's fallocate file
4482 * operation, which gets called from sys_fallocate system call.
4483 * For block-mapped files, posix_fallocate should fall back to the method
4484 * of writing zeroes to the required new blocks (the same behavior which is
4485 * expected for file systems which do not support fallocate() system call).
4486 */
4487 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4488 {
4489 struct inode *inode = file_inode(file);
4490 handle_t *handle;
4491 loff_t new_size;
4492 unsigned int max_blocks;
4493 int ret = 0;
4494 int ret2 = 0;
4495 int retries = 0;
4496 int flags;
4497 struct ext4_map_blocks map;
4498 unsigned int credits, blkbits = inode->i_blkbits;
4499
4500 /* Return error if mode is not supported */
4501 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4502 return -EOPNOTSUPP;
4503
4504 if (mode & FALLOC_FL_PUNCH_HOLE)
4505 return ext4_punch_hole(inode, offset, len);
4506
4507 ret = ext4_convert_inline_data(inode);
4508 if (ret)
4509 return ret;
4510
4511 /*
4512 * currently supporting (pre)allocate mode for extent-based
4513 * files _only_
4514 */
4515 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4516 return -EOPNOTSUPP;
4517
4518 trace_ext4_fallocate_enter(inode, offset, len, mode);
4519 map.m_lblk = offset >> blkbits;
4520 /*
4521 * We can't just convert len to max_blocks because
4522 * If blocksize = 4096 offset = 3072 and len = 2048
4523 */
4524 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4525 - map.m_lblk;
4526 /*
4527 * credits to insert 1 extent into extent tree
4528 */
4529 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4530 mutex_lock(&inode->i_mutex);
4531 ret = inode_newsize_ok(inode, (len + offset));
4532 if (ret) {
4533 mutex_unlock(&inode->i_mutex);
4534 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4535 return ret;
4536 }
4537 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4538 if (mode & FALLOC_FL_KEEP_SIZE)
4539 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4540 /*
4541 * Don't normalize the request if it can fit in one extent so
4542 * that it doesn't get unnecessarily split into multiple
4543 * extents.
4544 */
4545 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4546 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4547
4548 retry:
4549 while (ret >= 0 && ret < max_blocks) {
4550 map.m_lblk = map.m_lblk + ret;
4551 map.m_len = max_blocks = max_blocks - ret;
4552 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4553 credits);
4554 if (IS_ERR(handle)) {
4555 ret = PTR_ERR(handle);
4556 break;
4557 }
4558 ret = ext4_map_blocks(handle, inode, &map, flags);
4559 if (ret <= 0) {
4560 #ifdef EXT4FS_DEBUG
4561 ext4_warning(inode->i_sb,
4562 "inode #%lu: block %u: len %u: "
4563 "ext4_ext_map_blocks returned %d",
4564 inode->i_ino, map.m_lblk,
4565 map.m_len, ret);
4566 #endif
4567 ext4_mark_inode_dirty(handle, inode);
4568 ret2 = ext4_journal_stop(handle);
4569 break;
4570 }
4571 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4572 blkbits) >> blkbits))
4573 new_size = offset + len;
4574 else
4575 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4576
4577 ext4_falloc_update_inode(inode, mode, new_size,
4578 (map.m_flags & EXT4_MAP_NEW));
4579 ext4_mark_inode_dirty(handle, inode);
4580 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4581 ext4_handle_sync(handle);
4582 ret2 = ext4_journal_stop(handle);
4583 if (ret2)
4584 break;
4585 }
4586 if (ret == -ENOSPC &&
4587 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4588 ret = 0;
4589 goto retry;
4590 }
4591 mutex_unlock(&inode->i_mutex);
4592 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4593 ret > 0 ? ret2 : ret);
4594 return ret > 0 ? ret2 : ret;
4595 }
4596
4597 /*
4598 * This function convert a range of blocks to written extents
4599 * The caller of this function will pass the start offset and the size.
4600 * all unwritten extents within this range will be converted to
4601 * written extents.
4602 *
4603 * This function is called from the direct IO end io call back
4604 * function, to convert the fallocated extents after IO is completed.
4605 * Returns 0 on success.
4606 */
4607 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4608 loff_t offset, ssize_t len)
4609 {
4610 unsigned int max_blocks;
4611 int ret = 0;
4612 int ret2 = 0;
4613 struct ext4_map_blocks map;
4614 unsigned int credits, blkbits = inode->i_blkbits;
4615
4616 map.m_lblk = offset >> blkbits;
4617 /*
4618 * We can't just convert len to max_blocks because
4619 * If blocksize = 4096 offset = 3072 and len = 2048
4620 */
4621 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4622 map.m_lblk);
4623 /*
4624 * This is somewhat ugly but the idea is clear: When transaction is
4625 * reserved, everything goes into it. Otherwise we rather start several
4626 * smaller transactions for conversion of each extent separately.
