]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/extents.c
3ee60e2e2ac75334852e7f612f8a2eb1c1dffb2c
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
44 #include "xattr.h"
45
46 #include <trace/events/ext4.h>
47
48 /*
49 * used by extent splitting.
50 */
51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
52 due to ENOSPC */
53 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
54 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
55
56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
58
59 static __le32 ext4_extent_block_csum(struct inode *inode,
60 struct ext4_extent_header *eh)
61 {
62 struct ext4_inode_info *ei = EXT4_I(inode);
63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64 __u32 csum;
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67 EXT4_EXTENT_TAIL_OFFSET(eh));
68 return cpu_to_le32(csum);
69 }
70
71 static int ext4_extent_block_csum_verify(struct inode *inode,
72 struct ext4_extent_header *eh)
73 {
74 struct ext4_extent_tail *et;
75
76 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
78 return 1;
79
80 et = find_ext4_extent_tail(eh);
81 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 return 0;
83 return 1;
84 }
85
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 struct ext4_extent_header *eh)
88 {
89 struct ext4_extent_tail *et;
90
91 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
93 return;
94
95 et = find_ext4_extent_tail(eh);
96 et->et_checksum = ext4_extent_block_csum(inode, eh);
97 }
98
99 static int ext4_split_extent(handle_t *handle,
100 struct inode *inode,
101 struct ext4_ext_path *path,
102 struct ext4_map_blocks *map,
103 int split_flag,
104 int flags);
105
106 static int ext4_split_extent_at(handle_t *handle,
107 struct inode *inode,
108 struct ext4_ext_path *path,
109 ext4_lblk_t split,
110 int split_flag,
111 int flags);
112
113 static int ext4_find_delayed_extent(struct inode *inode,
114 struct extent_status *newes);
115
116 static int ext4_ext_truncate_extend_restart(handle_t *handle,
117 struct inode *inode,
118 int needed)
119 {
120 int err;
121
122 if (!ext4_handle_valid(handle))
123 return 0;
124 if (handle->h_buffer_credits > needed)
125 return 0;
126 err = ext4_journal_extend(handle, needed);
127 if (err <= 0)
128 return err;
129 err = ext4_truncate_restart_trans(handle, inode, needed);
130 if (err == 0)
131 err = -EAGAIN;
132
133 return err;
134 }
135
136 /*
137 * could return:
138 * - EROFS
139 * - ENOMEM
140 */
141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
142 struct ext4_ext_path *path)
143 {
144 if (path->p_bh) {
145 /* path points to block */
146 return ext4_journal_get_write_access(handle, path->p_bh);
147 }
148 /* path points to leaf/index in inode body */
149 /* we use in-core data, no need to protect them */
150 return 0;
151 }
152
153 /*
154 * could return:
155 * - EROFS
156 * - ENOMEM
157 * - EIO
158 */
159 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
160 struct inode *inode, struct ext4_ext_path *path)
161 {
162 int err;
163 if (path->p_bh) {
164 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
165 /* path points to block */
166 err = __ext4_handle_dirty_metadata(where, line, handle,
167 inode, path->p_bh);
168 } else {
169 /* path points to leaf/index in inode body */
170 err = ext4_mark_inode_dirty(handle, inode);
171 }
172 return err;
173 }
174
175 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
176 struct ext4_ext_path *path,
177 ext4_lblk_t block)
178 {
179 if (path) {
180 int depth = path->p_depth;
181 struct ext4_extent *ex;
182
183 /*
184 * Try to predict block placement assuming that we are
185 * filling in a file which will eventually be
186 * non-sparse --- i.e., in the case of libbfd writing
187 * an ELF object sections out-of-order but in a way
188 * the eventually results in a contiguous object or
189 * executable file, or some database extending a table
190 * space file. However, this is actually somewhat
191 * non-ideal if we are writing a sparse file such as
192 * qemu or KVM writing a raw image file that is going
193 * to stay fairly sparse, since it will end up
194 * fragmenting the file system's free space. Maybe we
195 * should have some hueristics or some way to allow
196 * userspace to pass a hint to file system,
197 * especially if the latter case turns out to be
198 * common.
199 */
200 ex = path[depth].p_ext;
201 if (ex) {
202 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
203 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
204
205 if (block > ext_block)
206 return ext_pblk + (block - ext_block);
207 else
208 return ext_pblk - (ext_block - block);
209 }
210
211 /* it looks like index is empty;
212 * try to find starting block from index itself */
213 if (path[depth].p_bh)
214 return path[depth].p_bh->b_blocknr;
215 }
216
217 /* OK. use inode's group */
218 return ext4_inode_to_goal_block(inode);
219 }
220
221 /*
222 * Allocation for a meta data block
223 */
224 static ext4_fsblk_t
225 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
226 struct ext4_ext_path *path,
227 struct ext4_extent *ex, int *err, unsigned int flags)
228 {
229 ext4_fsblk_t goal, newblock;
230
231 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
232 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
233 NULL, err);
234 return newblock;
235 }
236
237 static inline int ext4_ext_space_block(struct inode *inode, int check)
238 {
239 int size;
240
241 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
242 / sizeof(struct ext4_extent);
243 #ifdef AGGRESSIVE_TEST
244 if (!check && size > 6)
245 size = 6;
246 #endif
247 return size;
248 }
249
250 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
251 {
252 int size;
253
254 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
255 / sizeof(struct ext4_extent_idx);
256 #ifdef AGGRESSIVE_TEST
257 if (!check && size > 5)
258 size = 5;
259 #endif
260 return size;
261 }
262
263 static inline int ext4_ext_space_root(struct inode *inode, int check)
264 {
265 int size;
266
267 size = sizeof(EXT4_I(inode)->i_data);
268 size -= sizeof(struct ext4_extent_header);
269 size /= sizeof(struct ext4_extent);
270 #ifdef AGGRESSIVE_TEST
271 if (!check && size > 3)
272 size = 3;
273 #endif
274 return size;
275 }
276
277 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
278 {
279 int size;
280
281 size = sizeof(EXT4_I(inode)->i_data);
282 size -= sizeof(struct ext4_extent_header);
283 size /= sizeof(struct ext4_extent_idx);
284 #ifdef AGGRESSIVE_TEST
285 if (!check && size > 4)
286 size = 4;
287 #endif
288 return size;
289 }
290
291 /*
292 * Calculate the number of metadata blocks needed
293 * to allocate @blocks
294 * Worse case is one block per extent
295 */
296 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
297 {
298 struct ext4_inode_info *ei = EXT4_I(inode);
299 int idxs;
300
301 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
302 / sizeof(struct ext4_extent_idx));
303
304 /*
305 * If the new delayed allocation block is contiguous with the
306 * previous da block, it can share index blocks with the
307 * previous block, so we only need to allocate a new index
308 * block every idxs leaf blocks. At ldxs**2 blocks, we need
309 * an additional index block, and at ldxs**3 blocks, yet
310 * another index blocks.
311 */
312 if (ei->i_da_metadata_calc_len &&
313 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
314 int num = 0;
315
316 if ((ei->i_da_metadata_calc_len % idxs) == 0)
317 num++;
318 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
319 num++;
320 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
321 num++;
322 ei->i_da_metadata_calc_len = 0;
323 } else
324 ei->i_da_metadata_calc_len++;
325 ei->i_da_metadata_calc_last_lblock++;
326 return num;
327 }
328
329 /*
330 * In the worst case we need a new set of index blocks at
331 * every level of the inode's extent tree.
332 */
333 ei->i_da_metadata_calc_len = 1;
334 ei->i_da_metadata_calc_last_lblock = lblock;
335 return ext_depth(inode) + 1;
336 }
337
338 static int
339 ext4_ext_max_entries(struct inode *inode, int depth)
340 {
341 int max;
342
343 if (depth == ext_depth(inode)) {
344 if (depth == 0)
345 max = ext4_ext_space_root(inode, 1);
346 else
347 max = ext4_ext_space_root_idx(inode, 1);
348 } else {
349 if (depth == 0)
350 max = ext4_ext_space_block(inode, 1);
351 else
352 max = ext4_ext_space_block_idx(inode, 1);
353 }
354
355 return max;
356 }
357
358 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
359 {
360 ext4_fsblk_t block = ext4_ext_pblock(ext);
361 int len = ext4_ext_get_actual_len(ext);
362 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
363 ext4_lblk_t last = lblock + len - 1;
364
365 if (lblock > last)
366 return 0;
367 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
368 }
369
370 static int ext4_valid_extent_idx(struct inode *inode,
371 struct ext4_extent_idx *ext_idx)
372 {
373 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
374
375 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
376 }
377
378 static int ext4_valid_extent_entries(struct inode *inode,
379 struct ext4_extent_header *eh,
380 int depth)
381 {
382 unsigned short entries;
383 if (eh->eh_entries == 0)
384 return 1;
385
386 entries = le16_to_cpu(eh->eh_entries);
387
388 if (depth == 0) {
389 /* leaf entries */
390 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
391 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
392 ext4_fsblk_t pblock = 0;
393 ext4_lblk_t lblock = 0;
394 ext4_lblk_t prev = 0;
395 int len = 0;
396 while (entries) {
397 if (!ext4_valid_extent(inode, ext))
398 return 0;
399
400 /* Check for overlapping extents */
401 lblock = le32_to_cpu(ext->ee_block);
402 len = ext4_ext_get_actual_len(ext);
403 if ((lblock <= prev) && prev) {
404 pblock = ext4_ext_pblock(ext);
405 es->s_last_error_block = cpu_to_le64(pblock);
406 return 0;
407 }
408 ext++;
409 entries--;
410 prev = lblock + len - 1;
411 }
412 } else {
413 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
414 while (entries) {
415 if (!ext4_valid_extent_idx(inode, ext_idx))
416 return 0;
417 ext_idx++;
418 entries--;
419 }
420 }
421 return 1;
422 }
423
424 static int __ext4_ext_check(const char *function, unsigned int line,
425 struct inode *inode, struct ext4_extent_header *eh,
426 int depth, ext4_fsblk_t pblk)
427 {
428 const char *error_msg;
429 int max = 0;
430
431 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
432 error_msg = "invalid magic";
433 goto corrupted;
434 }
435 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
436 error_msg = "unexpected eh_depth";
437 goto corrupted;
438 }
439 if (unlikely(eh->eh_max == 0)) {
440 error_msg = "invalid eh_max";
441 goto corrupted;
442 }
443 max = ext4_ext_max_entries(inode, depth);
444 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
445 error_msg = "too large eh_max";
446 goto corrupted;
447 }
448 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
449 error_msg = "invalid eh_entries";
450 goto corrupted;
451 }
452 if (!ext4_valid_extent_entries(inode, eh, depth)) {
453 error_msg = "invalid extent entries";
454 goto corrupted;
455 }
456 /* Verify checksum on non-root extent tree nodes */
457 if (ext_depth(inode) != depth &&
458 !ext4_extent_block_csum_verify(inode, eh)) {
459 error_msg = "extent tree corrupted";
460 goto corrupted;
461 }
462 return 0;
463
464 corrupted:
465 ext4_error_inode(inode, function, line, 0,
466 "pblk %llu bad header/extent: %s - magic %x, "
467 "entries %u, max %u(%u), depth %u(%u)",
468 (unsigned long long) pblk, error_msg,
469 le16_to_cpu(eh->eh_magic),
470 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
471 max, le16_to_cpu(eh->eh_depth), depth);
472 return -EIO;
473 }
474
475 #define ext4_ext_check(inode, eh, depth, pblk) \
476 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
477
478 int ext4_ext_check_inode(struct inode *inode)
479 {
480 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
481 }
482
483 static struct buffer_head *
484 __read_extent_tree_block(const char *function, unsigned int line,
485 struct inode *inode, ext4_fsblk_t pblk, int depth,
486 int flags)
487 {
488 struct buffer_head *bh;
489 int err;
490
491 bh = sb_getblk(inode->i_sb, pblk);
492 if (unlikely(!bh))
493 return ERR_PTR(-ENOMEM);
494
495 if (!bh_uptodate_or_lock(bh)) {
496 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
497 err = bh_submit_read(bh);
498 if (err < 0)
499 goto errout;
500 }
501 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
502 return bh;
503 err = __ext4_ext_check(function, line, inode,
504 ext_block_hdr(bh), depth, pblk);
505 if (err)
506 goto errout;
507 set_buffer_verified(bh);
508 /*
509 * If this is a leaf block, cache all of its entries
510 */
511 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
512 struct ext4_extent_header *eh = ext_block_hdr(bh);
513 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
514 ext4_lblk_t prev = 0;
515 int i;
516
517 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
518 unsigned int status = EXTENT_STATUS_WRITTEN;
519 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
520 int len = ext4_ext_get_actual_len(ex);
521
522 if (prev && (prev != lblk))
523 ext4_es_cache_extent(inode, prev,
524 lblk - prev, ~0,
525 EXTENT_STATUS_HOLE);
526
527 if (ext4_ext_is_uninitialized(ex))
528 status = EXTENT_STATUS_UNWRITTEN;
529 ext4_es_cache_extent(inode, lblk, len,
530 ext4_ext_pblock(ex), status);
531 prev = lblk + len;
532 }
533 }
534 return bh;
535 errout:
536 put_bh(bh);
537 return ERR_PTR(err);
538
539 }
540
541 #define read_extent_tree_block(inode, pblk, depth, flags) \
542 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
543 (depth), (flags))
544
545 /*
546 * This function is called to cache a file's extent information in the
547 * extent status tree
548 */
549 int ext4_ext_precache(struct inode *inode)
550 {
551 struct ext4_inode_info *ei = EXT4_I(inode);
552 struct ext4_ext_path *path = NULL;
553 struct buffer_head *bh;
554 int i = 0, depth, ret = 0;
555
556 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
557 return 0; /* not an extent-mapped inode */
558
559 down_read(&ei->i_data_sem);
560 depth = ext_depth(inode);
561
562 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
563 GFP_NOFS);
564 if (path == NULL) {
565 up_read(&ei->i_data_sem);
566 return -ENOMEM;
567 }
568
569 /* Don't cache anything if there are no external extent blocks */
570 if (depth == 0)
571 goto out;
572 path[0].p_hdr = ext_inode_hdr(inode);
573 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
574 if (ret)
575 goto out;
576 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
577 while (i >= 0) {
578 /*
579 * If this is a leaf block or we've reached the end of
580 * the index block, go up
581 */
582 if ((i == depth) ||
583 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
584 brelse(path[i].p_bh);
585 path[i].p_bh = NULL;
586 i--;
587 continue;
588 }
589 bh = read_extent_tree_block(inode,
590 ext4_idx_pblock(path[i].p_idx++),
591 depth - i - 1,
592 EXT4_EX_FORCE_CACHE);
593 if (IS_ERR(bh)) {
594 ret = PTR_ERR(bh);
595 break;
596 }
597 i++;
598 path[i].p_bh = bh;
599 path[i].p_hdr = ext_block_hdr(bh);
600 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
601 }
602 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
603 out:
604 up_read(&ei->i_data_sem);
605 ext4_ext_drop_refs(path);
606 kfree(path);
607 return ret;
608 }
609
610 #ifdef EXT_DEBUG
611 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
612 {
613 int k, l = path->p_depth;
614
615 ext_debug("path:");
616 for (k = 0; k <= l; k++, path++) {
617 if (path->p_idx) {
618 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
619 ext4_idx_pblock(path->p_idx));
620 } else if (path->p_ext) {
621 ext_debug(" %d:[%d]%d:%llu ",
622 le32_to_cpu(path->p_ext->ee_block),
623 ext4_ext_is_uninitialized(path->p_ext),
624 ext4_ext_get_actual_len(path->p_ext),
625 ext4_ext_pblock(path->p_ext));
626 } else
627 ext_debug(" []");
628 }
629 ext_debug("\n");
630 }
631
632 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
633 {
634 int depth = ext_depth(inode);
635 struct ext4_extent_header *eh;
636 struct ext4_extent *ex;
637 int i;
638
639 if (!path)
640 return;
641
642 eh = path[depth].p_hdr;
643 ex = EXT_FIRST_EXTENT(eh);
644
645 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
646
647 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
648 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
649 ext4_ext_is_uninitialized(ex),
650 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
651 }
652 ext_debug("\n");
653 }
654
655 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
656 ext4_fsblk_t newblock, int level)
657 {
658 int depth = ext_depth(inode);
659 struct ext4_extent *ex;
660
661 if (depth != level) {
662 struct ext4_extent_idx *idx;
663 idx = path[level].p_idx;
664 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
665 ext_debug("%d: move %d:%llu in new index %llu\n", level,
666 le32_to_cpu(idx->ei_block),
667 ext4_idx_pblock(idx),
668 newblock);
669 idx++;
670 }
671
672 return;
673 }
674
675 ex = path[depth].p_ext;
676 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
677 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
678 le32_to_cpu(ex->ee_block),
679 ext4_ext_pblock(ex),
680 ext4_ext_is_uninitialized(ex),
681 ext4_ext_get_actual_len(ex),
682 newblock);
683 ex++;
684 }
685 }
686
687 #else
688 #define ext4_ext_show_path(inode, path)
689 #define ext4_ext_show_leaf(inode, path)
690 #define ext4_ext_show_move(inode, path, newblock, level)
691 #endif
692
693 void ext4_ext_drop_refs(struct ext4_ext_path *path)
694 {
695 int depth = path->p_depth;
696 int i;
697
698 for (i = 0; i <= depth; i++, path++)
699 if (path->p_bh) {
700 brelse(path->p_bh);
701 path->p_bh = NULL;
702 }
703 }
704
705 /*
706 * ext4_ext_binsearch_idx:
707 * binary search for the closest index of the given block
708 * the header must be checked before calling this
709 */
710 static void
711 ext4_ext_binsearch_idx(struct inode *inode,
712 struct ext4_ext_path *path, ext4_lblk_t block)
713 {
714 struct ext4_extent_header *eh = path->p_hdr;
715 struct ext4_extent_idx *r, *l, *m;
716
717
718 ext_debug("binsearch for %u(idx): ", block);
719
720 l = EXT_FIRST_INDEX(eh) + 1;
721 r = EXT_LAST_INDEX(eh);
722 while (l <= r) {
723 m = l + (r - l) / 2;
724 if (block < le32_to_cpu(m->ei_block))
725 r = m - 1;
726 else
727 l = m + 1;
728 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
729 m, le32_to_cpu(m->ei_block),
730 r, le32_to_cpu(r->ei_block));
731 }
732
733 path->p_idx = l - 1;
734 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
735 ext4_idx_pblock(path->p_idx));
736
737 #ifdef CHECK_BINSEARCH
738 {
739 struct ext4_extent_idx *chix, *ix;
740 int k;
741
742 chix = ix = EXT_FIRST_INDEX(eh);
743 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
744 if (k != 0 &&
745 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
746 printk(KERN_DEBUG "k=%d, ix=0x%p, "
747 "first=0x%p\n", k,
748 ix, EXT_FIRST_INDEX(eh));
749 printk(KERN_DEBUG "%u <= %u\n",
750 le32_to_cpu(ix->ei_block),
751 le32_to_cpu(ix[-1].ei_block));
752 }
753 BUG_ON(k && le32_to_cpu(ix->ei_block)
754 <= le32_to_cpu(ix[-1].ei_block));
755 if (block < le32_to_cpu(ix->ei_block))
756 break;
757 chix = ix;
758 }
759 BUG_ON(chix != path->p_idx);
760 }
761 #endif
762
763 }
764
765 /*
766 * ext4_ext_binsearch:
767 * binary search for closest extent of the given block
768 * the header must be checked before calling this
769 */
770 static void
771 ext4_ext_binsearch(struct inode *inode,
772 struct ext4_ext_path *path, ext4_lblk_t block)
773 {
774 struct ext4_extent_header *eh = path->p_hdr;
775 struct ext4_extent *r, *l, *m;
776
777 if (eh->eh_entries == 0) {
778 /*
779 * this leaf is empty:
780 * we get such a leaf in split/add case
781 */
782 return;
783 }
784
785 ext_debug("binsearch for %u: ", block);
786
787 l = EXT_FIRST_EXTENT(eh) + 1;
788 r = EXT_LAST_EXTENT(eh);
789
790 while (l <= r) {
791 m = l + (r - l) / 2;
792 if (block < le32_to_cpu(m->ee_block))
793 r = m - 1;
794 else
795 l = m + 1;
796 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
797 m, le32_to_cpu(m->ee_block),
798 r, le32_to_cpu(r->ee_block));
799 }
800
801 path->p_ext = l - 1;
802 ext_debug(" -> %d:%llu:[%d]%d ",
803 le32_to_cpu(path->p_ext->ee_block),
804 ext4_ext_pblock(path->p_ext),
805 ext4_ext_is_uninitialized(path->p_ext),
806 ext4_ext_get_actual_len(path->p_ext));
807
808 #ifdef CHECK_BINSEARCH
809 {
810 struct ext4_extent *chex, *ex;
811 int k;
812
813 chex = ex = EXT_FIRST_EXTENT(eh);
814 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
815 BUG_ON(k && le32_to_cpu(ex->ee_block)
816 <= le32_to_cpu(ex[-1].ee_block));
817 if (block < le32_to_cpu(ex->ee_block))
818 break;
819 chex = ex;
820 }
821 BUG_ON(chex != path->p_ext);
822 }
823 #endif
824
825 }
826
827 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
828 {
829 struct ext4_extent_header *eh;
830
831 eh = ext_inode_hdr(inode);
832 eh->eh_depth = 0;
833 eh->eh_entries = 0;
834 eh->eh_magic = EXT4_EXT_MAGIC;
835 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
836 ext4_mark_inode_dirty(handle, inode);
837 return 0;
838 }
839
840 struct ext4_ext_path *
841 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
842 struct ext4_ext_path *path, int flags)
843 {
844 struct ext4_extent_header *eh;
845 struct buffer_head *bh;
846 short int depth, i, ppos = 0, alloc = 0;
847 int ret;
848
849 eh = ext_inode_hdr(inode);
850 depth = ext_depth(inode);
851
852 /* account possible depth increase */
853 if (!path) {
854 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
855 GFP_NOFS);
856 if (!path)
857 return ERR_PTR(-ENOMEM);
858 alloc = 1;
859 }
860 path[0].p_hdr = eh;
861 path[0].p_bh = NULL;
862
863 i = depth;
864 /* walk through the tree */
865 while (i) {
866 ext_debug("depth %d: num %d, max %d\n",
867 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
868
869 ext4_ext_binsearch_idx(inode, path + ppos, block);
870 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
871 path[ppos].p_depth = i;
872 path[ppos].p_ext = NULL;
873
874 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
875 flags);
876 if (IS_ERR(bh)) {
877 ret = PTR_ERR(bh);
878 goto err;
879 }
880
881 eh = ext_block_hdr(bh);
882 ppos++;
883 if (unlikely(ppos > depth)) {
884 put_bh(bh);
885 EXT4_ERROR_INODE(inode,
886 "ppos %d > depth %d", ppos, depth);
887 ret = -EIO;
888 goto err;
889 }
890 path[ppos].p_bh = bh;
891 path[ppos].p_hdr = eh;
892 }
893
894 path[ppos].p_depth = i;
895 path[ppos].p_ext = NULL;
896 path[ppos].p_idx = NULL;
897
898 /* find extent */
899 ext4_ext_binsearch(inode, path + ppos, block);
900 /* if not an empty leaf */
901 if (path[ppos].p_ext)
902 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
903
904 ext4_ext_show_path(inode, path);
905
906 return path;
907
908 err:
909 ext4_ext_drop_refs(path);
910 if (alloc)
911 kfree(path);
912 return ERR_PTR(ret);
913 }
914
915 /*
916 * ext4_ext_insert_index:
917 * insert new index [@logical;@ptr] into the block at @curp;
918 * check where to insert: before @curp or after @curp
919 */
920 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
921 struct ext4_ext_path *curp,
922 int logical, ext4_fsblk_t ptr)
923 {
924 struct ext4_extent_idx *ix;
925 int len, err;
926
927 err = ext4_ext_get_access(handle, inode, curp);
928 if (err)
929 return err;
930
931 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
932 EXT4_ERROR_INODE(inode,
933 "logical %d == ei_block %d!",
934 logical, le32_to_cpu(curp->p_idx->ei_block));
935 return -EIO;
936 }
937
938 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
939 >= le16_to_cpu(curp->p_hdr->eh_max))) {
940 EXT4_ERROR_INODE(inode,
941 "eh_entries %d >= eh_max %d!",
942 le16_to_cpu(curp->p_hdr->eh_entries),
943 le16_to_cpu(curp->p_hdr->eh_max));
944 return -EIO;
945 }
946
947 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
948 /* insert after */
949 ext_debug("insert new index %d after: %llu\n", logical, ptr);
950 ix = curp->p_idx + 1;
951 } else {
952 /* insert before */
953 ext_debug("insert new index %d before: %llu\n", logical, ptr);
954 ix = curp->p_idx;
955 }
956
957 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
958 BUG_ON(len < 0);
959 if (len > 0) {
960 ext_debug("insert new index %d: "
961 "move %d indices from 0x%p to 0x%p\n",
962 logical, len, ix, ix + 1);
963 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
964 }
965
966 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
967 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
968 return -EIO;
969 }
970
971 ix->ei_block = cpu_to_le32(logical);
972 ext4_idx_store_pblock(ix, ptr);
973 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
974
975 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
976 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
977 return -EIO;
978 }
979
980 err = ext4_ext_dirty(handle, inode, curp);
981 ext4_std_error(inode->i_sb, err);
982
983 return err;
984 }
985
986 /*
987 * ext4_ext_split:
988 * inserts new subtree into the path, using free index entry
989 * at depth @at:
990 * - allocates all needed blocks (new leaf and all intermediate index blocks)
991 * - makes decision where to split
992 * - moves remaining extents and index entries (right to the split point)
993 * into the newly allocated blocks
994 * - initializes subtree
995 */
996 static int ext4_ext_split(handle_t *handle, struct inode *inode,
997 unsigned int flags,
998 struct ext4_ext_path *path,
999 struct ext4_extent *newext, int at)
1000 {
1001 struct buffer_head *bh = NULL;
1002 int depth = ext_depth(inode);
1003 struct ext4_extent_header *neh;
1004 struct ext4_extent_idx *fidx;
1005 int i = at, k, m, a;
1006 ext4_fsblk_t newblock, oldblock;
1007 __le32 border;
1008 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1009 int err = 0;
1010
1011 /* make decision: where to split? */
1012 /* FIXME: now decision is simplest: at current extent */
1013
1014 /* if current leaf will be split, then we should use
1015 * border from split point */
1016 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1017 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1018 return -EIO;
1019 }
1020 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1021 border = path[depth].p_ext[1].ee_block;
1022 ext_debug("leaf will be split."
1023 " next leaf starts at %d\n",
1024 le32_to_cpu(border));
1025 } else {
1026 border = newext->ee_block;
1027 ext_debug("leaf will be added."
1028 " next leaf starts at %d\n",
1029 le32_to_cpu(border));
1030 }
1031
1032 /*
1033 * If error occurs, then we break processing
1034 * and mark filesystem read-only. index won't
1035 * be inserted and tree will be in consistent
1036 * state. Next mount will repair buffers too.
1037 */
1038
1039 /*
1040 * Get array to track all allocated blocks.
1041 * We need this to handle errors and free blocks
1042 * upon them.
1043 */
1044 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1045 if (!ablocks)
1046 return -ENOMEM;
1047
1048 /* allocate all needed blocks */
1049 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1050 for (a = 0; a < depth - at; a++) {
1051 newblock = ext4_ext_new_meta_block(handle, inode, path,
1052 newext, &err, flags);
1053 if (newblock == 0)
1054 goto cleanup;
1055 ablocks[a] = newblock;
1056 }
1057
1058 /* initialize new leaf */
1059 newblock = ablocks[--a];
1060 if (unlikely(newblock == 0)) {
1061 EXT4_ERROR_INODE(inode, "newblock == 0!");
1062 err = -EIO;
1063 goto cleanup;
1064 }
1065 bh = sb_getblk(inode->i_sb, newblock);
1066 if (unlikely(!bh)) {
1067 err = -ENOMEM;
1068 goto cleanup;
1069 }
1070 lock_buffer(bh);
1071
1072 err = ext4_journal_get_create_access(handle, bh);
1073 if (err)
1074 goto cleanup;
1075
1076 neh = ext_block_hdr(bh);
1077 neh->eh_entries = 0;
1078 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1079 neh->eh_magic = EXT4_EXT_MAGIC;
1080 neh->eh_depth = 0;
1081
1082 /* move remainder of path[depth] to the new leaf */
1083 if (unlikely(path[depth].p_hdr->eh_entries !=
1084 path[depth].p_hdr->eh_max)) {
1085 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1086 path[depth].p_hdr->eh_entries,
1087 path[depth].p_hdr->eh_max);
1088 err = -EIO;
1089 goto cleanup;
1090 }
1091 /* start copy from next extent */
1092 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1093 ext4_ext_show_move(inode, path, newblock, depth);
1094 if (m) {
1095 struct ext4_extent *ex;
1096 ex = EXT_FIRST_EXTENT(neh);
1097 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1098 le16_add_cpu(&neh->eh_entries, m);
1099 }
1100
1101 ext4_extent_block_csum_set(inode, neh);
1102 set_buffer_uptodate(bh);
1103 unlock_buffer(bh);
1104
1105 err = ext4_handle_dirty_metadata(handle, inode, bh);
1106 if (err)
1107 goto cleanup;
1108 brelse(bh);
1109 bh = NULL;
1110
1111 /* correct old leaf */
1112 if (m) {
1113 err = ext4_ext_get_access(handle, inode, path + depth);
1114 if (err)
1115 goto cleanup;
1116 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1117 err = ext4_ext_dirty(handle, inode, path + depth);
1118 if (err)
1119 goto cleanup;
1120
1121 }
1122
1123 /* create intermediate indexes */
1124 k = depth - at - 1;
1125 if (unlikely(k < 0)) {
1126 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1127 err = -EIO;
1128 goto cleanup;
1129 }
1130 if (k)
1131 ext_debug("create %d intermediate indices\n", k);
1132 /* insert new index into current index block */
1133 /* current depth stored in i var */
1134 i = depth - 1;
1135 while (k--) {
1136 oldblock = newblock;
1137 newblock = ablocks[--a];
1138 bh = sb_getblk(inode->i_sb, newblock);
1139 if (unlikely(!bh)) {
1140 err = -ENOMEM;
1141 goto cleanup;
1142 }
1143 lock_buffer(bh);
1144
1145 err = ext4_journal_get_create_access(handle, bh);
1146 if (err)
1147 goto cleanup;
1148
1149 neh = ext_block_hdr(bh);
1150 neh->eh_entries = cpu_to_le16(1);
1151 neh->eh_magic = EXT4_EXT_MAGIC;
1152 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1153 neh->eh_depth = cpu_to_le16(depth - i);
1154 fidx = EXT_FIRST_INDEX(neh);
1155 fidx->ei_block = border;
1156 ext4_idx_store_pblock(fidx, oldblock);
1157
1158 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1159 i, newblock, le32_to_cpu(border), oldblock);
1160
1161 /* move remainder of path[i] to the new index block */
1162 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1163 EXT_LAST_INDEX(path[i].p_hdr))) {
1164 EXT4_ERROR_INODE(inode,
1165 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1166 le32_to_cpu(path[i].p_ext->ee_block));
1167 err = -EIO;
1168 goto cleanup;
1169 }
1170 /* start copy indexes */
1171 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1172 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1173 EXT_MAX_INDEX(path[i].p_hdr));
1174 ext4_ext_show_move(inode, path, newblock, i);
1175 if (m) {
1176 memmove(++fidx, path[i].p_idx,
1177 sizeof(struct ext4_extent_idx) * m);
1178 le16_add_cpu(&neh->eh_entries, m);
1179 }
1180 ext4_extent_block_csum_set(inode, neh);
1181 set_buffer_uptodate(bh);
1182 unlock_buffer(bh);
1183
1184 err = ext4_handle_dirty_metadata(handle, inode, bh);
1185 if (err)
1186 goto cleanup;
1187 brelse(bh);
1188 bh = NULL;
1189
1190 /* correct old index */
1191 if (m) {
1192 err = ext4_ext_get_access(handle, inode, path + i);
1193 if (err)
1194 goto cleanup;
1195 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1196 err = ext4_ext_dirty(handle, inode, path + i);
1197 if (err)
1198 goto cleanup;
1199 }
1200
1201 i--;
1202 }
1203
1204 /* insert new index */
1205 err = ext4_ext_insert_index(handle, inode, path + at,
1206 le32_to_cpu(border), newblock);
1207
1208 cleanup:
1209 if (bh) {
1210 if (buffer_locked(bh))
1211 unlock_buffer(bh);
1212 brelse(bh);
1213 }
1214
1215 if (err) {
1216 /* free all allocated blocks in error case */
1217 for (i = 0; i < depth; i++) {
1218 if (!ablocks[i])
1219 continue;
1220 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1221 EXT4_FREE_BLOCKS_METADATA);
1222 }
1223 }
1224 kfree(ablocks);
1225
1226 return err;
1227 }
1228
1229 /*
1230 * ext4_ext_grow_indepth:
1231 * implements tree growing procedure:
1232 * - allocates new block
1233 * - moves top-level data (index block or leaf) into the new block
1234 * - initializes new top-level, creating index that points to the
1235 * just created block
1236 */
1237 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1238 unsigned int flags,
1239 struct ext4_extent *newext)
1240 {
1241 struct ext4_extent_header *neh;
1242 struct buffer_head *bh;
1243 ext4_fsblk_t newblock;
1244 int err = 0;
1245
1246 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1247 newext, &err, flags);
1248 if (newblock == 0)
1249 return err;
1250
1251 bh = sb_getblk(inode->i_sb, newblock);
1252 if (unlikely(!bh))
1253 return -ENOMEM;
1254 lock_buffer(bh);
1255
1256 err = ext4_journal_get_create_access(handle, bh);
1257 if (err) {
1258 unlock_buffer(bh);
1259 goto out;
1260 }
1261
1262 /* move top-level index/leaf into new block */
1263 memmove(bh->b_data, EXT4_I(inode)->i_data,
1264 sizeof(EXT4_I(inode)->i_data));
1265
1266 /* set size of new block */
1267 neh = ext_block_hdr(bh);
1268 /* old root could have indexes or leaves
1269 * so calculate e_max right way */
1270 if (ext_depth(inode))
1271 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1272 else
1273 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1274 neh->eh_magic = EXT4_EXT_MAGIC;
1275 ext4_extent_block_csum_set(inode, neh);
1276 set_buffer_uptodate(bh);
1277 unlock_buffer(bh);
1278
1279 err = ext4_handle_dirty_metadata(handle, inode, bh);
1280 if (err)
1281 goto out;
1282
1283 /* Update top-level index: num,max,pointer */
1284 neh = ext_inode_hdr(inode);
1285 neh->eh_entries = cpu_to_le16(1);
1286 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1287 if (neh->eh_depth == 0) {
1288 /* Root extent block becomes index block */
1289 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1290 EXT_FIRST_INDEX(neh)->ei_block =
1291 EXT_FIRST_EXTENT(neh)->ee_block;
1292 }
1293 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1294 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1295 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1296 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1297
1298 le16_add_cpu(&neh->eh_depth, 1);
1299 ext4_mark_inode_dirty(handle, inode);
1300 out:
1301 brelse(bh);
1302
1303 return err;
1304 }
1305
1306 /*
1307 * ext4_ext_create_new_leaf:
1308 * finds empty index and adds new leaf.
1309 * if no free index is found, then it requests in-depth growing.
1310 */
1311 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1312 unsigned int mb_flags,
1313 unsigned int gb_flags,
1314 struct ext4_ext_path *path,
1315 struct ext4_extent *newext)
1316 {
1317 struct ext4_ext_path *curp;
1318 int depth, i, err = 0;
1319
1320 repeat:
1321 i = depth = ext_depth(inode);
1322
1323 /* walk up to the tree and look for free index entry */
1324 curp = path + depth;
1325 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1326 i--;
1327 curp--;
1328 }
1329
1330 /* we use already allocated block for index block,
1331 * so subsequent data blocks should be contiguous */
1332 if (EXT_HAS_FREE_INDEX(curp)) {
1333 /* if we found index with free entry, then use that
1334 * entry: create all needed subtree and add new leaf */
1335 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1336 if (err)
1337 goto out;
1338
1339 /* refill path */
1340 ext4_ext_drop_refs(path);
1341 path = ext4_ext_find_extent(inode,
1342 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1343 path, gb_flags);
1344 if (IS_ERR(path))
1345 err = PTR_ERR(path);
1346 } else {
1347 /* tree is full, time to grow in depth */
1348 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1349 if (err)
1350 goto out;
1351
1352 /* refill path */
1353 ext4_ext_drop_refs(path);
1354 path = ext4_ext_find_extent(inode,
1355 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1356 path, gb_flags);
1357 if (IS_ERR(path)) {
1358 err = PTR_ERR(path);
1359 goto out;
1360 }
1361
1362 /*
1363 * only first (depth 0 -> 1) produces free space;
1364 * in all other cases we have to split the grown tree
1365 */
1366 depth = ext_depth(inode);
1367 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1368 /* now we need to split */
1369 goto repeat;
1370 }
1371 }
1372
1373 out:
1374 return err;
1375 }
1376
1377 /*
1378 * search the closest allocated block to the left for *logical
1379 * and returns it at @logical + it's physical address at @phys
1380 * if *logical is the smallest allocated block, the function
1381 * returns 0 at @phys
1382 * return value contains 0 (success) or error code
1383 */
1384 static int ext4_ext_search_left(struct inode *inode,
1385 struct ext4_ext_path *path,
1386 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1387 {
1388 struct ext4_extent_idx *ix;
1389 struct ext4_extent *ex;
1390 int depth, ee_len;
1391
1392 if (unlikely(path == NULL)) {
1393 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1394 return -EIO;
1395 }
1396 depth = path->p_depth;
1397 *phys = 0;
1398
1399 if (depth == 0 && path->p_ext == NULL)
1400 return 0;
1401
1402 /* usually extent in the path covers blocks smaller
1403 * then *logical, but it can be that extent is the
1404 * first one in the file */
1405
1406 ex = path[depth].p_ext;
1407 ee_len = ext4_ext_get_actual_len(ex);
1408 if (*logical < le32_to_cpu(ex->ee_block)) {
1409 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1410 EXT4_ERROR_INODE(inode,
1411 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1412 *logical, le32_to_cpu(ex->ee_block));
1413 return -EIO;
1414 }
1415 while (--depth >= 0) {
1416 ix = path[depth].p_idx;
1417 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1418 EXT4_ERROR_INODE(inode,
1419 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1420 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1421 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1422 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1423 depth);
1424 return -EIO;
1425 }
1426 }
1427 return 0;
1428 }
1429
1430 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1431 EXT4_ERROR_INODE(inode,
1432 "logical %d < ee_block %d + ee_len %d!",
1433 *logical, le32_to_cpu(ex->ee_block), ee_len);
1434 return -EIO;
1435 }
1436
1437 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1438 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1439 return 0;
1440 }
1441
1442 /*
1443 * search the closest allocated block to the right for *logical
1444 * and returns it at @logical + it's physical address at @phys
1445 * if *logical is the largest allocated block, the function
1446 * returns 0 at @phys
1447 * return value contains 0 (success) or error code
1448 */
1449 static int ext4_ext_search_right(struct inode *inode,
1450 struct ext4_ext_path *path,
1451 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1452 struct ext4_extent **ret_ex)
1453 {
1454 struct buffer_head *bh = NULL;
1455 struct ext4_extent_header *eh;
1456 struct ext4_extent_idx *ix;
1457 struct ext4_extent *ex;
1458 ext4_fsblk_t block;
1459 int depth; /* Note, NOT eh_depth; depth from top of tree */
1460 int ee_len;
1461
1462 if (unlikely(path == NULL)) {
1463 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1464 return -EIO;
1465 }
1466 depth = path->p_depth;
1467 *phys = 0;
1468
1469 if (depth == 0 && path->p_ext == NULL)
1470 return 0;
1471
1472 /* usually extent in the path covers blocks smaller
1473 * then *logical, but it can be that extent is the
1474 * first one in the file */
1475
1476 ex = path[depth].p_ext;
1477 ee_len = ext4_ext_get_actual_len(ex);
1478 if (*logical < le32_to_cpu(ex->ee_block)) {
1479 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1480 EXT4_ERROR_INODE(inode,
1481 "first_extent(path[%d].p_hdr) != ex",
1482 depth);
1483 return -EIO;
1484 }
1485 while (--depth >= 0) {
1486 ix = path[depth].p_idx;
1487 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1488 EXT4_ERROR_INODE(inode,
1489 "ix != EXT_FIRST_INDEX *logical %d!",
1490 *logical);
1491 return -EIO;
1492 }
1493 }
1494 goto found_extent;
1495 }
1496
1497 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1498 EXT4_ERROR_INODE(inode,
1499 "logical %d < ee_block %d + ee_len %d!",
1500 *logical, le32_to_cpu(ex->ee_block), ee_len);
1501 return -EIO;
1502 }
1503
1504 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1505 /* next allocated block in this leaf */
1506 ex++;
1507 goto found_extent;
1508 }
1509
1510 /* go up and search for index to the right */
1511 while (--depth >= 0) {
1512 ix = path[depth].p_idx;
1513 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1514 goto got_index;
1515 }
1516
1517 /* we've gone up to the root and found no index to the right */
1518 return 0;
1519
1520 got_index:
1521 /* we've found index to the right, let's
1522 * follow it and find the closest allocated
1523 * block to the right */
1524 ix++;
1525 block = ext4_idx_pblock(ix);
1526 while (++depth < path->p_depth) {
1527 /* subtract from p_depth to get proper eh_depth */
1528 bh = read_extent_tree_block(inode, block,
1529 path->p_depth - depth, 0);
1530 if (IS_ERR(bh))
1531 return PTR_ERR(bh);
1532 eh = ext_block_hdr(bh);
1533 ix = EXT_FIRST_INDEX(eh);
1534 block = ext4_idx_pblock(ix);
1535 put_bh(bh);
1536 }
1537
1538 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1539 if (IS_ERR(bh))
1540 return PTR_ERR(bh);
1541 eh = ext_block_hdr(bh);
1542 ex = EXT_FIRST_EXTENT(eh);
1543 found_extent:
1544 *logical = le32_to_cpu(ex->ee_block);
1545 *phys = ext4_ext_pblock(ex);
1546 *ret_ex = ex;
1547 if (bh)
1548 put_bh(bh);
1549 return 0;
1550 }
1551
1552 /*
1553 * ext4_ext_next_allocated_block:
1554 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1555 * NOTE: it considers block number from index entry as
1556 * allocated block. Thus, index entries have to be consistent
1557 * with leaves.