4627 */
4628 if (handle) {
4629 handle = ext4_journal_start_reserved(handle,
4630 EXT4_HT_EXT_CONVERT);
4631 if (IS_ERR(handle))
4632 return PTR_ERR(handle);
4633 credits = 0;
4634 } else {
4635 /*
4636 * credits to insert 1 extent into extent tree
4637 */
4638 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4639 }
4640 while (ret >= 0 && ret < max_blocks) {
4641 map.m_lblk += ret;
4642 map.m_len = (max_blocks -= ret);
4643 if (credits) {
4644 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4645 credits);
4646 if (IS_ERR(handle)) {
4647 ret = PTR_ERR(handle);
4648 break;
4649 }
4650 }
4651 ret = ext4_map_blocks(handle, inode, &map,
4652 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4653 if (ret <= 0)
4654 ext4_warning(inode->i_sb,
4655 "inode #%lu: block %u: len %u: "
4656 "ext4_ext_map_blocks returned %d",
4657 inode->i_ino, map.m_lblk,
4658 map.m_len, ret);
4659 ext4_mark_inode_dirty(handle, inode);
4660 if (credits)
4661 ret2 = ext4_journal_stop(handle);
4662 if (ret <= 0 || ret2)
4663 break;
4664 }
4665 if (!credits)
4666 ret2 = ext4_journal_stop(handle);
4667 return ret > 0 ? ret2 : ret;
4668 }
4669
4670 /*
4671 * If newes is not existing extent (newes->ec_pblk equals zero) find
4672 * delayed extent at start of newes and update newes accordingly and
4673 * return start of the next delayed extent.
4674 *
4675 * If newes is existing extent (newes->ec_pblk is not equal zero)
4676 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4677 * extent found. Leave newes unmodified.
4678 */
4679 static int ext4_find_delayed_extent(struct inode *inode,
4680 struct extent_status *newes)
4681 {
4682 struct extent_status es;
4683 ext4_lblk_t block, next_del;
4684
4685 if (newes->es_pblk == 0) {
4686 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4687 newes->es_lblk + newes->es_len - 1, &es);
4688
4689 /*
4690 * No extent in extent-tree contains block @newes->es_pblk,
4691 * then the block may stay in 1)a hole or 2)delayed-extent.
4692 */
4693 if (es.es_len == 0)
4694 /* A hole found. */
4695 return 0;
4696
4697 if (es.es_lblk > newes->es_lblk) {
4698 /* A hole found. */
4699 newes->es_len = min(es.es_lblk - newes->es_lblk,
4700 newes->es_len);
4701 return 0;
4702 }
4703
4704 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4705 }
4706
4707 block = newes->es_lblk + newes->es_len;
4708 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4709 if (es.es_len == 0)
4710 next_del = EXT_MAX_BLOCKS;
4711 else
4712 next_del = es.es_lblk;
4713
4714 return next_del;
4715 }
4716 /* fiemap flags we can handle specified here */
4717 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4718
4719 static int ext4_xattr_fiemap(struct inode *inode,
4720 struct fiemap_extent_info *fieinfo)
4721 {
4722 __u64 physical = 0;
4723 __u64 length;
4724 __u32 flags = FIEMAP_EXTENT_LAST;
4725 int blockbits = inode->i_sb->s_blocksize_bits;
4726 int error = 0;
4727
4728 /* in-inode? */
4729 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4730 struct ext4_iloc iloc;
4731 int offset; /* offset of xattr in inode */
4732
4733 error = ext4_get_inode_loc(inode, &iloc);
4734 if (error)
4735 return error;
4736 physical = (__u64)iloc.bh->b_blocknr << blockbits;
4737 offset = EXT4_GOOD_OLD_INODE_SIZE +
4738 EXT4_I(inode)->i_extra_isize;
4739 physical += offset;
4740 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4741 flags |= FIEMAP_EXTENT_DATA_INLINE;
4742 brelse(iloc.bh);
4743 } else { /* external block */
4744 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4745 length = inode->i_sb->s_blocksize;
4746 }
4747
4748 if (physical)
4749 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4750 length, flags);
4751 return (error < 0 ? error : 0);
4752 }
4753
4754 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4755 __u64 start, __u64 len)
4756 {
4757 ext4_lblk_t start_blk;
4758 int error = 0;
4759
4760 if (ext4_has_inline_data(inode)) {
4761 int has_inline = 1;
4762
4763 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4764
4765 if (has_inline)
4766 return error;
4767 }
4768
4769 /* fallback to generic here if not in extents fmt */
4770 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4771 return generic_block_fiemap(inode, fieinfo, start, len,
4772 ext4_get_block);
4773
4774 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4775 return -EBADR;
4776
4777 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4778 error = ext4_xattr_fiemap(inode, fieinfo);
4779 } else {
4780 ext4_lblk_t len_blks;
4781 __u64 last_blk;
4782
4783 start_blk = start >> inode->i_sb->s_blocksize_bits;
4784 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4785 if (last_blk >= EXT_MAX_BLOCKS)
4786 last_blk = EXT_MAX_BLOCKS-1;
4787 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4788
4789 /*
4790 * Walk the extent tree gathering extent information
4791 * and pushing extents back to the user.
4792 */
4793 error = ext4_fill_fiemap_extents(inode, start_blk,
4794 len_blks, fieinfo);
4795 }
4796 ext4_es_lru_add(inode);
4797 return error;
4798 }