1558 */
1559 static ext4_lblk_t
1560 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1561 {
1562 int depth;
1563
1564 BUG_ON(path == NULL);
1565 depth = path->p_depth;
1566
1567 if (depth == 0 && path->p_ext == NULL)
1568 return EXT_MAX_BLOCKS;
1569
1570 while (depth >= 0) {
1571 if (depth == path->p_depth) {
1572 /* leaf */
1573 if (path[depth].p_ext &&
1574 path[depth].p_ext !=
1575 EXT_LAST_EXTENT(path[depth].p_hdr))
1576 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1577 } else {
1578 /* index */
1579 if (path[depth].p_idx !=
1580 EXT_LAST_INDEX(path[depth].p_hdr))
1581 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1582 }
1583 depth--;
1584 }
1585
1586 return EXT_MAX_BLOCKS;
1587 }
1588
1589 /*
1590 * ext4_ext_next_leaf_block:
1591 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1592 */
1593 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1594 {
1595 int depth;
1596
1597 BUG_ON(path == NULL);
1598 depth = path->p_depth;
1599
1600 /* zero-tree has no leaf blocks at all */
1601 if (depth == 0)
1602 return EXT_MAX_BLOCKS;
1603
1604 /* go to index block */
1605 depth--;
1606
1607 while (depth >= 0) {
1608 if (path[depth].p_idx !=
1609 EXT_LAST_INDEX(path[depth].p_hdr))
1610 return (ext4_lblk_t)
1611 le32_to_cpu(path[depth].p_idx[1].ei_block);
1612 depth--;
1613 }
1614
1615 return EXT_MAX_BLOCKS;
1616 }
1617
1618 /*
1619 * ext4_ext_correct_indexes:
1620 * if leaf gets modified and modified extent is first in the leaf,
1621 * then we have to correct all indexes above.
1622 * TODO: do we need to correct tree in all cases?
1623 */
1624 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1625 struct ext4_ext_path *path)
1626 {
1627 struct ext4_extent_header *eh;
1628 int depth = ext_depth(inode);
1629 struct ext4_extent *ex;
1630 __le32 border;
1631 int k, err = 0;
1632
1633 eh = path[depth].p_hdr;
1634 ex = path[depth].p_ext;
1635
1636 if (unlikely(ex == NULL || eh == NULL)) {
1637 EXT4_ERROR_INODE(inode,
1638 "ex %p == NULL or eh %p == NULL", ex, eh);
1639 return -EIO;
1640 }
1641
1642 if (depth == 0) {
1643 /* there is no tree at all */
1644 return 0;
1645 }
1646
1647 if (ex != EXT_FIRST_EXTENT(eh)) {
1648 /* we correct tree if first leaf got modified only */
1649 return 0;
1650 }
1651
1652 /*
1653 * TODO: we need correction if border is smaller than current one
1654 */
1655 k = depth - 1;
1656 border = path[depth].p_ext->ee_block;
1657 err = ext4_ext_get_access(handle, inode, path + k);
1658 if (err)
1659 return err;
1660 path[k].p_idx->ei_block = border;
1661 err = ext4_ext_dirty(handle, inode, path + k);
1662 if (err)
1663 return err;
1664
1665 while (k--) {
1666 /* change all left-side indexes */
1667 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1668 break;
1669 err = ext4_ext_get_access(handle, inode, path + k);
1670 if (err)
1671 break;
1672 path[k].p_idx->ei_block = border;
1673 err = ext4_ext_dirty(handle, inode, path + k);
1674 if (err)
1675 break;
1676 }
1677
1678 return err;
1679 }
1680
1681 int
1682 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1683 struct ext4_extent *ex2)
1684 {
1685 unsigned short ext1_ee_len, ext2_ee_len;
1686
1687 /*
1688 * Make sure that both extents are initialized. We don't merge
1689 * uninitialized extents so that we can be sure that end_io code has
1690 * the extent that was written properly split out and conversion to
1691 * initialized is trivial.
1692 */
1693 if (ext4_ext_is_uninitialized(ex1) != ext4_ext_is_uninitialized(ex2))
1694 return 0;
1695
1696 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1697 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1698
1699 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1700 le32_to_cpu(ex2->ee_block))
1701 return 0;
1702
1703 /*
1704 * To allow future support for preallocated extents to be added
1705 * as an RO_COMPAT feature, refuse to merge to extents if
1706 * this can result in the top bit of ee_len being set.
1707 */
1708 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1709 return 0;
1710 if (ext4_ext_is_uninitialized(ex1) &&
1711 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1712 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1713 (ext1_ee_len + ext2_ee_len > EXT_UNINIT_MAX_LEN)))
1714 return 0;
1715 #ifdef AGGRESSIVE_TEST
1716 if (ext1_ee_len >= 4)
1717 return 0;
1718 #endif
1719
1720 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1721 return 1;
1722 return 0;
1723 }
1724
1725 /*
1726 * This function tries to merge the "ex" extent to the next extent in the tree.
1727 * It always tries to merge towards right. If you want to merge towards
1728 * left, pass "ex - 1" as argument instead of "ex".
1729 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1730 * 1 if they got merged.
1731 */
1732 static int ext4_ext_try_to_merge_right(struct inode *inode,
1733 struct ext4_ext_path *path,
1734 struct ext4_extent *ex)
1735 {
1736 struct ext4_extent_header *eh;
1737 unsigned int depth, len;
1738 int merge_done = 0, uninit;
1739
1740 depth = ext_depth(inode);
1741 BUG_ON(path[depth].p_hdr == NULL);
1742 eh = path[depth].p_hdr;
1743
1744 while (ex < EXT_LAST_EXTENT(eh)) {
1745 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1746 break;
1747 /* merge with next extent! */
1748 uninit = ext4_ext_is_uninitialized(ex);
1749 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1750 + ext4_ext_get_actual_len(ex + 1));
1751 if (uninit)
1752 ext4_ext_mark_uninitialized(ex);
1753
1754 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1755 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1756 * sizeof(struct ext4_extent);
1757 memmove(ex + 1, ex + 2, len);
1758 }
1759 le16_add_cpu(&eh->eh_entries, -1);
1760 merge_done = 1;
1761 WARN_ON(eh->eh_entries == 0);
1762 if (!eh->eh_entries)
1763 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1764 }
1765
1766 return merge_done;
1767 }
1768
1769 /*
1770 * This function does a very simple check to see if we can collapse
1771 * an extent tree with a single extent tree leaf block into the inode.
1772 */
1773 static void ext4_ext_try_to_merge_up(handle_t *handle,
1774 struct inode *inode,
1775 struct ext4_ext_path *path)
1776 {
1777 size_t s;
1778 unsigned max_root = ext4_ext_space_root(inode, 0);
1779 ext4_fsblk_t blk;
1780
1781 if ((path[0].p_depth != 1) ||
1782 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1783 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1784 return;
1785
1786 /*
1787 * We need to modify the block allocation bitmap and the block
1788 * group descriptor to release the extent tree block. If we
1789 * can't get the journal credits, give up.
1790 */
1791 if (ext4_journal_extend(handle, 2))
1792 return;
1793
1794 /*
1795 * Copy the extent data up to the inode
1796 */
1797 blk = ext4_idx_pblock(path[0].p_idx);
1798 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1799 sizeof(struct ext4_extent_idx);
1800 s += sizeof(struct ext4_extent_header);
1801
1802 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1803 path[0].p_depth = 0;
1804 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1805 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1806 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1807
1808 brelse(path[1].p_bh);
1809 ext4_free_blocks(handle, inode, NULL, blk, 1,
1810 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1811 EXT4_FREE_BLOCKS_RESERVE);
1812 }
1813
1814 /*
1815 * This function tries to merge the @ex extent to neighbours in the tree.
1816 * return 1 if merge left else 0.
1817 */
1818 static void ext4_ext_try_to_merge(handle_t *handle,
1819 struct inode *inode,
1820 struct ext4_ext_path *path,
1821 struct ext4_extent *ex) {
1822 struct ext4_extent_header *eh;
1823 unsigned int depth;
1824 int merge_done = 0;
1825
1826 depth = ext_depth(inode);
1827 BUG_ON(path[depth].p_hdr == NULL);
1828 eh = path[depth].p_hdr;
1829
1830 if (ex > EXT_FIRST_EXTENT(eh))
1831 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1832
1833 if (!merge_done)
1834 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1835
1836 ext4_ext_try_to_merge_up(handle, inode, path);
1837 }
1838
1839 /*
1840 * check if a portion of the "newext" extent overlaps with an
1841 * existing extent.
1842 *
1843 * If there is an overlap discovered, it updates the length of the newext
1844 * such that there will be no overlap, and then returns 1.
1845 * If there is no overlap found, it returns 0.
1846 */
1847 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1848 struct inode *inode,
1849 struct ext4_extent *newext,
1850 struct ext4_ext_path *path)
1851 {
1852 ext4_lblk_t b1, b2;
1853 unsigned int depth, len1;
1854 unsigned int ret = 0;
1855
1856 b1 = le32_to_cpu(newext->ee_block);
1857 len1 = ext4_ext_get_actual_len(newext);
1858 depth = ext_depth(inode);
1859 if (!path[depth].p_ext)
1860 goto out;
1861 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1862
1863 /*
1864 * get the next allocated block if the extent in the path
1865 * is before the requested block(s)
1866 */
1867 if (b2 < b1) {
1868 b2 = ext4_ext_next_allocated_block(path);
1869 if (b2 == EXT_MAX_BLOCKS)
1870 goto out;
1871 b2 = EXT4_LBLK_CMASK(sbi, b2);
1872 }
1873
1874 /* check for wrap through zero on extent logical start block*/
1875 if (b1 + len1 < b1) {
1876 len1 = EXT_MAX_BLOCKS - b1;
1877 newext->ee_len = cpu_to_le16(len1);
1878 ret = 1;
1879 }
1880
1881 /* check for overlap */
1882 if (b1 + len1 > b2) {
1883 newext->ee_len = cpu_to_le16(b2 - b1);
1884 ret = 1;
1885 }
1886 out:
1887 return ret;
1888 }
1889
1890 /*
1891 * ext4_ext_insert_extent:
1892 * tries to merge requsted extent into the existing extent or
1893 * inserts requested extent as new one into the tree,
1894 * creating new leaf in the no-space case.
1895 */
1896 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1897 struct ext4_ext_path *path,
1898 struct ext4_extent *newext, int gb_flags)
1899 {
1900 struct ext4_extent_header *eh;
1901 struct ext4_extent *ex, *fex;
1902 struct ext4_extent *nearex; /* nearest extent */
1903 struct ext4_ext_path *npath = NULL;
1904 int depth, len, err;
1905 ext4_lblk_t next;
1906 int mb_flags = 0, uninit;
1907
1908 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1909 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1910 return -EIO;
1911 }
1912 depth = ext_depth(inode);
1913 ex = path[depth].p_ext;
1914 eh = path[depth].p_hdr;
1915 if (unlikely(path[depth].p_hdr == NULL)) {
1916 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1917 return -EIO;
1918 }
1919
1920 /* try to insert block into found extent and return */
1921 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1922
1923 /*
1924 * Try to see whether we should rather test the extent on
1925 * right from ex, or from the left of ex. This is because
1926 * ext4_ext_find_extent() can return either extent on the
1927 * left, or on the right from the searched position. This
1928 * will make merging more effective.
1929 */
1930 if (ex < EXT_LAST_EXTENT(eh) &&
1931 (le32_to_cpu(ex->ee_block) +
1932 ext4_ext_get_actual_len(ex) <
1933 le32_to_cpu(newext->ee_block))) {
1934 ex += 1;
1935 goto prepend;
1936 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1937 (le32_to_cpu(newext->ee_block) +
1938 ext4_ext_get_actual_len(newext) <
1939 le32_to_cpu(ex->ee_block)))
1940 ex -= 1;
1941
1942 /* Try to append newex to the ex */
1943 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1944 ext_debug("append [%d]%d block to %u:[%d]%d"
1945 "(from %llu)\n",
1946 ext4_ext_is_uninitialized(newext),
1947 ext4_ext_get_actual_len(newext),
1948 le32_to_cpu(ex->ee_block),
1949 ext4_ext_is_uninitialized(ex),
1950 ext4_ext_get_actual_len(ex),
1951 ext4_ext_pblock(ex));
1952 err = ext4_ext_get_access(handle, inode,
1953 path + depth);
1954 if (err)
1955 return err;
1956 uninit = ext4_ext_is_uninitialized(ex);
1957 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1958 + ext4_ext_get_actual_len(newext));
1959 if (uninit)
1960 ext4_ext_mark_uninitialized(ex);
1961 eh = path[depth].p_hdr;
1962 nearex = ex;
1963 goto merge;
1964 }
1965
1966 prepend:
1967 /* Try to prepend newex to the ex */
1968 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1969 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1970 "(from %llu)\n",
1971 le32_to_cpu(newext->ee_block),
1972 ext4_ext_is_uninitialized(newext),
1973 ext4_ext_get_actual_len(newext),
1974 le32_to_cpu(ex->ee_block),
1975 ext4_ext_is_uninitialized(ex),
1976 ext4_ext_get_actual_len(ex),
1977 ext4_ext_pblock(ex));
1978 err = ext4_ext_get_access(handle, inode,
1979 path + depth);
1980 if (err)
1981 return err;
1982
1983 uninit = ext4_ext_is_uninitialized(ex);
1984 ex->ee_block = newext->ee_block;
1985 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1986 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1987 + ext4_ext_get_actual_len(newext));
1988 if (uninit)
1989 ext4_ext_mark_uninitialized(ex);
1990 eh = path[depth].p_hdr;
1991 nearex = ex;
1992 goto merge;
1993 }
1994 }
1995
1996 depth = ext_depth(inode);
1997 eh = path[depth].p_hdr;
1998 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1999 goto has_space;
2000
2001 /* probably next leaf has space for us? */
2002 fex = EXT_LAST_EXTENT(eh);
2003 next = EXT_MAX_BLOCKS;
2004 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2005 next = ext4_ext_next_leaf_block(path);
2006 if (next != EXT_MAX_BLOCKS) {
2007 ext_debug("next leaf block - %u\n", next);
2008 BUG_ON(npath != NULL);
2009 npath = ext4_ext_find_extent(inode, next, NULL, 0);
2010 if (IS_ERR(npath))
2011 return PTR_ERR(npath);
2012 BUG_ON(npath->p_depth != path->p_depth);
2013 eh = npath[depth].p_hdr;
2014 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2015 ext_debug("next leaf isn't full(%d)\n",
2016 le16_to_cpu(eh->eh_entries));
2017 path = npath;
2018 goto has_space;
2019 }
2020 ext_debug("next leaf has no free space(%d,%d)\n",
2021 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2022 }
2023
2024 /*
2025 * There is no free space in the found leaf.
2026 * We're gonna add a new leaf in the tree.
2027 */
2028 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2029 mb_flags = EXT4_MB_USE_RESERVED;
2030 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2031 path, newext);
2032 if (err)
2033 goto cleanup;
2034 depth = ext_depth(inode);
2035 eh = path[depth].p_hdr;
2036
2037 has_space:
2038 nearex = path[depth].p_ext;
2039
2040 err = ext4_ext_get_access(handle, inode, path + depth);
2041 if (err)
2042 goto cleanup;
2043
2044 if (!nearex) {
2045 /* there is no extent in this leaf, create first one */
2046 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2047 le32_to_cpu(newext->ee_block),
2048 ext4_ext_pblock(newext),
2049 ext4_ext_is_uninitialized(newext),
2050 ext4_ext_get_actual_len(newext));
2051 nearex = EXT_FIRST_EXTENT(eh);
2052 } else {
2053 if (le32_to_cpu(newext->ee_block)
2054 > le32_to_cpu(nearex->ee_block)) {
2055 /* Insert after */
2056 ext_debug("insert %u:%llu:[%d]%d before: "
2057 "nearest %p\n",
2058 le32_to_cpu(newext->ee_block),
2059 ext4_ext_pblock(newext),
2060 ext4_ext_is_uninitialized(newext),
2061 ext4_ext_get_actual_len(newext),
2062 nearex);
2063 nearex++;
2064 } else {
2065 /* Insert before */
2066 BUG_ON(newext->ee_block == nearex->ee_block);
2067 ext_debug("insert %u:%llu:[%d]%d after: "
2068 "nearest %p\n",
2069 le32_to_cpu(newext->ee_block),
2070 ext4_ext_pblock(newext),
2071 ext4_ext_is_uninitialized(newext),
2072 ext4_ext_get_actual_len(newext),
2073 nearex);
2074 }
2075 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2076 if (len > 0) {
2077 ext_debug("insert %u:%llu:[%d]%d: "
2078 "move %d extents from 0x%p to 0x%p\n",
2079 le32_to_cpu(newext->ee_block),
2080 ext4_ext_pblock(newext),
2081 ext4_ext_is_uninitialized(newext),
2082 ext4_ext_get_actual_len(newext),
2083 len, nearex, nearex + 1);
2084 memmove(nearex + 1, nearex,
2085 len * sizeof(struct ext4_extent));
2086 }
2087 }
2088
2089 le16_add_cpu(&eh->eh_entries, 1);
2090 path[depth].p_ext = nearex;
2091 nearex->ee_block = newext->ee_block;
2092 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2093 nearex->ee_len = newext->ee_len;
2094
2095 merge:
2096 /* try to merge extents */
2097 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2098 ext4_ext_try_to_merge(handle, inode, path, nearex);
2099
2100
2101 /* time to correct all indexes above */
2102 err = ext4_ext_correct_indexes(handle, inode, path);
2103 if (err)
2104 goto cleanup;
2105
2106 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2107
2108 cleanup:
2109 if (npath) {
2110 ext4_ext_drop_refs(npath);
2111 kfree(npath);
2112 }
2113 return err;
2114 }
2115
2116 static int ext4_fill_fiemap_extents(struct inode *inode,
2117 ext4_lblk_t block, ext4_lblk_t num,
2118 struct fiemap_extent_info *fieinfo)
2119 {
2120 struct ext4_ext_path *path = NULL;
2121 struct ext4_extent *ex;
2122 struct extent_status es;
2123 ext4_lblk_t next, next_del, start = 0, end = 0;
2124 ext4_lblk_t last = block + num;
2125 int exists, depth = 0, err = 0;
2126 unsigned int flags = 0;
2127 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2128
2129 while (block < last && block != EXT_MAX_BLOCKS) {
2130 num = last - block;
2131 /* find extent for this block */
2132 down_read(&EXT4_I(inode)->i_data_sem);
2133
2134 if (path && ext_depth(inode) != depth) {
2135 /* depth was changed. we have to realloc path */
2136 kfree(path);
2137 path = NULL;
2138 }
2139
2140 path = ext4_ext_find_extent(inode, block, path, 0);
2141 if (IS_ERR(path)) {
2142 up_read(&EXT4_I(inode)->i_data_sem);
2143 err = PTR_ERR(path);
2144 path = NULL;
2145 break;
2146 }
2147
2148 depth = ext_depth(inode);
2149 if (unlikely(path[depth].p_hdr == NULL)) {
2150 up_read(&EXT4_I(inode)->i_data_sem);
2151 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2152 err = -EIO;
2153 break;
2154 }
2155 ex = path[depth].p_ext;
2156 next = ext4_ext_next_allocated_block(path);
2157 ext4_ext_drop_refs(path);
2158
2159 flags = 0;
2160 exists = 0;
2161 if (!ex) {
2162 /* there is no extent yet, so try to allocate
2163 * all requested space */
2164 start = block;
2165 end = block + num;
2166 } else if (le32_to_cpu(ex->ee_block) > block) {
2167 /* need to allocate space before found extent */
2168 start = block;
2169 end = le32_to_cpu(ex->ee_block);
2170 if (block + num < end)
2171 end = block + num;
2172 } else if (block >= le32_to_cpu(ex->ee_block)
2173 + ext4_ext_get_actual_len(ex)) {
2174 /* need to allocate space after found extent */
2175 start = block;
2176 end = block + num;
2177 if (end >= next)
2178 end = next;
2179 } else if (block >= le32_to_cpu(ex->ee_block)) {
2180 /*
2181 * some part of requested space is covered
2182 * by found extent
2183 */
2184 start = block;
2185 end = le32_to_cpu(ex->ee_block)
2186 + ext4_ext_get_actual_len(ex);
2187 if (block + num < end)
2188 end = block + num;
2189 exists = 1;
2190 } else {
2191 BUG();
2192 }
2193 BUG_ON(end <= start);
2194
2195 if (!exists) {
2196 es.es_lblk = start;
2197 es.es_len = end - start;
2198 es.es_pblk = 0;
2199 } else {
2200 es.es_lblk = le32_to_cpu(ex->ee_block);
2201 es.es_len = ext4_ext_get_actual_len(ex);
2202 es.es_pblk = ext4_ext_pblock(ex);
2203 if (ext4_ext_is_uninitialized(ex))
2204 flags |= FIEMAP_EXTENT_UNWRITTEN;
2205 }
2206
2207 /*
2208 * Find delayed extent and update es accordingly. We call
2209 * it even in !exists case to find out whether es is the
2210 * last existing extent or not.
2211 */
2212 next_del = ext4_find_delayed_extent(inode, &es);
2213 if (!exists && next_del) {
2214 exists = 1;
2215 flags |= (FIEMAP_EXTENT_DELALLOC |
2216 FIEMAP_EXTENT_UNKNOWN);
2217 }
2218 up_read(&EXT4_I(inode)->i_data_sem);
2219
2220 if (unlikely(es.es_len == 0)) {
2221 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2222 err = -EIO;
2223 break;
2224 }
2225
2226 /*
2227 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2228 * we need to check next == EXT_MAX_BLOCKS because it is
2229 * possible that an extent is with unwritten and delayed
2230 * status due to when an extent is delayed allocated and
2231 * is allocated by fallocate status tree will track both of
2232 * them in a extent.
2233 *
2234 * So we could return a unwritten and delayed extent, and
2235 * its block is equal to 'next'.
2236 */
2237 if (next == next_del && next == EXT_MAX_BLOCKS) {
2238 flags |= FIEMAP_EXTENT_LAST;
2239 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2240 next != EXT_MAX_BLOCKS)) {
2241 EXT4_ERROR_INODE(inode,
2242 "next extent == %u, next "
2243 "delalloc extent = %u",
2244 next, next_del);
2245 err = -EIO;
2246 break;
2247 }
2248 }
2249
2250 if (exists) {
2251 err = fiemap_fill_next_extent(fieinfo,
2252 (__u64)es.es_lblk << blksize_bits,
2253 (__u64)es.es_pblk << blksize_bits,
2254 (__u64)es.es_len << blksize_bits,
2255 flags);
2256 if (err < 0)
2257 break;
2258 if (err == 1) {
2259 err = 0;
2260 break;
2261 }
2262 }
2263
2264 block = es.es_lblk + es.es_len;
2265 }
2266
2267 if (path) {
2268 ext4_ext_drop_refs(path);
2269 kfree(path);
2270 }
2271
2272 return err;
2273 }
2274
2275 /*
2276 * ext4_ext_put_gap_in_cache:
2277 * calculate boundaries of the gap that the requested block fits into
2278 * and cache this gap
2279 */
2280 static void
2281 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2282 ext4_lblk_t block)
2283 {
2284 int depth = ext_depth(inode);
2285 unsigned long len = 0;
2286 ext4_lblk_t lblock = 0;
2287 struct ext4_extent *ex;
2288
2289 ex = path[depth].p_ext;
2290 if (ex == NULL) {
2291 /*
2292 * there is no extent yet, so gap is [0;-] and we
2293 * don't cache it
2294 */
2295 ext_debug("cache gap(whole file):");
2296 } else if (block < le32_to_cpu(ex->ee_block)) {
2297 lblock = block;
2298 len = le32_to_cpu(ex->ee_block) - block;
2299 ext_debug("cache gap(before): %u [%u:%u]",
2300 block,
2301 le32_to_cpu(ex->ee_block),
2302 ext4_ext_get_actual_len(ex));
2303 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2304 ext4_es_insert_extent(inode, lblock, len, ~0,
2305 EXTENT_STATUS_HOLE);
2306 } else if (block >= le32_to_cpu(ex->ee_block)
2307 + ext4_ext_get_actual_len(ex)) {
2308 ext4_lblk_t next;
2309 lblock = le32_to_cpu(ex->ee_block)
2310 + ext4_ext_get_actual_len(ex);
2311
2312 next = ext4_ext_next_allocated_block(path);
2313 ext_debug("cache gap(after): [%u:%u] %u",
2314 le32_to_cpu(ex->ee_block),
2315 ext4_ext_get_actual_len(ex),
2316 block);
2317 BUG_ON(next == lblock);
2318 len = next - lblock;
2319 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2320 ext4_es_insert_extent(inode, lblock, len, ~0,
2321 EXTENT_STATUS_HOLE);
2322 } else {
2323 BUG();
2324 }
2325
2326 ext_debug(" -> %u:%lu\n", lblock, len);
2327 }
2328
2329 /*
2330 * ext4_ext_rm_idx:
2331 * removes index from the index block.
2332 */
2333 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2334 struct ext4_ext_path *path, int depth)
2335 {
2336 int err;
2337 ext4_fsblk_t leaf;
2338
2339 /* free index block */
2340 depth--;
2341 path = path + depth;
2342 leaf = ext4_idx_pblock(path->p_idx);
2343 if (unlikely(path->p_hdr->eh_entries == 0)) {
2344 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2345 return -EIO;
2346 }
2347 err = ext4_ext_get_access(handle, inode, path);
2348 if (err)
2349 return err;
2350
2351 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2352 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2353 len *= sizeof(struct ext4_extent_idx);
2354 memmove(path->p_idx, path->p_idx + 1, len);
2355 }
2356
2357 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2358 err = ext4_ext_dirty(handle, inode, path);
2359 if (err)
2360 return err;
2361 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2362 trace_ext4_ext_rm_idx(inode, leaf);
2363
2364 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2365 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2366
2367 while (--depth >= 0) {
2368 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2369 break;
2370 path--;
2371 err = ext4_ext_get_access(handle, inode, path);
2372 if (err)
2373 break;
2374 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2375 err = ext4_ext_dirty(handle, inode, path);
2376 if (err)
2377 break;
2378 }
2379 return err;
2380 }
2381
2382 /*
2383 * ext4_ext_calc_credits_for_single_extent:
2384 * This routine returns max. credits that needed to insert an extent
2385 * to the extent tree.
2386 * When pass the actual path, the caller should calculate credits
2387 * under i_data_sem.
2388 */
2389 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2390 struct ext4_ext_path *path)
2391 {
2392 if (path) {
2393 int depth = ext_depth(inode);
2394 int ret = 0;
2395
2396 /* probably there is space in leaf? */
2397 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2398 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2399
2400 /*
2401 * There are some space in the leaf tree, no
2402 * need to account for leaf block credit
2403 *
2404 * bitmaps and block group descriptor blocks
2405 * and other metadata blocks still need to be
2406 * accounted.
2407 */
2408 /* 1 bitmap, 1 block group descriptor */
2409 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2410 return ret;
2411 }
2412 }
2413
2414 return ext4_chunk_trans_blocks(inode, nrblocks);
2415 }
2416
2417 /*
2418 * How many index/leaf blocks need to change/allocate to add @extents extents?
2419 *
2420 * If we add a single extent, then in the worse case, each tree level
2421 * index/leaf need to be changed in case of the tree split.
2422 *
2423 * If more extents are inserted, they could cause the whole tree split more
2424 * than once, but this is really rare.
2425 */
2426 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2427 {
2428 int index;
2429 int depth;
2430
2431 /* If we are converting the inline data, only one is needed here. */
2432 if (ext4_has_inline_data(inode))
2433 return 1;
2434
2435 depth = ext_depth(inode);
2436
2437 if (extents <= 1)
2438 index = depth * 2;
2439 else
2440 index = depth * 3;
2441
2442 return index;
2443 }
2444
2445 static inline int get_default_free_blocks_flags(struct inode *inode)
2446 {
2447 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2448 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2449 else if (ext4_should_journal_data(inode))
2450 return EXT4_FREE_BLOCKS_FORGET;
2451 return 0;
2452 }
2453
2454 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2455 struct ext4_extent *ex,
2456 long long *partial_cluster,
2457 ext4_lblk_t from, ext4_lblk_t to)
2458 {
2459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2460 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2461 ext4_fsblk_t pblk;
2462 int flags = get_default_free_blocks_flags(inode);
2463
2464 /*
2465 * For bigalloc file systems, we never free a partial cluster
2466 * at the beginning of the extent. Instead, we make a note
2467 * that we tried freeing the cluster, and check to see if we
2468 * need to free it on a subsequent call to ext4_remove_blocks,
2469 * or at the end of the ext4_truncate() operation.
2470 */
2471 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2472
2473 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2474 /*
2475 * If we have a partial cluster, and it's different from the
2476 * cluster of the last block, we need to explicitly free the
2477 * partial cluster here.
2478 */
2479 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2480 if ((*partial_cluster > 0) &&
2481 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2482 ext4_free_blocks(handle, inode, NULL,
2483 EXT4_C2B(sbi, *partial_cluster),
2484 sbi->s_cluster_ratio, flags);
2485 *partial_cluster = 0;
2486 }
2487
2488 #ifdef EXTENTS_STATS
2489 {
2490 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2491 spin_lock(&sbi->s_ext_stats_lock);
2492 sbi->s_ext_blocks += ee_len;
2493 sbi->s_ext_extents++;
2494 if (ee_len < sbi->s_ext_min)
2495 sbi->s_ext_min = ee_len;
2496 if (ee_len > sbi->s_ext_max)
2497 sbi->s_ext_max = ee_len;
2498 if (ext_depth(inode) > sbi->s_depth_max)
2499 sbi->s_depth_max = ext_depth(inode);
2500 spin_unlock(&sbi->s_ext_stats_lock);
2501 }
2502 #endif
2503 if (from >= le32_to_cpu(ex->ee_block)
2504 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2505 /* tail removal */
2506 ext4_lblk_t num;
2507 unsigned int unaligned;
2508
2509 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2510 pblk = ext4_ext_pblock(ex) + ee_len - num;
2511 /*
2512 * Usually we want to free partial cluster at the end of the
2513 * extent, except for the situation when the cluster is still
2514 * used by any other extent (partial_cluster is negative).
2515 */
2516 if (*partial_cluster < 0 &&
2517 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2518 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2519
2520 ext_debug("free last %u blocks starting %llu partial %lld\n",
2521 num, pblk, *partial_cluster);
2522 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2523 /*
2524 * If the block range to be freed didn't start at the
2525 * beginning of a cluster, and we removed the entire
2526 * extent and the cluster is not used by any other extent,
2527 * save the partial cluster here, since we might need to
2528 * delete if we determine that the truncate operation has
2529 * removed all of the blocks in the cluster.
2530 *
2531 * On the other hand, if we did not manage to free the whole
2532 * extent, we have to mark the cluster as used (store negative
2533 * cluster number in partial_cluster).
2534 */
2535 unaligned = EXT4_PBLK_COFF(sbi, pblk);
2536 if (unaligned && (ee_len == num) &&
2537 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2538 *partial_cluster = EXT4_B2C(sbi, pblk);
2539 else if (unaligned)
2540 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2541 else if (*partial_cluster > 0)
2542 *partial_cluster = 0;
2543 } else
2544 ext4_error(sbi->s_sb, "strange request: removal(2) "
2545 "%u-%u from %u:%u\n",
2546 from, to, le32_to_cpu(ex->ee_block), ee_len);
2547 return 0;
2548 }
2549
2550
2551 /*
2552 * ext4_ext_rm_leaf() Removes the extents associated with the
2553 * blocks appearing between "start" and "end", and splits the extents
2554 * if "start" and "end" appear in the same extent
2555 *
2556 * @handle: The journal handle
2557 * @inode: The files inode
2558 * @path: The path to the leaf
2559 * @partial_cluster: The cluster which we'll have to free if all extents
2560 * has been released from it. It gets negative in case
2561 * that the cluster is still used.
2562 * @start: The first block to remove
2563 * @end: The last block to remove
2564 */
2565 static int
2566 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2567 struct ext4_ext_path *path,
2568 long long *partial_cluster,
2569 ext4_lblk_t start, ext4_lblk_t end)
2570 {
2571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2572 int err = 0, correct_index = 0;
2573 int depth = ext_depth(inode), credits;
2574 struct ext4_extent_header *eh;
2575 ext4_lblk_t a, b;
2576 unsigned num;
2577 ext4_lblk_t ex_ee_block;
2578 unsigned short ex_ee_len;
2579 unsigned uninitialized = 0;
2580 struct ext4_extent *ex;
2581 ext4_fsblk_t pblk;
2582
2583 /* the header must be checked already in ext4_ext_remove_space() */
2584 ext_debug("truncate since %u in leaf to %u\n", start, end);
2585 if (!path[depth].p_hdr)
2586 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2587 eh = path[depth].p_hdr;
2588 if (unlikely(path[depth].p_hdr == NULL)) {
2589 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2590 return -EIO;
2591 }
2592 /* find where to start removing */
2593 ex = path[depth].p_ext;
2594 if (!ex)
2595 ex = EXT_LAST_EXTENT(eh);
2596
2597 ex_ee_block = le32_to_cpu(ex->ee_block);
2598 ex_ee_len = ext4_ext_get_actual_len(ex);
2599
2600 /*
2601 * If we're starting with an extent other than the last one in the
2602 * node, we need to see if it shares a cluster with the extent to
2603 * the right (towards the end of the file). If its leftmost cluster
2604 * is this extent's rightmost cluster and it is not cluster aligned,
2605 * we'll mark it as a partial that is not to be deallocated.
2606 */
2607
2608 if (ex != EXT_LAST_EXTENT(eh)) {
2609 ext4_fsblk_t current_pblk, right_pblk;
2610 long long current_cluster, right_cluster;
2611
2612 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2613 current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2614 right_pblk = ext4_ext_pblock(ex + 1);
2615 right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2616 if (current_cluster == right_cluster &&
2617 EXT4_PBLK_COFF(sbi, right_pblk))
2618 *partial_cluster = -right_cluster;
2619 }
2620
2621 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2622
2623 while (ex >= EXT_FIRST_EXTENT(eh) &&
2624 ex_ee_block + ex_ee_len > start) {
2625
2626 if (ext4_ext_is_uninitialized(ex))
2627 uninitialized = 1;
2628 else
2629 uninitialized = 0;
2630
2631 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2632 uninitialized, ex_ee_len);
2633 path[depth].p_ext = ex;
2634
2635 a = ex_ee_block > start ? ex_ee_block : start;
2636 b = ex_ee_block+ex_ee_len - 1 < end ?
2637 ex_ee_block+ex_ee_len - 1 : end;
2638
2639 ext_debug(" border %u:%u\n", a, b);
2640
2641 /* If this extent is beyond the end of the hole, skip it */
2642 if (end < ex_ee_block) {
2643 /*
2644 * We're going to skip this extent and move to another,
2645 * so if this extent is not cluster aligned we have
2646 * to mark the current cluster as used to avoid
2647 * accidentally freeing it later on
2648 */
2649 pblk = ext4_ext_pblock(ex);
2650 if (EXT4_PBLK_COFF(sbi, pblk))
2651 *partial_cluster =
2652 -((long long)EXT4_B2C(sbi, pblk));
2653 ex--;
2654 ex_ee_block = le32_to_cpu(ex->ee_block);
2655 ex_ee_len = ext4_ext_get_actual_len(ex);
2656 continue;
2657 } else if (b != ex_ee_block + ex_ee_len - 1) {
2658 EXT4_ERROR_INODE(inode,
2659 "can not handle truncate %u:%u "
2660 "on extent %u:%u",
2661 start, end, ex_ee_block,
2662 ex_ee_block + ex_ee_len - 1);
2663 err = -EIO;
2664 goto out;
2665 } else if (a != ex_ee_block) {
2666 /* remove tail of the extent */
2667 num = a - ex_ee_block;
2668 } else {
2669 /* remove whole extent: excellent! */
2670 num = 0;
2671 }
2672 /*
2673 * 3 for leaf, sb, and inode plus 2 (bmap and group
2674 * descriptor) for each block group; assume two block
2675 * groups plus ex_ee_len/blocks_per_block_group for
2676 * the worst case
2677 */
2678 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2679 if (ex == EXT_FIRST_EXTENT(eh)) {
2680 correct_index = 1;
2681 credits += (ext_depth(inode)) + 1;
2682 }
2683 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2684
2685 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2686 if (err)
2687 goto out;
2688
2689 err = ext4_ext_get_access(handle, inode, path + depth);
2690 if (err)
2691 goto out;
2692
2693 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2694 a, b);
2695 if (err)
2696 goto out;
2697
2698 if (num == 0)
2699 /* this extent is removed; mark slot entirely unused */
2700 ext4_ext_store_pblock(ex, 0);
2701
2702 ex->ee_len = cpu_to_le16(num);
2703 /*
2704 * Do not mark uninitialized if all the blocks in the
2705 * extent have been removed.
2706 */
2707 if (uninitialized && num)
2708 ext4_ext_mark_uninitialized(ex);
2709 /*
2710 * If the extent was completely released,
2711 * we need to remove it from the leaf
2712 */
2713 if (num == 0) {
2714 if (end != EXT_MAX_BLOCKS - 1) {
2715 /*
2716 * For hole punching, we need to scoot all the
2717 * extents up when an extent is removed so that
2718 * we dont have blank extents in the middle
2719 */
2720 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2721 sizeof(struct ext4_extent));
2722
2723 /* Now get rid of the one at the end */
2724 memset(EXT_LAST_EXTENT(eh), 0,
2725 sizeof(struct ext4_extent));
2726 }
2727 le16_add_cpu(&eh->eh_entries, -1);
2728 } else if (*partial_cluster > 0)
2729 *partial_cluster = 0;
2730
2731 err = ext4_ext_dirty(handle, inode, path + depth);
2732 if (err)
2733 goto out;
2734
2735 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2736 ext4_ext_pblock(ex));
2737 ex--;
2738 ex_ee_block = le32_to_cpu(ex->ee_block);
2739 ex_ee_len = ext4_ext_get_actual_len(ex);
2740 }
2741
2742 if (correct_index && eh->eh_entries)
2743 err = ext4_ext_correct_indexes(handle, inode, path);
2744
2745 /*
2746 * If there's a partial cluster and at least one extent remains in
2747 * the leaf, free the partial cluster if it isn't shared with the
2748 * current extent. If there's a partial cluster and no extents
2749 * remain in the leaf, it can't be freed here. It can only be
2750 * freed when it's possible to determine if it's not shared with
2751 * any other extent - when the next leaf is processed or when space
2752 * removal is complete.
2753 */
2754 if (*partial_cluster > 0 && eh->eh_entries &&
2755 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2756 *partial_cluster)) {
2757 int flags = get_default_free_blocks_flags(inode);
2758
2759 ext4_free_blocks(handle, inode, NULL,
2760 EXT4_C2B(sbi, *partial_cluster),
2761 sbi->s_cluster_ratio, flags);
2762 *partial_cluster = 0;
2763 }
2764
2765 /* if this leaf is free, then we should
2766 * remove it from index block above */
2767 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2768 err = ext4_ext_rm_idx(handle, inode, path, depth);
2769
2770 out:
2771 return err;
2772 }
2773
2774 /*
2775 * ext4_ext_more_to_rm:
2776 * returns 1 if current index has to be freed (even partial)
2777 */
2778 static int
2779 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2780 {
2781 BUG_ON(path->p_idx == NULL);
2782
2783 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2784 return 0;
2785
2786 /*
2787 * if truncate on deeper level happened, it wasn't partial,
2788 * so we have to consider current index for truncation
2789 */
2790 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2791 return 0;
2792 return 1;
2793 }
2794
2795 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2796 ext4_lblk_t end)
2797 {
2798 struct super_block *sb = inode->i_sb;
2799 int depth = ext_depth(inode);
2800 struct ext4_ext_path *path = NULL;
2801 long long partial_cluster = 0;
2802 handle_t *handle;
2803 int i = 0, err = 0;
2804
2805 ext_debug("truncate since %u to %u\n", start, end);
2806
2807 /* probably first extent we're gonna free will be last in block */
2808 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2809 if (IS_ERR(handle))
2810 return PTR_ERR(handle);
2811
2812 again:
2813 trace_ext4_ext_remove_space(inode, start, end, depth);
2814
2815 /*
2816 * Check if we are removing extents inside the extent tree. If that
2817 * is the case, we are going to punch a hole inside the extent tree
2818 * so we have to check whether we need to split the extent covering
2819 * the last block to remove so we can easily remove the part of it
2820 * in ext4_ext_rm_leaf().
2821 */
2822 if (end < EXT_MAX_BLOCKS - 1) {
2823 struct ext4_extent *ex;
2824 ext4_lblk_t ee_block;
2825
2826 /* find extent for this block */
2827 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2828 if (IS_ERR(path)) {
2829 ext4_journal_stop(handle);
2830 return PTR_ERR(path);
2831 }
2832 depth = ext_depth(inode);
2833 /* Leaf not may not exist only if inode has no blocks at all */
2834 ex = path[depth].p_ext;
2835 if (!ex) {
2836 if (depth) {
2837 EXT4_ERROR_INODE(inode,
2838 "path[%d].p_hdr == NULL",
2839 depth);
2840 err = -EIO;
2841 }
2842 goto out;
2843 }
2844
2845 ee_block = le32_to_cpu(ex->ee_block);
2846
2847 /*
2848 * See if the last block is inside the extent, if so split
2849 * the extent at 'end' block so we can easily remove the
2850 * tail of the first part of the split extent in
2851 * ext4_ext_rm_leaf().
2852 */
2853 if (end >= ee_block &&
2854 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2855 int split_flag = 0;
2856
2857 if (ext4_ext_is_uninitialized(ex))
2858 split_flag = EXT4_EXT_MARK_UNINIT1 |
2859 EXT4_EXT_MARK_UNINIT2;
2860
2861 /*
2862 * Split the extent in two so that 'end' is the last
2863 * block in the first new extent. Also we should not
2864 * fail removing space due to ENOSPC so try to use
2865 * reserved block if that happens.
2866 */
2867 err = ext4_split_extent_at(handle, inode, path,
2868 end + 1, split_flag,
2869 EXT4_EX_NOCACHE |
2870 EXT4_GET_BLOCKS_PRE_IO |
2871 EXT4_GET_BLOCKS_METADATA_NOFAIL);
2872
2873 if (err < 0)
2874 goto out;
2875 }
2876 }
2877 /*
2878 * We start scanning from right side, freeing all the blocks
2879 * after i_size and walking into the tree depth-wise.
2880 */
2881 depth = ext_depth(inode);
2882 if (path) {
2883 int k = i = depth;
2884 while (--k > 0)
2885 path[k].p_block =
2886 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2887 } else {
2888 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2889 GFP_NOFS);
2890 if (path == NULL) {
2891 ext4_journal_stop(handle);
2892 return -ENOMEM;
2893 }
2894 path[0].p_depth = depth;
2895 path[0].p_hdr = ext_inode_hdr(inode);
2896 i = 0;
2897
2898 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2899 err = -EIO;
2900 goto out;
2901 }
2902 }
2903 err = 0;
2904
2905 while (i >= 0 && err == 0) {
2906 if (i == depth) {
2907 /* this is leaf block */
2908 err = ext4_ext_rm_leaf(handle, inode, path,
2909 &partial_cluster, start,
2910 end);
2911 /* root level has p_bh == NULL, brelse() eats this */
2912 brelse(path[i].p_bh);
2913 path[i].p_bh = NULL;
2914 i--;
2915 continue;
2916 }
2917
2918 /* this is index block */
2919 if (!path[i].p_hdr) {
2920 ext_debug("initialize header\n");
2921 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2922 }
2923
2924 if (!path[i].p_idx) {
2925 /* this level hasn't been touched yet */
2926 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2927 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2928 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2929 path[i].p_hdr,
2930 le16_to_cpu(path[i].p_hdr->eh_entries));
2931 } else {
2932 /* we were already here, see at next index */
2933 path[i].p_idx--;
2934 }
2935
2936 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2937 i, EXT_FIRST_INDEX(path[i].p_hdr),
2938 path[i].p_idx);
2939 if (ext4_ext_more_to_rm(path + i)) {
2940 struct buffer_head *bh;
2941 /* go to the next level */
2942 ext_debug("move to level %d (block %llu)\n",
2943 i + 1, ext4_idx_pblock(path[i].p_idx));
2944 memset(path + i + 1, 0, sizeof(*path));
2945 bh = read_extent_tree_block(inode,
2946 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2947 EXT4_EX_NOCACHE);
2948 if (IS_ERR(bh)) {
2949 /* should we reset i_size? */
2950 err = PTR_ERR(bh);
2951 break;
2952 }
2953 /* Yield here to deal with large extent trees.
2954 * Should be a no-op if we did IO above. */
2955 cond_resched();
2956 if (WARN_ON(i + 1 > depth)) {
2957 err = -EIO;
2958 break;
2959 }
2960 path[i + 1].p_bh = bh;
2961
2962 /* save actual number of indexes since this
2963 * number is changed at the next iteration */
2964 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2965 i++;
2966 } else {
2967 /* we finished processing this index, go up */
2968 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2969 /* index is empty, remove it;
2970 * handle must be already prepared by the
2971 * truncatei_leaf() */
2972 err = ext4_ext_rm_idx(handle, inode, path, i);
2973 }
2974 /* root level has p_bh == NULL, brelse() eats this */
2975 brelse(path[i].p_bh);
2976 path[i].p_bh = NULL;
2977 i--;
2978 ext_debug("return to level %d\n", i);
2979 }
2980 }
2981
2982 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2983 partial_cluster, path->p_hdr->eh_entries);
2984
2985 /* If we still have something in the partial cluster and we have removed
2986 * even the first extent, then we should free the blocks in the partial
2987 * cluster as well. */
2988 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2989 int flags = get_default_free_blocks_flags(inode);
2990
2991 ext4_free_blocks(handle, inode, NULL,
2992 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2993 EXT4_SB(sb)->s_cluster_ratio, flags);
2994 partial_cluster = 0;
2995 }
2996
2997 /* TODO: flexible tree reduction should be here */
2998 if (path->p_hdr->eh_entries == 0) {
2999 /*
3000 * truncate to zero freed all the tree,
3001 * so we need to correct eh_depth
3002 */
3003 err = ext4_ext_get_access(handle, inode, path);
3004 if (err == 0) {
3005 ext_inode_hdr(inode)->eh_depth = 0;
3006 ext_inode_hdr(inode)->eh_max =
3007 cpu_to_le16(ext4_ext_space_root(inode, 0));
3008 err = ext4_ext_dirty(handle, inode, path);
3009 }
3010 }
3011 out:
3012 ext4_ext_drop_refs(path);
3013 kfree(path);
3014 if (err == -EAGAIN) {
3015 path = NULL;
3016 goto again;
3017 }
3018 ext4_journal_stop(handle);
3019
3020 return err;
3021 }
3022
3023 /*
3024 * called at mount time
3025 */
3026 void ext4_ext_init(struct super_block *sb)
3027 {
3028 /*
3029 * possible initialization would be here
3030 */
3031
3032 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3033 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3034 printk(KERN_INFO "EXT4-fs: file extents enabled"
3035 #ifdef AGGRESSIVE_TEST
3036 ", aggressive tests"
3037 #endif
3038 #ifdef CHECK_BINSEARCH
3039 ", check binsearch"
3040 #endif
3041 #ifdef EXTENTS_STATS
3042 ", stats"
3043 #endif
3044 "\n");
3045 #endif
3046 #ifdef EXTENTS_STATS
3047 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3048 EXT4_SB(sb)->s_ext_min = 1 << 30;
3049 EXT4_SB(sb)->s_ext_max = 0;
3050 #endif
3051 }
3052 }
3053
3054 /*
3055 * called at umount time
3056 */
3057 void ext4_ext_release(struct super_block *sb)
3058 {
3059 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3060 return;
3061
3062 #ifdef EXTENTS_STATS
3063 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3064 struct ext4_sb_info *sbi = EXT4_SB(sb);
3065 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3066 sbi->s_ext_blocks, sbi->s_ext_extents,
3067 sbi->s_ext_blocks / sbi->s_ext_extents);
3068 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3069 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3070 }
3071 #endif
3072 }
3073
3074 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3075 {
3076 ext4_lblk_t ee_block;
3077 ext4_fsblk_t ee_pblock;
3078 unsigned int ee_len;
3079
3080 ee_block = le32_to_cpu(ex->ee_block);
3081 ee_len = ext4_ext_get_actual_len(ex);
3082 ee_pblock = ext4_ext_pblock(ex);
3083
3084 if (ee_len == 0)
3085 return 0;
3086
3087 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3088 EXTENT_STATUS_WRITTEN);
3089 }
3090
3091 /* FIXME!! we need to try to merge to left or right after zero-out */
3092 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3093 {
3094 ext4_fsblk_t ee_pblock;
3095 unsigned int ee_len;
3096 int ret;
3097
3098 ee_len = ext4_ext_get_actual_len(ex);
3099 ee_pblock = ext4_ext_pblock(ex);
3100
3101 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3102 if (ret > 0)
3103 ret = 0;
3104
3105 return ret;
3106 }
3107
3108 /*
3109 * ext4_split_extent_at() splits an extent at given block.
3110 *
3111 * @handle: the journal handle
3112 * @inode: the file inode
3113 * @path: the path to the extent
3114 * @split: the logical block where the extent is splitted.
3115 * @split_flags: indicates if the extent could be zeroout if split fails, and
3116 * the states(init or uninit) of new extents.
3117 * @flags: flags used to insert new extent to extent tree.
3118 *
3119 *
3120 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3121 * of which are deterimined by split_flag.
3122 *
3123 * There are two cases:
3124 * a> the extent are splitted into two extent.
3125 * b> split is not needed, and just mark the extent.
3126 *
3127 * return 0 on success.
3128 */
3129 static int ext4_split_extent_at(handle_t *handle,
3130 struct inode *inode,
3131 struct ext4_ext_path *path,
3132 ext4_lblk_t split,
3133 int split_flag,
3134 int flags)
3135 {
3136 ext4_fsblk_t newblock;
3137 ext4_lblk_t ee_block;
3138 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3139 struct ext4_extent *ex2 = NULL;
3140 unsigned int ee_len, depth;
3141 int err = 0;
3142
3143 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3144 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3145
3146 ext_debug("ext4_split_extents_at: inode %lu, logical"
3147 "block %llu\n", inode->i_ino, (unsigned long long)split);
3148
3149 ext4_ext_show_leaf(inode, path);
3150
3151 depth = ext_depth(inode);
3152 ex = path[depth].p_ext;
3153 ee_block = le32_to_cpu(ex->ee_block);
3154 ee_len = ext4_ext_get_actual_len(ex);
3155 newblock = split - ee_block + ext4_ext_pblock(ex);
3156
3157 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3158 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3159 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3160 EXT4_EXT_MARK_UNINIT1 |
3161 EXT4_EXT_MARK_UNINIT2));
3162
3163 err = ext4_ext_get_access(handle, inode, path + depth);
3164 if (err)
3165 goto out;
3166
3167 if (split == ee_block) {
3168 /*
3169 * case b: block @split is the block that the extent begins with
3170 * then we just change the state of the extent, and splitting
3171 * is not needed.
3172 */
3173 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3174 ext4_ext_mark_uninitialized(ex);
3175 else
3176 ext4_ext_mark_initialized(ex);
3177
3178 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3179 ext4_ext_try_to_merge(handle, inode, path, ex);
3180
3181 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3182 goto out;
3183 }
3184
3185 /* case a */
3186 memcpy(&orig_ex, ex, sizeof(orig_ex));
3187 ex->ee_len = cpu_to_le16(split - ee_block);
3188 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3189 ext4_ext_mark_uninitialized(ex);
3190
3191 /*
3192 * path may lead to new leaf, not to original leaf any more
3193 * after ext4_ext_insert_extent() returns,
3194 */
3195 err = ext4_ext_dirty(handle, inode, path + depth);
3196 if (err)
3197 goto fix_extent_len;
3198
3199 ex2 = &newex;
3200 ex2->ee_block = cpu_to_le32(split);
3201 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3202 ext4_ext_store_pblock(ex2, newblock);
3203 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3204 ext4_ext_mark_uninitialized(ex2);
3205
3206 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3207 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3208 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3209 if (split_flag & EXT4_EXT_DATA_VALID1) {
3210 err = ext4_ext_zeroout(inode, ex2);
3211 zero_ex.ee_block = ex2->ee_block;
3212 zero_ex.ee_len = cpu_to_le16(
3213 ext4_ext_get_actual_len(ex2));
3214 ext4_ext_store_pblock(&zero_ex,
3215 ext4_ext_pblock(ex2));
3216 } else {
3217 err = ext4_ext_zeroout(inode, ex);
3218 zero_ex.ee_block = ex->ee_block;
3219 zero_ex.ee_len = cpu_to_le16(
3220 ext4_ext_get_actual_len(ex));
3221 ext4_ext_store_pblock(&zero_ex,
3222 ext4_ext_pblock(ex));
3223 }
3224 } else {
3225 err = ext4_ext_zeroout(inode, &orig_ex);
3226 zero_ex.ee_block = orig_ex.ee_block;
3227 zero_ex.ee_len = cpu_to_le16(
3228 ext4_ext_get_actual_len(&orig_ex));
3229 ext4_ext_store_pblock(&zero_ex,
3230 ext4_ext_pblock(&orig_ex));
3231 }
3232
3233 if (err)
3234 goto fix_extent_len;
3235 /* update the extent length and mark as initialized */
3236 ex->ee_len = cpu_to_le16(ee_len);
3237 ext4_ext_try_to_merge(handle, inode, path, ex);
3238 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3239 if (err)
3240 goto fix_extent_len;
3241
3242 /* update extent status tree */
3243 err = ext4_zeroout_es(inode, &zero_ex);
3244
3245 goto out;
3246 } else if (err)
3247 goto fix_extent_len;
3248
3249 out:
3250 ext4_ext_show_leaf(inode, path);
3251 return err;
3252
3253 fix_extent_len:
3254 ex->ee_len = orig_ex.ee_len;
3255 ext4_ext_dirty(handle, inode, path + depth);
3256 return err;
3257 }
3258
3259 /*
3260 * ext4_split_extents() splits an extent and mark extent which is covered
3261 * by @map as split_flags indicates
3262 *
3263 * It may result in splitting the extent into multiple extents (up to three)
3264 * There are three possibilities:
3265 * a> There is no split required
3266 * b> Splits in two extents: Split is happening at either end of the extent
3267 * c> Splits in three extents: Somone is splitting in middle of the extent
3268 *
3269 */
3270 static int ext4_split_extent(handle_t *handle,
3271 struct inode *inode,
3272 struct ext4_ext_path *path,
3273 struct ext4_map_blocks *map,
3274 int split_flag,
3275 int flags)
3276 {
3277 ext4_lblk_t ee_block;
3278 struct ext4_extent *ex;
3279 unsigned int ee_len, depth;
3280 int err = 0;
3281 int uninitialized;
3282 int split_flag1, flags1;
3283 int allocated = map->m_len;
3284
3285 depth = ext_depth(inode);
3286 ex = path[depth].p_ext;
3287 ee_block = le32_to_cpu(ex->ee_block);
3288 ee_len = ext4_ext_get_actual_len(ex);
3289 uninitialized = ext4_ext_is_uninitialized(ex);
3290
3291 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3292 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3293 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3294 if (uninitialized)
3295 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3296 EXT4_EXT_MARK_UNINIT2;
3297 if (split_flag & EXT4_EXT_DATA_VALID2)
3298 split_flag1 |= EXT4_EXT_DATA_VALID1;
3299 err = ext4_split_extent_at(handle, inode, path,
3300 map->m_lblk + map->m_len, split_flag1, flags1);
3301 if (err)
3302 goto out;
3303 } else {
3304 allocated = ee_len - (map->m_lblk - ee_block);
3305 }
3306 /*
3307 * Update path is required because previous ext4_split_extent_at() may
3308 * result in split of original leaf or extent zeroout.
3309 */
3310 ext4_ext_drop_refs(path);
3311 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3312 if (IS_ERR(path))
3313 return PTR_ERR(path);
3314 depth = ext_depth(inode);
3315 ex = path[depth].p_ext;
3316 if (!ex) {
3317 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3318 (unsigned long) map->m_lblk);
3319 return -EIO;
3320 }
3321 uninitialized = ext4_ext_is_uninitialized(ex);
3322 split_flag1 = 0;
3323
3324 if (map->m_lblk >= ee_block) {
3325 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3326 if (uninitialized) {
3327 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3328 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3329 EXT4_EXT_MARK_UNINIT2);
3330 }
3331 err = ext4_split_extent_at(handle, inode, path,
3332 map->m_lblk, split_flag1, flags);
3333 if (err)
3334 goto out;
3335 }
3336
3337 ext4_ext_show_leaf(inode, path);
3338 out:
3339 return err ? err : allocated;
3340 }
3341
3342 /*
3343 * This function is called by ext4_ext_map_blocks() if someone tries to write
3344 * to an uninitialized extent. It may result in splitting the uninitialized
3345 * extent into multiple extents (up to three - one initialized and two
3346 * uninitialized).
3347 * There are three possibilities:
3348 * a> There is no split required: Entire extent should be initialized
3349 * b> Splits in two extents: Write is happening at either end of the extent
3350 * c> Splits in three extents: Somone is writing in middle of the extent
3351 *
3352 * Pre-conditions:
3353 * - The extent pointed to by 'path' is uninitialized.
3354 * - The extent pointed to by 'path' contains a superset
3355 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3356 *
3357 * Post-conditions on success:
3358 * - the returned value is the number of blocks beyond map->l_lblk
3359 * that are allocated and initialized.
3360 * It is guaranteed to be >= map->m_len.
3361 */
3362 static int ext4_ext_convert_to_initialized(handle_t *handle,
3363 struct inode *inode,
3364 struct ext4_map_blocks *map,
3365 struct ext4_ext_path *path,
3366 int flags)
3367 {
3368 struct ext4_sb_info *sbi;
3369 struct ext4_extent_header *eh;
3370 struct ext4_map_blocks split_map;
3371 struct ext4_extent zero_ex;
3372 struct ext4_extent *ex, *abut_ex;
3373 ext4_lblk_t ee_block, eof_block;
3374 unsigned int ee_len, depth, map_len = map->m_len;
3375 int allocated = 0, max_zeroout = 0;
3376 int err = 0;
3377 int split_flag = 0;
3378
3379 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3380 "block %llu, max_blocks %u\n", inode->i_ino,
3381 (unsigned long long)map->m_lblk, map_len);
3382
3383 sbi = EXT4_SB(inode->i_sb);
3384 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3385 inode->i_sb->s_blocksize_bits;
3386 if (eof_block < map->m_lblk + map_len)
3387 eof_block = map->m_lblk + map_len;
3388
3389 depth = ext_depth(inode);
3390 eh = path[depth].p_hdr;
3391 ex = path[depth].p_ext;
3392 ee_block = le32_to_cpu(ex->ee_block);
3393 ee_len = ext4_ext_get_actual_len(ex);
3394 zero_ex.ee_len = 0;
3395
3396 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3397
3398 /* Pre-conditions */
3399 BUG_ON(!ext4_ext_is_uninitialized(ex));
3400 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3401
3402 /*
3403 * Attempt to transfer newly initialized blocks from the currently
3404 * uninitialized extent to its neighbor. This is much cheaper
3405 * than an insertion followed by a merge as those involve costly
3406 * memmove() calls. Transferring to the left is the common case in
3407 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3408 * followed by append writes.
3409 *
3410 * Limitations of the current logic:
3411 * - L1: we do not deal with writes covering the whole extent.
3412 * This would require removing the extent if the transfer
3413 * is possible.
3414 * - L2: we only attempt to merge with an extent stored in the
3415 * same extent tree node.
3416 */
3417 if ((map->m_lblk == ee_block) &&
3418 /* See if we can merge left */
3419 (map_len < ee_len) && /*L1*/
3420 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3421 ext4_lblk_t prev_lblk;
3422 ext4_fsblk_t prev_pblk, ee_pblk;
3423 unsigned int prev_len;
3424
3425 abut_ex = ex - 1;
3426 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3427 prev_len = ext4_ext_get_actual_len(abut_ex);
3428 prev_pblk = ext4_ext_pblock(abut_ex);
3429 ee_pblk = ext4_ext_pblock(ex);
3430
3431 /*
3432 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3433 * upon those conditions:
3434 * - C1: abut_ex is initialized,
3435 * - C2: abut_ex is logically abutting ex,
3436 * - C3: abut_ex is physically abutting ex,
3437 * - C4: abut_ex can receive the additional blocks without
3438 * overflowing the (initialized) length limit.
3439 */
3440 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3441 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3442 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3443 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3444 err = ext4_ext_get_access(handle, inode, path + depth);
3445 if (err)
3446 goto out;
3447
3448 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3449 map, ex, abut_ex);
3450
3451 /* Shift the start of ex by 'map_len' blocks */
3452 ex->ee_block = cpu_to_le32(ee_block + map_len);
3453 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3454 ex->ee_len = cpu_to_le16(ee_len - map_len);
3455 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3456
3457 /* Extend abut_ex by 'map_len' blocks */
3458 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3459
3460 /* Result: number of initialized blocks past m_lblk */
3461 allocated = map_len;
3462 }
3463 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3464 (map_len < ee_len) && /*L1*/
3465 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3466 /* See if we can merge right */
3467 ext4_lblk_t next_lblk;
3468 ext4_fsblk_t next_pblk, ee_pblk;
3469 unsigned int next_len;
3470
3471 abut_ex = ex + 1;
3472 next_lblk = le32_to_cpu(abut_ex->ee_block);
3473 next_len = ext4_ext_get_actual_len(abut_ex);
3474 next_pblk = ext4_ext_pblock(abut_ex);
3475 ee_pblk = ext4_ext_pblock(ex);
3476
3477 /*
3478 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3479 * upon those conditions:
3480 * - C1: abut_ex is initialized,
3481 * - C2: abut_ex is logically abutting ex,
3482 * - C3: abut_ex is physically abutting ex,
3483 * - C4: abut_ex can receive the additional blocks without
3484 * overflowing the (initialized) length limit.
3485 */
3486 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3487 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3488 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3489 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3490 err = ext4_ext_get_access(handle, inode, path + depth);
3491 if (err)
3492 goto out;
3493
3494 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3495 map, ex, abut_ex);
3496
3497 /* Shift the start of abut_ex by 'map_len' blocks */
3498 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3499 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3500 ex->ee_len = cpu_to_le16(ee_len - map_len);
3501 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3502
3503 /* Extend abut_ex by 'map_len' blocks */
3504 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3505
3506 /* Result: number of initialized blocks past m_lblk */
3507 allocated = map_len;
3508 }
3509 }
3510 if (allocated) {
3511 /* Mark the block containing both extents as dirty */
3512 ext4_ext_dirty(handle, inode, path + depth);
3513
3514 /* Update path to point to the right extent */
3515 path[depth].p_ext = abut_ex;
3516 goto out;
3517 } else
3518 allocated = ee_len - (map->m_lblk - ee_block);
3519
3520 WARN_ON(map->m_lblk < ee_block);
3521 /*
3522 * It is safe to convert extent to initialized via explicit
3523 * zeroout only if extent is fully inside i_size or new_size.
3524 */
3525 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3526
3527 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3528 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3529 (inode->i_sb->s_blocksize_bits - 10);
3530
3531 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3532 if (max_zeroout && (ee_len <= max_zeroout)) {
3533 err = ext4_ext_zeroout(inode, ex);
3534 if (err)
3535 goto out;
3536 zero_ex.ee_block = ex->ee_block;
3537 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3538 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3539
3540 err = ext4_ext_get_access(handle, inode, path + depth);
3541 if (err)
3542 goto out;
3543 ext4_ext_mark_initialized(ex);
3544 ext4_ext_try_to_merge(handle, inode, path, ex);
3545 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3546 goto out;
3547 }
3548
3549 /*
3550 * four cases:
3551 * 1. split the extent into three extents.
3552 * 2. split the extent into two extents, zeroout the first half.
3553 * 3. split the extent into two extents, zeroout the second half.
3554 * 4. split the extent into two extents with out zeroout.
3555 */
3556 split_map.m_lblk = map->m_lblk;
3557 split_map.m_len = map->m_len;
3558
3559 if (max_zeroout && (allocated > map->m_len)) {
3560 if (allocated <= max_zeroout) {
3561 /* case 3 */
3562 zero_ex.ee_block =
3563 cpu_to_le32(map->m_lblk);
3564 zero_ex.ee_len = cpu_to_le16(allocated);
3565 ext4_ext_store_pblock(&zero_ex,
3566 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3567 err = ext4_ext_zeroout(inode, &zero_ex);
3568 if (err)
3569 goto out;
3570 split_map.m_lblk = map->m_lblk;
3571 split_map.m_len = allocated;
3572 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3573 /* case 2 */
3574 if (map->m_lblk != ee_block) {
3575 zero_ex.ee_block = ex->ee_block;
3576 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3577 ee_block);
3578 ext4_ext_store_pblock(&zero_ex,
3579 ext4_ext_pblock(ex));
3580 err = ext4_ext_zeroout(inode, &zero_ex);
3581 if (err)
3582 goto out;
3583 }
3584
3585 split_map.m_lblk = ee_block;
3586 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3587 allocated = map->m_len;
3588 }
3589 }
3590
3591 allocated = ext4_split_extent(handle, inode, path,
3592 &split_map, split_flag, flags);
3593 if (allocated < 0)
3594 err = allocated;
3595
3596 out:
3597 /* If we have gotten a failure, don't zero out status tree */
3598 if (!err)
3599 err = ext4_zeroout_es(inode, &zero_ex);
3600 return err ? err : allocated;
3601 }
3602
3603 /*
3604 * This function is called by ext4_ext_map_blocks() from
3605 * ext4_get_blocks_dio_write() when DIO to write
3606 * to an uninitialized extent.
3607 *
3608 * Writing to an uninitialized extent may result in splitting the uninitialized
3609 * extent into multiple initialized/uninitialized extents (up to three)
3610 * There are three possibilities:
3611 * a> There is no split required: Entire extent should be uninitialized
3612 * b> Splits in two extents: Write is happening at either end of the extent
3613 * c> Splits in three extents: Somone is writing in middle of the extent
3614 *
3615 * This works the same way in the case of initialized -> unwritten conversion.
3616 *
3617 * One of more index blocks maybe needed if the extent tree grow after
3618 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3619 * complete, we need to split the uninitialized extent before DIO submit
3620 * the IO. The uninitialized extent called at this time will be split
3621 * into three uninitialized extent(at most). After IO complete, the part
3622 * being filled will be convert to initialized by the end_io callback function
3623 * via ext4_convert_unwritten_extents().
3624 *
3625 * Returns the size of uninitialized extent to be written on success.
3626 */
3627 static int ext4_split_convert_extents(handle_t *handle,
3628 struct inode *inode,
3629 struct ext4_map_blocks *map,
3630 struct ext4_ext_path *path,
3631 int flags)
3632 {
3633 ext4_lblk_t eof_block;
3634 ext4_lblk_t ee_block;
3635 struct ext4_extent *ex;
3636 unsigned int ee_len;
3637 int split_flag = 0, depth;
3638
3639 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3640 __func__, inode->i_ino,
3641 (unsigned long long)map->m_lblk, map->m_len);
3642
3643 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3644 inode->i_sb->s_blocksize_bits;
3645 if (eof_block < map->m_lblk + map->m_len)
3646 eof_block = map->m_lblk + map->m_len;
3647 /*
3648 * It is safe to convert extent to initialized via explicit
3649 * zeroout only if extent is fully insde i_size or new_size.
3650 */
3651 depth = ext_depth(inode);
3652 ex = path[depth].p_ext;
3653 ee_block = le32_to_cpu(ex->ee_block);
3654 ee_len = ext4_ext_get_actual_len(ex);
3655
3656 /* Convert to unwritten */
3657 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3658 split_flag |= EXT4_EXT_DATA_VALID1;
3659 /* Convert to initialized */
3660 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3661 split_flag |= ee_block + ee_len <= eof_block ?
3662 EXT4_EXT_MAY_ZEROOUT : 0;
3663 split_flag |= (EXT4_EXT_MARK_UNINIT2 | EXT4_EXT_DATA_VALID2);
3664 }
3665 flags |= EXT4_GET_BLOCKS_PRE_IO;
3666 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3667 }
3668
3669 static int ext4_convert_initialized_extents(handle_t *handle,
3670 struct inode *inode,
3671 struct ext4_map_blocks *map,
3672 struct ext4_ext_path *path)
3673 {
3674 struct ext4_extent *ex;
3675 ext4_lblk_t ee_block;
3676 unsigned int ee_len;
3677 int depth;
3678 int err = 0;
3679
3680 depth = ext_depth(inode);
3681 ex = path[depth].p_ext;
3682 ee_block = le32_to_cpu(ex->ee_block);
3683 ee_len = ext4_ext_get_actual_len(ex);
3684
3685 ext_debug("%s: inode %lu, logical"
3686 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3687 (unsigned long long)ee_block, ee_len);
3688
3689 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3690 err = ext4_split_convert_extents(handle, inode, map, path,
3691 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3692 if (err < 0)
3693 goto out;
3694 ext4_ext_drop_refs(path);
3695 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3696 if (IS_ERR(path)) {
3697 err = PTR_ERR(path);
3698 goto out;
3699 }
3700 depth = ext_depth(inode);
3701 ex = path[depth].p_ext;
3702 if (!ex) {
3703 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3704 (unsigned long) map->m_lblk);
3705 err = -EIO;
3706 goto out;
3707 }
3708 }
3709
3710 err = ext4_ext_get_access(handle, inode, path + depth);
3711 if (err)
3712 goto out;
3713 /* first mark the extent as uninitialized */
3714 ext4_ext_mark_uninitialized(ex);
3715
3716 /* note: ext4_ext_correct_indexes() isn't needed here because
3717 * borders are not changed
3718 */
3719 ext4_ext_try_to_merge(handle, inode, path, ex);
3720
3721 /* Mark modified extent as dirty */
3722 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3723 out:
3724 ext4_ext_show_leaf(inode, path);
3725 return err;
3726 }
3727
3728
3729 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3730 struct inode *inode,
3731 struct ext4_map_blocks *map,
3732 struct ext4_ext_path *path)
3733 {
3734 struct ext4_extent *ex;
3735 ext4_lblk_t ee_block;
3736 unsigned int ee_len;
3737 int depth;
3738 int err = 0;
3739
3740 depth = ext_depth(inode);
3741 ex = path[depth].p_ext;
3742 ee_block = le32_to_cpu(ex->ee_block);
3743 ee_len = ext4_ext_get_actual_len(ex);
3744
3745 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3746 "block %llu, max_blocks %u\n", inode->i_ino,
3747 (unsigned long long)ee_block, ee_len);
3748
3749 /* If extent is larger than requested it is a clear sign that we still
3750 * have some extent state machine issues left. So extent_split is still
3751 * required.
3752 * TODO: Once all related issues will be fixed this situation should be
3753 * illegal.
3754 */
3755 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3756 #ifdef EXT4_DEBUG
3757 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3758 " len %u; IO logical block %llu, len %u\n",
3759 inode->i_ino, (unsigned long long)ee_block, ee_len,
3760 (unsigned long long)map->m_lblk, map->m_len);
3761 #endif
3762 err = ext4_split_convert_extents(handle, inode, map, path,
3763 EXT4_GET_BLOCKS_CONVERT);
3764 if (err < 0)
3765 goto out;
3766 ext4_ext_drop_refs(path);
3767 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3768 if (IS_ERR(path)) {
3769 err = PTR_ERR(path);
3770 goto out;
3771 }
3772 depth = ext_depth(inode);
3773 ex = path[depth].p_ext;
3774 }
3775
3776 err = ext4_ext_get_access(handle, inode, path + depth);
3777 if (err)
3778 goto out;
3779 /* first mark the extent as initialized */
3780 ext4_ext_mark_initialized(ex);
3781
3782 /* note: ext4_ext_correct_indexes() isn't needed here because
3783 * borders are not changed
3784 */
3785 ext4_ext_try_to_merge(handle, inode, path, ex);
3786
3787 /* Mark modified extent as dirty */
3788 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3789 out:
3790 ext4_ext_show_leaf(inode, path);
3791 return err;
3792 }
3793
3794 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3795 sector_t block, int count)
3796 {
3797 int i;
3798 for (i = 0; i < count; i++)
3799 unmap_underlying_metadata(bdev, block + i);
3800 }
3801
3802 /*
3803 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3804 */
3805 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3806 ext4_lblk_t lblk,
3807 struct ext4_ext_path *path,
3808 unsigned int len)
3809 {
3810 int i, depth;
3811 struct ext4_extent_header *eh;
3812 struct ext4_extent *last_ex;
3813
3814 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3815 return 0;
3816
3817 depth = ext_depth(inode);
3818 eh = path[depth].p_hdr;
3819
3820 /*
3821 * We're going to remove EOFBLOCKS_FL entirely in future so we
3822 * do not care for this case anymore. Simply remove the flag
3823 * if there are no extents.
3824 */
3825 if (unlikely(!eh->eh_entries))
3826 goto out;
3827 last_ex = EXT_LAST_EXTENT(eh);
3828 /*
3829 * We should clear the EOFBLOCKS_FL flag if we are writing the
3830 * last block in the last extent in the file. We test this by
3831 * first checking to see if the caller to
3832 * ext4_ext_get_blocks() was interested in the last block (or
3833 * a block beyond the last block) in the current extent. If
3834 * this turns out to be false, we can bail out from this
3835 * function immediately.
3836 */
3837 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3838 ext4_ext_get_actual_len(last_ex))
3839 return 0;
3840 /*
3841 * If the caller does appear to be planning to write at or
3842 * beyond the end of the current extent, we then test to see
3843 * if the current extent is the last extent in the file, by
3844 * checking to make sure it was reached via the rightmost node
3845 * at each level of the tree.
3846 */
3847 for (i = depth-1; i >= 0; i--)
3848 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3849 return 0;
3850 out:
3851 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3852 return ext4_mark_inode_dirty(handle, inode);
3853 }
3854
3855 /**
3856 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3857 *
3858 * Return 1 if there is a delalloc block in the range, otherwise 0.
3859 */
3860 int ext4_find_delalloc_range(struct inode *inode,
3861 ext4_lblk_t lblk_start,
3862 ext4_lblk_t lblk_end)
3863 {
3864 struct extent_status es;
3865
3866 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3867 if (es.es_len == 0)
3868 return 0; /* there is no delay extent in this tree */
3869 else if (es.es_lblk <= lblk_start &&
3870 lblk_start < es.es_lblk + es.es_len)
3871 return 1;
3872 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3873 return 1;
3874 else
3875 return 0;
3876 }
3877
3878 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3879 {
3880 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3881 ext4_lblk_t lblk_start, lblk_end;
3882 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3883 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3884
3885 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3886 }
3887
3888 /**
3889 * Determines how many complete clusters (out of those specified by the 'map')
3890 * are under delalloc and were reserved quota for.
3891 * This function is called when we are writing out the blocks that were
3892 * originally written with their allocation delayed, but then the space was
3893 * allocated using fallocate() before the delayed allocation could be resolved.
3894 * The cases to look for are:
3895 * ('=' indicated delayed allocated blocks
3896 * '-' indicates non-delayed allocated blocks)
3897 * (a) partial clusters towards beginning and/or end outside of allocated range
3898 * are not delalloc'ed.
3899 * Ex:
3900 * |----c---=|====c====|====c====|===-c----|
3901 * |++++++ allocated ++++++|
3902 * ==> 4 complete clusters in above example
3903 *
3904 * (b) partial cluster (outside of allocated range) towards either end is
3905 * marked for delayed allocation. In this case, we will exclude that
3906 * cluster.
3907 * Ex:
3908 * |----====c========|========c========|
3909 * |++++++ allocated ++++++|
3910 * ==> 1 complete clusters in above example
3911 *
3912 * Ex:
3913 * |================c================|
3914 * |++++++ allocated ++++++|
3915 * ==> 0 complete clusters in above example
3916 *
3917 * The ext4_da_update_reserve_space will be called only if we
3918 * determine here that there were some "entire" clusters that span
3919 * this 'allocated' range.
3920 * In the non-bigalloc case, this function will just end up returning num_blks
3921 * without ever calling ext4_find_delalloc_range.
3922 */
3923 static unsigned int
3924 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3925 unsigned int num_blks)
3926 {
3927 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3928 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3929 ext4_lblk_t lblk_from, lblk_to, c_offset;
3930 unsigned int allocated_clusters = 0;
3931
3932 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3933 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3934
3935 /* max possible clusters for this allocation */
3936 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3937
3938 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3939
3940 /* Check towards left side */
3941 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3942 if (c_offset) {
3943 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3944 lblk_to = lblk_from + c_offset - 1;
3945
3946 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3947 allocated_clusters--;
3948 }
3949
3950 /* Now check towards right. */
3951 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3952 if (allocated_clusters && c_offset) {
3953 lblk_from = lblk_start + num_blks;
3954 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3955
3956 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3957 allocated_clusters--;
3958 }
3959
3960 return allocated_clusters;
3961 }
3962
3963 static int
3964 ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode,
3965 struct ext4_map_blocks *map,
3966 struct ext4_ext_path *path, int flags,
3967 unsigned int allocated, ext4_fsblk_t newblock)
3968 {
3969 int ret = 0;
3970 int err = 0;
3971
3972 /*
3973 * Make sure that the extent is no bigger than we support with
3974 * uninitialized extent
3975 */
3976 if (map->m_len > EXT_UNINIT_MAX_LEN)
3977 map->m_len = EXT_UNINIT_MAX_LEN / 2;
3978
3979 ret = ext4_convert_initialized_extents(handle, inode, map,
3980 path);
3981 if (ret >= 0) {
3982 ext4_update_inode_fsync_trans(handle, inode, 1);
3983 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3984 path, map->m_len);
3985 } else
3986 err = ret;
3987 map->m_flags |= EXT4_MAP_UNWRITTEN;
3988 if (allocated > map->m_len)
3989 allocated = map->m_len;
3990 map->m_len = allocated;
3991
3992 return err ? err : allocated;
3993 }
3994
3995 static int
3996 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3997 struct ext4_map_blocks *map,
3998 struct ext4_ext_path *path, int flags,
3999 unsigned int allocated, ext4_fsblk_t newblock)
4000 {
4001 int ret = 0;
4002 int err = 0;
4003 ext4_io_end_t *io = ext4_inode_aio(inode);
4004
4005 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
4006 "block %llu, max_blocks %u, flags %x, allocated %u\n",
4007 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4008 flags, allocated);
4009 ext4_ext_show_leaf(inode, path);
4010
4011 /*
4012 * When writing into uninitialized space, we should not fail to
4013 * allocate metadata blocks for the new extent block if needed.
4014 */
4015 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4016
4017 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
4018 allocated, newblock);
4019
4020 /* get_block() before submit the IO, split the extent */
4021 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4022 ret = ext4_split_convert_extents(handle, inode, map,
4023 path, flags | EXT4_GET_BLOCKS_CONVERT);
4024 if (ret <= 0)
4025 goto out;
4026 /*
4027 * Flag the inode(non aio case) or end_io struct (aio case)
4028 * that this IO needs to conversion to written when IO is
4029 * completed
4030 */
4031 if (io)
4032 ext4_set_io_unwritten_flag(inode, io);
4033 else
4034 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4035 map->m_flags |= EXT4_MAP_UNWRITTEN;
4036 if (ext4_should_dioread_nolock(inode))
4037 map->m_flags |= EXT4_MAP_UNINIT;
4038 goto out;
4039 }
4040 /* IO end_io complete, convert the filled extent to written */
4041 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
4042 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4043 path);
4044 if (ret >= 0) {
4045 ext4_update_inode_fsync_trans(handle, inode, 1);
4046 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4047 path, map->m_len);
4048 } else
4049 err = ret;
4050 map->m_flags |= EXT4_MAP_MAPPED;
4051 map->m_pblk = newblock;
4052 if (allocated > map->m_len)
4053 allocated = map->m_len;
4054 map->m_len = allocated;
4055 goto out2;
4056 }
4057 /* buffered IO case */
4058 /*
4059 * repeat fallocate creation request
4060 * we already have an unwritten extent
4061 */
4062 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
4063 map->m_flags |= EXT4_MAP_UNWRITTEN;
4064 goto map_out;
4065 }
4066
4067 /* buffered READ or buffered write_begin() lookup */
4068 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4069 /*
4070 * We have blocks reserved already. We
4071 * return allocated blocks so that delalloc
4072 * won't do block reservation for us. But
4073 * the buffer head will be unmapped so that
4074 * a read from the block returns 0s.
4075 */
4076 map->m_flags |= EXT4_MAP_UNWRITTEN;
4077 goto out1;
4078 }
4079
4080 /* buffered write, writepage time, convert*/
4081 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
4082 if (ret >= 0)
4083 ext4_update_inode_fsync_trans(handle, inode, 1);
4084 out:
4085 if (ret <= 0) {
4086 err = ret;
4087 goto out2;
4088 } else
4089 allocated = ret;
4090 map->m_flags |= EXT4_MAP_NEW;
4091 /*
4092 * if we allocated more blocks than requested
4093 * we need to make sure we unmap the extra block
4094 * allocated. The actual needed block will get
4095 * unmapped later when we find the buffer_head marked
4096 * new.
4097 */
4098 if (allocated > map->m_len) {
4099 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4100 newblock + map->m_len,
4101 allocated - map->m_len);
4102 allocated = map->m_len;
4103 }
4104 map->m_len = allocated;
4105
4106 /*
4107 * If we have done fallocate with the offset that is already
4108 * delayed allocated, we would have block reservation
4109 * and quota reservation done in the delayed write path.
4110 * But fallocate would have already updated quota and block
4111 * count for this offset. So cancel these reservation
4112 */
4113 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4114 unsigned int reserved_clusters;
4115 reserved_clusters = get_reserved_cluster_alloc(inode,
4116 map->m_lblk, map->m_len);
4117 if (reserved_clusters)
4118 ext4_da_update_reserve_space(inode,
4119 reserved_clusters,
4120 0);
4121 }
4122
4123 map_out:
4124 map->m_flags |= EXT4_MAP_MAPPED;
4125 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4126 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4127 map->m_len);
4128 if (err < 0)
4129 goto out2;
4130 }
4131 out1:
4132 if (allocated > map->m_len)
4133 allocated = map->m_len;
4134 ext4_ext_show_leaf(inode, path);
4135 map->m_pblk = newblock;
4136 map->m_len = allocated;
4137 out2:
4138 return err ? err : allocated;
4139 }
4140
4141 /*
4142 * get_implied_cluster_alloc - check to see if the requested
4143 * allocation (in the map structure) overlaps with a cluster already
4144 * allocated in an extent.
4145 * @sb The filesystem superblock structure
4146 * @map The requested lblk->pblk mapping
4147 * @ex The extent structure which might contain an implied
4148 * cluster allocation
4149 *
4150 * This function is called by ext4_ext_map_blocks() after we failed to
4151 * find blocks that were already in the inode's extent tree. Hence,
4152 * we know that the beginning of the requested region cannot overlap
4153 * the extent from the inode's extent tree. There are three cases we
4154 * want to catch. The first is this case:
4155 *
4156 * |--- cluster # N--|
4157 * |--- extent ---| |---- requested region ---|
4158 * |==========|
4159 *
4160 * The second case that we need to test for is this one:
4161 *
4162 * |--------- cluster # N ----------------|
4163 * |--- requested region --| |------- extent ----|
4164 * |=======================|
4165 *
4166 * The third case is when the requested region lies between two extents
4167 * within the same cluster:
4168 * |------------- cluster # N-------------|
4169 * |----- ex -----| |---- ex_right ----|
4170 * |------ requested region ------|
4171 * |================|
4172 *
4173 * In each of the above cases, we need to set the map->m_pblk and
4174 * map->m_len so it corresponds to the return the extent labelled as
4175 * "|====|" from cluster #N, since it is already in use for data in
4176 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4177 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4178 * as a new "allocated" block region. Otherwise, we will return 0 and
4179 * ext4_ext_map_blocks() will then allocate one or more new clusters
4180 * by calling ext4_mb_new_blocks().
4181 */
4182 static int get_implied_cluster_alloc(struct super_block *sb,
4183 struct ext4_map_blocks *map,
4184 struct ext4_extent *ex,
4185 struct ext4_ext_path *path)
4186 {
4187 struct ext4_sb_info *sbi = EXT4_SB(sb);
4188 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4189 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4190 ext4_lblk_t rr_cluster_start;
4191 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4192 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4193 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4194
4195 /* The extent passed in that we are trying to match */
4196 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4197 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4198
4199 /* The requested region passed into ext4_map_blocks() */
4200 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4201
4202 if ((rr_cluster_start == ex_cluster_end) ||
4203 (rr_cluster_start == ex_cluster_start)) {
4204 if (rr_cluster_start == ex_cluster_end)
4205 ee_start += ee_len - 1;
4206 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4207 map->m_len = min(map->m_len,
4208 (unsigned) sbi->s_cluster_ratio - c_offset);
4209 /*
4210 * Check for and handle this case:
4211 *
4212 * |--------- cluster # N-------------|
4213 * |------- extent ----|
4214 * |--- requested region ---|
4215 * |===========|
4216 */
4217
4218 if (map->m_lblk < ee_block)
4219 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4220
4221 /*
4222 * Check for the case where there is already another allocated
4223 * block to the right of 'ex' but before the end of the cluster.
4224 *
4225 * |------------- cluster # N-------------|
4226 * |----- ex -----| |---- ex_right ----|
4227 * |------ requested region ------|
4228 * |================|
4229 */
4230 if (map->m_lblk > ee_block) {
4231 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4232 map->m_len = min(map->m_len, next - map->m_lblk);
4233 }
4234
4235 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4236 return 1;
4237 }
4238
4239 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4240 return 0;
4241 }
4242
4243
4244 /*
4245 * Block allocation/map/preallocation routine for extents based files
4246 *
4247 *
4248 * Need to be called with
4249 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4250 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4251 *
4252 * return > 0, number of of blocks already mapped/allocated
4253 * if create == 0 and these are pre-allocated blocks
4254 * buffer head is unmapped
4255 * otherwise blocks are mapped
4256 *
4257 * return = 0, if plain look up failed (blocks have not been allocated)
4258 * buffer head is unmapped
4259 *
4260 * return < 0, error case.
4261 */
4262 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4263 struct ext4_map_blocks *map, int flags)
4264 {
4265 struct ext4_ext_path *path = NULL;
4266 struct ext4_extent newex, *ex, *ex2;
4267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4268 ext4_fsblk_t newblock = 0;
4269 int free_on_err = 0, err = 0, depth, ret;
4270 unsigned int allocated = 0, offset = 0;
4271 unsigned int allocated_clusters = 0;
4272 struct ext4_allocation_request ar;
4273 ext4_io_end_t *io = ext4_inode_aio(inode);
4274 ext4_lblk_t cluster_offset;
4275 int set_unwritten = 0;
4276
4277 ext_debug("blocks %u/%u requested for inode %lu\n",
4278 map->m_lblk, map->m_len, inode->i_ino);
4279 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4280
4281 /* find extent for this block */
4282 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4283 if (IS_ERR(path)) {
4284 err = PTR_ERR(path);
4285 path = NULL;
4286 goto out2;
4287 }
4288
4289 depth = ext_depth(inode);
4290
4291 /*
4292 * consistent leaf must not be empty;
4293 * this situation is possible, though, _during_ tree modification;
4294 * this is why assert can't be put in ext4_ext_find_extent()
4295 */
4296 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4297 EXT4_ERROR_INODE(inode, "bad extent address "
4298 "lblock: %lu, depth: %d pblock %lld",
4299 (unsigned long) map->m_lblk, depth,
4300 path[depth].p_block);
4301 err = -EIO;
4302 goto out2;
4303 }
4304
4305 ex = path[depth].p_ext;
4306 if (ex) {
4307 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4308 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4309 unsigned short ee_len;
4310
4311
4312 /*
4313 * Uninitialized extents are treated as holes, except that
4314 * we split out initialized portions during a write.
4315 */
4316 ee_len = ext4_ext_get_actual_len(ex);
4317
4318 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4319
4320 /* if found extent covers block, simply return it */
4321 if (in_range(map->m_lblk, ee_block, ee_len)) {
4322 newblock = map->m_lblk - ee_block + ee_start;
4323 /* number of remaining blocks in the extent */
4324 allocated = ee_len - (map->m_lblk - ee_block);
4325 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4326 ee_block, ee_len, newblock);
4327
4328 /*
4329 * If the extent is initialized check whether the
4330 * caller wants to convert it to unwritten.
4331 */
4332 if ((!ext4_ext_is_uninitialized(ex)) &&
4333 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4334 allocated = ext4_ext_convert_initialized_extent(
4335 handle, inode, map, path, flags,
4336 allocated, newblock);
4337 goto out2;
4338 } else if (!ext4_ext_is_uninitialized(ex))
4339 goto out;
4340
4341 ret = ext4_ext_handle_uninitialized_extents(
4342 handle, inode, map, path, flags,
4343 allocated, newblock);
4344 if (ret < 0)
4345 err = ret;
4346 else
4347 allocated = ret;
4348 goto out2;
4349 }
4350 }
4351
4352 if ((sbi->s_cluster_ratio > 1) &&
4353 ext4_find_delalloc_cluster(inode, map->m_lblk))
4354 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4355
4356 /*
4357 * requested block isn't allocated yet;
4358 * we couldn't try to create block if create flag is zero
4359 */
4360 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4361 /*
4362 * put just found gap into cache to speed up
4363 * subsequent requests
4364 */
4365 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4366 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4367 goto out2;
4368 }
4369
4370 /*
4371 * Okay, we need to do block allocation.
4372 */
4373 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4374 newex.ee_block = cpu_to_le32(map->m_lblk);
4375 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4376
4377 /*
4378 * If we are doing bigalloc, check to see if the extent returned
4379 * by ext4_ext_find_extent() implies a cluster we can use.
4380 */
4381 if (cluster_offset && ex &&
4382 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4383 ar.len = allocated = map->m_len;
4384 newblock = map->m_pblk;
4385 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4386 goto got_allocated_blocks;
4387 }
4388
4389 /* find neighbour allocated blocks */
4390 ar.lleft = map->m_lblk;
4391 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4392 if (err)
4393 goto out2;
4394 ar.lright = map->m_lblk;
4395 ex2 = NULL;
4396 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4397 if (err)
4398 goto out2;
4399
4400 /* Check if the extent after searching to the right implies a
4401 * cluster we can use. */
4402 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4403 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4404 ar.len = allocated = map->m_len;
4405 newblock = map->m_pblk;
4406 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4407 goto got_allocated_blocks;
4408 }
4409
4410 /*
4411 * See if request is beyond maximum number of blocks we can have in
4412 * a single extent. For an initialized extent this limit is
4413 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4414 * EXT_UNINIT_MAX_LEN.
4415 */
4416 if (map->m_len > EXT_INIT_MAX_LEN &&
4417 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4418 map->m_len = EXT_INIT_MAX_LEN;
4419 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4420 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4421 map->m_len = EXT_UNINIT_MAX_LEN;
4422
4423 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4424 newex.ee_len = cpu_to_le16(map->m_len);
4425 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4426 if (err)
4427 allocated = ext4_ext_get_actual_len(&newex);
4428 else
4429 allocated = map->m_len;
4430
4431 /* allocate new block */
4432 ar.inode = inode;
4433 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4434 ar.logical = map->m_lblk;
4435 /*
4436 * We calculate the offset from the beginning of the cluster
4437 * for the logical block number, since when we allocate a
4438 * physical cluster, the physical block should start at the
4439 * same offset from the beginning of the cluster. This is
4440 * needed so that future calls to get_implied_cluster_alloc()
4441 * work correctly.
4442 */
4443 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4444 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4445 ar.goal -= offset;
4446 ar.logical -= offset;
4447 if (S_ISREG(inode->i_mode))
4448 ar.flags = EXT4_MB_HINT_DATA;
4449 else
4450 /* disable in-core preallocation for non-regular files */
4451 ar.flags = 0;
4452 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4453 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4454 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4455 if (!newblock)
4456 goto out2;
4457 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4458 ar.goal, newblock, allocated);
4459 free_on_err = 1;
4460 allocated_clusters = ar.len;
4461 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4462 if (ar.len > allocated)
4463 ar.len = allocated;
4464
4465 got_allocated_blocks:
4466 /* try to insert new extent into found leaf and return */
4467 ext4_ext_store_pblock(&newex, newblock + offset);
4468 newex.ee_len = cpu_to_le16(ar.len);
4469 /* Mark uninitialized */
4470 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4471 ext4_ext_mark_uninitialized(&newex);
4472 map->m_flags |= EXT4_MAP_UNWRITTEN;
4473 /*
4474 * io_end structure was created for every IO write to an
4475 * uninitialized extent. To avoid unnecessary conversion,
4476 * here we flag the IO that really needs the conversion.
4477 * For non asycn direct IO case, flag the inode state
4478 * that we need to perform conversion when IO is done.
4479 */
4480 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4481 set_unwritten = 1;
4482 if (ext4_should_dioread_nolock(inode))
4483 map->m_flags |= EXT4_MAP_UNINIT;
4484 }
4485
4486 err = 0;
4487 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4488 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4489 path, ar.len);
4490 if (!err)
4491 err = ext4_ext_insert_extent(handle, inode, path,
4492 &newex, flags);
4493
4494 if (!err && set_unwritten) {
4495 if (io)
4496 ext4_set_io_unwritten_flag(inode, io);
4497 else
4498 ext4_set_inode_state(inode,
4499 EXT4_STATE_DIO_UNWRITTEN);
4500 }
4501
4502 if (err && free_on_err) {
4503 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4504 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4505 /* free data blocks we just allocated */
4506 /* not a good idea to call discard here directly,
4507 * but otherwise we'd need to call it every free() */
4508 ext4_discard_preallocations(inode);
4509 ext4_free_blocks(handle, inode, NULL, newblock,
4510 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4511 goto out2;
4512 }
4513
4514 /* previous routine could use block we allocated */
4515 newblock = ext4_ext_pblock(&newex);
4516 allocated = ext4_ext_get_actual_len(&newex);
4517 if (allocated > map->m_len)
4518 allocated = map->m_len;
4519 map->m_flags |= EXT4_MAP_NEW;
4520
4521 /*
4522 * Update reserved blocks/metadata blocks after successful
4523 * block allocation which had been deferred till now.
4524 */
4525 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4526 unsigned int reserved_clusters;
4527 /*
4528 * Check how many clusters we had reserved this allocated range
4529 */
4530 reserved_clusters = get_reserved_cluster_alloc(inode,
4531 map->m_lblk, allocated);
4532 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4533 if (reserved_clusters) {
4534 /*
4535 * We have clusters reserved for this range.
4536 * But since we are not doing actual allocation
4537 * and are simply using blocks from previously
4538 * allocated cluster, we should release the
4539 * reservation and not claim quota.
4540 */
4541 ext4_da_update_reserve_space(inode,
4542 reserved_clusters, 0);
4543 }
4544 } else {
4545 BUG_ON(allocated_clusters < reserved_clusters);
4546 if (reserved_clusters < allocated_clusters) {
4547 struct ext4_inode_info *ei = EXT4_I(inode);
4548 int reservation = allocated_clusters -
4549 reserved_clusters;
4550 /*
4551 * It seems we claimed few clusters outside of
4552 * the range of this allocation. We should give
4553 * it back to the reservation pool. This can
4554 * happen in the following case:
4555 *
4556 * * Suppose s_cluster_ratio is 4 (i.e., each
4557 * cluster has 4 blocks. Thus, the clusters
4558 * are [0-3],[4-7],[8-11]...
4559 * * First comes delayed allocation write for
4560 * logical blocks 10 & 11. Since there were no
4561 * previous delayed allocated blocks in the
4562 * range [8-11], we would reserve 1 cluster
4563 * for this write.
4564 * * Next comes write for logical blocks 3 to 8.
4565 * In this case, we will reserve 2 clusters
4566 * (for [0-3] and [4-7]; and not for [8-11] as
4567 * that range has a delayed allocated blocks.
4568 * Thus total reserved clusters now becomes 3.
4569 * * Now, during the delayed allocation writeout
4570 * time, we will first write blocks [3-8] and
4571 * allocate 3 clusters for writing these
4572 * blocks. Also, we would claim all these
4573 * three clusters above.
4574 * * Now when we come here to writeout the
4575 * blocks [10-11], we would expect to claim
4576 * the reservation of 1 cluster we had made
4577 * (and we would claim it since there are no
4578 * more delayed allocated blocks in the range
4579 * [8-11]. But our reserved cluster count had
4580 * already gone to 0.
4581 *
4582 * Thus, at the step 4 above when we determine
4583 * that there are still some unwritten delayed
4584 * allocated blocks outside of our current
4585 * block range, we should increment the
4586 * reserved clusters count so that when the
4587 * remaining blocks finally gets written, we
4588 * could claim them.
4589 */
4590 dquot_reserve_block(inode,
4591 EXT4_C2B(sbi, reservation));
4592 spin_lock(&ei->i_block_reservation_lock);
4593 ei->i_reserved_data_blocks += reservation;
4594 spin_unlock(&ei->i_block_reservation_lock);
4595 }
4596 /*
4597 * We will claim quota for all newly allocated blocks.
4598 * We're updating the reserved space *after* the
4599 * correction above so we do not accidentally free
4600 * all the metadata reservation because we might
4601 * actually need it later on.
4602 */
4603 ext4_da_update_reserve_space(inode, allocated_clusters,
4604 1);
4605 }
4606 }
4607
4608 /*
4609 * Cache the extent and update transaction to commit on fdatasync only
4610 * when it is _not_ an uninitialized extent.
4611 */
4612 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4613 ext4_update_inode_fsync_trans(handle, inode, 1);
4614 else
4615 ext4_update_inode_fsync_trans(handle, inode, 0);
4616 out:
4617 if (allocated > map->m_len)
4618 allocated = map->m_len;
4619 ext4_ext_show_leaf(inode, path);
4620 map->m_flags |= EXT4_MAP_MAPPED;
4621 map->m_pblk = newblock;
4622 map->m_len = allocated;
4623 out2:
4624 if (path) {
4625 ext4_ext_drop_refs(path);
4626 kfree(path);
4627 }
4628
4629 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4630 err ? err : allocated);
4631 ext4_es_lru_add(inode);
4632 return err ? err : allocated;
4633 }
4634
4635 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4636 {
4637 struct super_block *sb = inode->i_sb;
4638 ext4_lblk_t last_block;
4639 int err = 0;
4640
4641 /*
4642 * TODO: optimization is possible here.
4643 * Probably we need not scan at all,
4644 * because page truncation is enough.
4645 */
4646
4647 /* we have to know where to truncate from in crash case */
4648 EXT4_I(inode)->i_disksize = inode->i_size;
4649 ext4_mark_inode_dirty(handle, inode);
4650
4651 last_block = (inode->i_size + sb->s_blocksize - 1)
4652 >> EXT4_BLOCK_SIZE_BITS(sb);
4653 retry:
4654 err = ext4_es_remove_extent(inode, last_block,
4655 EXT_MAX_BLOCKS - last_block);
4656 if (err == -ENOMEM) {
4657 cond_resched();
4658 congestion_wait(BLK_RW_ASYNC, HZ/50);
4659 goto retry;
4660 }
4661 if (err) {
4662 ext4_std_error(inode->i_sb, err);
4663 return;
4664 }
4665 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4666 ext4_std_error(inode->i_sb, err);
4667 }
4668
4669 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4670 ext4_lblk_t len, int flags, int mode)
4671 {
4672 struct inode *inode = file_inode(file);
4673 handle_t *handle;
4674 int ret = 0;
4675 int ret2 = 0;
4676 int retries = 0;
4677 struct ext4_map_blocks map;
4678 unsigned int credits;
4679
4680 map.m_lblk = offset;
4681 /*
4682 * Don't normalize the request if it can fit in one extent so
4683 * that it doesn't get unnecessarily split into multiple
4684 * extents.
4685 */
4686 if (len <= EXT_UNINIT_MAX_LEN)
4687 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4688
4689 /*
4690 * credits to insert 1 extent into extent tree
4691 */
4692 credits = ext4_chunk_trans_blocks(inode, len);
4693
4694 retry:
4695 while (ret >= 0 && ret < len) {
4696 map.m_lblk = map.m_lblk + ret;
4697 map.m_len = len = len - ret;
4698 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4699 credits);
4700 if (IS_ERR(handle)) {
4701 ret = PTR_ERR(handle);
4702 break;
4703 }
4704 ret = ext4_map_blocks(handle, inode, &map, flags);
4705 if (ret <= 0) {
4706 ext4_debug("inode #%lu: block %u: len %u: "
4707 "ext4_ext_map_blocks returned %d",
4708 inode->i_ino, map.m_lblk,
4709 map.m_len, ret);
4710 ext4_mark_inode_dirty(handle, inode);
4711 ret2 = ext4_journal_stop(handle);
4712 break;
4713 }
4714 ret2 = ext4_journal_stop(handle);
4715 if (ret2)
4716 break;
4717 }
4718 if (ret == -ENOSPC &&
4719 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4720 ret = 0;
4721 goto retry;
4722 }
4723
4724 return ret > 0 ? ret2 : ret;
4725 }
4726
4727 static long ext4_zero_range(struct file *file, loff_t offset,
4728 loff_t len, int mode)
4729 {
4730 struct inode *inode = file_inode(file);
4731 handle_t *handle = NULL;
4732 unsigned int max_blocks;
4733 loff_t new_size = 0;
4734 int ret = 0;
4735 int flags;
4736 int partial;
4737 loff_t start, end;
4738 ext4_lblk_t lblk;
4739 struct address_space *mapping = inode->i_mapping;
4740 unsigned int blkbits = inode->i_blkbits;
4741
4742 trace_ext4_zero_range(inode, offset, len, mode);
4743
4744 /*
4745 * Write out all dirty pages to avoid race conditions
4746 * Then release them.
4747 */
4748 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4749 ret = filemap_write_and_wait_range(mapping, offset,
4750 offset + len - 1);
4751 if (ret)
4752 return ret;
4753 }
4754
4755 /*
4756 * Round up offset. This is not fallocate, we neet to zero out
4757 * blocks, so convert interior block aligned part of the range to
4758 * unwritten and possibly manually zero out unaligned parts of the
4759 * range.
4760 */
4761 start = round_up(offset, 1 << blkbits);
4762 end = round_down((offset + len), 1 << blkbits);
4763
4764 if (start < offset || end > offset + len)
4765 return -EINVAL;
4766 partial = (offset + len) & ((1 << blkbits) - 1);
4767
4768 lblk = start >> blkbits;
4769 max_blocks = (end >> blkbits);
4770 if (max_blocks < lblk)
4771 max_blocks = 0;
4772 else
4773 max_blocks -= lblk;
4774
4775 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
4776 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN;
4777 if (mode & FALLOC_FL_KEEP_SIZE)
4778 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4779
4780 mutex_lock(&inode->i_mutex);
4781
4782 /*
4783 * Indirect files do not support unwritten extnets
4784 */
4785 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4786 ret = -EOPNOTSUPP;
4787 goto out_mutex;
4788 }
4789
4790 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4791 offset + len > i_size_read(inode)) {
4792 new_size = offset + len;
4793 ret = inode_newsize_ok(inode, new_size);
4794 if (ret)
4795 goto out_mutex;
4796 /*
4797 * If we have a partial block after EOF we have to allocate
4798 * the entire block.
4799 */
4800 if (partial)
4801 max_blocks += 1;
4802 }
4803
4804 if (max_blocks > 0) {
4805
4806 /* Now release the pages and zero block aligned part of pages*/
4807 truncate_pagecache_range(inode, start, end - 1);
4808
4809 /* Wait all existing dio workers, newcomers will block on i_mutex */
4810 ext4_inode_block_unlocked_dio(inode);
4811 inode_dio_wait(inode);
4812
4813 /*
4814 * Remove entire range from the extent status tree.
4815 */
4816 ret = ext4_es_remove_extent(inode, lblk, max_blocks);
4817 if (ret)
4818 goto out_dio;
4819
4820 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags,
4821 mode);
4822 if (ret)
4823 goto out_dio;
4824 }
4825
4826 handle = ext4_journal_start(inode, EXT4_HT_MISC, 4);
4827 if (IS_ERR(handle)) {
4828 ret = PTR_ERR(handle);
4829 ext4_std_error(inode->i_sb, ret);
4830 goto out_dio;
4831 }
4832
4833 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4834
4835 if (new_size) {
4836 if (new_size > i_size_read(inode))
4837 i_size_write(inode, new_size);
4838 if (new_size > EXT4_I(inode)->i_disksize)
4839 ext4_update_i_disksize(inode, new_size);
4840 } else {
4841 /*
4842 * Mark that we allocate beyond EOF so the subsequent truncate
4843 * can proceed even if the new size is the same as i_size.
4844 */
4845 if ((offset + len) > i_size_read(inode))
4846 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4847 }
4848
4849 ext4_mark_inode_dirty(handle, inode);
4850
4851 /* Zero out partial block at the edges of the range */
4852 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4853
4854 if (file->f_flags & O_SYNC)
4855 ext4_handle_sync(handle);
4856
4857 ext4_journal_stop(handle);
4858 out_dio:
4859 ext4_inode_resume_unlocked_dio(inode);
4860 out_mutex:
4861 mutex_unlock(&inode->i_mutex);
4862 return ret;
4863 }
4864
4865 /*
4866 * preallocate space for a file. This implements ext4's fallocate file
4867 * operation, which gets called from sys_fallocate system call.
4868 * For block-mapped files, posix_fallocate should fall back to the method
4869 * of writing zeroes to the required new blocks (the same behavior which is
4870 * expected for file systems which do not support fallocate() system call).
4871 */
4872 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4873 {
4874 struct inode *inode = file_inode(file);
4875 handle_t *handle;
4876 loff_t new_size = 0;
4877 unsigned int max_blocks;
4878 int ret = 0;
4879 int flags;
4880 ext4_lblk_t lblk;
4881 struct timespec tv;
4882 unsigned int blkbits = inode->i_blkbits;
4883
4884 /* Return error if mode is not supported */
4885 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4886 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4887 return -EOPNOTSUPP;
4888
4889 if (mode & FALLOC_FL_PUNCH_HOLE)
4890 return ext4_punch_hole(inode, offset, len);
4891
4892 ret = ext4_convert_inline_data(inode);
4893 if (ret)
4894 return ret;
4895
4896 /*
4897 * currently supporting (pre)allocate mode for extent-based
4898 * files _only_
4899 */
4900 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4901 return -EOPNOTSUPP;
4902
4903 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4904 return ext4_collapse_range(inode, offset, len);
4905
4906 if (mode & FALLOC_FL_ZERO_RANGE)
4907 return ext4_zero_range(file, offset, len, mode);
4908
4909 trace_ext4_fallocate_enter(inode, offset, len, mode);
4910 lblk = offset >> blkbits;
4911 /*
4912 * We can't just convert len to max_blocks because
4913 * If blocksize = 4096 offset = 3072 and len = 2048
4914 */
4915 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4916 - lblk;
4917
4918 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4919 if (mode & FALLOC_FL_KEEP_SIZE)
4920 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4921
4922 mutex_lock(&inode->i_mutex);
4923
4924 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4925 offset + len > i_size_read(inode)) {
4926 new_size = offset + len;
4927 ret = inode_newsize_ok(inode, new_size);
4928 if (ret)
4929 goto out;
4930 }
4931
4932 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, mode);
4933 if (ret)
4934 goto out;
4935
4936 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4937 if (IS_ERR(handle))
4938 goto out;
4939
4940 tv = inode->i_ctime = ext4_current_time(inode);
4941
4942 if (new_size) {
4943 if (new_size > i_size_read(inode)) {
4944 i_size_write(inode, new_size);
4945 inode->i_mtime = tv;
4946 }
4947 if (new_size > EXT4_I(inode)->i_disksize)
4948 ext4_update_i_disksize(inode, new_size);
4949 } else {
4950 /*
4951 * Mark that we allocate beyond EOF so the subsequent truncate
4952 * can proceed even if the new size is the same as i_size.
4953 */
4954 if ((offset + len) > i_size_read(inode))
4955 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4956 }
4957 ext4_mark_inode_dirty(handle, inode);
4958 if (file->f_flags & O_SYNC)
4959 ext4_handle_sync(handle);
4960
4961 ext4_journal_stop(handle);
4962 out:
4963 mutex_unlock(&inode->i_mutex);
4964 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4965 return ret;
4966 }
4967
4968 /*
4969 * This function convert a range of blocks to written extents
4970 * The caller of this function will pass the start offset and the size.
4971 * all unwritten extents within this range will be converted to
4972 * written extents.
4973 *
4974 * This function is called from the direct IO end io call back
4975 * function, to convert the fallocated extents after IO is completed.
4976 * Returns 0 on success.
4977 */
4978 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4979 loff_t offset, ssize_t len)
4980 {
4981 unsigned int max_blocks;
4982 int ret = 0;
4983 int ret2 = 0;
4984 struct ext4_map_blocks map;
4985 unsigned int credits, blkbits = inode->i_blkbits;
4986
4987 map.m_lblk = offset >> blkbits;
4988 /*
4989 * We can't just convert len to max_blocks because
4990 * If blocksize = 4096 offset = 3072 and len = 2048
4991 */
4992 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4993 map.m_lblk);
4994 /*
4995 * This is somewhat ugly but the idea is clear: When transaction is
4996 * reserved, everything goes into it. Otherwise we rather start several
4997 * smaller transactions for conversion of each extent separately.
4998 */
4999 if (handle) {
5000 handle = ext4_journal_start_reserved(handle,
5001 EXT4_HT_EXT_CONVERT);
5002 if (IS_ERR(handle))
5003 return PTR_ERR(handle);
5004 credits = 0;
5005 } else {
5006 /*
5007 * credits to insert 1 extent into extent tree
5008 */
5009 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5010 }
5011 while (ret >= 0 && ret < max_blocks) {
5012 map.m_lblk += ret;
5013 map.m_len = (max_blocks -= ret);
5014 if (credits) {
5015 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5016 credits);
5017 if (IS_ERR(handle)) {
5018 ret = PTR_ERR(handle);
5019 break;
5020 }
5021 }
5022 ret = ext4_map_blocks(handle, inode, &map,
5023 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5024 if (ret <= 0)
5025 ext4_warning(inode->i_sb,
5026 "inode #%lu: block %u: len %u: "
5027 "ext4_ext_map_blocks returned %d",
5028 inode->i_ino, map.m_lblk,
5029 map.m_len, ret);
5030 ext4_mark_inode_dirty(handle, inode);
5031 if (credits)
5032 ret2 = ext4_journal_stop(handle);
5033 if (ret <= 0 || ret2)
5034 break;
5035 }
5036 if (!credits)
5037 ret2 = ext4_journal_stop(handle);
5038 return ret > 0 ? ret2 : ret;
5039 }
5040
5041 /*
5042 * If newes is not existing extent (newes->ec_pblk equals zero) find
5043 * delayed extent at start of newes and update newes accordingly and
5044 * return start of the next delayed extent.
5045 *
5046 * If newes is existing extent (newes->ec_pblk is not equal zero)
5047 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5048 * extent found. Leave newes unmodified.
5049 */
5050 static int ext4_find_delayed_extent(struct inode *inode,
5051 struct extent_status *newes)
5052 {
5053 struct extent_status es;
5054 ext4_lblk_t block, next_del;
5055
5056 if (newes->es_pblk == 0) {
5057 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5058 newes->es_lblk + newes->es_len - 1, &es);
5059
5060 /*
5061 * No extent in extent-tree contains block @newes->es_pblk,
5062 * then the block may stay in 1)a hole or 2)delayed-extent.
5063 */
5064 if (es.es_len == 0)
5065 /* A hole found. */
5066 return 0;
5067
5068 if (es.es_lblk > newes->es_lblk) {
5069 /* A hole found. */
5070 newes->es_len = min(es.es_lblk - newes->es_lblk,
5071 newes->es_len);
5072 return 0;
5073 }
5074
5075 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5076 }
5077
5078 block = newes->es_lblk + newes->es_len;
5079 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5080 if (es.es_len == 0)
5081 next_del = EXT_MAX_BLOCKS;
5082 else
5083 next_del = es.es_lblk;
5084
5085 return next_del;
5086 }
5087 /* fiemap flags we can handle specified here */
5088 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5089
5090 static int ext4_xattr_fiemap(struct inode *inode,
5091 struct fiemap_extent_info *fieinfo)
5092 {
5093 __u64 physical = 0;
5094 __u64 length;
5095 __u32 flags = FIEMAP_EXTENT_LAST;
5096 int blockbits = inode->i_sb->s_blocksize_bits;
5097 int error = 0;
5098
5099 /* in-inode? */
5100 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5101 struct ext4_iloc iloc;
5102 int offset; /* offset of xattr in inode */
5103
5104 error = ext4_get_inode_loc(inode, &iloc);
5105 if (error)
5106 return error;
5107 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5108 offset = EXT4_GOOD_OLD_INODE_SIZE +
5109 EXT4_I(inode)->i_extra_isize;
5110 physical += offset;
5111 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5112 flags |= FIEMAP_EXTENT_DATA_INLINE;
5113 brelse(iloc.bh);
5114 } else { /* external block */
5115 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5116 length = inode->i_sb->s_blocksize;
5117 }
5118
5119 if (physical)
5120 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5121 length, flags);
5122 return (error < 0 ? error : 0);
5123 }
5124
5125 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5126 __u64 start, __u64 len)
5127 {
5128 ext4_lblk_t start_blk;
5129 int error = 0;
5130
5131 if (ext4_has_inline_data(inode)) {
5132 int has_inline = 1;
5133
5134 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
5135
5136 if (has_inline)
5137 return error;
5138 }
5139
5140 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5141 error = ext4_ext_precache(inode);
5142 if (error)
5143 return error;
5144 }
5145
5146 /* fallback to generic here if not in extents fmt */
5147 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5148 return generic_block_fiemap(inode, fieinfo, start, len,
5149 ext4_get_block);
5150
5151 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5152 return -EBADR;
5153
5154 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5155 error = ext4_xattr_fiemap(inode, fieinfo);
5156 } else {
5157 ext4_lblk_t len_blks;
5158 __u64 last_blk;
5159
5160 start_blk = start >> inode->i_sb->s_blocksize_bits;
5161 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5162 if (last_blk >= EXT_MAX_BLOCKS)
5163 last_blk = EXT_MAX_BLOCKS-1;
5164 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5165
5166 /*
5167 * Walk the extent tree gathering extent information
5168 * and pushing extents back to the user.
5169 */
5170 error = ext4_fill_fiemap_extents(inode, start_blk,
5171 len_blks, fieinfo);
5172 }
5173 ext4_es_lru_add(inode);
5174 return error;
5175 }
5176
5177 /*
5178 * ext4_access_path:
5179 * Function to access the path buffer for marking it dirty.
5180 * It also checks if there are sufficient credits left in the journal handle
5181 * to update path.
5182 */
5183 static int
5184 ext4_access_path(handle_t *handle, struct inode *inode,
5185 struct ext4_ext_path *path)
5186 {
5187 int credits, err;
5188
5189 if (!ext4_handle_valid(handle))
5190 return 0;
5191
5192 /*
5193 * Check if need to extend journal credits
5194 * 3 for leaf, sb, and inode plus 2 (bmap and group
5195 * descriptor) for each block group; assume two block
5196 * groups
5197 */
5198 if (handle->h_buffer_credits < 7) {
5199 credits = ext4_writepage_trans_blocks(inode);
5200 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5201 /* EAGAIN is success */
5202 if (err && err != -EAGAIN)
5203 return err;
5204 }
5205
5206 err = ext4_ext_get_access(handle, inode, path);
5207 return err;
5208 }
5209
5210 /*
5211 * ext4_ext_shift_path_extents:
5212 * Shift the extents of a path structure lying between path[depth].p_ext
5213 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5214 * from starting block for each extent.
5215 */
5216 static int
5217 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5218 struct inode *inode, handle_t *handle,
5219 ext4_lblk_t *start)
5220 {
5221 int depth, err = 0;
5222 struct ext4_extent *ex_start, *ex_last;
5223 bool update = 0;
5224 depth = path->p_depth;
5225
5226 while (depth >= 0) {
5227 if (depth == path->p_depth) {
5228 ex_start = path[depth].p_ext;
5229 if (!ex_start)
5230 return -EIO;
5231
5232 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5233 if (!ex_last)
5234 return -EIO;
5235
5236 err = ext4_access_path(handle, inode, path + depth);
5237 if (err)
5238 goto out;
5239
5240 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5241 update = 1;
5242
5243 *start = le32_to_cpu(ex_last->ee_block) +
5244 ext4_ext_get_actual_len(ex_last);
5245
5246 while (ex_start <= ex_last) {
5247 le32_add_cpu(&ex_start->ee_block, -shift);
5248 if (ex_start >
5249 EXT_FIRST_EXTENT(path[depth].p_hdr)) {
5250 if (ext4_ext_try_to_merge_right(inode,
5251 path, ex_start - 1))
5252 ex_last--;
5253 }
5254 ex_start++;
5255 }
5256 err = ext4_ext_dirty(handle, inode, path + depth);
5257 if (err)
5258 goto out;
5259
5260 if (--depth < 0 || !update)
5261 break;
5262 }
5263
5264 /* Update index too */
5265 err = ext4_access_path(handle, inode, path + depth);
5266 if (err)
5267 goto out;
5268
5269 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5270 err = ext4_ext_dirty(handle, inode, path + depth);
5271 if (err)
5272 goto out;
5273
5274 /* we are done if current index is not a starting index */
5275 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5276 break;
5277
5278 depth--;
5279 }
5280
5281 out:
5282 return err;
5283 }
5284
5285 /*
5286 * ext4_ext_shift_extents:
5287 * All the extents which lies in the range from start to the last allocated
5288 * block for the file are shifted downwards by shift blocks.
5289 * On success, 0 is returned, error otherwise.
5290 */
5291 static int
5292 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5293 ext4_lblk_t start, ext4_lblk_t shift)
5294 {
5295 struct ext4_ext_path *path;
5296 int ret = 0, depth;
5297 struct ext4_extent *extent;
5298 ext4_lblk_t stop_block, current_block;
5299 ext4_lblk_t ex_start, ex_end;
5300
5301 /* Let path point to the last extent */
5302 path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5303 if (IS_ERR(path))
5304 return PTR_ERR(path);
5305
5306 depth = path->p_depth;
5307 extent = path[depth].p_ext;
5308 if (!extent) {
5309 ext4_ext_drop_refs(path);
5310 kfree(path);
5311 return ret;
5312 }
5313
5314 stop_block = le32_to_cpu(extent->ee_block) +
5315 ext4_ext_get_actual_len(extent);
5316 ext4_ext_drop_refs(path);
5317 kfree(path);
5318
5319 /* Nothing to shift, if hole is at the end of file */
5320 if (start >= stop_block)
5321 return ret;
5322
5323 /*
5324 * Don't start shifting extents until we make sure the hole is big
5325 * enough to accomodate the shift.
5326 */
5327 path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5328 if (IS_ERR(path))
5329 return PTR_ERR(path);
5330 depth = path->p_depth;
5331 extent = path[depth].p_ext;
5332 if (extent) {
5333 ex_start = le32_to_cpu(extent->ee_block);
5334 ex_end = le32_to_cpu(extent->ee_block) +
5335 ext4_ext_get_actual_len(extent);
5336 } else {
5337 ex_start = 0;
5338 ex_end = 0;
5339 }
5340 ext4_ext_drop_refs(path);
5341 kfree(path);
5342
5343 if ((start == ex_start && shift > ex_start) ||
5344 (shift > start - ex_end))
5345 return -EINVAL;
5346
5347 /* Its safe to start updating extents */
5348 while (start < stop_block) {
5349 path = ext4_ext_find_extent(inode, start, NULL, 0);
5350 if (IS_ERR(path))
5351 return PTR_ERR(path);
5352 depth = path->p_depth;
5353 extent = path[depth].p_ext;
5354 if (!extent) {
5355 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5356 (unsigned long) start);
5357 return -EIO;
5358 }
5359
5360 current_block = le32_to_cpu(extent->ee_block);
5361 if (start > current_block) {
5362 /* Hole, move to the next extent */
5363 ret = mext_next_extent(inode, path, &extent);
5364 if (ret != 0) {
5365 ext4_ext_drop_refs(path);
5366 kfree(path);
5367 if (ret == 1)
5368 ret = 0;
5369 break;
5370 }
5371 }
5372 ret = ext4_ext_shift_path_extents(path, shift, inode,
5373 handle, &start);
5374 ext4_ext_drop_refs(path);
5375 kfree(path);
5376 if (ret)
5377 break;
5378 }
5379
5380 return ret;
5381 }
5382
5383 /*
5384 * ext4_collapse_range:
5385 * This implements the fallocate's collapse range functionality for ext4
5386 * Returns: 0 and non-zero on error.
5387 */
5388 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5389 {
5390 struct super_block *sb = inode->i_sb;
5391 ext4_lblk_t punch_start, punch_stop;
5392 handle_t *handle;
5393 unsigned int credits;
5394 loff_t new_size;
5395 int ret;
5396
5397 /* Collapse range works only on fs block size aligned offsets. */
5398 if (offset & (EXT4_BLOCK_SIZE(sb) - 1) ||
5399 len & (EXT4_BLOCK_SIZE(sb) - 1))
5400 return -EINVAL;
5401
5402 if (!S_ISREG(inode->i_mode))
5403 return -EOPNOTSUPP;
5404
5405 trace_ext4_collapse_range(inode, offset, len);
5406
5407 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5408 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5409
5410 /* Call ext4_force_commit to flush all data in case of data=journal. */
5411 if (ext4_should_journal_data(inode)) {
5412 ret = ext4_force_commit(inode->i_sb);
5413 if (ret)
5414 return ret;
5415 }
5416
5417 /* Write out all dirty pages */
5418 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
5419 if (ret)
5420 return ret;
5421
5422 /* Take mutex lock */
5423 mutex_lock(&inode->i_mutex);
5424
5425 /*
5426 * There is no need to overlap collapse range with EOF, in which case
5427 * it is effectively a truncate operation
5428 */
5429 if (offset + len >= i_size_read(inode)) {
5430 ret = -EINVAL;
5431 goto out_mutex;
5432 }
5433
5434 /* Currently just for extent based files */
5435 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5436 ret = -EOPNOTSUPP;
5437 goto out_mutex;
5438 }
5439
5440 truncate_pagecache(inode, offset);
5441
5442 /* Wait for existing dio to complete */
5443 ext4_inode_block_unlocked_dio(inode);
5444 inode_dio_wait(inode);
5445
5446 credits = ext4_writepage_trans_blocks(inode);
5447 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5448 if (IS_ERR(handle)) {
5449 ret = PTR_ERR(handle);
5450 goto out_dio;
5451 }
5452
5453 down_write(&EXT4_I(inode)->i_data_sem);
5454 ext4_discard_preallocations(inode);
5455
5456 ret = ext4_es_remove_extent(inode, punch_start,
5457 EXT_MAX_BLOCKS - punch_start);
5458 if (ret) {
5459 up_write(&EXT4_I(inode)->i_data_sem);
5460 goto out_stop;
5461 }
5462
5463 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5464 if (ret) {
5465 up_write(&EXT4_I(inode)->i_data_sem);
5466 goto out_stop;
5467 }
5468
5469 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5470 punch_stop - punch_start);
5471 if (ret) {
5472 up_write(&EXT4_I(inode)->i_data_sem);
5473 goto out_stop;
5474 }
5475
5476 new_size = i_size_read(inode) - len;
5477 i_size_write(inode, new_size);
5478 EXT4_I(inode)->i_disksize = new_size;
5479
5480 ext4_discard_preallocations(inode);
5481 up_write(&EXT4_I(inode)->i_data_sem);
5482 if (IS_SYNC(inode))
5483 ext4_handle_sync(handle);
5484 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5485 ext4_mark_inode_dirty(handle, inode);
5486
5487 out_stop:
5488 ext4_journal_stop(handle);
5489 out_dio:
5490 ext4_inode_resume_unlocked_dio(inode);
5491 out_mutex:
5492 mutex_unlock(&inode->i_mutex);
5493 return ret;
5494 }